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Isolating the features associated with different materials growth conditions is important to facilitate the tuning of
these conditions for effective materials growth and characterization. This study presents machine learning
models for classifying atomic force microscopy (AFM) images of thin film MoS, based on their growth tem-
peratures. By employing nine different algorithms and leveraging transfer learning through a pretrained ResNet
model, we identify an effective approach for accurately discerning the characteristics related to growth tem-
perature within the AFM micrographs. Robust models with test accuracies of up to 70% were obtained, with the
best performing algorithm being an end-to-end ResNet fine-tuned on our image domain. Class activation maps
and occlusion attribution reveal that crystal quality and domain boundaries play crucial roles in classification,
with models exhibiting the ability to identify latent features that humans could potentially miss. Overall, the
models demonstrated high accuracy in identifying thin films grown at different temperatures despite limited and
imbalanced training data as well as variation in growth parameters besides temperature, showing that our
models and training protocols are suitable for this and similar predictive tasks for accelerated 2D materials

characterization.

1. Introduction

Material properties are significantly influenced by conditions expe-
rienced during synthesis [1-5]. A systematic way of isolating the prop-
erties associated with different conditions is essential to enable the
growth of materials with predefined properties on demand. We partic-
ularly seek approaches that eliminate intuition-based experimentation
with different process variables, replacing them with data-driven ap-
proaches that are more efficient with time, effort, and other resources.

Several studies on thin film MoS; have revealed a number of growth
parameters that determine the morphological features and properties of
the grown materials. Instances include the evolution of the morphology
of monolayer MoS; crystals grown by chemical vapor deposition (CVD)
[6]. Domain shape variation from the triangular to hexagonal geome-
tries has been shown to depend on the Mo:S ratio of the precursors [6].
Similarly, a MoS,; domain shapes of mainly round, nearly round and
hexagonal, truncated triangles, and triangles are observed at the tem-
peratures of the MoO3 precursor of 760 °C, 750 °C, 730 °C, and 710 °C,
respectively [7].

The density and size of the domain have also been shown to decrease

with temperature [7,8], with a random orientation of the MoS, domain
associated with the growth temperature below 850°C [9] or at a much
higher temperature [10]. In the former, the authors linked the phe-
nomenon to the inability to achieve a thermodynamically stable state at
the lower temperature, and in the latter, the inferred culprit is the step
edges and step edge meanderings of sapphire substrate surface.

The grain size and crystal coverage of the the MoS; have also been
shown to be tunable with the growth time [7]. The authors showed that
the grain size increased when the growth time was increased from 20
min to 30 min. With the materials grown for 45 min, the grains merged
to form a continuous MoS, [7]. Similarly, an increase in growth tem-
perature [8] and O, flow rate [11] were shown to result in larger thin
film crystal coverage.

In designing high throughput on-demand materials, deployment of
data-based screening approaches have become more critical [12-17].
Data-driven approaches are being explored for materials characteriza-
tion [18-22] and serve to provide greater clarity when searching the
synthesis condition space compared to intuition-based experimentation
[23-27]. With the use of the existing data consisting of the conditions
and the corresponding materials properties, models that predict what

* Corresponding author at: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

E-mail address: reinhart@psu.edu (W.F. Reinhart).

https://doi.org/10.1016/j.matchar.2024.113701

Received 11 October 2023; Received in revised form 19 January 2024; Accepted 24 January 2024

Available online 29 January 2024
1044-5803/© 2024 Elsevier Inc. All rights reserved.


mailto:<ce:monospace>reinhart@psu.edu</ce:monospace>
www.sciencedirect.com/science/journal/10445803
https://www.elsevier.com/locate/matchar
https://doi.org/10.1016/j.matchar.2024.113701
https://doi.org/10.1016/j.matchar.2024.113701
https://doi.org/10.1016/j.matchar.2024.113701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matchar.2024.113701&domain=pdf

LA. Moses and W.F. Reinhart

conditions are necessary for a given properties can be developed. As
observed, a number of these conditions play similar and intertwined
roles in the materials properties. For instance, the time, temperature,
and O flow rate determine the MoS; thin film crystal coverage [7,8,11].
It will be interesting to use machine learning to isolate the distinct latent
features associated with the different growth parameters. Additionally,
identifying distinct latent features for these different growth parameters
would result in the capability to classify material samples based on their
growth conditions.

The Lifetime Sample Tracking (LiST) is a database hosted by the
Penn State 2D Crystal Consortium (2DCC) facility, consisting of exper-
imentally grown thin film transition metal chalcogenides materials,
among others. Among the characterization methods used in the 2DCC
and stored in LiST is Atomic Force Microscopy (AFM). AFM micrographs
of MoS; thin films and their corresponding synthesis conditions are a set
of data among other categories in LiST [10,28,29]. To accelerate the
synthesis of MoS; with the desired properties, we deploy different ma-
chine learning (ML) models to classify AFM images of the material based
on their growth temperature. The ultimate goal of the machine learning
models is for the inverse design of materials, where the materials
properties are tuned using the growth parameters. In essence, being able
to predict the growth conditions from the morphology will enable the
ability to determine the best growth conditions to achieve a hypothetical
film morphology. This should accelerate the design and tuning of ma-
terials synthesis in the future. Despite the limited data available for the
training, up to 71% test accuracy was obtained on the image classifi-
cation. Most importantly, this study presents a simple approach that
could help isolate underlying morphological features associated with
different growth conditions for a broad range of materials, paving the
way for rapid and cost-effective materials development.

2. Methods
2.1. Data preparation

Raw spm files of MoS, were retrieved from LiST [30]. These 262
AFM height maps were processed into greyscale images and either
resized or randomly cropped to the common size of 224 x 224,
depending on the augmentation method adopted, as discussed below.
Training computer vision models on such a small dataset requires
transfer learning, a common approach that utilizes CNN models pre-
trained on one image domain to extract features from a new image
domain [31-33]. Many popular pretrained CNNs, such as the VGG [34],
ResNet [35], and Inception model [36,37] architectures were trained on
the ImageNet dataset [38]. ImageNet contains millions of color images
of natural objects from thousands of categories. Using the size of the
model architecture as the main basis for our choice, because of the small
data volume in our characterization problem, the ResNet18 architecture
pre-trained on ImageNet is used for transfer learning.

However, our data distribution is very different than the ImageNet
data. To evaluate the effect of the pretraining domain, we consider
pretraining on micrographs contained in the MicroNet dataset [39],
which should be more similar to our image domain. The MicroNet
dataset has been shown to give better performance on micrographs,
indicating that the proximity of the two image domains should enhance
the model performance [39]. We have therefore additionally used
ResNet18 pretrained on the MicroNet dataset. This will enable us to
compare how the same model architecture pretrained on different
datasets perform on our characterization task. Features were extracted
from the pretrained models for our shallow ML models. The pretrained
convolutional models were also fine-tuned for the CNN model in our
study (Fig. 1).

2.2. Data augmentation

The dataset consists of 262 instances of AFM height maps across 3
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Fig. 1. An overview of the transfer learning approach. (top) A ResNet CNN
model is trained on a different image domain with a large number of images.
The task may be unrelated to the present task — all that matters is that con-
volutional filters are learned that can extract information (e.g., texture, color,
shapes) from the images. (middle) The filters from the pretrained model can be
used directly to extract relevant image features, which are interpreted in a
supervised manner by a shallow model to predict a new label, such as the
growth temperature. (bottom) Alternatively, the filters from the pretrained
model can be fine-tuned on the new image domain to better capture relevant
information for the task at hand.

growth temperatures (Fig. 2). In addition to the limited data, there is a
significant imbalance among the different classes with the 900 °C,
950 °C, and 1000 °C making up 11%, 50%, and 39% respectively
(Table 1).

The effect of limited and imbalanced data on the model performance
can be partially mitigated with data augmentation approaches. Different
data augmentation policies were therefore deployed to determine which
method works best for our small, imbalanced dataset. The first was to
randomly crop a common size of 224 x 224 from each of the original
images. Multiple croppings were carried out, depending on the class of
the image, in order to obtain a balanced representation of the different
classes. This augmentation policy is termed Augl (Table 1). Another
augmentation policy examined is that developed by Cubuk, et al. [40],
which we referred to as Aug2 hereafter. The authors used a search al-
gorithm to find the best policy, which is a combination of many sub-
policies consisting of functions such as the translation, rotation, or
shearing, and the probabilities and magnitudes with which the functions
are applied, that give the best validation accuracy on a target dataset.
Interestingly, they observed that the learned policy in a given dataset is
transferable to another. We therefore examined how transferable the
policy learned on ImageNet is to our present data domain. The third
augmentation method used is a weighted random sampler or over-
sampling to correct the imbalance in the training set (Aug3). For Aug4,
there is no biased augmentation applied to the data and only in CNN
models do we have random rotations between 0 and 180°, horizontal
and vertical flipping at 50% probability applied to the train and vali-
dation set on the fly.
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6. 900°C

Fig. 2. Sample images from MoS, grown at 900, 950, and 1000 °C.

Table 1

Data augmentation policies and the corresponding data sets for the different classes, 900 °C, 950 °C, and 1000 °C. In Augl, multiple random cropping of image size
224 x 224 is used to obtain balanced instances among the different classes, Aug2 is augmentation policy learned on ImageNet [40], and in Aug3 weighted random
sampler and oversampling are used to correct the imbalance in train set for CNN and other models, respectively. Aug4 is without biased augmentation. In CNN models,
random rotations between 0 and 180°, horizontal and vertical flipping at 50% probability were additionally used on the train and validation set on the fly.

900 °C 950 °C 1000 °C Total
Train Validation Test Train Validation Test Train Validation Test
Augl 207 27 3 212 22 13 215 24 11 726
Aug2 207 27 3 208 24 13 210 23 11 734
Aug3 105 3 3 105 12 13 105 9 11 342
Aug4 23 3 3 105 12 13 83 9 11 262

2.3. Machine learning

A 10-fold cross-validation training scheme was used to train and
evaluate the models, with 10 different models trained, one for each
train-validation data splitting. 10% of the data was held out for testing
while 90% was randomly split into 10 equal folds. A unique fold was
used for the validation (to determine the performance for hyper-
parameter tuning using grid search) in each of the 10 models while the
remaining 9 folds were used for training model parameters. The
hyperparameters of the model with the best performance from the cross-
validation procedure were selected for the production model. The 10
different training sets were then fitted independently into the produc-
tion model and a held-out test set (not involved in the cross-validation
procedure) was then used to evaluate the model performance in general.

Nine different ML models were considered: support vector classifier
(SVC) [41,42], kernel ridge classifier (KRC) [43], radius neighbors
classifier (RNN) [44], Gaussian process classifier (GPC) [45], k-nearest-
neighbors classifier (KNN) [44], decision tree classifier (DTC) [46],
gradient boost classifier (GBC) [47], multilayer perceptron (MLP) [48],
and convolutional neural network (CNN) [49,50]. The shallow models
were developed using the scikit-learn library version 1.2.2 [51]
and the MLP and CNN were implemented in pytorch[52]. The opti-
mized hyperparameters for the models are shown in the Supporting
Information. The MLP model consists of 2 hidden layers, with each
followed by a ReLU activation function. Additionally, we placed a drop
out layer just before the output layer. For the CNN (fine-tuned pretraind
ResNet model), the classifier outputs 3 classes for classification, but is
replaced with a 100 nodes fully connected layer and an output layer for

the regression models.

Using AFM images of 2D MoS, grown with MOCVD, we developed
models to predict the growth temperature (one of 900 °C, 950 °C, or
1000 °C). We considered framing the task in several different ways to
evaluate the efficacy of each: nominal classification, ordinal classifica-
tion, and regression. Here nominal classification means the three growth
temperatures were considered as distinct classes with no ordering. Un-
less otherwise specified, results are for nominal classifiers.

For ordinal classification, we implement NNRank [53] to account for
ordering within the classes; the targets 900, 950, and 1000 °C are
transformed into the vectors [1,0,0], [1,1,0], and [1,1, 1], respectively.
At inference time, a threshold of > 0.5 is applied to the prediction and
the values are counted from left to right, which provides the class label.
Note that this scheme is only applied to the NN models (MLP and CNN).
Finally, we perform regression by simply using the growth temperatures
as continuous labels and evaluating the MSE. The class labels are ob-
tained by binning the predicted growth temperature (e.g., 925 — 975°C
belongs to the 950°C class).

3. Results and discussion
3.1. Depth of image features

Given the poor performance observed from the randomly initialized
weights of the CNN models (Supporting Information), we deployed
transfer learning for the task. We first determined the best location in the
pretrained model from which to extract image features for our models.
Different portions (“blocks”) of the ResNet were considered, providing
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filters with different levels of abstraction. Due to the large number of
channels in the pretrained model (see Table 2), Principal Component
Analysis (PCA) was applied to reduce the dimension of input features to
the shallow models, ideally reducing overfitting and thus improving
predictive performance [14,54,55]. Cumulative explained variance
thresholds of 85% and 99% were used to determine the number of
features to keep for inference. We found that within a block, using fewer
features gave better performance in 9 of 12 cases despite lower
explained variance, likely because we had few training data compared to
the size of the feature vectors. Depending on the model architecture and
number of features used, minimal or significant deviations in model
performance could be obtained from any of the ResNet blocks (e.g.,
66%, 64%, 77%, and 78% accuracy from subsequent blocks, with typical
standard deviation +6%).

Separately, the dense layers of the pretrained model was replaced
with new ones with fewer neurons and then fine-tuned on our training
data. The model parameters are the same as the CNN classifier described
in the preceeding section. The model fine-tuned on the ImageNet and the
MicroNet gave a train accuracy of 88 and 76%, respectively, and a
validation accuracy of and 73 and 70%, respectively. Finally, 100 fea-
tures were extracted from the first dense layer. Note that we have
compared the performance of this fine-tuned dense layer against those
extracted from the pretrained blocks. This was an intentional choice to
evaluate the degree to which fine-tuning was needed to achieve good
performance in this task.

The performance of the selected classifiers on the different features
shows that the features extracted from the fine-tuned dense layer gives
the best performance overall, with 80%, 71%, and 70% accuracy using
SVC, KRC, and RNN, respectively. Training the dense layer on a pre-
trained convolutional backbone might therefore be a better approach for
extracting a low-dimensional image feature vector compared to PCA.
These tuned features are therefore used in all of the following analysis.

3.2. Data augmentation

We then evaluated the effect of different data augmentation policies
using the SVC, KNN, and CNN models (Table 1 and Fig. 3). In addition to
the accuracies of the models, F1 score was used to evaluate the different
augmentation policies. This is to ensure that the data imbalance is
accounted for in comparing their performances. It is observed that both
the accuracy and F1 score gave similar performance trend (Fig. 3 and
Fig. S2). Significantly worse performances are obtained with Augl and
Aug2, especially in the shallow models, compared to Aug3 and Aug4.
Meanwhile, the performance observed between Aug3 and Aug4 is sta-
tistically indistinguishable.

The poor performance observed in the Augl and Aug2 might be
related to the properties of the images learned by the models. While in
the case of the natural images, activation of different classes are typi-
cally associated with unique features of the classes [56-58], the class
activation in the models for the different synthesis conditions will be
more likely due to differences in magnitude of the same feature, such as
the domain size and thickness [3,4]. These relevant features of the AFM
images may be disrupted by shearing, zooming, and resizing associated

Table 2
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with Augl, and the features location in the image might be omitted due
to the cropping in Aug2.

Although Aug3 and Aug4 present about the same accuracy, Aug3 has
the desirable property of oversampling less represented classes. This
should help mitigate systematic error related to class imbalance, a
feature which is typical of distributions in materials synthesis, especially
when exploring different growth conditions (e.g., poorly performing
conditions will probably be undersampled). Therefore, the Aug3
augmentation policy is selected for the rest of this study.

3.3. Pretraining domain

The previous two sections on the feature extraction and the data
augmentation are initial verifications. Therefore, only 3 machine
learning models were explored. We next seek to quantify how transfer
learning from the ResNet18 model pretrained on the ImageNet data
domain compares with the same model architecture pretrained on the
seemingly more relevant MicroNet data domain. We therefore compared
the performance of each pretrained model on the same nominal classi-
fication task across a wide range of predictive model types. In these
experiments, we used the fine-tuned features from Table 2 in all cases
except CNN, which was simply fine-tuned in an end-to-end manner
using the original ResNet18 architecture (i.e., with a three-way classi-
fication layer attached to the end in place of the original classification
layer). Based on the results shown in Table 3, the ImageNet model gives
conclusively better performance than MicroNet, with at least 9%
improvement and up to 32% improvement in the case of MLP (compared
to a typical uncertainty of about 6%).

While standard deviations for individual observations are high, the
fact that none of the nine model types shows a negative difference is
compelling, especially because MicroNet was trained on greyscale mi-
crographs of materials while ImageNet was trained on color images of
macroscale objects. Previous work has suggested that ImageNet relies
more heavily on texture rather than shape [59], while MicroNet has
been primarily tested for segmentation tasks. We speculate that this
focus on texture gives ImageNet filters that can be used for identifying
distinguishing textures in the AFM height maps. The results presented
here suggest that ImageNet may be surprisingly well suited for out-of-
domain materials characterization data whose information content is
primarily texture. All following results are based on transfer learning
from the ImageNet pretraining since its features are strictly superior to
MicroNet.

3.4. Model performance

We next investigate the performance of different algorithms in
greater detail. As before, we rely on the features extracted from the fine-
tuning procedure above, with additional shallow models trained on
these static feature vectors of each image. The CNN model is the one
exception to this, as it uses the original ResNet18 architecture and is
fine-tuned on this task without modification to feature size. The classi-
fication accuracy across 10 different model instances of each type is
shown in Fig. 4. Overfitting is observed across all model types, with

Validation accuracy (in %) based on the features extracted from the different layers of the pretrained model (ResNet18 pretrained on ImageNet). Channels is the total
size of raw feature vectors extracted from each block of the ResNet. PCA was applied to these channels, and then cumulative explained variance (CEV) of the com-
ponents from PCA was used to determine the size of the input features for the listed shallow models. Separately, the dense layers of the pretrained model were replaced

with fewer neurons and fine-tuned (last column).

Block 2 Block 3 Block 4 Pooling Fine-tuned
Channels 100,352 50,176 25,088 512 100
CEV 85% 99% 85% 99% 85% 99% 85% 99% -
Features 190 235 156 235 94 219 28 142 100
SsvC 6616 59+7 64+5 62+8 77+6 58+5 7845 71+6 80+7
KRC 45+5 57+4 48+11 55+5 58+11 52+5 57+7 58+12 71+7
RNN 21+4 1542 35+11 15+3 4249 20+5 57+7 39+7 70+9




LA. Moses and W.F. Reinhart

Materials Characterization 209 (2024) 113701

o0 - 7T - £3 B SVC
—_ 17 ] V1
SE: f i | /; /-/ /-/ 1) ? ? / [Z3 train
g 80 - 1/ ' ? : 1 /n‘;_ % /1 == val
2 / 4 olo L
sl 00 10O Ui Gy
> W : g ’ 4 %
: N7 A ey 8 :’:' %
g 601 / dv [ /oooc ¥ ’ /
& / ? R 1k ’ 4 %
& 5o LA VR TRV [/
: U VAR VR
g O VBV AR 4
: X :? ? XX /{o:?:,: 4 7
A Tl Vs e ey Vet A /]
30 °|°°o// // T°o°/°c°o 1 :’," A g .
Augl Aug2 Aug3 Aug4
Augmentation

Fig. 3. Accuracy obtained from different augmentation policies across three different model types. Bars report averages over 10 folds, while error bars indicate
standard deviation. Some models were trained with increased data size to have a balanced classes using different augmentation approaches, as indicated in Table 1.

Table 3

Validation accuracy (in %) over 10 folds obtained for the feature extraction (shallow and MLP models) or end-to-end learning (CNN) with ResNet18 pretrained on
ImageNet and MicroNet. Values are reported as mean + standard deviation. Difference is the fractional change in the average score between MicroNet and ImageNet.

Best model performance in each row is shown in bold.

Models svC KRC RNN GPC KNN DTC GBC MLP CNN

MicroNet 73+6 65+10 63+9 52+12 59+10 71+9 71+9 65+8 63+8
ImageNet 80+7 71+7 70+9 59410 67+12 78+4 78+11 86+6 70+6
Difference +10% +9% +11% +13% +14% +10% +10% +32% +11%

training performance over 90% being typical, while validation typically
only reaches around 60-85%. The greatest overfitting, in terms of the
gap between train and validation performance, is seen in KRC and GPC,
while SVC, DTC, and MLP exhibit the least. The best performing models
in terms of validation performance is the MLP, with SVC coming in
second but exhibiting training and validation scores one standard de-
viation below the MLP.

To understand how well the models can generalize to classifying
images outside of the training data, we additionally examine their per-
formance on a held-out test set (i.e., not used for training or hyper-
parameter selection). In this regard, MLP again showed the highest
accuracy, with GBC and GPC appearing within one standard deviation. It
is reassuring to see that MLP gave the highest scores in both validaiton
and testing, inspiring confidence in its performance overall.

To understand the model performance on the different growth
temperatures in greater detail, and particularly to check if the under-
represented classes have comparable accuracy, average confusion
matrices of the held-out test set on 10 models are reported in Fig. 5. To
focus the discussion, only the highly performant GBC and MLP models
and the end-to-end CNN are examined in this regard. It is notable that
the performance within each class does not vary substantially between
different model types, as the overall accuracy are similar. For instance,
the GBC, MLP, and CNN predict about the same number of samples
grown at 950 °C and 1000 °C correctly (about 70% and 75% respec-
tively). The samples grown at 900 °C are found to have the lowest in-

class accuracy. This seems to be partially an artifact of under-
representation in the test set; as shown in Table 1, classes are signifi-
cantly imbalanced in the data, with the 900 °C classes having the least
number of samples.

There is also some consistency among the models in misclassifying
the 900 °C as 950 °C and not as 1000 °C. Similarly, 1000 °C is rarely
misclassified as 900 °C. On the contrary, 950 °C is about equally likely to
be misclassified as 900 °C as it is as 1000 °C by the MLP and CNN. This
seems to suggest that the proximity of the growth temperature, which is
expected to be reflected in the image features, makes it more likely for
the model to group them together. Recall that this is for nominal clas-
sification, so this proximity is not reflected in the loss function. This
could imply a fundamental bias in the data where the image feature
learned by the models for a given temperature are more similar to that
for the adjacent temperatures.

To further understand the classification fidelity of our models, we
examine images that are correctly and incorrectly classified by the CNN
in Fig. 6. Visual inspection suggests significantly different image fea-
tures among the same growth temperature, demonstrating how difficult
this classification task is. Some images grown at 950 °C show larger
crystal domains typically associated with 1000 °C. Conversely, some
images grown at 1000 °C show poor crystal formation and very small
domain sizes exhibited mostly by the 900 °C growth temperature.
Therefore, these wrongly classified images may be exceptional among
the target class and would likely confuse even a human expert. However,
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Fig. 5. The average confusion matrix for the test set predictions of production models trained on the 10 folds train data. Values indicate the number of samples in

each bin. This is based on nominal classification.

they offer some preliminary insight into which features the classifier
attributes to each growth temperature.

More fundamentally, other growth variables are not entirely fixed
across the samples. For instance, the growth time varies significantly
among the different samples (Fig. 6(b)). While the least growth time in
the test set is as low as about 100 s, some samples are grown at much
longer time, with up to 1650 s. Also, while most of the samples are
grown on c-plane sapphire substrate, we also have some that are grown
on A- and M-plane sapphire (Fig. 6(c)). These inconsistent growth pa-
rameters might have accounted for the significant differences observed
among the samples grown at the same temperature and might have also
resulted in some classification errors (e.g images 2, 5, 15, and 18).
However, we do not observe any obvious trend in these growth pa-
rameters that leads to consistent misclassification, once again

demonstrating how challenging this classification task is.

3.5. Ordinality

The preceding results were all based on nominal classification,
without any notion of ordering. However, the classes consisting of the
growth temperatures would appear to be ordered due to their contin-
uous nature (i.e., ranging from 900 to 1000 °C). We therefore further
quantify the effect of ordinal treatment of the class labels on model
accuracy. In accounting for ordinality in shallow (i.e., non-NN-based)
models, we adopted a simple approach based on training a regressor
and then binning the results into classes. For the NN-based models, we
further implemented the NNrank ordinal classification scheme. The re-
sults of this study are given in Table 4.
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(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4

Performance of nominal and ordinal treatment of class labels, expressed as accuracy on held-out test data in % for classification and °C for regression. Best model

performance in each row is shown in bold.

Models SVM KR RNN GP KNN DT GB MLP CNN
Classification (%) 6214 54+4 6443 6642 6443 57+8 66+4 69+5 64+10
NNRank (%) - - - - - - - 71+4 68+3
Regression (%) 50+8 60+5 64+4 48+0 58+6 54+6 64+7 42+8 61+7
RMSE (°C) 31+£2 26+1 - 36+9 3243 3845 2843 6218 34+4

While results vary for each model type, some general trends emerge.
Accounting for ordinality in model training leads to improvement in the
test accuracy in only one of the shallow models (KR), but matches or
degrades the performance for all others. Most of these are statistically
indistinguishable, with only SVM, GP, and MLP exhibiting significant
decreases. Overall, nominal classification gave superior performance
over regression, with the top performing shallow models GP and GB
giving 66% accuracy.

For the NN models, MLP outperformed CNN overall, with statisti-
cally indistinguishable accuracy using nominal classification and
ordinal classification. While the end-to-end CNN performed significantly
better than the MLP on the regression task, the performance on regres-
sion was the worst of the three schemes for each model, making it
somewhat irrelevant. Somewhat counterintuitively, slightly higher ac-
curacy could be obtained by binning the output of the GB regressor
(64%) which had a higher RMSE compared to the KR regressor (28 + 3°C
versus 26 & 1°C). This suggests that least-squares regression may be
placing too much weight on outliers, which are less influential in the

case of ordinal classification. It is even possible that the growth tem-
peratures are not really ordinal after all, perhaps with 950 °C repre-
senting a value close to optimal while 900 °C and 1000 °C could be a
similar distance away from optimal.

The best-performing model across any type or scheme was the MLP
NNrank ordinal classifier with an accuracy of 71%. For the NNRank
applied to the MLP and CNN, the average test accuracy of the CNN and
MLP improved minimally with +2% and + 4%, repectively, over the
nominal classification. This improvement is accounted for mainly in
reduced classification errors of the 1000 °C images from 75% to 82%
accuracy (Fig. 7).

In an effort to explain the surprising trend observed in the ordinal
treatment of the data, we obtained the first 2 principal components of
the data using principal component analysis (PCA) [60]. The image
classes are embedded in the 2 components shown in Fig. 8. The figure
shows overlap of all three classes and more significantly between
neighboring classes, with very poor separation visible in the first two
components. We visualize the micrographs in the PCA space in Fig. 9,
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Fig. 7. The average confusion matrix of the 3 classes of temperature (900, 950, and 1000 °C) on the test set for the 9 different model architectures. This is based on
ordinal classification with regression used for the GBR and NNrank for the MLP and CNN.

® ® 900°C
® 950°C
® 1000°C

PC2

Fig. 8. The first two principal components of the image features showing the
temperature class distribution in the reduced dimensional representation from
the principal component analysis. Significant overlap is observed among the
different classes in the embedding space.

indicating variations in the domain size (PCl) and density (PC2).
Because these features vary significantly even within the same temper-
ature class (e.g., see Fig. 8), the image feature vectors likely do not show
consistent trends from 900 °C to 950 °C to 1000 °C, leading to no
advantage in the ordinal treatment of growth temperature.

3.6. Model explanations

Beyond the capacity of the ML models to isolate the morphological
features associated with the different growth temperature of the thin
film MoS, based on their AFM images, we want to understand what
features of the images the models used in the classification. Class acti-
vation maps (CAM) of the different classes are therefore obtained
following the implementation by Zhou, et al. [61] The feature maps of
the last convolutional layer are summed and then normalized by
dividing by the maximum value to obtain a heatmap with the same di-
mensions as the layer. The bright yellow spot on the class activation

maps represent the region with the highest activation which the model
used for the classification.

Additionally, we obtained the occlusion attribution; the probability
of a class of image as a function of an occluder object [62], using the
implementation in Captum library [63]. To achieve this, we iteratively
set a patch of the image to be zero-pixel values and then obtain the
probability of the class. Stride size of 5 x 5 and the patch size of 15 x 15
were used. The probability is visualized as a 2D heat map. Both positive
and negative attributions, indicating that the presence and absence of
the area, respectively, increases the prediction scores are shown on the
heat map. The occlusion attribution is applied to four sample images, for
each class, correctly predicted by the CNN model. Green regions on the
image have positive attributions while red regions have negative
attribution.

The CAM and occlusion attribution in Fig. 10 show substantial
agreement in identifying the activation region, with the latter giving
more specific spatial attribution. The activation features are easier to
perceive in images with bigger domain sizes, especially those grown at
higher temperature. For some of the images from samples grown at
higher temperature and which show clearly defined domains, some
domain boundaries are highlighted, indicating the model’s reliance on
the boundaries in identifying such images. Also, regions with clean
multi-steps crystals are shown to be important for the model in the
classification (Fig. 10c), while the messy crystals post adverse effect to
class attribution, as shown in the occlusion attribution.

From the experimental observations, the samples grown at higher
temperatures are expected to exhibit greater domain sizes [3,4]. How-
ever, in the data used in training our models, there is significant varia-
tion in the quality of the samples, such that most images grown at higher
temperature do not necessarily have greater domain sizes (Figs. 2 and 6).
Additionally, if the model depends on domain size in identifying the
images, it will be difficult to visually identify such features in images
with less defined domains, and the only difference among the classes
would only be the magnitude of the same feature. This is unlike the
natural images where activation of different classes are typically asso-
ciated with unique features of the classes that can be visually identified
[56-58]. The models have therefore shown to be capable of identifying
image features that humans could potentially miss.

4. Conclusion

This study focuses on the development of ML models for the classi-
fication of AFM images of thin film MoS, based on the growth temper-
atures of their samples. Many different strategies were explored for
generating feature vectors, including using different pretraining image
domains, extracting features from different depths in a pretrained
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PC2

PC1

Fig. 9. The first two principal components of the image features showing the sample images, in the reduced dimensional representation from the principal
component analysis. The embedding shows that the first dimension (PC1) is associated with the domain size, while the second dimension (PC2) seems to indicate the

domain density.

ResNet, and end-to-end fine-tuning. A novel approach to transfer
learning where the convolutional filters of the pretrained model were
first fine-tuned before using them to extract features was also intro-
duced. Our scheme yielded better results than the traditional ap-
proaches. Different augmentation strategies from the literature were
evaluated to determine their effect on overall model performance.
Beyond these pretraining schemes, nine different ML algorithms were
evaluated to determine the most suitable approach for identifying
morphological features associated with different growth temperatures.

The study also examined the impact of considering the ordinality of
the classes on the accuracy of the models in identifying AFM images
grown at different temperatures. We found that accounting for ordi-
nality (i.e., by switching from classification to regression loss functions)
improved the accuracy of some algorithms while decreasing perfor-
mance for others. For instance, the best model overall was obtained
using an NNrank ordinal classifier, but some nominal classifier were
nearly as accurate. Furthermore, some algorithms had equivalent ac-
curacy regardless of whether the data was treated as nominal classes or
ordinal. Thus, there seems to be no clear advantage to using least-
squares regression here, despite the data appearing in the form of
continuous, ordered growth temperatures, which is a counterintuitive
result.

To address class imbalance, weighted random sampling and over-
sampling techniques were employed, and robust ML models that
generalize well to out-of-sample data were developed using model en-
sembles. The best-performing algorithms, MLP and end-to-end CNN,

achieved classification accuracy of about 70% on held-out test data. The
high accuracy obtained demonstrates the effectiveness of ML in accu-
rately identifying thin films grown at different temperatures, despite the
limitations of other inconsistent growth parameters and imbalances in
the training data.

This study also sought to understand the features utilized by the ML
models for classification by obtaining class activation maps and occlu-
sion attribution. These strategies revealed that images from samples
grown at higher temperatures, exhibiting well-defined domains, had the
highest activation at the domain boundaries, aligning with experimental
observations. Moreover, the models demonstrated the capability to
identify latent features that humans could potentially miss, accurately
classifying images with varying domain sizes that would be challenging
for human experts. Future work may explore the relationship between
these image features and additional attributes of the samples; the
robustness of these features across growth chambers, characterization
instruments, and even repeatability over time may be interesting ways
to utilize the quantitative capability of deep learning to unlock new
insights into challenging materials synthesis problems.
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