

Commentary

Shall we talk? New details in crosstalk between copper and iron homeostasis uncovered in *Arabidopsis thaliana*

Micronutrients copper (Cu) and iron (Fe) are essential for the growth and development of all organisms. These elements have similar physiochemical properties; thus, it is not surprising that their metabolism is intertwined. Crosstalk between Cu and Fe homeostasis has been documented in many organisms, including plants, but the molecular mechanisms of the homeostatic effect of one element on the other are not well understood. The essentiality of the tight regulation of Cu/Fe crosstalk stems from the fact that while both elements are nutritious in small amounts, they become toxic when they overaccumulate in cells. To account for this, Cu and Fe uptake, and the ratio of Cu: Fe in plant tissues, is tightly controlled in response to local Cu and Fe availability in the rhizosphere and the physiological demands of the developing shoots. In an article published in this issue of New Phytologist, Cai et al. (2024, 1206-1217) identified a novel aspect of Cu/Fe interplay in model plant Arabidopsis thaliana by studying the regulation of Cu homeostasis. Findings by Cai et al. bring us a step closer to untangling the complexity of Cu/Fe crosstalk used by plants to ensure balanced Cu and Fe nutrition.

'Understanding the basic principles that plants use to finetune their Cu and Fe demands to these elements' uptake, transport and utilization will help in devising targeted biofortification strategies and improving crop yield on Cu- and Fe-deficient soils.'

Plants are self-sufficient autotrophs that, in addition to converting solar energy to the synthesis of organic compounds during photosynthesis, mine the rhizosphere for inorganic compounds such as essential micronutrients Cu and Fe, assimilating, and utilizing them to sustain growth and development. Similar physiochemical properties of Cu and Fe, such as their ability to accept and donate electrons, are key to these elements' essentiality in important biological processes, including photosynthesis and

respiration, but this property also acts as a double-edged sword as excess Cu and Fe can cause oxidative stress (Broadley et al., 2012; Ravet & Pilon, 2013). Plants can experience Cu and Fe deficiency in alkaline and organic soils that occupy > 30% of the world's arable land. By contrast, 50% of the world's soils are acidic and can cause Fe toxicity (Broadley et al., 2012; Ravet & Pilon, 2013). Cu, on the other hand, is a common additive in pesticides and insecticides, so uncontrolled use of these substances could cause a buildup of toxic Cu levels in soils. To control internal Cu and Fe concentrations in response to the availability of these elements in the rhizosphere and the physiological demands, plants developed sophisticated transcriptional and posttranscriptional mechanisms to regulate Cu and Fe uptake, internal transport, sequestration, and release from internal stores (reviewed in Riaz & Guerinot, 2021; Rahmati Ishka et al., 2022). Transcriptional regulation of Cu uptake rely on two transcription factors (TFs), SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7), a homolog of the algal Cu sensor, COPPER RESPONSE REGULATOR1 (CRR1) and COPPER DEFICIENCY-INDUCED TRAN-SCRIPTION FACTOR1 (CITF1) (Kropat et al., 2005; Yamasaki et al., 2009; Rahmati Ishka et al., 2022; Fig. 1). SPL7, in part, controls the expression of CITF1, and both regulate the expression of Cu deficiency-responsive genes (Yan et al., 2017; Schulten et al., 2022). The increased expression of SPL7- and CITF1regulated genes, including a high-affinity Cu(I) transporter gene, COPT2, and FERRIC REDUCTASE OXIDASES 4 and 5 (FRO4 and FRO5) that reduce Cu(II) to Cu(I) along with the increased expression of CITF1, constitute a signature of the Cu deficiency response in A. thaliana (Fig. 1). Posttranscriptional regulation of Cu deficiency was reported in other species (van den Berghe & Klomp, 2010) but not yet in plants. In addition to local regulation of Cu uptake, orchestrated by SPL7, a phloem companion celllocalized, plasma membrane Cu/Fe transporter, OLIGOPEP-TIDE TRANSPORTER3 (OPT3) participates in systemic shootto-root Cu status signaling and crosstalk with systemic shoot-toroot Fe signaling (Araki et al., 2018; Chia et al., 2023).

Transcriptional and posttranscriptional regulation of Fe homeostasis in *A. thaliana* and other nongrass species involves members of the IVb, IVc, and Ib subgroups and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) of the basic loop—helix (bHLH) TF family (Riaz & Guerinot, 2021; Fig. 1). This TF network regulates the expression of genes encoding the Fe uptake system, including the H⁺-ATPase 2 (AHA2), FERRIC REDUCTASE OXIDASE2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) (Fig. 1). The upregulated expression of *AHA2*, *FRO2* and *IRT1* in *A. thaliana* and their orthologous in nongrass species is a hallmark of Fe deficiency response in the root (Riaz & Guerinot, 2021). Posttranscriptional regulation of Fe deficiency responses includes phosphorylation events of UPSTREAM REGULATOR OF IRT1

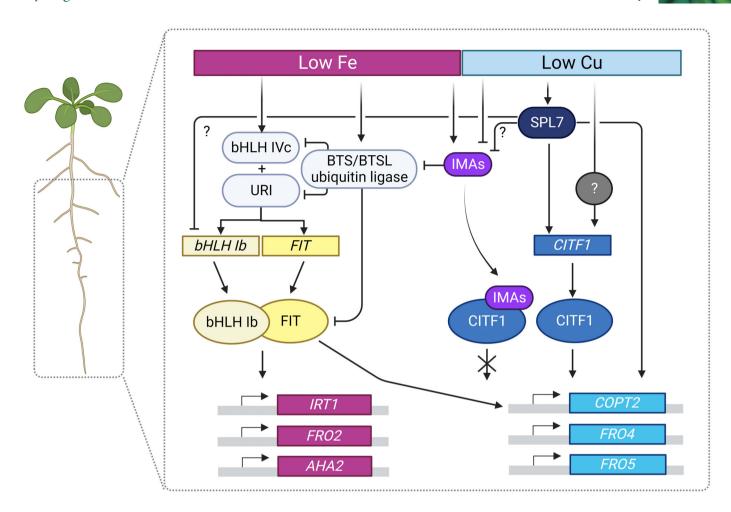


Fig. 1 IRON MAN/FE UPTAKE-INDUCING PEPTIDES (IMA/FEP) play antagonistic roles in Fe and Cu deficiency response. When Fe availability in the rhizosphere is low, the IVc subgroup transcription factors (TFs) from the basic loop—helix (bHLH) family interact with UPSTREAM REGULATOR OF IRT1 (URI), a IVb subgroup bHLH TF, and initiate Fe deficiency responses, including the transcriptional activation of Ib subgroup bHLH TFs and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). This leads to the activation of genes encoding Fe(II) uptake system that includes IRON-REGULATED TRANSPORTER 1 (IRT1), H⁺-ATPase 2 (AHA2), FERRIC REDUCTASE OXIDASE 2 (FRO2). These events lead Fe uptake into roots (reviewed in Riaz & Guerinot, 2021). BRUTUS (BTS) and BTS-LIKE (BTSL) ubiquitin E3 ligases act as negative regulators of Fe deficiency response by facilitating proteasome degradation of IVc subgroup bHLH TFs, URI, and FIT (Riaz & Guerinot, 2021). When Cu deficiency occurs, a master regulator of Cu homeostasis SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) activates the expression of COPPER DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1) and genes encoding a Cu transporter COPT2, and cupric reductases FRO4 and FRO5 (reviewed in Rahmati Ishka et al., 2022). CITF1 also regulates the expression of COPT2, FRO4, and FRO5 directly (Rahmati Ishka et al., 2022). In addition, SPL7 acts as a key regulatory hub of Cu and Fe homeostasis by directly or indirectly repressing IRON MAN/FE UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptides and Ib bHLH TFs expression under Cu deficiency (Kastoori Ramamurthy et al., 2018). In the posttranslational regulation of Fe and Cu deficiency response, IMA/FEP peptides play important, yet antagonistic roles. IMA/FEP peptides positively regulate Fe deficiency response by physically interacting with BTS/BTSL and inhibiting proteasome degradation of bHLH TFs (Li et al., 2021; Riaz & Guerinot, 2021). By contrast, Cai et al. (2024; pp. 1206–1217, in this issue of New Phytologist) have shown that IMA/FEP peptides nega

(URI) that is a member of IVb subgroup bHLH family; URI initiates bHLH-mediated transcriptional cascades leading to the upregulation of *AHA2*, *FRO2* and *IRT1* and other Fe deficiency-regulated genes (Riaz & Guerinot, 2021). Proteasomal degradation of URI, IVc subgroup bHLH TFs and FIT by the BRUTUS (BTS) and BTS-LIKE (BTSL) ubiquitin E3 ligases (BTS/BTSL) fine-tunes Fe deficiency responses to ensure that an adequate (nontoxic) amount of Fe is absorbed by plant roots (Fig. 1). Long-distance, shoot-to-root, systemic Fe deficiency signaling involves OPT3 that loads Fe into the phloem companion cells in leaves and recirculates it via the phloem to sink tissues including roots, thereby conveying

Fe status of the shoot to the root; OPT3 is also involved in Fe delivery to seeds (Stacey et al., 2008; Mendoza-Cózatl et al., 2014; Zhai et al., 2014). As noted above OPT3 also transports Cu and participates in crosstalk between Cu and Fe in shoot-to-root signaling (Chia et al., 2023). The recently discovered IRON MAN/FE UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptides are also implicated in shoot-to-root communication of Fe status (Grillet et al., 2018; Hirayama et al., 2018). The genome of A. thaliana encodes eight IMA/FEPs, and all are transcriptionally upregulated under Fe deficiency (Grillet et al., 2018; Hirayama et al., 2018). IMA/FEPs are positive regulators of Fe deficiency

regulators of Cu homeostasis, unlike their function in Fe deficiency (Fig. 1). Specifically, the authors showed that, as observed previously (Kastoori Ramamurthy et al., 2018), the expression of all eight IMA/FEP genes was downregulated in roots of Cudeficient A. thaliana seedlings. To evaluate the biological significance of this finding, the authors used octuple mutants (ima8x) generated by Grillet et al. (2018). Unlike the ima8x mutant seedling lethality under Fe deficiency (Grillet et al., 2018), Cai et al. found that the ima8x mutant was somewhat more tolerant to Cu deficiency as evidenced by the longer root length of ima8x vs wildtype. The increased tolerance to Cu deficiency of the *ima8x* mutant observed in Cai et al. was accompanied by significantly increased expression of the Cu uptake system, COPT2, FRO4 and FRO5. By contrast, ectopic overexpression of IMA1 or IMA3 in wild-type plants decreased the root length of seedlings grown under Culimited conditions, and these changes were accompanied by decreased levels of COPT2, FRO4 and FRO5 transcripts.

The IMA/FEP peptides negatively regulate Cu deficiency responses in A. thaliana seedlings. But how is this achieved considering that IMA/FEPs are positive regulators of Fe homeostasis? Under Fe deficiency, IMA/FEPs bind to BTS/BTSL and prevent it from degrading IVc subgroup bHLHs, and in doing so, upregulate the expression of the Fe uptake system (Li et al., 2021; Fig. 1). Perhaps, in regulating Cu deficiency responses, IMA/FEPs act on a positive regulator of Cu homeostasis and inactivate it? To test this, Cai et al. selected CITF1 as a putative IMA/FEPs interacting partner as the authors showed that the expression of CITF1 targets, COPT2, FRO4 and FRO5, but not other Cu deficiency-responsive genes that are controlled mainly by SPL7, and modulated by IMA/FEPs. Using a variety of assays, the authors showed that indeed all eight IMA/FEPs physically interact with CITF1, and these interactions prevent CITF1 from binding to the promoters of its targets and CITF1's ability to activate gene expression (Fig. 1). Finally, the authors generated A. thaliana plants lacking functional CITF1 and all eight IMA/FEPs (ima8x citf1) and found that the effect of IMA/FEPs on root growth and the expression of COPT2, FRO4 and FRO5 disappeared. Taken together, these results show that IMAs function in Cu homeostasis is dependent on CITF1.

How is the antagonistic regulation of Cu and Fe homeostasis achieved by IMA/FEPs? How does it relate to Cu/Fe crosstalk? Is this crosstalk biologically relevant? IMA/FEPs are known to bind Fe^{2+} and Cu^{2+} as well as other transition metals such as zinc (Zn^{2+}) and manganese (Mn²⁺) (Grillet et al., 2018). However, whether metal binding or IMA/FEPs mismetallation affects their function and contributes to the interplay between Cu and Fe homeostasis is unknown. In this regard, it is noteworthy that the hallmark of Cu/Fe crosstalk is the overaccumulation of Cu under Fe deficiency and the overaccumulation of Fe under Cu deficiency in A. thaliana roots and shoots (Bernal et al., 2012; Waters & Armbrust, 2013; Kastoori Ramamurthy et al., 2018; Chia et al., 2023). In addition, recent studies showed that Cu and Fe can partially substitute each

other in long-distance signaling (Chia et al., 2023). Thus, the relationship of the metal bound to IMA/FEPs to their repressive or promotive function in Cu and Fe deficiency responses, respectively, is a potential area for exploration. Given the nutritive yet potentially toxic nature of Cu and Fe, these interactions are essential for fine-tuning Cu and Fe uptake. This adaptation allows plants to respond effectively to fluctuations in the availability of Cu and Fe in the rhizosphere and aligns with plant physiological demands while avoiding toxicity. Although many unknowns in Cu/Fe interactions remain, the work presented by Cai et al. brings us a step closer to untangling molecular components of Cu/Fe interactions and stimulates future studies. Understanding the basic principles that plants use to fine-tune their Cu and Fe demands to these elements' uptake, transport and utilization will help in devising targeted biofortification strategies and improving crop vield on Cu- and Fe-deficient soils.

Acknowledgements

Research in the Vatamaniuk lab is supported by the National Science Foundation NSF-IOS-1656321 award and the Agriculture and Food Research Initiative Award 2021-67013-33798 from the USDA National Institute of Food and Agriculture. Fig. 1 was created with BioRender.com. The authors apologize to colleagues whose work was not cited due to limited space availability.

ORCID

Ju-Chen Chia https://orcid.org/0000-0002-7498-5071 Olena K. Vatamaniuk Dhttps://orcid.org/0000-0003-2713-3797

Ju-Chen Chia D and Olena K. Vatamaniuk*

Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA (*Author for correspondence: email okv2@cornell.edu)

References

Araki R, Mermod M, Yamasaki H, Kamiya T, Fujiwara T, Shikanai T. 2018. SPL7 locally regulates copper-homeostasis-related genes in Arabidopsis. Journal of Plant Physiology 224-225: 137-143.

van den Berghe PV, Klomp LW. 2010. Posttranslational regulation of copper transporters. Journal of Biological Inorganic Chemistry 15: 37-46.

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL et al. 2012. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24: 738-761.

Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Chapter 7-function of nutrients: micronutrients A2-Marschner, Petra. In: Marschner P, ed. Marschner's mineral nutrition of higher plants, 3rd edn. San Diego, CA, USA: Academic Press,

Cai Y, Ping H, Zhao J, Li C, Li Y, Liang G. 2023. IRON MAN interacts with Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1 to maintain copper homeostasis. New Phytologist 242: 1206-1217.

Chia J-C, Yan J, Rahmati Ishka M, Faulkner MM, Simons E, Huang R, Smieska L, Woll A, Tappero R, Kiss A et al. 2023. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. Plant Cell 35: 2157-2185.

New **Phytologist**

- Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. 2018. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants 4: 953-963.
- Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF. 2018. The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis. Plant & Cell Physiology 59: 1739-1752.
- Kastoori Ramamurthy R, Xiang Q, Hsieh EJ, Liu K, Zhang C, Waters BM. 2018. New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics 10: 1824-1840.
- Kropat J, Tottey S, Birkenbihl RP, Depège N, Huijser P, Merchant S. 2005. A regulator of nutritional copper signaling in is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences, USA 102: 18730-18735.
- Li Y, Lu CK, Li CY, Lei RH, Pu MN, Zhao JH, Peng F, Ping HQ, Wang D, Liang G. 2021. IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 118: e2109063118.
- Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G et al. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Molecular Plant 7: 1455-1469.
- Rahmati Ishka M, Chia J-C, Vatamaniuk OK. 2022. Chapter 12 advances in understanding of copper function and transport in plants. In: Upadhyay SK, ed. Cation transporters in plants. London, UK: Academic Press, 205-226.

- Ravet K, Pilon M. 2013. Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxidants & Redox Signaling 19: 23-932.
- Riaz N, Guerinot ML. 2021. All together now: regulation of the iron deficiency response. Journal of Experimental Botany 72: 2045-2055.
- Schulten A, Pietzenuk B, Quintana J, Scholle M, Feil R, Krause M, Romera-Branchat M, Wahl V, Severing E, Coupland G et al. 2022. Energy statuspromoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7. Plant Cell 34: 3873-3898.
- Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. 2008. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology 146: 589-601.
- Waters BM, Armbrust LC. 2013. Optimal copper supply is required for normal plant iron deficiency responses. Plant Signaling & Behavior 8: e26611.
- Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. 2009. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21: 347-361.
- Yan J, Chia J-C, Sheng H, Jung H-i, Zavodna T-O, Zhang L, Huang R, Jiao C, Craft EJ, Fei Z et al. 2017. Arabidopsis pollen fertility requires the transcription factors CITF1 and SPL7 that regulate copper delivery to anthers and jasmonic acid synthesis. Plant Cell 29: 3012-3029.
- Zhai Z, Gayomba SR, Jung H-I, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T et al. 2014. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell 26: 2249-2264.

Key words: Arabidopsis, CITF1, copper, IMA/FEP, iron, SPL7.

nditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License