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Pumping Patterns and Work
Done During Peristalsis in
Finite-Length Elastic Tubes

Balloon dilation catheters are often used to quantify the physiological state of peristaltic
activity in tubular organs and comment on their ability to propel fluid which is important
for healthy human function. To fully understand this system’s behavior, we analyzed the
effect of a solitary peristaltic wave on a fluid-filled elastic tube with closed ends. A
reduced order model that predicts the resulting tube wall deformations, flow velocities,
and pressure variations is presented. This simplified model is compared with detailed
fluid—structure three-dimensional (3D) immersed boundary (IB) simulations of peristaltic
pumping in tube walls made of hyperelastic material. The major dynamics observed in
the 3D simulations were also displayed by our one-dimensional (1D) model under lami-
nar flow conditions. Using the 1D model, several pumping regimes were investigated and
presented in the form of a regime map that summarizes the system’s response for a range
of physiological conditions. Finally, the amount of work done during a peristaltic event
in this configuration was defined and quantified. The variation of elastic energy and work
done during pumping was found to have a unique signature for each regime. An extension
of the 1D model is applied to enhance patient data collected by the device and find the
work done for a typical esophageal peristaltic wave. This detailed characterization of the
system’s behavior aids in better interpreting the clinical data obtained from dilation cath-
eters. Additionally, the pumping capacity of the esophagus can be quantified for compar-
ative studies between disease groups. [DOI: 10.1115/1.4050284]

Keywords: esophagus, elastic tube flow, peristalsis, reduced-order modeling,
Sfluid—structure interaction, immersed boundary method

1 Introduction

Peristaltic flow through cylinders and other geometries has
been studied extensively since the mid 1960s [1-4]. The investi-
gations have ranged from analyses of specified wall motion on
Newtonian [1,5], non-Newtonian [6,7], and particulate fluids
[8-10] to the effects of a prescribed forcing on the coupled
fluid—structure system [11-13]. Both infinite and finite geometries
[13,14] have been considered, and the quantitative effects of the
channel geometry (cylindrical versus rectangular channels) on
pumping characteristics have been established [3,15]. However,
one problem that has received little attention is the effect of peri-
stalsis on fluid-filled elastic tubes that are closed at both ends. In
such a setting, fluid inside the tube can neither enter nor leave the
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system for the entire duration of peristalsis. This configuration is
commonly found in long, slender balloon catheters used to evalu-
ate mechanical properties and the contractile response of blood
vessels (similar to catheters used during angioplasty). It is also
found in functional lumen imaging probe (FLIP) catheters used to
characterize the contractility of anatomical sphincters and esopha-
geal motility.

A major assumption utilized to facilitate the mathematical anal-
ysis of peristaltic flow through a tube is that the problem is identi-
cal in both the fixed (lab) frame of reference and in the reference
frame attached to the peristaltic wave. In the latter, the wave is
stationary, and the shape of the tube walls does not change with
time. When the tube length is finite, this assumption is not valid
[14]. Thus, in order to build a simplified model for our problem,
we turn to the approach taken to analyze flow driven by valveless
pumping, which occurs in a finite, periodic domain, and modify
the forcing method and boundary conditions to reflect the operat-
ing conditions for our problem. Interestingly, the configuration we
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Fig. 1 Details of the FLIP bag and catheter assembly (positioned within the esophagus). The proximal
end of the bag points toward the subject’s throat and the distal end, toward the stomach. The length
of the bag is 16 cm, and diameter at full distension is 22 mm.

160
——Volume of fluid in bag
——Distal pressure reading
——Current instant 140 |

(5.
o

E 120t

Za5t E
é £ 100
g 40 -
2 =
o
> 350 8 80 i
P o |
230 f 5 i
T 2 60f |

25+ @ |
< 2
o 2 40f i
ﬁ 20 !
g 20 .
a 15 !

I
10 : : ‘ : 0 3
0 100 200 300 400 -60 -40 -20 0 20 40 60
Recording number radius (mm)

(a) (b)

Fig. 2 Visualization of clinical data collected from the FLIP. Graph on the left shows the bag volume
and pressure variation over 40s of time (10 Hz recording frequency). Figure on the right shows the
profile of the esophageal lumen at the instant marked by the vertical black bar on the left graph (at
recording number 200). Dotted lines show the range of measurable cross-sectional area (21-380 mm?,

5.2—22 mm diameter) [16].

aim to study first appears in Ref. [1] but is subsequently ignored.
To the best of our knowledge, this configuration does not appear
again in any other studies involving flow in deformable tubes.

The device we intend to focus our analysis on is the aforemen-
tioned FLIP [16]. It consists of a long flexible, hollow catheter, at
the end of which is mounted a polyurethane bag [17]. The section
of the catheter enclosed by the bag incorporates paired impedance
planimetry sensors that can measure the regional cross-sectional
area (CSA) along the bag’s length as seen in Fig. 1. Various ver-
sions of the device exist where the bag length is either 8 or 16 cm;
our focus is on the latter version. Also within the bag at the distal
end, there is a pressure sensor that captures the fluid pressure at
any given time. When deployed in a patient, the device is posi-
tioned such that most of the bag rests within the esophageal
lumen. The bag is then incrementally filled with saline, and the
esophageal contractile response is evaluated by monitoring the
internal fluid pressure and CSAs along the length of the bag.
When fully distended with saline, the bag diameter is 22 mm. The
external end of the catheter is connected to a computer that stores
the data collected by these sensors. The bag can be filled or
drained by pumping fluid through the catheter, and fluid enters or
leaves the bag through a small hole on the catheter. Figure 1
shows a simplified representation of the bag-catheter assembly

071001-2 / Vol. 143, JULY 2021

and shows the locations of the various sensors. For additional
details on the device’s construction, data resolution, accuracy and
frequency of data collection, see Refs. [16] and [18].

1.1 Operating Details and Simplifying Assumptions. Rep-
resentative FLIP data obtained from a subject can be visualized as
shown in Fig. 2. During examination, the subject is in a supine
position. The left panel shows the pressure and volume inside the
bag as a function of time. It should be noted that the volume
change is controlled by the physician conducting the procedure,
and that the pressure change is a consequence of esophageal con-
tractility in response to distension. The right panel of the figure
shows the axisymmetric profile of the tube at the instant in time
indicated by the black vertical line on the left panel. The dotted
lines superimposed on the tube profile show the maximum and
minimum diameters that can be accurately measured by the
planimetry sensors. The esophageal contraction is highlighted
with the three black bands where the CSA is the least. On the
pressure curve, we see four peaks, indicating that four peristaltic
waves have passed over the bag for the duration of this plot. The
image of the bag profile is oriented such that peristalsis begins at
the top and travels downward. Measurement of area is not

Transactions of the ASME

019/0000£99/1.00} L0/L/€ 1. /pd-8]01E/|EOIUBYIWOIG/B10"8WSE" UOKOS||00[ENBIPaWSE//:dJY WOl papeojumoq

10 €pl ¢

2202 JoquianoN 80 uo 3senb Aq ypd-L001 L0



continuous along the bag’s length. Rather, area is measured at 16
locations at 1cm intervals, and intermediate values are interpo-
lated to construct the lumen profile [19].

With the device located in the esophagus, the passage of a peri-
staltic wave causes the (axisymmetric) profile of the bag and fluid
pressure within it to change. During peristalsis, the esophageal
wall may or may not approximate (i.e., come in contact with) the
catheter. It is difficult to predict the relationship between flow rate
and pressure drop across the contraction zone. The Reynolds num-
ber (Re) of the system is estimated to be 660 when using the fol-
lowing values: density p = 1000kg/m?, viscosity u = 0.001Pa - s,
tube diameter D = 22 mm, and peristaltic wave speed ¢ = 3cm/s
[20]. If the flow inside is assumed to be similar to pipe flow at
every location, then the flow is laminar. But the Reynolds number
in the contraction zone is difficult to estimate, so the nature of
flow at the neck is unknown. As such, we will analyze two flow
types, (corresponding to low and high Re): (1) parabolic flow
everywhere and (2) assuming that that a simple friction factor can
be used to relate flow rate and pressure drop in the entire domain.
As the subject is in a supine position, we assumed that the effect
of gravity on the device is negligible. Depending on the position-
ing of the esophagus in the subject, the catheter can become slightly
curved during measurement. The impedance planimetry sensors
measure only local lumen area. Thus, curvature information is not
available during clinical examination or subsequent analysis. How-
ever, fluoroscopic imaging [21] shows that the curvature is not sig-
nificant; thus, we assume a straight geometry to model this
problem. During the procedure, bag volume is changed from 0 to
70mL in 10 mL steps. The analysis presented in this work consid-
ers peristaltic activity occurring at 30 or 40 mL of distension where
the esophagus is gently stretched, and circumferential wall strains
are not high. Due to the inflated nature of the bag, the lumen profile
tends to be largely circular.

Our goal was to build a simple model to analyze this system
and understand the relationships between the tube profile, internal
bag pressure, esophageal wall stiffness, and the intensity of the
peristaltic contraction. With sound mathematical foundations, the
work done by the esophageal walls to pump fluid within the bag
can be defined. This fast, simple model will eventually be
deployed at point-of-care to estimate pressure distributions and
work done in real-time. Armed with this knowledge, we can quan-
tify peristaltic work of the esophagus, which may prove valuable
in the evaluation of dysphagia.

2 Mathematical Details of the One-Dimensional
Model

Incompressible flow in a tube with deforming walls can be mod-
eled using the system of equations given by (1) and (2). Here, A(x,
t) is the tube area, and u(x, ) is the area-averaged fluid velocity in
the axial direction. The axial coordinate along the tube length is
denoted by x and time by ¢. Equation (1) is the continuity equation
that relates local changes in tube area and fluid velocity to conserve
volume. Equation (2) describes the conservation of momentum
with a general flow resistance term 2tz /(pR) due to fluid viscosity
and a momentum correction factor of unity [22]. These equations
have been widely used to describe valveless pumping [23,24], and
a detailed derivation of these equations can be found in Ref. [25].
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In the context of peristalsis-driven flow in the esophagus, fluid
velocities are much smaller than the velocity at which a disturb-
ance propagates in the esophageal wall. Thus, we expect no
shocks or discontinuities in the problem, which allows us to use
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the nonconservative forms of the continuity and momentum equa-
tions. For smooth solutions, both conservative and nonconserva-
tive versions of the governing equations are equivalent and will
lead to the same numerical solution.

To close the system of equations, we assume that a constitutive
law in the form of an explicit relationship between pressure p and
area A exists. This relationship is commonly referred to as a “tube
law.” For our application, we assume that the change in pressure
is proportional to the change in area. Experiments carried out with
the FLIP show that the distal esophageal walls follow this behav-
ior [26], and a similar form of the tube law is also used in Ref.
[24] and derived in Ref. [27] using shell theory. The external pres-
sure is assumed to be zero for all time, and thus, the transmural
pressure is equal to the pressure inside the tube. A damping term
is introduced to regularize the system of equations. The form of
the tube law used is given by

A 0A

Here, K is a measure of the wall stiffness and has the units of pres-
sure. Its exact value depends on the Young’s modulus of the mus-
cle wall and the ratio of its thickness to the undeformed radius.
The tube’s undeformed, reference area A, is changed by an acti-
vation factor 0 = 0(x, ¢) to introduce the effect of a contraction. A
damping term with coefficient Y is also introduced. By a simple
manipulation using the continuity equation, we can see that the
introduction of this term leads to a diffusion term in the momen-
tum equation

A 0A [ A d(Au)

2
(‘ip_l(g(é)iya(Au) )

Ox  AygOx \0 0x2

Thus, the addition of this term helps stabilize the numerical
solution. A similar manipulation was also used in Ref. [22] to
eliminate p. In our analysis, the damping is kept small so as to
ensure that the linear part of the tube law is the major contributor
to fluid pressure for all regimes of operation. Note that A(x, f) and
0A, are not equal. The former is an unknown whose value must
be found as part of the solution. Before proceeding, it is important
to make note of the viscous shear stress term in the momentum
equation. Several approximations can be made to write 7z as a
function of tube area and local fluid velocity. For our analysis, we
choose to study the system when (1) the flow is parabolic every-
where with viscosity u and, (2) a viscous term that uses a constant
friction factor f is used to compute flow stresses. In the former
case, the viscous resistance term 2tg/(pR) is equal to 8muu/(pA)
and is fu|u|/(2D) for the latter.

2.1 Nonimensional Version of the Governing Equations.
The following expressions were chosen for each of the dimen-
sional variables to obtain nondimensional versions of the continu-
ity, momentum and the tube law equations:

L
A = oAy, t:TE’ u="Uc (6)

p=PK and x=yL (@)

Here, speed of the peristaltic wave is denoted by ¢ and L is the
length of the FLIP bag. Substituting these into Egs. (1), (4), and
the parabolic version of Eq. (2) gives

du. N O(al)
at dy

=0 ®)
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oUu oUu oP U
i il el Y d
8T+Uax+l’//8;(+ﬁoc 0, an )
o O(al)
p=(%_1)- 1
(9 ) "oy (10

where the following nondimensional numbers ¥ = K/(pc?),
n = (YcAy)/(KL), and 8 = 8nuL/(pAoc) emerge. Here, 1 is a
nondimensional tube damping parameter, and f§ is a flow resist-
ance coefficient. Eventually, the nondimensional pressure P in the
momentum Eq. (9) will be replaced with the right-hand side of
Eq. (10). Thus, the total number of coupled equations to be solved
is two with o and U as the unknowns. When working with the fric-
tion factor version of the momentum equation, the nondimen-
sional number for flow resistance f§ becomes (fL/4)+/7/A¢ and ¥
remains unchanged, and the viscous resistance term in the
momentum equation takes the form SU|U|/\/a.

2.2 Boundary Conditions and Peristaltic Wave Input. It is
clear that if # is exactly zero, Egs. (8)—(10) allow only one bound-
ary condition each for « and U as the system is hyperbolic. How-
ever, during normal operation, the fluid volume inside the bag is
constant because saline pumping is halted, and the bag ends are
sealed. Thus, fluid velocity at both ends must be set to zero, which
is not admissible with #=0. In addition to this, hyperbolic sys-
tems often present convergence issues. To address these issues,
we set 7 # 0 and add a smoothing term ex,, to the continuity
equation [28]. Following this step, substituting Eq. (10) into Eq.
(9) leads to second derivatives for o and U requiring two boundary
conditions (BCs) each for o and U at both ends. The bag is
attached to the catheter at both ends and tapers off to a point.
Thus, boundary conditions for velocity at the ends

U(y=0,71)=0 and Uyy=1,1)=0 (11)

are straightforward, but the boundary conditions for nondimen-
sional area o are unclear. Fixing the area to some nonzero constant
value is equivalent to fixing the pressure and leads to an inconsis-
tent problem definition. Boundary conditions for o must be con-
sistent with BCs for U. We arrive at these by turning to Eq. (9)
with U=0 at the ends which results in OP/9y = 0. From Eq.
(10), we see that this leads to

O Po _0adU  O*U
— — 2 —— — | = 12
oy 1 <U8)(2 + Ay Oy o 8;{2) 0 (12)

In the limit of # — 0, this is equivalent to requiring do;/dy = 0 at
both boundaries. Thus, we choose

oo Oa
a_X =0 and a—x

=07

=0 (13)

=11

as Neumann-type boundary conditions for « at the tube ends. For
nonzero damping, this BC is equivalent to changing the viscous
resistance by an amount —nolU,, at the ends. This additional
resistance at the boundary will have negligible effect for small 7.
With the additional regularizing terms and applied BCs, the solu-
tion differs from the hyperbolic version at a thin region near the
boundary. In Sec. 2.3, using the Method of Manufactured Solu-
tions, we show that the effect of damping on the overall solution
is negligible. It should be noted that more complicated forms of
the tube law can be used which account for longitudinal curvature,
bending, and tension [29,30] in the tube wall. Such a tube law can
include a double derivative, A, or a fourth order derivative term
A,x Of the tube area. Under this setting, additional boundary con-
ditions for area and pressure can be applied in a straightforward
manner without leading to inconsistencies in the problem defini-
tion. The inclusion of these terms will lead to higher order spatial
derivatives into the governing equations. However, in our current
analysis, we choose to work with the simplest version of the tube
law as the esophagus’ material properties and behavior for these
deformation modes are unknown.

The last ingredient required to complete the model is specifying
an activation input to mimic peristaltic contraction. We wish to
induce a reduction in the tube area at some location y and at some
time 7 in a manner that resembles a traveling peristaltic wave. The
most common approach to induce contractions is seen in the
aforementioned valveless pumping models where an external acti-
vation pressure at a specific location is varied sinusoidally with
time [23-25]. This is an appropriate method of activation for
valveless pumping scenarios due to the fact that the extra pressure
is generated due to respiration. However, in the esophagus, con-
tractions in area are generated due to a contraction of muscle
fibers within the esophageal wall. As such, we add an activation
term O to the tube law, which changes the reference area of the
tube when activated. The tube law used is

[ O(al)
P_(571>717 5, (14)

¢

with the activation term given by

1— <ﬂ> [1—0— sin(z—n(x—r)+3—n)}7 T—-w< <1
0(z,7) = 2 " ’ o

17

otherwise
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Fig. 3 Visualizing the peristaltic activation wave
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The nondimensional width of the peristaltic wave is denoted by
w = W /L with W denoting the dimensional contraction width. As
mentioned earlier, the CSA at the tube ends in the device tapers
off to a point on the catheter, so a small correction is made to the
activation term to account for the reduced CSA at the ends. The
final form of the activation wave is plotted in Fig. 3. The value of
0 specified represents the reference area of the tube at the strong-
est part of the contraction. Physiologically speaking, 0, is a
parameter that determines the strength of the contraction. It repre-
sents the ratio by which the zero-stress luminal area is reduced
(i.e., the reference luminal area A,) due to muscular contraction.
The smaller the value of 0,, the smaller is the activated reference
area and the greater is the contraction intensity. When 0y = 1,
there is no contraction and the system is fully at rest. Since the
velocity scale was chosen to be the same as the speed of the peri-
staltic wave, the nondimensional wave speed is 1.0.

2.3 Numerical Solution of the System of Equations. The
nondimensional pressure term P in the momentum equation is
eliminated using Eq. (14), which leads to the system of equations

Oa  O(alU)  0*a
g — —— 1
ot Iy 68;{2 (16)

ou ou U 0 (u . 0

with boundary conditions given by Eqgs. (11) and (13). The prod-
uct of n and ¥ is denoted by (. As explained earlier, a smoothing
term €(o,,) was added to the right-hand side of Eq. (8) to acceler-
ate convergence and reduce computation time. We set zero veloc-
ity initial conditions and specify a spatially constant initial
condition for area that depends on the volume of fluid present in
the bag

U(y,t=0)=0 a(y,t=0) = o (18)
This set of equations is solved using the pdepe routine in MATLAB.
For the sake of clarity, we rewrite the final version of the govern-
ing equations and the boundary conditions in the form solved
using MATLAB below (subscripts denote partial derivatives with
respect to that variable):

Ol ea, Uoy + Uy "
=1, _ U
U: ), |, UUZ+ﬁ;+§(6aX — af),)

o]+ [o] e, =[6] wr z=01 o

Before proceeding with our analysis of the FLIP device with
this mathematical model, we ensured that the damping terms
introduced in the continuity and momentum equation did not
adversely affect the computed solution. The Method of Manufac-
tured Solutions was used to test the solution approach to ensure
that the system of equations was being solved correctly. A sinu-
soidally expanding and contracting tube shape was chosen that
generated an oscillating velocity field within the tube. The solu-
tion chosen for o at time 7 =0 was

256

wpt=0)=f(r) == Q7 =5/ +47 - A +1 QD)

and the shape of the tube at all other times was set to vary as a
standing wave and has the form

(1 71) = [f () — eos(wr) + 1 (22)
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Fig. 4 Tube shape (solid lines) and fluid velocity (dotted curve)
corresponding to the manufactured solution given by Egs. (22)
and (23) for t =0.38

Using the original form of the continuity equation given by Eq.
(8), the velocity field corresponding to the chosen tube shape was
found to be

o sin(w)

v= (f — Deos(wr) + 1

J(f — 1)dy (23)

A snapshot of the manufactured tube shape and fluid velocity
are shown in Fig. 4. The left segment of the tube has reached the
maximum area of o = 1.5 at y = 0.25. At this instant, the right
segment of the tube is beginning to expand ,and the left segment
is contracting, causing fluid to flow into the expanding section of
the tube. This corresponds to a positive fluid velocity as shown by
the dotted curve. Eventually, the right segment of the tube reaches
its maximum area and begins to contract and the cycle continues
with fluid traveling from one segment of the tube to the other in a
periodic manner.

Using the nondimensional form of the momentum Eq. (9), the
source term corresponding to the chosen solutions was found with
values of f§ and ¥ set to 10* and = 10. Using the regularized
version of the governing equations given by Egs. (19) and (20),
along with { = 0.01 and € = 107, the system was then solved to
obtain o and U. Relative tolerance for the solver was set to 107",
A comparison of the manufactured solution to the computed solu-
tion is given in Figs. 5 and 6. The agreement between the chosen
and numerically computed solutions was found to be satisfactory,
indicating that the equations were being solved correctly, and that
the effect of the regularizing terms on the overall solution was
negligible.

—o— numerical solution
manufactured solution

0.005 0.01 0.015 0.02 0.025

0.5 . . . . )
0 0.2 0.4 0.6 0.8 1

X

Fig. 5 Comparison of the manufactured solution area and area
obtained from the numerical solution of Eqgs. (19) and (20) for
7= 3.5. Inset shows the variation of area at the boundary where
the gradient was set to zero but the value was not kept fixed.
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X

Fig. 6 Comparison of fluid velocity obtained from the numeri-
cal solution of the regularized equations to the manufactured
solution given by Eq. (23) at 1 =3.5

3 Dynamics Displayed by the One-Dimensional Model

3.1 Comparison With Three-Dimensional Immersed
Boundary Simulations. Before proceeding with a discussion on
the regimes and computing peristaltic work, we set out to further
validate our one-dimensional (1D) model with detailed
fluid—structure interaction simulations using the immersed bound-
ary (IB) method. It has already been stated that the nature of flow
within the device is not definitively known to be either laminar or
fully developed turbulent flow. As explained in Sec. 1.1, the
Reynolds number for flow in the tube is estimated to be around
660, indicating that the flow is likely to be laminar. For healthy
individuals, the value of  is of the order 100 and f is of the order
1000 based on known values of peristaltic wave speed [31], tube
stiffness coefficient K [26], and material properties of water. The
material parameters for the three-dimensional (3D) IB simulation
were chosen such that they were equivalent to =100, f =621,
and 0y = 0.05, and flow was observed to have a parabolic profile
everywhere within the tube. Following peristaltic activation, the
resulting tube shapes and fluid velocity variations obtained from
both models were then compared.

The geometry of the structure used in the IB simulations con-
sists of a long cylindrical tube with open ends. The two ends are
closed using “caps” that are simply short flat cylinders of specified
thickness. The entire structure is then meshed using hexahedral
elements to take advantage of the Adaptive Anisotropic Quadra-
ture that was developed by Kou et al., in Ref. [32] and imple-
mented in the open-source immersed boundary framework
IBAMR [33]. The structure is represented using finite elements,
and the combined fluid—structure equations are solved on a Carte-
sian grid using the Finite Volume Method. Mathematical details
on the interaction equations, discretization of the Lagrangian and
Eulerian domains, and temporal schemes for solving the coupled
system can be found in Ref. [34]. Computations were performed
on the Northwestern University “Quest” cluster and on SDSC
Comet. The mechanical properties of the tube consist of two mate-
rials. Just like the esophagus, the structure in our IB simulations
consists of fibers embedded in an isotropic matrix material. The
matrix component is represented by a simple Neo-Hookean strain
energy function, and the fiber’s effect is implemented using a
bilinear strain energy function that computes the stress based on
strain in the circumferential direction. The combined effect of
these layers leads to an approximately linear relationship between
pressure and area, corresponding to the tube law used in the 1D
model. Additional details on the material properties and strain
energy functions corresponding to each layer can be found in
Refs. [20,32,35]. Similar to the activation method used in Ref.
[32], the peristaltic wave is applied as a controlled reduction in
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the fiber rest length along the tube. This reduction leads to a
greater generation of circumferential stresses in the tube at the
activation location, the consequence of which is a reduction of the
tube area resembling peristaltic contraction.

The results of our simulations are summarized in Figs. 7 and 8.
The figures show the resultant tube shapes generated by the peri-
staltic contraction wave as it travels from left to right along the
tube length for both models. As the contraction moves forward, it
displaces fluid, causing an increase in tube area to accommodate
the excess fluid. When the pressure in the segment ahead of the
contraction becomes high enough, the contraction opens up,
allowing fluid accumulated in this segment to flow in the opposite
direction and refill the segment of the tube behind the contraction.
Figures 7(e) and 7(f) show the tube profile and fluid velocity after
the wave has passed. At each instant, we see satisfactory agree-
ment between the velocity variations observed in the 3D
immersed boundary simulations and the nondimensional velocity
profiles predicted by the 1D model. The tube shapes are also
observed to match well with the shape of the structure computed
by the 3D simulations during and after the activation wave has
traveled over the tube’s length.

Encouraged by this agreement between the 1D model and the
3D immersed boundary simulations, we continued the analysis of
the system by probing the 1D model for a wide range of operating
conditions. Although the agreement was found only for parabolic
flow, we also investigated the system’s response when the viscous
term is friction-factor based. In Sec. 4, we present the results for
both of these scenarios in a “unified” regime map. One of the pri-
mary goals for this comparison with the 3D IB simulations was to
check if the introduction of the tube damping and smoothing
terms significantly affected the response of the system. Figures 7
and 8 show that that the introduction of the regularizing terms not
only leaves the physics of the system unharmed but also aids in
stabilizing the numerical solution which directly leads to more
rapid solution times.

It should be noted that the 3D immersed boundary simulations
did not show any modes of asymmetric collapse or solid—solid
contact between the tube walls for the operating parameters that
were tested. The cross section of the tube remained circular across
its entire length for the entire duration of the run. The speed at
which a disturbance propagates in the system is given by
Op/0A\/A/p [29] and is approximately 1 m/s for the esophagus.
The peristaltic wave speed and internal fluid velocities are of the
order of 1cm/s indicating that the flow speeds are always well
below the critical value needed for collapse or choking. At the
location of the contraction, the tube is not passive and the there is
no collapse of the structure. The reduction in area is solely due to
active contraction brought upon by a controlled reduction of the
rest length of the fibers in the tube’s material model. It should also
be emphasized that the coupled fluid—structure simulations we
have developed are perfectly capable of capturing any event of
collapse if there was a possibility for such an event to occur. How-
ever, for the range of parameters that are relevant to the operating
conditions of this device, collapse is improbable due to the tube’s
geometry and the significant amount of fluid in the bag (30 mL or
greater). Another thing to note is that as the FLIP only measures
area, comparison of simulation results with realistic three-
dimensional structures is not possible at the moment. In the future,
we aim to obtain detailed geometric information about the esopha-
geal structure from fluoroscopy and 4D-MRI imaging [36] to
compare numerical results with experimentally measured values.

3.2 Types of Tube Deformations Observed During Peri-
stalsis. With all the parts of the 1D model in place, we can now
investigate the system’s response to the applied activation as a
function of the operating parameters, 0y, i, and f. Changing these
values is equivalent to investigating the effect of tube wall stiff-
ness, wave speed, contraction strength, fluid density and flow
resistance on the tube wall deformation and internal flow patterns
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Fig. 7 Comparing tube shapes and velocity fields computed from the 1D model with results from equivalent 3D immersed
boundary simulations. At each instant, the top figure shows the tube mesh along with the internal velocity fields along an
axial slice obtained from the IB simulations and the bottom figure shows the corresponding variations predicted by the 1D
model. In the latter, we plot the top and bottom profile of the tube using the nondimensional radius /«, and the variation of
velocity Uin the tube at each instant as a function of . The dotted line represents the tube’s axis. Values corresponding to ,/a
are on the left axis and values for U are on the right axis. Negative values of U indicate fluid is traveling in the left direction.
Contraction wave began at z =0 and leaves the domain at z = 1. Instants 5 and 6 correspond to  =1.10 and = = 1.13, respec-
tively. Figure 8 compares areas and the area-averaged axial velocity with U from the 1D model for instant 2. (a) Instant 1, (b)
instant 2, (¢) instant 3, (d) instant 4, (e) instant 5, and (f) instant 6.
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Fig. 8 Quantitative comparison of nondimensional tube area
and fluid velocity obtained from 3D IB simulations with the
numerical solution of the 1D system of equations. This snap-
shot corresponds to Instant 2, shown in Fig. 7 where the con-
traction is approximately at y = 0.45.

during peristalsis. After studying the system’s behavior for a
broad range of operating values, we found four distinct, physio-
logically relevant patterns of peristaltic pumping based on the
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way the tube walls and the fluid inside respond to the applied acti-
vation. These regimes are shown in Fig. 9. The progression of
these regimes from numbers 1 to 4 can be interpreted simply as
the response of the system as fluid viscosity is continually increas-
ing. It should be noted that the fourth regime displays very little
deformation of tube area. The deformation dynamics for this
regime are unremarkable, and the tube shape remains quite similar
to the shape of the initial condition for the entire duration.

The occurrence of these regimes is dictated by a competition
between elastic forces generated due to deformation of the tube
wall and resistance to flow through the narrowest part of the con-
traction. A relatively stiff tube wall resists deformation and forces
the fluid that was displaced due to the advancing wave to flow
back through the contraction. In this scenario, we see the walls
deform as shown in regime 1. An equivalent way of looking at
this is to assume a low resistance to flow through the contraction.
The energy required to expand the tube walls is significantly
greater than the energy required to overcome viscous resistance
across the contraction, and thus, the pumping is almost quasi-
steady with the tube walls having the same diameter on either side
of the contraction. On the other hand, if the resistance to flow is
high, it is favorable for the system to expand the tube walls to
accommodate the fluid that is being displaced by the advancing
peristaltic wave. At moderate flow resistances, this exact situation
occurs when the stiffness of the tube walls is low. The tube defor-
mation pattern in this scenario is denoted as regime 2.

Regime 3 has been investigated in great detail by Takagi and
Balmforth [11]. In their work, the lubrication approximation is
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Fig. 9 Tube deformations corresponding to regimes occurring for physiologically relevant parameter ranges. Defi-
nitions used to classify a solution as belonging to a particular regime are given in Table 1. (a) Regime 1, (b) regime

2, (¢) regime 3, and (d) regime 4.

used in an infinitely long domain with open ends. In our configu-
ration, we see the formation of a “blister” as predicted by their
model when the resistance to flow is high, and the tube walls are
fairly compliant. The formation of a blister is due to the fact that
the amount of time it takes for the fluid to redistribute is compara-
ble to the time it takes for the wave to travel along the tube length.
Regime 4 occurs when the resistance to flow is much higher than
that in regime 3. In this case, the amount of time it takes for the
fluid to “move” and respond to the peristaltic contraction is much
higher than the amount of time it takes for the wave to travel over
a section of the tube. The fluid velocity in this case is extremely
low leading to a small value in OA/d¢ as well. In this region of
operation, the fluid essentially behaves as a semisolid entity, and
the contraction causes only a small local deformation as it travels
forward.

Table 1 Definitions used to classify each solution as belong-
ing to a particular regime

Regime 1 AJAy < 1.7
Regime 2 AJAy > 1.7
Regime 3 Amax /A1 > 1.5
Regime 4 A /Ay > 09

Note: areas A; and A, are the distal and proximal areas (Fig. 10), and Apax
is the area of the bulge (observed in regime 3 only) at its widest point. For
regimes 1 and 2, Aj.x = A;. The area at the contraction is denoted by A...

071001-8 / Vol. 143, JULY 2021

When the value of y (which is the inverse of the Mach number
squared) is small, the wave-like nature of the system begins to
emerge. In this region, the speed of the peristaltic wave is compa-
rable to the speed at which a disturbance in the system travels at.
For the esophageal wall, this disturbance speed is of the order of
1m/s, but the peristaltic wave speed rarely exceeds 10cm/s. As
such, we will not investigate the dynamics of the system at these
unphysiologic wave speeds.

4 System Behavior Represented as a Regime Map

In Sec. 3, four patterns of observed tube wall deformation
depending on the system’s operating conditions were presented
(Fig. 9). Our goal was to combine the various operating parame-
ters to summarize the response of the system in the form of a
regime map. We wished to find the least number of parameters
that could be used to describe the response of the system to the
peristaltic contraction wave. The Buckingham-Pi approach leads
to the several nondimensional numbers already shown above.
Plotting the system’s response for each of these quantities is cum-
bersome. To that effect, we utilized the wave-frame approach that
has often been employed by other researchers to analyze peristal-
tic flow to find the most convenient combination of operating
parameters to visualize the system’s response. Detailed derivation
of these parameters is provided in the Supplemental Materials on
the ASME Digital Collection.
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Vi = Viwave

Fig. 10 Peristaltic contraction as observed in the wave’s frame
of reference

From the wave frame-based analysis based on Fig. 10, we sys-
tematically combined the tube stiffness coefficient, contraction
properties, fluid viscosity, and peristaltic wave speed to obtain
two nondimensional numbers: cumulative flow resistance w} (or
lI’}) and cumulative stiffness l//i. that were used to describe the
system’s response to a peristaltic contraction. Depending on the
specific version of the viscous term used (parabolic flow or fric-
tion factor-based) in Eq. (2), lﬁ} or ‘P} is computed from the input
parameters. The two terms 1, and (1//}7 ‘I’}) together, account for
all the relevant parameters of the system. The effect of tube stiff-
ness, fluid density, wave velocity, and the amount of fill volume
of the tube is accounted for in }, and y; accounts for the fluid’s
resistance to flow in the tube, the length of the contraction zone
and its intensity. All of these effects contribute to the increase or
decrease of the area ratio A,/A; and hence the observed regime.
The utility of our analysis is now clear because if we wished to
visualize the effect of these variables on pumping patterns, we
would either need several figures or utilize a plot that has multiple
axes, corresponding to wave velocity, tube stiffness, fluid viscos-
ity, etc. However, by combining these parameters in a sensible
manner, made possible by the wave-frame analysis, the visualiza-
tion of observed regimes can be achieved in a clear and coherent
way. The final combination of operating parameters used to com-
pute these cumulative nondimensional numbers is

K
Vi = 2pouc =2 (F) e 24)
;o 1-0 o Smul
Yp =2pw (702 for low Re with f# = Ao (25)
W= 2pw( = (1;9)2 forhigh R 'thﬁ*ﬂ (26)
' =2pw NG 0 or high Re wi =20,

The system’s response was investigated for a wide range of
physiologically relevant parameters. Values of iy were selected
from the following set: {0.1, 0.25, 0.6, 1, 2.4, 5, 10, 24, 50,
100} x 10? and f had the following values: {0.1,0.25, 1, 5, 10, 50,
100, 250} x 10°. Two values of the initial condition oy = {1.25,
2.0}, corresponding to the volume of fluid in the tube, were cho-
sen. The following values for contraction intensity 60, were
selected: {0.05, 0.1, 0.15, 0.2}. The nondimensional width w was
set to 0.25 for all runs. All possible combinations of these parame-
ters lead to 640 cases each for the parabolic and friction factor-
version of the momentum equation. The damping parameters and
solver tolerance were set to the same values that were used during
verification using the Method of Manufactured Solutions. Volume
of fluid in the tube was monitored as a measure of solution accu-
racy. Percent change in tube volume across all runs was of the
order of 107!!. The tube shape computed from each of these runs
was analyzed when the contraction was at the halfway point, i.e.,
at y = 0.5. At this instant, the ratio A,/A; was computed along
with the maximum tube area achieved (A,,,x) and area of the con-
traction (A.). Based on visual inspection of their values for several
cases, the tube shape was then classified as regime 1, 2, or 3/4
using the definitions provided in Table 1. Complete parametric
information and the associated regime for each case plotted in the

Journal of Biomechanical Engineering

regime map are provided in a data sheet available in the Supple-
mental Materials on the ASME Digital Collection.

Armed with this simplification, we present the occurrence of
each regime as a set of points on a w; versus 1 plot. Figure 11
shows the occurrence of the various regimes at different values of
the two /'s. We combine all the regime points from the two dif-
ferent flow types and present them in a single plot. We see that
the regime data points from both flow types fall within the general
vicinity of each other. The set of points belonging to each regime
is represented by a specific marker.

The wave frame approach that was taken to find the combina-
tion of parameters does not account for the formation of a bulge
or a blister. As both regimes 3 and 4 occur in the region of high
fluid viscosity, they are combined into a single entity for plotting
purposes. From this plot, we clearly observe the presence of a
general boundary between each set of regime points. The bound-
ary represents the change of the system from one solution to
another. This analysis can be used as a starting point to quantita-
tively derive the location of the boundaries between the regimes
shown in Fig. 11. In addition to the parameters mentioned above,
it has been observed that there is active relaxation ahead of, and
stiffening behind, the contraction wave that can change the effec-
tive material properties of the tube to improve bolus transport
through the esophagus [37,38]. In a future work, we will be incor-
porating these nonuniform changes in effective material properties
into our analysis and study the effect on the observed regimes and
quantitatively predict the regime boundaries as a function of all
physiologically relevant parameters.

With the help of the regime map, one can predict the shape
assumed by the tube during peristalsis by simply computing the
relevant lp;. and 1, from the given operating conditions and find-
ing the region which these points belong to. The regime map also
helps in understanding the change in tube shape that would occur
as one of the operating conditions is changed. For instance, as the
tube stiffness increases, the system will deform in such a way that
the area ratio tends to 1.0. Increasing the fill volume or decreasing
the peristaltic wave velocity leads to a similar outcome. When it
comes to increasing the fluid’s viscosity, we see a transition from
regime 1 to regime 2 as predicted by the regime map when the
value of lﬁ} is increased. When the area contraction factor 6 is
reduced, i.e., the amount of wave “squeezing” is increased, we
again observe the system transition from regime 1 to regime 2.
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Fig. 11 Regime map showing system’s response for a variety
of input conditions for both parabolic and friction factor-based
flow resistance terms. The parameters n//f and n//k are computed
using Egs. (24)-(26) for each data point. The x-axis represents a
cumulative stiffness parameter, and the y-axis represents a
cumulative flow resistance parameter. Legend: regime 1 (a),
regime 2 (x), regimes 3, 4 (®).
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Each of these regimes corresponds to a specific deformation
pattern observed using the FLIP device in different subjects and/
or diseases. For instance, assume that the device is calibrated, and
the operating conditions are benchmarked in such a way that it
shows pumping patterns corresponding to regime 2 in a healthy
individual. Under the same operating conditions, a patient with
peristaltic dysfunction will display pumping patterns correspond-
ing to either regime 1 or regime 3/4. Depending on the specific
behavior displayed, the regime map helps us identify the cause of
the abnormality. For instance, a patient displaying regime 1 might
have a stiffer esophagus due to fibrosis, and a patient with regime
4 has dysphagia due to ineffective peristalsis. Thus, the quantifica-
tion of the device’s behavior in the form of these regime maps
directly assists in better interpreting the various shapes seen in
patients during the FLIP procedure.

5 Defining and Quantifying Pumping Effort

In this section, we aimed to understand how energy is spent
during a peristaltic contraction in a closed tube. Finding the work
done by a peristaltic wave and observing its variation during
pumping can offer further insights into the pumping process. The
configuration that is being analyzed in this work is a closed sys-
tem. As such, there is no “net flow rate” or nonzero displacement
of fluid volume during one peristaltic event which can be used to
quantify efficacy. At the end of peristalsis, all the work done by the
peristaltic wave is dissipated due to fluid viscosity. Hence, the total
pumping work done is simply the amount of energy that has dissi-
pated. During peristalsis, however, the stretching of the esophageal
walls leads to some of the energy being stored as elastic potential
energy. After passage of the peristaltic wave, the tube relaxes and
releases the energy back into the fluid, which is then lost via vis-
cous dissipation. To understand the quantitative relationship
between these three agents, we turn to the parabolic version of the
momentum Eq. (2) and multiply both sides with Au to obtain

ou dp
+ p(Au)ua = o 2

Ou

A
””ar

@7

Noting that Q = Au, we rewrite the equation to form terms that
involve derivatives of the kinetic energy of the fluid per unit vol-
ume. We end up with

o1 , 0 (1 ,\ dp  8muuQ
A8t<2pu)+Q8x(2pu>__Au8x_ A (28)

to which we add the continuity equation (multiplied with pu?®/2)
on the LHS and after combining terms using the product rule, we
end up with the equation

ol 0 (1 2\ 4. 0p  8muuQ
E(EpAu)-i—a(EpQu)f Au@x —a 29)

the terms of which can be interpreted as follows:
ad (1 0 (1
Z(Z0A 2 e 2
o1 (2’) ! ) "o (2PQ” )

_ I(Aup) +p8(Au) _ 8SmuuQ 30)
ox ox A
—— =

viscous dissipation

surface work ~pV-u

Note that conservation of volume can be used to replace the
9(Au)/Ox term with —OA /9t to obtain

O (1 2) .91 z),_M_ 0A _ 8muQ
az(sz“)+ax(z”Q” “ T Paa
31
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Now, we integrate this equation over the length of the tube
from x =0 to L and apply the zero velocity condition Q = u = 0,
at the tube ends. This leads to terms with dx going to zero giving

L L L
- L p%—?dx = gL <% pAuz) dx + L 8nudx  (32)

Equation (32) succinctly shows how power is distributed in the
system at each time instant. Without the negative sign, the pres-
sure term represents the work done by the fluid on the tube walls.
Thus, the LHS is the work done by the walls on the fluid. The first
term on the RHS is the rate of change in the kinetic energy of the
fluid, and the last term is the rate of energy loss due to viscous dis-
sipation. It is important to realize that the pressure term has contri-
butions from both the passive elastic part of the esophageal walls
and the rise due to active contraction. When separated, we get a
better understanding of the power breakdown

L oA a1 2)
- JO Pactv de = &JO (E ,OAM dx

L 0A L
[ vt | smcas (33)
0 0

Simply put, the LHS is the rate of work done by the active part
of the tube wall (the peristaltic contraction) on the confined fluid,
and the terms on the RHS show the consumers of this spent
power. Some of it goes into increasing the kinetic energy of the
fluid, some of it is stored in the tube walls when they stretch due
to an increase in local pressure, and the rest is lost due to viscous
dissipation. At this point, we need to assume some form of the
passive pressure to compute the values of each these terms for the
various regimes displayed in our 1D model. The most logical
form of the passive pressure component is a linear dependence on
the tube area as seen in Ref. [26]. The breakdown of the fluid pres-
sure can then be trivially split as

1
P:gflz(ocfl)nLac(ffl) (34)
0 N 0
passive S——

active

Using this breakdown of fluid pressure, we can compute the values
of each of the terms in Eq. (33) and visualize the variation of work
done or energy dissipated over a single peristaltic event for each
regime. The above analysis can be repeated for the momentum equa-
tion with the friction factor stress term, but the resulting work varia-
tions show no qualitative differences between the two scenarios.

5.1 Work Curves From the Reduced Order Model. As
explained earlier, Eq. (33) gives the balance of power at each instant
of time. Integrating this equation over time gives the balance of work
done or energy lost as the peristaltic wave advances. In Fig. 12, we
show the energy contribution from each of these terms for regimes
with nontrivial tube shapes. This figure summarizes how the active
work is split between the two sinks over the entire range of observed
pumping patterns. At time T = 0, the peristaltic wave begins traveling
over the tube length, and the active work done by it is zero. As the
wave advances, the work done by it, i.e., the active work is split into
either increasing the potential energy stored in the tube walls or gener-
ating flow fields that then lose energy via dissipation. For the parame-
ter space that is being analyzed in this work (i > 1), the rate of
change of fluid kinetic energy is negligible and has not been plotted.
Nondimensionalizing Eq. (33) results in

: Ou of(r ,
Gt g o

1 O 1
+ l//J Ppass de + ﬂj Uzd)( (35)
0 0
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Fig. 12 Representative work curves for regimes that show nontrivial tube deformation. Each regime shows a unique signa-
ture for variation of work during peristalsis. At each instant, the sum of passive and viscous work is equal to the active work

done. (a) Regime 1, (b) regime 2, and (c) regime 3.

which shows that for large values of § and  (as is the case for
flows relevant to esophageal peristalsis), the term corresponding
to rate of change of fluid kinetic energy is very small compared to
the other terms in the energy balance equation.

The work curves for each of these regimes show unique identi-
fying features that confirm what is visually observed through the
tube deformation patterns. For regime 1, once the wave has cre-
ated a zone of reduced area, the active work goes into overcoming
the viscous resistance, and the potential energy stored in the walls
remains unchanged. Upon approaching the right boundary, the
contraction leaves the domain causing the tube to relax, and the
stored elastic energy is recovered. For regime 2, however, we
observe a gradual rise in stored elastic energy with time indicating
that the activation wave is continuously doing work on the tube
wall. Unlike regime 1, when the wave approaches the end and
allows the tube walls to relax, the stored energy is lost via fluid
dissipation. This is observed by following the viscous work curve
which sharply rises around the 7 = 0.8 mark to meet the active
work curve. It is also interesting to note that in spite of large tube
wall deformations associated with this regime, the majority of
active work done is still lost via viscous dissipation. Work curves
for regime 3 reflect the low wall deformations observed from the
tube shape plots, which only show a bulge ahead of the contrac-
tion. The passive work done is small compared to the active work
done, which is almost entirely lost via viscous dissipation. When
the contraction approaches the end, it acts on the bulge in the tube
ahead of it as it cannot go any further. Contraction of this bulge
then reduces its area and causes the accumulated fluid to flow in
the opposite direction. This leads to the sharp rise in viscous work
at =1 as seen in Fig. 12(c). For regime 4, there is a simple, lin-
ear increase in viscous dissipation with time. Passive work done is
zero for all time due to negligible wall deformation.

This detailed look into the variation of the active, passive, and
viscous work done during a peristaltic event gives us the tools to
identify what a healthy pumping wave looks like and the condi-
tions under which one might observe reasonable tube wall defor-
mations. A significant change in the tube area for this
configuration due to peristalsis (as seen with the healthy peristaltic
wave in Fig. 2) indicates that the wave has some ability to move
fluid forward in a normal setting, which involves bolus transport
following normal swallowing.

5.2 Work Curves From Functional Lumen Imaging Probe
Patient Data. In Sec. 5.1, we have defined and provided a strong
mathematical foundation for computing work done during peri-
stalsis in the current configuration and the various sinks that con-
sume the energy generated by muscular activation. The work
calculations were performed in the context of the reduced order
model presented in Sec. 2. In this section, we wish to extend the
utility of the model to compute work curves using data obtained
from the FLIP device when used in human subjects. The goal was
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to get a sense of the magnitude of peristaltic work done in normal
subjects and to see what characteristics are observed in work
curves obtained from patient data.

It is clear that the 1D model in Sec. 2 takes as input the activa-
tion wave and predicts the resultant tube wall deformation and the
associated fluid velocity and pressure fields. The FLIP data on the
other hand contains the variation of tube wall deformation as a
function of time and the value of pressure at the (approximate)
location x = yL = 16 cm. Simply speaking, A(x, ) and p(L, ) are
already known. The values of fluid velocity and pressure at all the
other locations along the tube are unknown. The device measures
the lumen profile and stores diameter readings from each of the 16
sensors (as seen in Fig. 1). The recorded diameters are used to
compute lumen area after accounting for the catheter’s presence
and are corrected to ensure volume conservation in the tube.
Equation (1) is then used to calculate U(x, ) from planimetry data
A(x, 1) collected by the device. With the available values of A(x, #)
and U(x, ), the momentum Eq. (2) is used to compute the pressure
gradient. Using p(L, 1), the pressure is then found as a function of
x and ¢ for the entire duration of peristalsis. Implementation
details of this step using Egs. (8) and (9) are provided in Ref. [39].

With these steps in place, we isolate a contraction wave to ana-
lyze and generate work curves for. An example of this can be seen
in Fig. 2. A window of readings is chosen that includes a single
pressure peak. At the start of computation, the wave begins to
travel over the tube length and results in a pressure rise. The con-
traction travels along the esophagus as time goes on and by the last
reading the wave has finished traveling over the entire tube length
and the computation ends. In Fig. 13, we show the work curves and
the pressures at y = 0.2 (referred to as the proximal pressure) and
y =1 (referred to as the distal pressure) as a function of time for a
typical peristaltic contraction. Again, we emphasize that the former
is predicted by our model, and the latter is measured by the device
and is applied to the model to fix the pressure levels inside the tube.

The first thing to note from the analysis of the patient’s secondary
peristaltic contractions is the pressure predicted by the model at the
proximal (left) end of the tube at y = 0.2. When the wave is incom-
ing, the pressure in the entire system rises, but once it passes over
the left end, there is a sharp drop in pressure. This is due to the tem-
porary displacement of fluid due to the peristaltic pumping action of
the wave leading to the tube having reduced area at the left end.
The displaced fluid then stretches the walls of the distal end of the
tube at y = 1 and this is marked by the continuous rise in pressure at
that location. Once the wave has passed, the fluid accumulated at
the end flows back and the tube attains a uniform shape and pres-
sures at both locations equalize at the end of wave travel. This
development of a proximal pressure trough has also been observed
in a FLIP prototype where there was an additional pressure sensor
near the proximal end. Due to inaccuracy in the sensor, the readings
have not been plotted. Qualitatively speaking, however, the readings
showed a drop in pressure which is supported by our calculations.
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Fig. 13 Estimated proximal pressure variation and work computations from FLIP data corresponding to a sin-
gle peristaltic contraction occurring at 30 mL in a healthy control. The esophagus does not return to its exact
starting shape at the conclusion of peristalsis leading to a small nonzero value of passive work at the end. (a)
Contraction 1—pressure variations and (b) contraction 1—work versus time curves.

The work curves shown in the right column of Fig. 13 are com-
puted from the estimated fluid pressure and velocity fields. The
curves show the same behavior observed in the curves derived
from the 1D model, i.e., the work done to change the kinetic
energy of the fluid is minimal and the active work done is mostly
lost via viscous dissipation. The calculation of active and passive
work done from the 1D model in Sec. 5.1 depends on the value of
0, which is completely known. However, the activation strength is
not available from real-world patient data, as such estimating the
breakdown of the pressure work term into an active and passive
component is difficult. To get around this hurdle, we use the FLIP
data to get the tube’s reference area (Ap) and the tube stiffness
constant (K) when the esophagus is fully relaxed. Once this infor-
mation is obtained, the passive power was estimated as

LA Lo(A 0A
Ppass - JO ppassde - JO K(A_o - ]) de (36)

The active work is then estimated by subtracting the passive work
from the total fluid pressure work. These estimated values of pas-
sive and active work are then plotted in the work curves shown in
Fig. 13(b). The passive work is again seen to be smaller than the
magnitudes of active and viscous work. One observation from
these curves is that the total magnitude of work done for a single
healthy secondary peristaltic contraction is of the order of 10 milli-
joules (mJ). Studies conducted using traction force sensors have been
able to quantify the propulsive force generated by the esophagus dur-
ing peristalsis [31]. On the lower end of the spectrum, the esophagus
was able to generate 0.11N of force. During FLIP examinations,
around 12 cm of the bag lies within the segment of the esophagus that
undergoes peristaltic contraction. Using these values of force and dis-
tance, a rough estimate of the work done was found to be 13.2mlJ,
which is of the same order of magnitude as predicted by our model.
In a separate clinical study, we compute the work done for several
controls and patients belonging to four disease groups to understand
differences in peristaltic work done [40].

6 Model Limitations

In this section, we discuss a few limitations of the 1D model
developed to study the FLIP device and its response to peristaltic
contraction.

During particularly strong peristaltic activity, circular muscle
contraction can obliterate the esophageal lumen and completely
cut off the proximal and distal segments of the tube from each
other. In this scenario, both velocity U and area o in the
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contraction region are zero, and the model becomes singular.
However, in a majority of peristaltic contractions studied with the
FLIP, flow is observed to occur between chambers indicating non-
zero o and U in this region.

Another avenue of exploration is the effect of nonlinear tube
laws on the quantity of work done during peristalsis. The complex
fiber architecture of the esophageal wall is one reason for this non-
linear behavior. The other reason is the polyurethane bag used in
the device. For bag volumes beyond 40mL, there is greater
stretching of the bag walls. When fully stretched, they sharply
resist further dilation. This sudden increase in stiffness might have
a significant effect on the estimate of work done. The esophagus’
material properties vary along its length as well. The exact varia-
tion of these properties is unknown, so as a first step, we assumed
a simple linear tube law to estimate work. Additionally, tube laws
that incorporate viscoelasticity will also significantly increase the
amount of work done as the energy lost within the walls due to
hysteresis will be considered.

Finally, the peristaltic activation wave does not have a constant
velocity. The wave can speed up or even completely stop depend-
ing on the amount of obstruction it senses as a form of feedback
regulation. In our configuration, this can become quite important
as the ends are closed, and continuous pumping will lead to a
larger obstruction which can alter the speed and intensity of con-
traction in subjects, directly affecting the work done by the wave.
Another detail that has not been considered is the precise position-
ing of the bag within the esophagus. When deployed by the physi-
cian, part of the bag straddles the Esophagogastric junction, and
the tip lies within the stomach. The Esophagogastric junction is a
physiologically complex region that behaves quite differently
compared to the rest of the esophagus. In our work, we have
assumed that the entire bag rests within the esophagus.

7 Concluding Remarks

In this work, we have analyzed a hitherto unstudied configura-
tion of fluid flow in an elastic tube. A simple reduced-order model
is presented that is able to predict fluid flow and the resultant tube
wall deformation when a peristaltic wave passes over a closed
cylindrical tube. The model has been compared to detailed three-
dimensional immersed boundary simulations and is shown to have
satisfactory agreement with them. The system’s response under
this set of operating conditions has been thoroughly quantified
and visualized as a regime map.

Finally, the system’s utility is demonstrated by applying it to
enhance the data collected with balloon dilation catheters. Paired
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with this tool, the device can now be thought of as having multiple
pressure and velocity sensors housed on the catheter. With the
help of these quantities, an appropriate mathematical foundation
was laid to quantify the peristaltic work done. This step has led us
to estimate the work done by the esophagus during a healthy con-
traction under these operating conditions. The device can now be
used to find work done in other peristaltic waves and comment on
their capability to propel fluid.

The analysis has a few limitations due to the inherent complex-
ity of the combined organ-device system. However, the model
presented in this work provides a foundation on which future stud-
ies can be based and used to further our understanding of esopha-
geal pumping processes.
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