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ABSTRACT: Hemilabile ligands have the capacity to partially disengage from a metal center, 
providing a strategy to balance stability and reactivity in catalysis, but are not straightforward to 
identify. We identify ligands in the Cambridge Structural Database (CSD) that have been 
crystalized with distinct denticities and are thus identifiable as hemilabile ligands. We implement 
a semi-supervised learning approach using a label-spreading algorithm to augment a small 
negative set that is supported by heuristic rules of ligand and metal co-occurrence. We show that 
a heuristic based on coordinating atom identity alone is not sufficient to identify whether a ligand 
is hemilabile and our trained machine-learning classification models are instead needed to predict 
whether a bi-, tri-, or tetradentate ligand is hemilabile with high accuracy and precision. Feature 
importance analysis on our models show that the second, third, and fourth coordination spheres all 
play important roles in ligand hemilability. 
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 A common design principle in catalysis that can affect both reactivity1 and selectivity2,3 is 

the identity of active species and metal ligation state. Ligands that dynamically change the metal 

coordination environment, i.e., hemilabile ligands, are often able to address the tradeoff between 

catalyst activity and stability4,5 because they can ligate and protect the transition metal while 

partially disengaging and making a catalytic site amenable for a reaction. Hemilabile ligands have 

been used to address major challenges in organic chemistry, such as reactivity selectivity tradeoffs 

in enantioselective6-9, regioselective10, and chemoselective11 catalysis. While hemilabile ligands 

have been primarily used in homogeneous catalysis, their unique properties have also been utilized 

in nanoparticle12, single atom13, and heterogeneous catalysis14,15 in recent years. 

 Normally, new reaction design or reactivity improvement involves screening a large 

number of ligands16-18 or performing computational mechanistic studies19-23. While ligand 

hemilability is often used as a design principle9,21,24, such a principle mainly relies on a set of 

heuristic rules such as distinct donor properties of coordinating atoms25, flexibility of the linker 

between coordination atoms24, and steric crowding9 near the transition metal. Determining whether 

or not a ligand is hemilabile in solution usually requires indirect kinetic measurements of reaction 

rates26-28, trapping of distinct complexes in crystal structures29, or time-consuming computational 

mechanistic studies8. Most commonly, the design of ligands involves the trial-and-error changing 

and mismatching of the donor properties of coordinating atoms25,28 in an attempt to bias ligands 

towards hemilability. However, symmetric, homo-functional ligands have also been shown to 

undergo hemilabile coordination changes8,30,31, while some multifunctional ligands do not tend to 

change coordination environments24. Therefore, being able to tell a priori whether a ligand can act 

as a hemilabile ligand would greatly accelerate screening efforts. 
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Here, we employed a data-driven approach to identify factors that determine the likelihood 

of a ligand to be hemilabile. Data-driven approaches that can be used for prescreening suitable 

homogeneous catalysts with desirable properties have become increasingly common recently32-37. 

We curated a dataset of ligands from the Cambridge Structural Database (CSD). Using 

experimental datasets such as those from the CSD offers an advantage over hypothetical datasets 

because studied complexes and ligands are synthesizable. However, such an approach can suffer 

from experimental bias towards certain metal/ligand scaffolds that could influence trained models. 

We separately identified candidate hemilabile ligands from this CSD set and then used the frequent 

occurrence of a single, consistent denticity to assign ligands as having a high probability of being 

non-hemilabile. We trained machine learning (ML) procedures to predict ligand hemilability and 

used feature analysis of the trained models to show why common heuristic rules can struggle to 

fully account for hemilabile character. This ML model allowed us to further expand and suggest a 

set of candidate hemilabile ligands from existing (i.e., in the CSD) and thus synthesizable ligands. 

 We first curated a dataset of hemilabile ligands from a set of all ligands that appear in 

mononuclear transition metal complex (TMC) crystal structures38 39. We identified 4,144 ligands 

that appear in mononuclear TMCs with different denticities, with their highest-denticity 

conformations ranging from bidentate to nonadentate, based on the molecular graph determinants 

of each ligand bound to a dummy transition metal40, as well as those of ligands with transition 

metal absent (Supporting Information Text S1). A ligand was labeled hemilabile if the molecular 

graph determinant of a ligand without the transition metal mapped to more than one molecular 

graph determinant of a ligand bound to a transition metal, indicating a change in the coordination 

environment (Figure 1, inset). We separated these ligands into distinct subsets based on the highest 

denticity of the ligand. Because bi-, tri-, and tetradentate ligands are most widely used for catalysis 
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and were the most common ligand types among those identified as hemilabile, only these ligands 

were studied further (Figure 1 and Supporting Information Figures S1–S2). To focus on 

catalytically relevant ligand types and remove trivial cases arising from agostic interactions41 such 

as those with hydrogen, we eliminated any ligands where the coordinating atoms did not consist 

of carbon, nitrogen, oxygen, phosphorus, or sulfur (Supporting Information Table S1). Finally, 

any ligands with a high absolute charge, q, assignment (i.e., |q| >4) were eliminated in order to 

remove ligands derived from either highly charged or poorly resolved (i.e., missing hydrogen 

atoms) complexes (Supporting Information Table S1). After each of these steps, we obtained a set 

of 1,531 hemilabile bidentate, 1,069 tridentate, and 492 tetradentate ligands. 

 
Figure 1. Description of the data curation workflow and filtering steps for defining bidentate 
hemilabile and non-hemilabile sets. Examples of a hemilabile ligand in high- and low-denticity 
conformations are shown in the top inset, along with refcodes (GEYWIS – Ni, ATEPUL – Pd) 
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associated with a representative complex involving other non-hemilabile ligands, where ligating 
atoms of the hemilabile ligand and the transition metal are shown as spheres. Examples of non-
hemilabile ligands are shown in the bottom inset (ACOQAL – Cu, JUSWAV – Fe). Hydrogens 
are omitted for clarity. Atoms in the insets are colored as follows: C in gray, O in red, N in blue, 
Ni in dark green, Cl in green, Pd in light blue, Cu in brown, P in light orange, Fe in dark orange. 
  

 To gain insight into how the identity of the transition metal affects the conformation of a 

complexed hemilabile ligand, we analyzed how frequently each of the 4,144 hemilabile ligands 

appear with the ten most common transition metals in their lowest- and highest-denticity 

conformations (Supporting Information Figure S3). We find that while most transition metals tend 

to favor the higher-denticity conformation of a hemilabile ligand, ligands that appear in complexes 

with palladium, platinum, and zinc tend to prefer a lower-denticity conformation. We also find 

that among the metals studied, a hemilabile ligand has the highest likelihood of being crystallized 

in complex with Cu in both high- and low-denticity conformations. The majority (55%) of 

hemilabile ligands appear in both high and low denticities in at least two distinct complexes with 

the same transition metal center. Nevertheless, this means that a significant number of ligands only 

appear in different denticity conformations when the identity of the transition metal is changed 

(Supporting Information Table S2). While transition metal identity can play an important role in 

determining ligand hemilability, the limited sizes of the datasets prevented us from further 

studying metal-dependent properties.  

 To ensure we avoid introducing bias in our hemilabile ligand dataset by including ligands 

that strongly prefer either high- or low-denticity conformations, we evaluated how many times 

they appear in each denticity in the unique complexes of these ligands (Supporting Information 

Figures S4–S6). While different denticity changes are possible for hemilabile tridentate (e.g., to 

bidentate or monodentate) and tetradentate ligands (e.g., to bidentate), here we define only two 
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classes, i.e., hemilabile and non-hemilabile, to ensure sufficient data for each class (Supporting 

Information Figures S7–S8). There is a wide distribution of the hemilabile ligands occurring in the 

low-denticity configuration relative to the total occurrences that is nevertheless centered around 

0.5 (i.e., both low and high denticity are equally weighted). For the majority of ligands (i.e., 75.8% 

bidentate, 75.4% tridentate, 76.8% tetradentate), the ratio of low denticity to total count is between 

0.2 and 0.8, indicating that these hemilabile ligands appear in higher- and lower-denticity 

conformations with similar frequency. Only a very minor fraction of ligands (i.e., 1.2% bidentate, 

0.6% tridentate, 0.8% tetradentate) strongly prefer either high- or low-denticity conformations 

(i.e., the ratio of low denticity to total count is < 0.01 or > 0.99). Thus, most ligands in our 

hemilabile set can be expected to sample both denticities based on their occurrence in crystal 

structures.  

 Using this dataset of hemilabile ligands, we next devised a strategy to train machine 

learning (ML) models that could predict the likelihood of a ligand to exhibit hemilability for 

bidentate ligands. To train such a model, we require not just the hemilabile ligand dataset but also 

a set of non-hemilabile ligands to serve as the negative class. Although positive examples of 

hemilability are identifiable based on the presence of complexes with ligands in multiple 

denticities, the absence of multiple denticities for ligands across complexes could be due to a lack 

of diversity of synthesized complexes containing a given ligand rather than to a lack of hemilabile 

ligand character. To address this issue, we defined three different non-hemilabile sets. First, we 

randomly subsampled all unlabeled bidentate ligands (i.e., those not positively identified as 

hemilabile in the preceding analysis) to obtain an equal number of probable non-hemilabile ligands 

as labeled hemilabile ligands (random dataset, Figure 1). Next, we used a small set of ligands with 

an expected lack of hemilability supported by frequent and diverse appearance in the CSD with a 
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single denticity (small dataset, Figure 1 and see Supporting Information Text S2). Finally, we used 

a semi-supervised learning strategy that augments the small non-hemilabile dataset by using 

machine learning to identify more non-hemilabile ligands (semi-supervised dataset, Figure 1 and 

Supporting Information Text S2). Semi-supervised learning42 encompasses a broad set of 

techniques that combine aspects of supervised (i.e., with labeled data) and unsupervised (i.e., with 

unlabeled data) learning approaches to address the challenges of partially labeled datasets. This 

approach enables construction of a model that can benefit from the large size of the known-

hemilabile set while preserving good labels for non-hemilabile ligands. We used these datasets to 

train classification models using the extreme gradient boosting algorithm43 (XGBoost) for the 

prediction of hemilability (Figure 1). To featurize ligands, we used ligand-based revised 

autocorrelations (RACs)44, which are connectivity-based representations that have been 

successfully applied to transition metal complex property prediction44-47 (see Computational 

Details).  

 
Figure 2. ML classifier (i.e., XGBoost) prediction probability (top) and ROC for random (left), 
small (middle), and semi-supervised (right) datasets. All data points are represented as translucent 
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circles to depict data density and colored by classification correctness: correct (green) and incorrect 
(red). Examples of correct and incorrect classifications of ligands are shown as insets, bound to a 
metal. Hydrogens are omitted for clarity. Atoms are colored as C in gray, N in blue, O in red, P in 
orange, S in sulfur, and metal in brown.  
 

 The model trained on the randomly subsampled dataset shows promising performance on 

a set-aside test set with good separation between two classes with a receiver-operating 

characteristic area under the curve (ROC-AUC) of 0.86 as well as good accuracy (0.80) and recall 

(0.80), despite our expectation of potential label contamination due to incorrectly assigned 

negative labels (Figure 2 and Supporting Information Figures S9–S10 and Table S3). Despite a 

significantly diminished training set size for the small dataset (i.e., an 80% training partition of 

3,062 ligands versus 588 ligands in the small set), the model trained on this dataset shows a slight 

improvement over the randomly sampled set in terms of its predictive power on the test set, 

including an improved ROC-AUC of 0.88, accuracy of 0.81, and a comparable recall of 0.80 

(Figure 2 and Supporting Information Figures S11–S12 and Table S3). Finally, we trained an ML 

model classifier (i.e., again XGBoost) using the full set of identified hemilabile ligands and a size-

matched negative class made up of the small set of non-hemilabile ligands augmented by label 

spreading. While the majority of the negative, non-hemilabile class was defined using the semi-

supervised augmentation technique, the set of hemilabile ligands remained unchanged. Therefore, 

to ensure that the hemilabile ligands in the test set were unseen during the augmentation approach, 

label spreading approach was implemented using only the hemilabile ligands in the training set 

(i.e.,  80%), and the set-aside hemilabile ligands were used to construct the test set for the final 

model. This model shows by far the best overall performance, with a marked improvement that 

includes an ROC-AUC of 0.96, accuracy of 0.90, and recall of 0.89 (Supporting Information 

Figures S13–S14 and Table S3).  
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In order to test the limits of this encouraging performance, we carried out a more stringent 

test of a grouped split in which we nearly eliminated specific coordinating atom elements from the 

training set. Specifically, we removed 90% of the ligands that contained at least one phosphorus 

atom as a coordinating atom from the entire dataset and defined a new test set that only contained 

ligands with at least one phosphorus atom as a coordinating atom. This split largely preserves our 

label balance (i.e., 51:49 hemilabile:non-hemilabile in training and 45:55 in the test set). Although 

performance is expectedly reduced, this model still shows encouragingly good performance, 

including an ROC-AUC of 0.94, accuracy of 0.87, and a recall of 0.84 (Supporting Information 

Figures S15–S17 and Table S3). 

Given the good performance we observed on bidentate hemilabile ligands, we repeated our 

analysis and ML model training for tri- and tetradentate ligands. Given the somewhat smaller 

dataset sizes, we reduced the requirement for the number of unique complexes to confidently label 

negative examples (Supporting Information Figures S1–S2). For both tridentates and tetradentates, 

we trained XGBoost ML models using all three protocols we demonstrated on the bidentate set. 

The XGBoost ML models trained to predict the hemilability of tridentate ligands on the randomly 

selected set (2,138 ligands total) show relatively poor performance, with an ROC-AUC of 0.72 

and accuracy of 0.67, but this is improved by using the small set (ROC-AUC of 0.79 and accuracy 

of 0.73, 354 ligands total) and even more substantially by using a semi-supervised set (ROC-AUC 

of 0.94 and accuracy of 0.87, 2,138 ligands, Figure 3 and Supporting Information Table S4). For 

the tetradentate models, smaller dataset sizes (984 ligands for the randomly selected set) mean that 

we do not see the performance improvement from the randomly selected dataset (ROC-AUC of 

0.81, accuracy 0.73, and recall 0.83) to the small dataset (ROC-AUC of 0.82, accuracy of 0.75, 

and recall 0.77, 222 ligands total), and we attribute this comparable performance to the small size 
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(178 ligands) of the training set (Figure 3 and Supporting Information Table S5). Thus, the semi-

supervised approach is particularly critical in this case, giving by far the best model performance 

(ROC-AUC of 0.97, accuracy of 0.93, and recall 0.96). We also carried out the same grouped split 

test for tri- and tetradentate ligands, but we held out oxygen for tetradentate ligands due to both 

the limited number and class imbalance of phosphorus-coordinating ligands among the tetradentate 

set. These grouped split models using the semi-supervised labeled data still show good 

performance, with ROC-AUC of 0.88 and 0.92 for tri- and tetradentate ligands, respectively. To 

confirm the approach is not strongly sensitive to the ML model, we also trained support vector 

classifiers, random forest models, and multilayer perceptron models that all have comparable 

performance to the XGBoost model across all three ligand types (Supporting Information Tables 

S6–S8). 

 
Figure 3. Accuracy and recall of the XGBoost classifier model on the test sets of random, small, 
and semi-supervised sets. 

 

We next aimed to understand what chemical mapping emerged during the development of 

the non-hemilabile ligand set via label spreading by comparing differences in chemical and 

structural diversity of the two classes. We first analyzed the coordination environment of these 

ligands and calculated common geometric features of ligands bound to a representative transition 
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metal center (here, copper) in their highest-denticity conformations. Analysis of the coordination 

atom environment shows some differences and similarities between the two labeled sets in the 

total semi-supervised dataset (Figure 4). As expected, hetero-donating ligands, where the identity 

of coordinating ligands differ, are more common among hemilabile ligand sets, which is a common 

design principle for hemilability. However, the non-hemilabile ligand set also features many 

hetero-donating ligands. Furthermore, homo-donating ligands are still frequent in the hemilabile 

ligand set. In particular, the hemilabile ligand set shows a higher number of bis-oxygen 

coordinating configurations, which can be attributed to the generally weaker donor ability of 

oxygen-coordinating ligands. While bis-nitrogen ligands are more common among non-hemilabile 

sets, they are still abundant within hemilabile sets. Analysis of ligand charges shows that the 

majority of ligands in the dataset are neutral both for hemilabile and non-hemilabile ligands, 

revealing that charges alone cannot distinguish between the two classes (Supporting Information 

Figure S18). From the geometric analysis, we find that hemilabile ligands tend to have a slightly 

lower steric crowding near the metal based on the common steric descriptors such as buried 

volume48 or solvent-accessible surface area49, which can be attributed to the decrease in ligand bite 

angle and weaker binding to the transition metal, based on the metal–ligand bond distances 

(Supporting Information Figures S19–S23). The overlap of the distributions of these simple 

descriptors highlights the difficulty of distinguishing hemilabile ligands from non-hemilabile 

ligands, necessitating more complex classification models. 
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Figure 4. Upper triangular coordinating atom matrix showing the frequency of different 
coordinating environments observed in the hemilabile (left) and non-hemilabile ligand datasets of 
bidentate ligands. The area of each circle represents the total count of unique ligands, as indicated 
qualitatively by the inset legend. 

 

Analysis of the coordinating atom environment of tri- and tetradentate ligands shows that, 

similar to the bidentate ligands, the frequency of hetero-donating ligands is higher within the 

hemilabile set (Supporting Information Figures S24–S25). Unlike the bidentate set, we find that 

the all-nitrogen-donating ligand becomes the predominant class not only for the non-hemilabile 

ligand set but also for the hemilabile ligand set. Similarly, we see an increase in the total number 

of oxygen-donating ligands in the hemilabile class, which can be attributed to weaker donor 

strength of oxygen-donating ligands. Furthermore, there is a marked increase in the number of bis-

carbon donating ligands among the hemilabile set for both tri- and tetradentate ligands, which can 

be attributed to the π-coordinating alkene ligands, with a C=C bond forming a coordination 

geometry that our method assigns as bidentate. Although monodentate might be a more suitable 

classification for these metal-ligand interactions, this choice is only relevant to our model training 

if such ligands can also form higher denticity (i.e., tridentate) coordinating geometries, which is 

not expected. Thus, this choice is unlikely to influence model development. Neutral ligands are 

also still the most common  in tridentate and tetradentate sets, with a somewhat increased bias 

towards charged ligands introduced in the non-hemilabile set (Supporting Information Figures 
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S26–S27). Similar to the bidentate ligand set, steric crowding around non-hemilabile ligands tends 

to be lower (Supporting Information Figures S28–S29). The consistent trends between ligand types 

demonstrate the internal consistency of our label assignment, however pervasive overlap between 

the two classes demonstrates the difficulty of identifying hemilabile ligands the need for 

classification models. 

Although our ML models perform well at predicting whether or not a ligand will 

demonstrate hemilability in the context of CSD structures, validating these predictions in the 

context of homogenous catalysis would require difficult experiments. As an alternative strategy to 

validate our models, we carried out electronic structure calculations with density functional theory 

(DFT) to discern differences in ligand dissociation energies between our hemilabile and non-

hemilabile (i.e., either from the small or semi-supervised) ligands. We selected 100 total tridentate 

ligands that were neutral (i.e., to avoid issues with charge separation during dissociation) and had 

been crystalized with Cu in the CSD. In total, 50 tridentate ligands were obtained from the 

hemilabile set, and 50 tridentate ligands were from the non-hemilabile set (25 small, 25 semi-

supervised). A complete list of the ligand refcodes and structures of the ligands are provided in the 

Supporting Information. We selected tridentate ligands for this test because tridentate ligands were 

the most challenging for our ML models to classify. The focus on copper is motivated by the fact 

that copper is the metal with the highest frequency in which we also have a high likelihood of 

finding a ligand in both high- and low-denticity binding configurations. We constructed complexes 

with the hemilabile or non-hemilabile ligand bound to a Cu complex that also contained chloride, 

in a four-coordinate tetrahedral or square planar geometry, depending on the ligand geometry. We 

computed partial dissociation energies of the three Cu–L bonds in these complexes. For these 

partial ligand dissociation energies (see Computational Methods) we observe that partial ligand 
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dissociation is more favorable for hemilabile ligands, with a mean partial dissociation energy of –

1.8 kcal/mol for the bidentate configuration relative to the tridentate bound conformation, whereas 

the partial dissociation energy of non-hemilabile ligands was found to be 2.3 kcal/mol, implying 

that the partial dissociation is more favorable for the hemilabile set (Supporting Information 

Figures S30–S31). Independent t-test analysis showed that these two sets have distinguishable 

population means, whereas the same test applied to the two non-hemilabile sets does not support 

a significant difference between the populations (Supporting Information Table S9). Furthermore, 

42 out of 50 hemilabile ligands were found to have a partial dissociation energy below 1.5 

kcal/mol, suggesting that these complexes should be highly hemilabile with both high and low 

denticity complexes existing in equilibrium. Thus, our semi-supervised labeling strategy 

quantitatively distinguishes hemilabile and non-hemilabile ligands.  

Motivated by our observation of good ML model performance in classifying ligands 

capable of demonstrating hemilability, we further analyzed what features our models emphasize 

in making this classification. We carried out a feature importance analysis of the final XGBoost 

model by examining the total gain function of each feature, where we only considered features that 

contributed at least 1% to the total gain. Our feature set contains both full-scope ligand features 

that are related to global properties, as well as coordinating atom-centered features, that encompass 

more metal local 1st and 2nd coordination shells (d = 0 and d = 1, respectively) and more metal-

distal properties in 3rd and 4th coordination shells (d = 2 and d = 3, respectively). Consistent with 

our earlier analysis, we find that the metal-local features (i.e., 1st or 2nd coordination sphere) 

contribute less (i.e., 25–50%) than the more distal features (i.e., 3rd coordination sphere and 

global) that contribute ~50-75% to the total prediction for bidentate and tridentate ligand types 

(Figure 5). Conversely, a somewhat larger (~60%) contribution of metal-local features is observed 
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in the tetradentate model (Figure 5). We observe similar feature importances, with metal-distal 

features contributing ~50-75% of the total prediction using an alternative feature importance 

measure based on Gini impurity in a random forest classifier, and we notably observe reduced 

contributions from the metal-local features for tetradentates (~50%, Supporting Information Figure 

S32). The significant contribution of metal-distal and global features explains the difficulty 

associated with predicting ligand hemilability based on previously emphasized heuristics including 

donor ability6,24,28,50. Furthermore, hemilability is a highly balanced property that depends both on 

structural and electronic features, unlike other properties such as spin state that depend much more 

strongly on electronic features44 (Figure 5).  

 

Figure 5. Feature importance of bidentate (left), tridentate (middle) and tetradentate (right) ligands 
based on the total gain of the XGBoost classifier. Only features that contributed more than 1% to 
the classifier were retained. S refers to structural (topology, identity, radius) and E refers to 
electronic (electronegativity, nuclear charge) features. First through fourth refers to the 
coordination shell relative to the transition metal based on ligand-centered RACs depth, and Glob 
refers to global (ligand-scope) features. 

Finally, to demonstrate the promise of our ML models for ligand discovery in catalyst 

design, we use the best-performing XGBoost models to make hemilability predictions for all 

unlabeled ligands in our original dataset. Our model assigns many ligands as candidates for 

hemilability. For bi- and tetradentate ligands, we obtain bimodal distributions with a similar 

number of ligands labeled as labile and non-hemilabile, whereas the majority of the tridentate 

ligands are labeled as hemilabile (Figure 6). The prediction of most tridentate ligands to be 

hemilabile appears likely to be an overprediction of hemilability. For example, a tridentate ligand 
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featuring a cyclic, rigid 1,3,5-triazinane based scaffold (refcode: AROGAQ), is confidently 

(probability = 0.94) predicted to be hemilabile, even though partial dissociation would likely cause 

an increase in the ring strain due to conformation change from chair to twist-boat (Figure 6). These 

trends by ligand denticity are consistent with the performance of the classifier trained on the 

random set, where bidentate and tetradentate ligands showed better performance on the randomly 

sampled set, but the tridentate classifier had poorer performance. This suggests that negative 

examples were particularly difficult to assign accurately for the tridentate model and some degree 

of label contamination occurred even with semi-supervised learning in selecting negative samples, 

indicating that the model has not learned well to distinguish positive and negative examples. As a 

result, when applied to a new space of candidate ligands, the model is likely erroneously 

overpredicting hemilability on this new set.  
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Figure 6. Distribution of the classifier probability on the unlabeled set for bidentate (red), 
tridentate (green), and tetradentate (blue) ligands. The total area of each distribution is scaled 
relative to the size of each set. Examples of hemilabile and non-hemilabile ligands within each set 
are shown as insets. Hydrogens are omitted for clarity. Representative ligand structures (Refcodes: 
FUGCES, COBHIL, BUGVOP, AXOLEE, AROGAQ, BODZEA, CMPORZ – clockwise 
starting from the bottom left corner) are shown, with atoms colored as C in gray, N in blue, O in 
red, P in orange, and metal in brown. 

 

We further analyzed the predictions by the model to gain insight into the confidence we 

should have in its predictions and to identify where it could be used in ligand design. For example, 

a bidentate, bisphosphine ligand with a short, rigid linker between two coordinating atoms is 
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confidently classified as non-hemilabile. However, by changing the bisphosphine ligand’s 

electronic character to bisphosphinite, which has a more flexible ethane diol linker between two 

coordinating atoms, the resulting ligand is classified as hemilabile (Figure 6, inset-top). Similarly, 

we find that the structure of a tridentate N,N,N-coordinating ligand consisting of rigid sp2 

hybridized linkages between coordinating atoms and bulky substituents that constrain movement 

results in the classification of non-hemilabile, whereas a ligand possessing a freely rotatable 

ethylene linker in place of a rigid linker is confidently classified as hemilabile (Figure 6, inset-

middle). Finally, we find that certain classes of macrocyclic tetradentate ligands, such as 

porphyrin-derived ligands, are confidently classified as non-hemilabile. On the other hand, when 

one of the coordinating nitrogen atoms in such a structure is alkylated, leading to a significant 

reduction in its donor ability and change from an X type to an L type ligand, the classifier 

confidently assigns this ligand as hemilabile. While this observation is intuitive, this finding 

highlights how the model is sensitive to small alterations in the overall structure (Figure 6, inset-

bottom). Thus, the ML models, especially those trained on bidentate and tetradentate ligands, 

should provide new pathways to discovering novel hemilabile ligands. We propose that tridentate 

model predictions could be paired with high-throughput DFT, i.e., to rule out any model-predicted 

hemilabile ligands that remain strongly bound to a representative metal center, to provide 

additional support to model predictions given limitations in tridentate dataset quality from labels 

obtained purely from the CSD. 

In summary, we developed a data-driven workflow for identifying hemilabile to accelerate 

catalyst screening. We used a semi-supervised learning approach to leverage a combination of 

labeled and unlabeled data to confidently identify examples of non-hemilabile ligands. We trained 

ML models that can predict ligand hemilability for bidentate and tetradentate ligands with high 
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accuracy, and we also demonstrated a model for tridentate ligands with a suggested strategy for 

further validation using DFT. We showed that coordinating atom identity alone fails to account 

for ligand hemilability. Feature importance analysis of machine learning models highlights why 

conventional design principles can be insufficient for the identification of hemilabile ligands, due 

to the high significance of metal-distant and structural features. We used trained machine learning 

models to identify a large number of ligands that are predicted to be hemilabile and that can be 

used for accelerated discovery of new catalytic reactions. 

Computational Methods 

Dataset curation: A set of ligands present in mononuclear transition metal complexes was 

curated from the Cambridge Structural Database (CSD)51 version 5.41 (November 2019). The 

procedure employed the Conquest graphical interface and the CSD Python API, with the v5.41 

dataset including complexes from the November 2019 dataset with March 2020 and May 2020 

updates. Ligand charges were determined using the octet rule charge assignment.52 A dummy atom 

with identical connectivity to the metal with an atomic number of 0 was introduced to identify 

ligands without preserving metal identity. For each ligand with a dummy atom, the atomic number 

and bond-order weighted connectivity matrix determinant were calculated to identify unique 

ligands, including their metal–ligand connectivity, as described in ref 38. Atomic number and bond-

order weighted connectivity matrix determinant in the absence of a dummy atom was also 

calculated to identify the same ligands with differing transition metal connectivity. 

Feature set: Ligands were featurized using ligand-based revised autocorrelations 

(RACs),44 which are connectivity-based representations that have been successfully applied to 

transition metal complex property predictions.44-47 Ligand-based RAC features are generated from 

molecular graphs of a ligand bound to the same dummy transition metal, where each atom is 
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represented by a vertex and each bond is represented by an unweighted edge. Each RAC feature 

is the sum of products or the sum of differences of heuristic atom properties at depth d (i.e., the 

number of bonds separating two atoms) on a molecular graph. The ligand-based RACs in this work 

include features that both span the entire ligand bound to a transition metal, where every atom is 

used as a starting atom in RACs, as well as features that are centered around only coordinating 

atoms with a maximum depth d = 3. A depth of d = 3 has been previously motivated after observing 

diminishing returns for higher distance cutoffs.44 Overall, ligand-based RACs consist of 52 total 

features (Supporting Information Text S3 and Table S10). 

Machine learning models: Three different models were trained per maximum ligand 

denticity (i.e., bidentate, tridentate, and tetradentate), where the assignment of negative labels was 

different in each case. For each model, we used the 80/20 stratified random train/test split to ensure 

conservation of the same ratios of positive and negative classes in the training and test set. For 

random and semi-supervised sets, that contain identical positive labels, the identities of the positive 

train/test groups were preserved. However, since negative ligands are distinct for each set, in each 

case, negative classes were split randomly into 80/20 train/test split. All curated training and test 

sets are available in the Supporting Information. We trained classification models using XGBoost 

v1.5.0, a gradient boosting ensemble model, to classify ligands as either hemilabile or non-

hemilabile. Hyperparameters were optimized using Hyperopt v.0.2.753 (Supporting Information 

Table S11). Hyperparameters were selected on the basis of stratified three-fold cross validation of 

the training set with binary cross-entropy as the figure of merit. Machine learning model feature 

importance analysis was conducted with the feature scores of the XGBoost model based on the 

total gain. We employed the label-spreading semi-supervised learning approach implemented in 

scikit-learn54 to identify non-hemilabile ligands. Here, the full negative class from the small set 
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combined with only 80% of positively labeled hemilabile ligands were used for label spreading. 

These hemilabile ligands are the same ligands as the ones used in the training set of random and 

semi-supervised sets. Ligands that were assigned to the negative class with high confidence 

(>0.995) based on label-spreading, were assigned a negative label. The pseudo-label set was then 

randomly sampled to supplement the original dataset to obtain an equal number of positive and 

negative examples for further examination. 

Electronic structure calculations: We employed a developer version of the GPU-

accelerated TeraChem v1.955,56 code to carry out DFT calculations. All calculations were carried 

out using the B3LYP57-59 functional with the semi-empirical D360 dispersion correction and using 

Becke–Johnson damping.61-63 The LACVP* basis set was used, employing the LANL2DZ64 

effective core potential for Cu and 6-31G* for other atoms. All calculations were carried out as 

closed-shell singlets in a restricted formalism. All initial geometries of ligands bound to metal 

were obtained from the CSD, and chloride atom was added manually, followed by universal force 

field65 optimization. All structures were initially optimized to the tridentate-bound conformation 

with the translation rotation internal coordinate (TRIC) optimizer66, using the BFGS algorithm 

with default convergence thresholds of maximum energy gradient of 4.5 × 10–4 hartree/bohr and 

energy difference between steps of 10-6 hartree. Minimas were confirmed for five representative 

structures using the Hessian matrix, and the Hessian matrices are provided in the Supporting 

Information for these complexes. To systematically calculate partial dissociation energies, we 

carried out a series of constrained scans, where each of the three metal–ligand bonds was extended 

by 2 Å from the ground state geometry, in 10 incremental steps, using the TRIC optimizer, while 

all other internal coordinates were allowed to relax. The final structure from the scan was used to 

carry out another optimization using the TRIC optimizer and same convergence threshold as 
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described above, which converged to a lower denticity conformation minimum. Out of the three 

resulting conformers, the lowest-energy conformation was chosen to calculate the partial 

dissociation energy. 

 

ASSOCIATED CONTENT 

Supporting Information. The identification of hemilabile ligands using molecular graph 
determinants; Statistics on hemilabile ligand data set curation; Workflow for defining tridentate 
ligand sets; Workflow for defining tetradentate ligand sets; Statistics on transition metal counts of 
hemilabile ligands; Frequency of hemilabile ligands to share a common transition metal; 
Distribution of low denticity ratio for bidentate ligands; Distribution of low denticity ratio for 
tridentate ligands; Distribution of low denticity ratio for tetradentate ligands; Tridentate ligand 
denticity in lower denticity conformations; Tetradentate ligand denticity in lower denticity 
conformations; Curation of non-hemilabile ligand datasets; ROC curve of XGB classifier for a 
randomly selected bidentate set; PR curve of XGB classifier for a randomly selected bidentate set; 
ROC curve of XGB classifier for a small bidentate set; PR curve of XGB classifier for a small 
bidentate set; Buried volume of bidentate ligands; Solvent accessible surface area of bidentate 
ligands; Bite angle of bidentate ligands; Metal ligand bond distances of bidentate ligands; Scaled 
metal ligand bond distances of bidentate ligands; ROC curve of XGB classifier for a semi-
supervised bidentate set; PR curve of XGB classifier for a semi-supervised bidentate set; XGBoost 
classifier prediction probability on the group split set; ROC curve of XGB classifier for a bidentate 
group split set; PR curve of XGB classifier for a bidentate group split set; Coordinating atom 
matrix for tridentate ligands; Coordinating atom matrix for tetradentate ligands; Buried volume of 
tridentate ligands; Buried volume of tetradentate ligands; Performance metrics of XGBoost 
classifier on bidentate ligands; Performance metrics of XGBoost classifier on tridentate ligands; 
Performance metrics of XGBoost classifier on tetradentate ligands; Performance metrics of 
different classifiers on bidentate ligands; Performance metrics of different classifiers on tridentate 
ligands; Performance metrics of different classifiers on tetradentate ligands; Partial dissociation 
energies of tridentate ligands combined non-hemilabile; Partial dissociation energies of tridentate 
ligands split non-hemilabile; Independent t-test for DFT calculated partial dissociation energies; 
Feature importance of random forest classifier; Hyperparameters for XGBoost model; Description 
of RACs feature set. (PDF)  

Curated datasets; DFT energies; final model predictions; models. (ZIP) 

This material is available free of charge via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Notes 

The authors declare no competing financial interest.  



24 

 

 

ACKNOWLEDGMENT 

This work was supported by the National Science Foundation under grant number CBET-1846426 

(to I.K. and H.J.K.). Initial database development was supported by the Office of Naval Research 

under grant number N00014-20-1-2150 (to C.D.). H.J.K. holds an Alfred P. Sloan Fellowship in 

Chemistry and is the recipient of a Simon Family Faculty Research Innovation Fund, which 

supported this work. The authors acknowledge Adam H. Steeves for providing a critical reading 

of the manuscript. 

REFERENCES 

(1) Newman-Stonebraker, S. H.; Smith, S. R.; Borowski, J. E.; Peters, E.; Gensch, T.; 
Johnson, H. C.; Sigman, M. S.; Doyle, A. G. Univariate Classification of Phosphine 
Ligation State and Reactivity in Cross-Coupling Catalysis. Science 2021, 374, 301-308. 

(2) Schoenebeck, F.; Houk, K. N. Ligand-Controlled Regioselectivity in Palladium-
Catalyzed Cross Coupling Reactions. Journal of the American Chemical Society 2010, 
132, 2496-2497. 

(3) Palani, V.; Hugelshofer, C. L.; Kevlishvili, I.; Liu, P.; Sarpong, R. A Short Synthesis of 
Delavatine a Unveils New Insights into Site-Selective Cross-Coupling of 3,5-Dibromo-2-
Pyrone. Journal of the American Chemical Society 2019, 141, 2652-2660. 

(4) Zeng, M.; Li, L.; Herzon, S. B. A Highly Active and Air-Stable Ruthenium Complex for 
the Ambient Temperature Anti-Markovnikov Reductive Hydration of Terminal Alkynes. 
Journal of the American Chemical Society 2014, 136, 7058-7067. 

(5) Weissman, H.; Shimon, L. J. W.; Milstein, D. Unsaturated Pd(0), Pd(I), and Pd(Ii) 
Complexes of a New Methoxy-Substituted Benzyl Phosphine. Aryl−X (X = Cl, I) 
Oxidative Addition, C−O Cleavage, and Suzuki−Miyaura Coupling of Aryl Chlorides. 
Organometallics 2004, 23, 3931-3940. 

(6) Chintawar, C. C.; Bhoyare, V. W.; Mane, M. V.; Patil, N. T. Enantioselective 
Au(I)/Au(Iii) Redox Catalysis Enabled by Chiral (P,N)-Ligands. Journal of the American 
Chemical Society 2022, 144, 7089-7095. 

(7) Ye, X.; Wang, C.; Zhang, S.; Tang, Q.; Wojtas, L.; Li, M.; Shi, X. Chiral Hemilabile 
P,N-Ligand-Assisted Gold Redox Catalysis for Enantioselective Alkene Aminoarylation. 
Chemistry – A European Journal 2022, 28, e202201018. 

(8) Apolinar, O.; Kang, T.; Alturaifi, T. M.; Bedekar, P. G.; Rubel, C. Z.; Derosa, J.; 
Sanchez, B. B.; Wong, Q. N.; Sturgell, E. J.; Chen, J. S.; Wisniewski, S. R.; Liu, P.; 
Engle, K. M. Three-Component Asymmetric Ni-Catalyzed 1,2-Dicarbofunctionalization 
of Unactivated Alkenes Via Stereoselective Migratory Insertion. Journal of the American 
Chemical Society 2022, 144, 19337-19343. 



25 

 

(9) Wang, P.-F.; Yu, J.; Guo, K.-X.; Jiang, S.-P.; Chen, J.-J.; Gu, Q.-S.; Liu, J.-R.; Hong, X.; 
Li, Z.-L.; Liu, X.-Y. Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed 
Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with 
Alkenylboronate Esters. Journal of the American Chemical Society 2022, 144, 6442-
6452. 

(10) Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. 
Use of Hemilabile N,N Ligands in Nitrogen-Directed Iridium-Catalyzed Borylations of 
Arenes. Angewandte Chemie International Edition 2011, 123, 11928-11932. 

(11) Hale, L. V. A.; McGarry, K. A.; Ringgold, M. A.; Clark, T. B. Role of Hemilabile 
Diamine Ligands in the Amine-Directed C–H Borylation of Arenes. Organometallics 
2015, 34, 51-55. 

(12) Yan, N.; Yuan, Y.; Dyson, P. J. Nanometallic Chemistry: Deciphering Nanoparticle 
Catalysis from the Perspective of Organometallic Chemistry and Homogeneous 
Catalysis. Dalton Transactions 2013, 42, 13294-13304. 

(13) Chen, Z.; Liu, Z.; Xu, X. Dynamic Evolution of the Active Center Driven by Hemilabile 
Coordination in Cu/Ceo2 Single-Atom Catalyst. Nature Communications 2023, 14, 2512. 

(14) Peralta, R. A.; Lyu, P.; López-Olvera, A.; Obeso, J. L.; Leyva, C.; Jeong, N. C.; Ibarra, I. 
A.; Maurin, G. Switchable Metal Sites in Metal–Organic Framework Mfm-300(Sc): 
Lewis Acid Catalysis Driven by Metal–Hemilabile Linker Bond Dynamics. Angewandte 
Chemie International Edition 2022, 61, e202210857. 

(15) Peralta, R. A.; Huxley, M. T.; Lyu, P.; Díaz-Ramírez, M. L.; Park, S. H.; Obeso, J. L.; 
Leyva, C.; Heo, C. Y.; Jang, S.; Kwak, J. H.; Maurin, G.; Ibarra, I. A.; Jeong, N. C. 
Engineering Catalysis within a Saturated in(Iii)-Based Mof Possessing Dynamic Ligand–
Metal Bonding. ACS Applied Materials & Interfaces 2023, 15, 1410-1417. 

(16) Blume, F.; Zemolka, S.; Fey, T.; Kranich, R.; Schmalz, H.-G. Identification of Suitable 
Ligands for a Transition Metal-Catalyzed Reaction: Screening of a Modular Ligand 
Library in the Enantioselective Hydroboration of Styrene. Advanced Synthesis & 
Catalysis 2002, 344, 868-883. 

(17) Sun, H.-Y.; Kubota, K.; Hall, D. G. Reaction Optimization, Scalability, and Mechanistic 
Insight on the Catalytic Enantioselective Desymmetrization of 1,1-Diborylalkanes Via 
Suzuki–Miyaura Cross-Coupling. Chemistry – A European Journal 2015, 21, 19186-
19194. 

(18) van Dijk, L.; Haas, B. C.; Lim, N.-K.; Clagg, K.; Dotson, J. J.; Treacy, S. M.; 
Piechowicz, K. A.; Roytman, V. A.; Zhang, H.; Toste, F. D.; Miller, S. J.; Gosselin, F.; 
Sigman, M. S. Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-
Carbonylation of Sulfonimidamides. Journal of the American Chemical Society 2023, 
145, 20959-20967. 

(19) Poree, C.; Schoenebeck, F. A Holy Grail in Chemistry: Computational Catalyst Design: 
Feasible or Fiction? Accounts of Chemical Research 2017, 50, 605-608. 

(20) Thomas, A. A.; Speck, K.; Kevlishvili, I.; Lu, Z.; Liu, P.; Buchwald, S. L. 
Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of 
Cuh-Catalyzed Hydroamination Reactions. Journal of the American Chemical Society 
2018, 140, 13976-13984. 

(21) Burrows, L. C.; Jesikiewicz, L. T.; Lu, G.; Geib, S. J.; Liu, P.; Brummond, K. M. 
Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric 



26 

 

Pauson–Khand Reaction of Allenyl Acetates. Journal of the American Chemical Society 
2017, 139, 15022-15032. 

(22) Friederich, P.; dos Passos Gomes, G.; De Bin, R.; Aspuru-Guzik, A.; Balcells, D. 
Machine Learning Dihydrogen Activation in the Chemical Space Surrounding Vaska's 
Complex. Chemical Science 2020, 11, 4584-4601. 

(23) Hopen Eliasson, S. H.; Jensen, V. R. Benefit of a Hemilabile Ligand in Deoxygenation of 
Fatty Acids to 1-Alkenes. Faraday Discussions 2019, 220, 231-248. 

(24) Pérez García, P. M.; Ren, P.; Scopelliti, R.; Hu, X. Nickel-Catalyzed Direct Alkylation of 
Terminal Alkynes at Room Temperature: A Hemilabile Pincer Ligand Enhances 
Catalytic Activity. ACS Catalysis 2015, 5, 1164-1171. 

(25) Weng, Z.; Teo, S.; Hor, T. S. A. Metal Unsaturation and Ligand Hemilability in Suzuki 
Coupling. Accounts of Chemical Research 2007, 40, 676-684. 

(26) Knebel, W. J.; Angelici, R. J. Mechanism of Chelate Ring-Opening in Metal Carbonyl 
Complexes. Inorganic Chemistry 1974, 13, 627-631. 

(27) Buckingham, D. A.; Clark, C. R. Kinetics and Mechanism of Ring Opening in the 
Hydrolysis of Cobalt(Iii) Carbonato Chelates. Inorganic Chemistry 1994, 33, 6171-6179. 

(28) Bassetti, M. Kinetic Evaluation of Ligand Hemilability in Transition Metal Complexes. 
European Journal of Inorganic Chemistry 2006, 2006, 4473-4482. 

(29) García-Antón, J.; Pons, J.; Solans, X.; Font-Bardia, M.; Ros, J. Synthesis of New Pdii 
Complexes Containing Thioether−Pyrazole Hemilabile Ligands − Structural Analysis by 
1h and 13c Nmr Spectroscopy and Crystal Structures of [Pdcl2(Bddo)] and 
[Pd(Bddo)](Bf4)2 [Bddo = 1,8-Bis(3,5-Dimethyl-1-Pyrazolyl)-3,6-Dithiaoctane]. 
European Journal of Inorganic Chemistry 2002, 2002, 3319-3327. 

(30) Duarte, F. J. S.; Poli, G.; Calhorda, M. J. Mechanistic Study of the Direct Intramolecular 
Allylic Amination Reaction Catalyzed by Palladium(Ii). ACS Catalysis 2016, 6, 1772-
1784. 

(31) Higman, C. S.; Nascimento, D. L.; Ireland, B. J.; Audörsch, S.; Bailey, G. A.; McDonald, 
R.; Fogg, D. E. Chelate-Assisted Ring-Closing Metathesis: A Strategy for Accelerating 
Macrocyclization at Ambient Temperatures. Journal of the American Chemical Society 
2018, 140, 1604-1607. 

(32) Durand, D. J.; Fey, N. Computational Ligand Descriptors for Catalyst Design. Chemical 
Reviews 2019, 119, 6561-6594. 

(33) Gensch, T.; dos Passos Gomes, G.; Friederich, P.; Peters, E.; Gaudin, T.; Pollice, R.; 
Jorner, K.; Nigam, A.; Lindner-D’Addario, M.; Sigman, M. S.; Aspuru-Guzik, A. A 
Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. 
Journal of the American Chemical Society 2022, 144, 1205-1217. 

(34) Gallarati, S.; van Gerwen, P.; Laplaza, R.; Vela, S.; Fabrizio, A.; Corminboeuf, C. Oscar: 
An Extensive Repository of Chemically and Functionally Diverse Organocatalysts. 
Chemical Science 2022, 13, 13782-13794. 

(35) Karl, T. M.; Bouayad-Gervais, S.; Hueffel, J. A.; Sperger, T.; Wellig, S.; Kaldas, S. J.; 
Dabranskaya, U.; Ward, J. S.; Rissanen, K.; Tizzard, G. J.; Schoenebeck, F. Machine 
Learning-Guided Development of Trialkylphosphine Ni(I) Dimers and Applications in 
Site-Selective Catalysis. Journal of the American Chemical Society 2023, 145, 15414-
15424. 



27 

 

(36) Balcells, D.; Skjelstad, B. B. Tmqm Dataset—Quantum Geometries and Properties of 
86k Transition Metal Complexes. Journal of Chemical Information and Modeling 2020, 
60, 6135-6146. 

(37) Sinha, V.; Laan, J. J.; Pidko, E. A. Accurate and Rapid Prediction of Pka of Transition 
Metal Complexes: Semiempirical Quantum Chemistry with a Data-Augmented 
Approach. Physical Chemistry Chemical Physics 2021, 23, 2557-2567. 

(38) Arunachalam, N.; Gugler, S.; Taylor, M. G.; Duan, C.; Nandy, A.; Janet, J. P.; Meyer, R.; 
Oldenstaedt, J.; Chu, D. B. K.; Kulik, H. J. Ligand Additivity Relationships Enable 
Efficient Exploration of Transition Metal Chemical Space. The Journal of Chemical 
Physics 2022, 157, 184112. 

(39) Nandy, A.; Taylor, M. G.; Kulik, H. J. Identifying Underexplored and Untapped Regions 
in the Chemical Space of Transition Metal Complexes. The Journal of Physical 
Chemistry Letters 2023, 14, 5798-5804. 

(40) Taylor, M. G.; Yang, T.; Lin, S.; Nandy, A.; Janet, J. P.; Duan, C.; Kulik, H. J. Seeing Is 
Believing: Experimental Spin States from Machine Learning Model Structure 
Predictions. The Journal of Physical Chemistry A 2020, 124, 3286-3299. 

(41) Brookhart, M.; Green, M. L. H.; Parkin, G. Agostic Interactions in Transition Metal 
Compounds. Proceedings of the National Academy of Sciences 2007, 104, 6908-6914. 

(42) Seeger, M. “Learning with Labeled and Unlabeled Data,” 2000. 
(43) Chen, T.; Guestrin, C. In Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining; Association for Computing 
Machinery: San Francisco, California, USA, 2016, DOI:10.1145/2939672.2939785 
10.1145/2939672.2939785. 

(44) Janet, J. P.; Kulik, H. J. Resolving Transition Metal Chemical Space: Feature Selection 
for Machine Learning and Structure-Property Relationships. The Journal of Physical 
Chemistry A 2017, 121, 8939-8954. 

(45) Nandy, A.; Duan, C.; Janet, J. P.; Gugler, S.; Kulik, H. J. Strategies and Software for 
Machine Learning Accelerated Discovery in Transition Metal Chemistry. Ind. Eng. 
Chem. Res. 2018, 57, 13973-13986. 

(46) Janet, J. P.; Chan, L.; Kulik, H. J. Accelerating Chemical Discovery with Machine 
Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural 
Network. J. Phys. Chem. Lett. 2018, 9, 1064-1071. 

(47) Janet, J. P.; Gani, T. Z. H.; Steeves, A. H.; Ioannidis, E. I.; Kulik, H. J. Leveraging 
Cheminformatics Strategies for Inorganic Discovery: Application to Redox Potential 
Design. Ind. Eng. Chem. Res. 2017, 56, 4898-4910. 

(48) Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.; Cavallo, L.; Nolan, S. P. A 
Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic 
Carbenes (Nhc) to the Cp*Rucl (Cp* = Η5-C5me5) Moiety:  Insight into Stereoelectronic 
Differences between Unsaturated and Saturated Nhc Ligands. Organometallics 2003, 22, 
4322-4326. 

(49) Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M. The Double Cubic Lattice 
Method: Efficient Approaches to Numerical Integration of Surface Area and Volume and 
to Dot Surface Contouring of Molecular Assemblies. Journal of Computational 
Chemistry 1995, 16, 273-284. 



28 

 

(50) Curley, J. B.; Townsend, T. M.; Bernskoetter, W. H.; Hazari, N.; Mercado, B. Q. Iron, 
Cobalt, and Nickel Complexes Supported by a Iprpnphp Pincer Ligand. Organometallics 
2022, 41, 301-312. 

(51) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural 
Database. Acta Crystallogr B 2016, 72, 171-179. 

(52) Duan, C.; Ladera, A. J.; Liu, J. C. L.; Taylor, M. G.; Ariyarathna, I. R.; Kulik, H. J. 
Exploiting Ligand Additivity for Transferable Machine Learning of Multireference 
Character across Known Transition Metal Complex Ligands. Journal of Chemical Theory 
and Computation 2022, 18, 4836-4845. 

(53) Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter 
Optimization in Hundreds of Dimensions for Vision Architectures. Proceedings of 
Machine Learning Research 2013, 28, 115-123. 

(54) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, 
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. 
Journal of machine learning research 2011, 12, 2825-2830. 

(55) Petachem. Http://Www.Petachem.Com/. (Accessed April 17, 2023). 
(56) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 3. 

Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular 
Dynamics. Journal of Chemical Theory and Computation 2009, 5, 2619-2628. 

(57) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy 
Formula into a Functional of the Electron Density. Physical Review B 1988, 37, 785-789. 

(58) Becke, A. D. Density-Functional Thermochemistry. Iii. The Role of Exact Exchange. 
Journal of Chemical Physics 1993, 98, 5648-5652. 

(59) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of 
Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force 
Fields. The Journal of Physical Chemistry 1994, 98, 11623-11627. 

(60) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio 
Parametrization of Density Functional Dispersion Correction (Dft-D) for the 94 Elements 
H-Pu. The Journal of chemical physics 2010, 132, 154104. 

(61) Becke, A. D.; Johnson, E. R. A Density-Functional Model of the Dispersion Interaction. 
The Journal of Chemical Physics 2005, 123, 154101. 

(62) Johnson, E. R.; Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interactions. 
The Journal of Chemical Physics 2005, 123, 024101. 

(63) Johnson, E. R.; Becke, A. D. A Post-Hartree-Fock Model of Intermolecular Interactions: 
Inclusion of Higher-Order Corrections. The Journal of Chemical Physics 2006, 124, 
174104. 

(64) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. 
Potentials for the Transition Metal Atoms Sc to Hg. The Journal of Chemical Physics 
1985, 82, 270-283. 

(65) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. Uff, a 
Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics 
Simulations. Journal of the American Chemical Society 1992, 114, 10024-10035. 

(66) Wang, L.-P.; Song, C. Geometry Optimization Made Simple with Translation and 
Rotation Coordinates. The Journal of Chemical Physics 2016, 144, 214108. 

 


