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ABSTRACT: Hemilabile ligands have the capacity to partially disengage from a metal center,
providing a strategy to balance stability and reactivity in catalysis, but are not straightforward to
identify. We identify ligands in the Cambridge Structural Database (CSD) that have been
crystalized with distinct denticities and are thus identifiable as hemilabile ligands. We implement
a semi-supervised learning approach using a label-spreading algorithm to augment a small
negative set that is supported by heuristic rules of ligand and metal co-occurrence. We show that
a heuristic based on coordinating atom identity alone is not sufficient to identify whether a ligand
is hemilabile and our trained machine-learning classification models are instead needed to predict
whether a bi-, tri-, or tetradentate ligand is hemilabile with high accuracy and precision. Feature
importance analysis on our models show that the second, third, and fourth coordination spheres all
play important roles in ligand hemilability.
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A common design principle in catalysis that can affect both reactivity! and selectivity> is
the identity of active species and metal ligation state. Ligands that dynamically change the metal
coordination environment, i.e., hemilabile ligands, are often able to address the tradeoff between
catalyst activity and stability*> because they can ligate and protect the transition metal while
partially disengaging and making a catalytic site amenable for a reaction. Hemilabile ligands have
been used to address major challenges in organic chemistry, such as reactivity selectivity tradeoffs
in enantioselective®?, regioselective!®, and chemoselective!! catalysis. While hemilabile ligands
have been primarily used in homogeneous catalysis, their unique properties have also been utilized

14,15 ;

in nanoparticle'?, single atom'?, and heterogeneous catalysis'*!* in recent years.

Normally, new reaction design or reactivity improvement involves screening a large

16-18

number of ligands or performing computational mechanistic studies!*-?}. While ligand

hemilability is often used as a design principle®2!-2*

, such a principle mainly relies on a set of
heuristic rules such as distinct donor properties of coordinating atoms??, flexibility of the linker
between coordination atoms?*, and steric crowding’ near the transition metal. Determining whether
or not a ligand is hemilabile in solution usually requires indirect kinetic measurements of reaction
rates?®28, trapping of distinct complexes in crystal structures®, or time-consuming computational
mechanistic studies®. Most commonly, the design of ligands involves the trial-and-error changing

25,28

and mismatching of the donor properties of coordinating atoms in an attempt to bias ligands

towards hemilability. However, symmetric, homo-functional ligands have also been shown to

undergo hemilabile coordination changes®3%-!

, while some multifunctional ligands do not tend to
change coordination environments®*. Therefore, being able to tell a priori whether a ligand can act

as a hemilabile ligand would greatly accelerate screening efforts.



Here, we employed a data-driven approach to identify factors that determine the likelihood
of a ligand to be hemilabile. Data-driven approaches that can be used for prescreening suitable
homogeneous catalysts with desirable properties have become increasingly common recently2-37.
We curated a dataset of ligands from the Cambridge Structural Database (CSD). Using
experimental datasets such as those from the CSD offers an advantage over hypothetical datasets
because studied complexes and ligands are synthesizable. However, such an approach can suffer
from experimental bias towards certain metal/ligand scaffolds that could influence trained models.
We separately identified candidate hemilabile ligands from this CSD set and then used the frequent
occurrence of a single, consistent denticity to assign ligands as having a high probability of being
non-hemilabile. We trained machine learning (ML) procedures to predict ligand hemilability and
used feature analysis of the trained models to show why common heuristic rules can struggle to

fully account for hemilabile character. This ML model allowed us to further expand and suggest a

set of candidate hemilabile ligands from existing (i.e., in the CSD) and thus synthesizable ligands.

We first curated a dataset of hemilabile ligands from a set of all ligands that appear in
mononuclear transition metal complex (TMC) crystal structures® 3°. We identified 4,144 ligands
that appear in mononuclear TMCs with different denticities, with their highest-denticity
conformations ranging from bidentate to nonadentate, based on the molecular graph determinants
of each ligand bound to a dummy transition metal*’, as well as those of ligands with transition
metal absent (Supporting Information Text S1). A ligand was labeled hemilabile if the molecular
graph determinant of a ligand without the transition metal mapped to more than one molecular
graph determinant of a ligand bound to a transition metal, indicating a change in the coordination
environment (Figure 1, inset). We separated these ligands into distinct subsets based on the highest

denticity of the ligand. Because bi-, tri-, and tetradentate ligands are most widely used for catalysis
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and were the most common ligand types among those identified as hemilabile, only these ligands
were studied further (Figure 1 and Supporting Information Figures S1-S2). To focus on
catalytically relevant ligand types and remove trivial cases arising from agostic interactions*! such
as those with hydrogen, we eliminated any ligands where the coordinating atoms did not consist
of carbon, nitrogen, oxygen, phosphorus, or sulfur (Supporting Information Table S1). Finally,
any ligands with a high absolute charge, ¢, assignment (i.e., |g| >4) were eliminated in order to
remove ligands derived from either highly charged or poorly resolved (i.e., missing hydrogen
atoms) complexes (Supporting Information Table S1). After each of these steps, we obtained a set

of 1,531 hemilabile bidentate, 1,069 tridentate, and 492 tetradentate ligands.
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Figure 1. Description of the data curation workflow and filtering steps for defining bidentate
hemilabile and non-hemilabile sets. Examples of a hemilabile ligand in high- and low-denticity
conformations are shown in the top inset, along with refcodes (GEYWIS — Ni, ATEPUL — Pd)
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associated with a representative complex involving other non-hemilabile ligands, where ligating
atoms of the hemilabile ligand and the transition metal are shown as spheres. Examples of non-
hemilabile ligands are shown in the bottom inset (ACOQAL — Cu, JUSWAY - Fe). Hydrogens
are omitted for clarity. Atoms in the insets are colored as follows: C in gray, O in red, N in blue,
Ni in dark green, Cl in green, Pd in light blue, Cu in brown, P in light orange, Fe in dark orange.

To gain insight into how the identity of the transition metal affects the conformation of a
complexed hemilabile ligand, we analyzed how frequently each of the 4,144 hemilabile ligands
appear with the ten most common transition metals in their lowest- and highest-denticity
conformations (Supporting Information Figure S3). We find that while most transition metals tend
to favor the higher-denticity conformation of a hemilabile ligand, ligands that appear in complexes
with palladium, platinum, and zinc tend to prefer a lower-denticity conformation. We also find
that among the metals studied, a hemilabile ligand has the highest likelihood of being crystallized
in complex with Cu in both high- and low-denticity conformations. The majority (55%) of
hemilabile ligands appear in both high and low denticities in at least two distinct complexes with
the same transition metal center. Nevertheless, this means that a significant number of ligands only
appear in different denticity conformations when the identity of the transition metal is changed
(Supporting Information Table S2). While transition metal identity can play an important role in
determining ligand hemilability, the limited sizes of the datasets prevented us from further

studying metal-dependent properties.

To ensure we avoid introducing bias in our hemilabile ligand dataset by including ligands
that strongly prefer either high- or low-denticity conformations, we evaluated how many times
they appear in each denticity in the unique complexes of these ligands (Supporting Information
Figures S4-S6). While different denticity changes are possible for hemilabile tridentate (e.g., to

bidentate or monodentate) and tetradentate ligands (e.g., to bidentate), here we define only two



classes, i.e., hemilabile and non-hemilabile, to ensure sufficient data for each class (Supporting
Information Figures S7—S8). There is a wide distribution of the hemilabile ligands occurring in the
low-denticity configuration relative to the total occurrences that is nevertheless centered around
0.5 (i.e., both low and high denticity are equally weighted). For the majority of ligands (i.e., 75.8%
bidentate, 75.4% tridentate, 76.8% tetradentate), the ratio of low denticity to total count is between
0.2 and 0.8, indicating that these hemilabile ligands appear in higher- and lower-denticity
conformations with similar frequency. Only a very minor fraction of ligands (i.e., 1.2% bidentate,
0.6% tridentate, 0.8% tetradentate) strongly prefer either high- or low-denticity conformations
(i.e., the ratio of low denticity to total count is < 0.01 or > 0.99). Thus, most ligands in our
hemilabile set can be expected to sample both denticities based on their occurrence in crystal

structures.

Using this dataset of hemilabile ligands, we next devised a strategy to train machine
learning (ML) models that could predict the likelihood of a ligand to exhibit hemilability for
bidentate ligands. To train such a model, we require not just the hemilabile ligand dataset but also
a set of non-hemilabile ligands to serve as the negative class. Although positive examples of
hemilability are identifiable based on the presence of complexes with ligands in multiple
denticities, the absence of multiple denticities for ligands across complexes could be due to a lack
of diversity of synthesized complexes containing a given ligand rather than to a lack of hemilabile
ligand character. To address this issue, we defined three different non-hemilabile sets. First, we
randomly subsampled all unlabeled bidentate ligands (i.e., those not positively identified as
hemilabile in the preceding analysis) to obtain an equal number of probable non-hemilabile ligands
as labeled hemilabile ligands (random dataset, Figure 1). Next, we used a small set of ligands with

an expected lack of hemilability supported by frequent and diverse appearance in the CSD with a



single denticity (small dataset, Figure 1 and see Supporting Information Text S2). Finally, we used
a semi-supervised learning strategy that augments the small non-hemilabile dataset by using
machine learning to identify more non-hemilabile ligands (semi-supervised dataset, Figure 1 and
Supporting Information Text S2). Semi-supervised learning*? encompasses a broad set of
techniques that combine aspects of supervised (i.e., with labeled data) and unsupervised (i.e., with
unlabeled data) learning approaches to address the challenges of partially labeled datasets. This
approach enables construction of a model that can benefit from the large size of the known-
hemilabile set while preserving good labels for non-hemilabile ligands. We used these datasets to
train classification models using the extreme gradient boosting algorithm* (XGBoost) for the
prediction of hemilability (Figure 1). To featurize ligands, we used ligand-based revised
autocorrelations (RACs)*, which are connectivity-based representations that have been
successfully applied to transition metal complex property prediction***” (see Computational

Details).
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Figure 2. ML classifier (i.e., XGBoost) prediction probability (top) and ROC for random (left),
small (middle), and semi-supervised (right) datasets. All data points are represented as translucent
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circles to depict data density and colored by classification correctness: correct (green) and incorrect
(red). Examples of correct and incorrect classifications of ligands are shown as insets, bound to a
metal. Hydrogens are omitted for clarity. Atoms are colored as C in gray, N in blue, O in red, P in
orange, S in sulfur, and metal in brown.

The model trained on the randomly subsampled dataset shows promising performance on
a set-aside test set with good separation between two classes with a receiver-operating
characteristic area under the curve (ROC-AUC) of 0.86 as well as good accuracy (0.80) and recall
(0.80), despite our expectation of potential label contamination due to incorrectly assigned
negative labels (Figure 2 and Supporting Information Figures S9-S10 and Table S3). Despite a
significantly diminished training set size for the small dataset (i.e., an 80% training partition of
3,062 ligands versus 588 ligands in the small set), the model trained on this dataset shows a slight
improvement over the randomly sampled set in terms of its predictive power on the test set,
including an improved ROC-AUC of 0.88, accuracy of 0.81, and a comparable recall of 0.80
(Figure 2 and Supporting Information Figures S11-S12 and Table S3). Finally, we trained an ML
model classifier (i.e., again XGBoost) using the full set of identified hemilabile ligands and a size-
matched negative class made up of the small set of non-hemilabile ligands augmented by label
spreading. While the majority of the negative, non-hemilabile class was defined using the semi-
supervised augmentation technique, the set of hemilabile ligands remained unchanged. Therefore,
to ensure that the hemilabile ligands in the test set were unseen during the augmentation approach,
label spreading approach was implemented using only the hemilabile ligands in the training set
(i.e., 80%), and the set-aside hemilabile ligands were used to construct the test set for the final
model. This model shows by far the best overall performance, with a marked improvement that
includes an ROC-AUC of 0.96, accuracy of 0.90, and recall of 0.89 (Supporting Information

Figures S13—S14 and Table S3).



In order to test the limits of this encouraging performance, we carried out a more stringent
test of a grouped split in which we nearly eliminated specific coordinating atom elements from the
training set. Specifically, we removed 90% of the ligands that contained at least one phosphorus
atom as a coordinating atom from the entire dataset and defined a new test set that only contained
ligands with at least one phosphorus atom as a coordinating atom. This split largely preserves our
label balance (i.e., 51:49 hemilabile:non-hemilabile in training and 45:55 in the test set). Although
performance is expectedly reduced, this model still shows encouragingly good performance,
including an ROC-AUC of 0.94, accuracy of 0.87, and a recall of 0.84 (Supporting Information

Figures S15-S17 and Table S3).

Given the good performance we observed on bidentate hemilabile ligands, we repeated our
analysis and ML model training for tri- and tetradentate ligands. Given the somewhat smaller
dataset sizes, we reduced the requirement for the number of unique complexes to confidently label
negative examples (Supporting Information Figures S1-S2). For both tridentates and tetradentates,
we trained XGBoost ML models using all three protocols we demonstrated on the bidentate set.
The XGBoost ML models trained to predict the hemilability of tridentate ligands on the randomly
selected set (2,138 ligands total) show relatively poor performance, with an ROC-AUC of 0.72
and accuracy of 0.67, but this is improved by using the small set (ROC-AUC of 0.79 and accuracy
0f 0.73, 354 ligands total) and even more substantially by using a semi-supervised set (ROC-AUC
of 0.94 and accuracy of 0.87, 2,138 ligands, Figure 3 and Supporting Information Table S4). For
the tetradentate models, smaller dataset sizes (984 ligands for the randomly selected set) mean that
we do not see the performance improvement from the randomly selected dataset (ROC-AUC of
0.81, accuracy 0.73, and recall 0.83) to the small dataset (ROC-AUC of 0.82, accuracy of 0.75,

and recall 0.77, 222 ligands total), and we attribute this comparable performance to the small size
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(178 ligands) of the training set (Figure 3 and Supporting Information Table S5). Thus, the semi-
supervised approach is particularly critical in this case, giving by far the best model performance
(ROC-AUC 0f 0.97, accuracy of 0.93, and recall 0.96). We also carried out the same grouped split
test for tri- and tetradentate ligands, but we held out oxygen for tetradentate ligands due to both
the limited number and class imbalance of phosphorus-coordinating ligands among the tetradentate
set. These grouped split models using the semi-supervised labeled data still show good
performance, with ROC-AUC of 0.88 and 0.92 for tri- and tetradentate ligands, respectively. To
confirm the approach is not strongly sensitive to the ML model, we also trained support vector
classifiers, random forest models, and multilayer perceptron models that all have comparable

performance to the XGBoost model across all three ligand types (Supporting Information Tables

S6-S8).
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Figure 3. Accuracy and recall of the XGBoost classifier model on the test sets of random, small,
and semi-supervised sets.

We next aimed to understand what chemical mapping emerged during the development of
the non-hemilabile ligand set via label spreading by comparing differences in chemical and
structural diversity of the two classes. We first analyzed the coordination environment of these

ligands and calculated common geometric features of ligands bound to a representative transition
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metal center (here, copper) in their highest-denticity conformations. Analysis of the coordination
atom environment shows some differences and similarities between the two labeled sets in the
total semi-supervised dataset (Figure 4). As expected, hetero-donating ligands, where the identity
of coordinating ligands differ, are more common among hemilabile ligand sets, which is a common
design principle for hemilability. However, the non-hemilabile ligand set also features many
hetero-donating ligands. Furthermore, homo-donating ligands are still frequent in the hemilabile
ligand set. In particular, the hemilabile ligand set shows a higher number of bis-oxygen
coordinating configurations, which can be attributed to the generally weaker donor ability of
oxygen-coordinating ligands. While bis-nitrogen ligands are more common among non-hemilabile
sets, they are still abundant within hemilabile sets. Analysis of ligand charges shows that the
majority of ligands in the dataset are neutral both for hemilabile and non-hemilabile ligands,
revealing that charges alone cannot distinguish between the two classes (Supporting Information
Figure S18). From the geometric analysis, we find that hemilabile ligands tend to have a slightly
lower steric crowding near the metal based on the common steric descriptors such as buried
volume*® or solvent-accessible surface area*”, which can be attributed to the decrease in ligand bite
angle and weaker binding to the transition metal, based on the metal-ligand bond distances
(Supporting Information Figures S19-S23). The overlap of the distributions of these simple
descriptors highlights the difficulty of distinguishing hemilabile ligands from non-hemilabile

ligands, necessitating more complex classification models.
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Figure 4. Upper triangular coordinating atom matrix showing the frequency of different
coordinating environments observed in the hemilabile (left) and non-hemilabile ligand datasets of
bidentate ligands. The area of each circle represents the total count of unique ligands, as indicated
qualitatively by the inset legend.

Analysis of the coordinating atom environment of tri- and tetradentate ligands shows that,
similar to the bidentate ligands, the frequency of hetero-donating ligands is higher within the
hemilabile set (Supporting Information Figures S24—S25). Unlike the bidentate set, we find that
the all-nitrogen-donating ligand becomes the predominant class not only for the non-hemilabile
ligand set but also for the hemilabile ligand set. Similarly, we see an increase in the total number
of oxygen-donating ligands in the hemilabile class, which can be attributed to weaker donor
strength of oxygen-donating ligands. Furthermore, there is a marked increase in the number of bis-
carbon donating ligands among the hemilabile set for both tri- and tetradentate ligands, which can
be attributed to the m-coordinating alkene ligands, with a C=C bond forming a coordination
geometry that our method assigns as bidentate. Although monodentate might be a more suitable
classification for these metal-ligand interactions, this choice is only relevant to our model training
if such ligands can also form higher denticity (i.e., tridentate) coordinating geometries, which is
not expected. Thus, this choice is unlikely to influence model development. Neutral ligands are
also still the most common in tridentate and tetradentate sets, with a somewhat increased bias

towards charged ligands introduced in the non-hemilabile set (Supporting Information Figures
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S26-S27). Similar to the bidentate ligand set, steric crowding around non-hemilabile ligands tends
to be lower (Supporting Information Figures S28—S29). The consistent trends between ligand types
demonstrate the internal consistency of our label assignment, however pervasive overlap between
the two classes demonstrates the difficulty of identifying hemilabile ligands the need for

classification models.

Although our ML models perform well at predicting whether or not a ligand will
demonstrate hemilability in the context of CSD structures, validating these predictions in the
context of homogenous catalysis would require difficult experiments. As an alternative strategy to
validate our models, we carried out electronic structure calculations with density functional theory
(DFT) to discern differences in ligand dissociation energies between our hemilabile and non-
hemilabile (i.e., either from the small or semi-supervised) ligands. We selected 100 total tridentate
ligands that were neutral (i.e., to avoid issues with charge separation during dissociation) and had
been crystalized with Cu in the CSD. In total, 50 tridentate ligands were obtained from the
hemilabile set, and 50 tridentate ligands were from the non-hemilabile set (25 small, 25 semi-
supervised). A complete list of the ligand refcodes and structures of the ligands are provided in the
Supporting Information. We selected tridentate ligands for this test because tridentate ligands were
the most challenging for our ML models to classify. The focus on copper is motivated by the fact
that copper is the metal with the highest frequency in which we also have a high likelihood of
finding a ligand in both high- and low-denticity binding configurations. We constructed complexes
with the hemilabile or non-hemilabile ligand bound to a Cu complex that also contained chloride,
in a four-coordinate tetrahedral or square planar geometry, depending on the ligand geometry. We
computed partial dissociation energies of the three Cu-L bonds in these complexes. For these

partial ligand dissociation energies (see Computational Methods) we observe that partial ligand
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dissociation is more favorable for hemilabile ligands, with a mean partial dissociation energy of —
1.8 kcal/mol for the bidentate configuration relative to the tridentate bound conformation, whereas
the partial dissociation energy of non-hemilabile ligands was found to be 2.3 kcal/mol, implying
that the partial dissociation is more favorable for the hemilabile set (Supporting Information
Figures S30-S31). Independent t-test analysis showed that these two sets have distinguishable
population means, whereas the same test applied to the two non-hemilabile sets does not support
a significant difference between the populations (Supporting Information Table S9). Furthermore,
42 out of 50 hemilabile ligands were found to have a partial dissociation energy below 1.5
kcal/mol, suggesting that these complexes should be highly hemilabile with both high and low
denticity complexes existing in equilibrium. Thus, our semi-supervised labeling strategy

quantitatively distinguishes hemilabile and non-hemilabile ligands.

Motivated by our observation of good ML model performance in classifying ligands
capable of demonstrating hemilability, we further analyzed what features our models emphasize
in making this classification. We carried out a feature importance analysis of the final XGBoost
model by examining the total gain function of each feature, where we only considered features that
contributed at least 1% to the total gain. Our feature set contains both full-scope ligand features
that are related to global properties, as well as coordinating atom-centered features, that encompass
more metal local 1% and 2" coordination shells (d = 0 and d = 1, respectively) and more metal-
distal properties in 3" and 4" coordination shells (d = 2 and d = 3, respectively). Consistent with
our earlier analysis, we find that the metal-local features (i.e., Ist or 2nd coordination sphere)
contribute less (i.e., 25-50%) than the more distal features (i.e., 3rd coordination sphere and
global) that contribute ~50-75% to the total prediction for bidentate and tridentate ligand types

(Figure 5). Conversely, a somewhat larger (~60%) contribution of metal-local features is observed
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in the tetradentate model (Figure 5). We observe similar feature importances, with metal-distal
features contributing ~50-75% of the total prediction using an alternative feature importance
measure based on Gini impurity in a random forest classifier, and we notably observe reduced
contributions from the metal-local features for tetradentates (~50%, Supporting Information Figure
S32). The significant contribution of metal-distal and global features explains the difficulty
associated with predicting ligand hemilability based on previously emphasized heuristics including
donor ability®?*2%39, Furthermore, hemilability is a highly balanced property that depends both on
structural and electronic features, unlike other properties such as spin state that depend much more

strongly on electronic features** (Figure 5).

Bidentate Tridentate Tetradentate

Figure 5. Feature importance of bidentate (left), tridentate (middle) and tetradentate (right) ligands
based on the total gain of the XGBoost classifier. Only features that contributed more than 1% to
the classifier were retained. S refers to structural (topology, identity, radius) and E refers to
electronic (electronegativity, nuclear charge) features. First through fourth refers to the
coordination shell relative to the transition metal based on ligand-centered RACs depth, and Glob
refers to global (ligand-scope) features.

Finally, to demonstrate the promise of our ML models for ligand discovery in catalyst
design, we use the best-performing XGBoost models to make hemilability predictions for all
unlabeled ligands in our original dataset. Our model assigns many ligands as candidates for
hemilability. For bi- and tetradentate ligands, we obtain bimodal distributions with a similar
number of ligands labeled as labile and non-hemilabile, whereas the majority of the tridentate
ligands are labeled as hemilabile (Figure 6). The prediction of most tridentate ligands to be

hemilabile appears likely to be an overprediction of hemilability. For example, a tridentate ligand
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featuring a cyclic, rigid 1,3,5-triazinane based scaffold (refcode: AROGAQ), is confidently
(probability = 0.94) predicted to be hemilabile, even though partial dissociation would likely cause
an increase in the ring strain due to conformation change from chair to twist-boat (Figure 6). These
trends by ligand denticity are consistent with the performance of the classifier trained on the
random set, where bidentate and tetradentate ligands showed better performance on the randomly
sampled set, but the tridentate classifier had poorer performance. This suggests that negative
examples were particularly difficult to assign accurately for the tridentate model and some degree
of label contamination occurred even with semi-supervised learning in selecting negative samples,
indicating that the model has not learned well to distinguish positive and negative examples. As a
result, when applied to a new space of candidate ligands, the model is likely erroneously

overpredicting hemilability on this new set.
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Figure 6. Distribution of the classifier probability on the unlabeled set for bidentate (red),
tridentate (green), and tetradentate (blue) ligands. The total area of each distribution is scaled
relative to the size of each set. Examples of hemilabile and non-hemilabile ligands within each set
are shown as insets. Hydrogens are omitted for clarity. Representative ligand structures (Refcodes:
FUGCES, COBHIL, BUGVOP, AXOLEE, AROGAQ, BODZEA, CMPORZ — clockwise
starting from the bottom left corner) are shown, with atoms colored as C in gray, N in blue, O in
red, P in orange, and metal in brown.

We further analyzed the predictions by the model to gain insight into the confidence we
should have in its predictions and to identify where it could be used in ligand design. For example,

a bidentate, bisphosphine ligand with a short, rigid linker between two coordinating atoms is
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confidently classified as non-hemilabile. However, by changing the bisphosphine ligand’s
electronic character to bisphosphinite, which has a more flexible ethane diol linker between two
coordinating atoms, the resulting ligand is classified as hemilabile (Figure 6, inset-top). Similarly,
we find that the structure of a tridentate N,N,N-coordinating ligand consisting of rigid sp?
hybridized linkages between coordinating atoms and bulky substituents that constrain movement
results in the classification of non-hemilabile, whereas a ligand possessing a freely rotatable
ethylene linker in place of a rigid linker is confidently classified as hemilabile (Figure 6, inset-
middle). Finally, we find that certain classes of macrocyclic tetradentate ligands, such as
porphyrin-derived ligands, are confidently classified as non-hemilabile. On the other hand, when
one of the coordinating nitrogen atoms in such a structure is alkylated, leading to a significant
reduction in its donor ability and change from an X type to an L type ligand, the classifier
confidently assigns this ligand as hemilabile. While this observation is intuitive, this finding
highlights how the model is sensitive to small alterations in the overall structure (Figure 6, inset-
bottom). Thus, the ML models, especially those trained on bidentate and tetradentate ligands,
should provide new pathways to discovering novel hemilabile ligands. We propose that tridentate
model predictions could be paired with high-throughput DFT, i.e., to rule out any model-predicted
hemilabile ligands that remain strongly bound to a representative metal center, to provide
additional support to model predictions given limitations in tridentate dataset quality from labels

obtained purely from the CSD.

In summary, we developed a data-driven workflow for identifying hemilabile to accelerate
catalyst screening. We used a semi-supervised learning approach to leverage a combination of
labeled and unlabeled data to confidently identify examples of non-hemilabile ligands. We trained

ML models that can predict ligand hemilability for bidentate and tetradentate ligands with high
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accuracy, and we also demonstrated a model for tridentate ligands with a suggested strategy for
further validation using DFT. We showed that coordinating atom identity alone fails to account
for ligand hemilability. Feature importance analysis of machine learning models highlights why
conventional design principles can be insufficient for the identification of hemilabile ligands, due
to the high significance of metal-distant and structural features. We used trained machine learning
models to identify a large number of ligands that are predicted to be hemilabile and that can be

used for accelerated discovery of new catalytic reactions.

Computational Methods

Dataset curation: A set of ligands present in mononuclear transition metal complexes was
curated from the Cambridge Structural Database (CSD)*! version 5.41 (November 2019). The
procedure employed the Conquest graphical interface and the CSD Python API, with the v5.41
dataset including complexes from the November 2019 dataset with March 2020 and May 2020
updates. Ligand charges were determined using the octet rule charge assignment.>? A dummy atom
with identical connectivity to the metal with an atomic number of 0 was introduced to identify
ligands without preserving metal identity. For each ligand with a dummy atom, the atomic number
and bond-order weighted connectivity matrix determinant were calculated to identify unique
ligands, including their metal-ligand connectivity, as described in ref . Atomic number and bond-
order weighted connectivity matrix determinant in the absence of a dummy atom was also

calculated to identify the same ligands with differing transition metal connectivity.

Feature set: Ligands were featurized using ligand-based revised autocorrelations
(RACs),* which are connectivity-based representations that have been successfully applied to
transition metal complex property predictions.**” Ligand-based RAC features are generated from

molecular graphs of a ligand bound to the same dummy transition metal, where each atom is
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represented by a vertex and each bond is represented by an unweighted edge. Each RAC feature
is the sum of products or the sum of differences of heuristic atom properties at depth d (i.e., the
number of bonds separating two atoms) on a molecular graph. The ligand-based RACs in this work
include features that both span the entire ligand bound to a transition metal, where every atom is
used as a starting atom in RACs, as well as features that are centered around only coordinating
atoms with a maximum depth d = 3. A depth of d = 3 has been previously motivated after observing
diminishing returns for higher distance cutoffs.** Overall, ligand-based RACs consist of 52 total

features (Supporting Information Text S3 and Table S10).

Machine learning models: Three different models were trained per maximum ligand
denticity (i.e., bidentate, tridentate, and tetradentate), where the assignment of negative labels was
different in each case. For each model, we used the 80/20 stratified random train/test split to ensure
conservation of the same ratios of positive and negative classes in the training and test set. For
random and semi-supervised sets, that contain identical positive labels, the identities of the positive
train/test groups were preserved. However, since negative ligands are distinct for each set, in each
case, negative classes were split randomly into 80/20 train/test split. All curated training and test
sets are available in the Supporting Information. We trained classification models using XGBoost
v1.5.0, a gradient boosting ensemble model, to classify ligands as either hemilabile or non-
hemilabile. Hyperparameters were optimized using Hyperopt v.0.2.7%® (Supporting Information
Table S11). Hyperparameters were selected on the basis of stratified three-fold cross validation of
the training set with binary cross-entropy as the figure of merit. Machine learning model feature
importance analysis was conducted with the feature scores of the XGBoost model based on the
total gain. We employed the label-spreading semi-supervised learning approach implemented in

scikit-learn>* to identify non-hemilabile ligands. Here, the full negative class from the small set
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combined with only 80% of positively labeled hemilabile ligands were used for label spreading.
These hemilabile ligands are the same ligands as the ones used in the training set of random and
semi-supervised sets. Ligands that were assigned to the negative class with high confidence
(>0.995) based on label-spreading, were assigned a negative label. The pseudo-label set was then
randomly sampled to supplement the original dataset to obtain an equal number of positive and

negative examples for further examination.

Electronic structure calculations: We employed a developer version of the GPU-
accelerated TeraChem v1.9°>¢ code to carry out DFT calculations. All calculations were carried
out using the B3LYP>"*° functional with the semi-empirical D3%° dispersion correction and using
Becke—Johnson damping.%!®*> The LACVP* basis set was used, employing the LANL2DZ%
effective core potential for Cu and 6-31G* for other atoms. All calculations were carried out as
closed-shell singlets in a restricted formalism. All initial geometries of ligands bound to metal
were obtained from the CSD, and chloride atom was added manually, followed by universal force
field®> optimization. All structures were initially optimized to the tridentate-bound conformation
with the translation rotation internal coordinate (TRIC) optimizer®, using the BFGS algorithm
with default convergence thresholds of maximum energy gradient of 4.5 x 10~ hartree/bohr and
energy difference between steps of 10 hartree. Minimas were confirmed for five representative
structures using the Hessian matrix, and the Hessian matrices are provided in the Supporting
Information for these complexes. To systematically calculate partial dissociation energies, we
carried out a series of constrained scans, where each of the three metal-ligand bonds was extended
by 2 A from the ground state geometry, in 10 incremental steps, using the TRIC optimizer, while
all other internal coordinates were allowed to relax. The final structure from the scan was used to

carry out another optimization using the TRIC optimizer and same convergence threshold as
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described above, which converged to a lower denticity conformation minimum. Out of the three
resulting conformers, the lowest-energy conformation was chosen to calculate the partial

dissociation energy.
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