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Shall we talk? New details in
crosstalk between copper and
iron homeostasis uncovered in
Arabidopsis thaliana

Micronutrients copper (Cu) and iron (Fe) are essential for the
growth and development of all organisms. These elements have
similar physiochemical properties; thus, it is not surprising that
their metabolism is intertwined. Crosstalk between Cu and Fe
homeostasis has been documented in many organisms, including
plants, but the molecular mechanisms of the homeostatic effect
of one element on the other are not well understood. The
essentiality of the tight regulation of Cu/Fe crosstalk stems from
the fact that while both elements are nutritious in small
amounts, they become toxic when they overaccumulate in cells.
To account for this, Cu and Fe uptake, and the ratio of Cu : Fe
in plant tissues, is tightly controlled in response to local Cu and
Fe availability in the rhizosphere and the physiological demands
of the developing shoots. In an article published in this issue of
New Phytologist, Cai et al. (2024, 1206–1217) identified a novel
aspect of Cu/Fe interplay in model plant Arabidopsis thaliana by
studying the regulation of Cu homeostasis. Findings by Cai
et al. bring us a step closer to untangling the complexity of
Cu/Fe crosstalk used by plants to ensure balanced Cu and Fe
nutrition.

‘Understanding the basic principles that plants use to fine-

tune their Cu and Fe demands to these elements’ uptake,

transport and utilization will help in devising targeted

biofortification strategies and improving crop yield on

Cu- and Fe-deficient soils.’

Plants are self-sufficient autotrophs that, in addition to
converting solar energy to the synthesis of organic compounds
during photosynthesis, mine the rhizosphere for inorganic
compounds such as essential micronutrients Cu and Fe, assimilat-
ing, and utilizing them to sustain growth and development. Similar
physiochemical properties of Cu and Fe, such as their ability to
accept and donate electrons, are key to these elements’ essentiality
in important biological processes, including photosynthesis and

respiration, but this property also acts as a double-edged sword as
excess Cu and Fe can cause oxidative stress (Broadley et al., 2012;
Ravet & Pilon, 2013). Plants can experience Cu and Fe deficiency
in alkaline and organic soils that occupy > 30% of the world’s
arable land. By contrast, 50% of the world’s soils are acidic and can
cause Fe toxicity (Broadley et al., 2012; Ravet & Pilon, 2013). Cu,
on the other hand, is a common additive in pesticides and
insecticides, so uncontrolled use of these substances could cause a
buildup of toxic Cu levels in soils. To control internal Cu and Fe
concentrations in response to the availability of these elements in
the rhizosphere and the physiological demands, plants developed
sophisticated transcriptional and posttranscriptional mechanisms
to regulate Cu and Fe uptake, internal transport, sequestration, and
release from internal stores (reviewed in Riaz & Guerinot, 2021;
Rahmati Ishka et al., 2022). Transcriptional regulation of Cu
uptake rely on two transcription factors (TFs), SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE7 (SPL7), a homolog
of the algal Cu sensor, COPPER RESPONSE REGULATOR1
(CRR1) and COPPER DEFICIENCY-INDUCED TRAN-
SCRIPTION FACTOR1 (CITF1) (Kropat et al., 2005; Yamasaki
et al., 2009; Rahmati Ishka et al., 2022; Fig. 1). SPL7, in part,
controls the expression of CITF1, and both regulate the expression
of Cu deficiency-responsive genes (Yan et al., 2017; Schulten
et al., 2022). The increased expression of SPL7- and CITF1-
regulated genes, including a high-affinity Cu(I) transporter gene,
COPT2, and FERRIC REDUCTASE OXIDASES 4 and 5 (FRO4
and FRO5) that reduce Cu(II) to Cu(I) along with the increased
expression of CITF1, constitute a signature of the Cu deficiency
response in A. thaliana (Fig. 1). Posttranscriptional regulation of
Cu deficiency was reported in other species (van den Berghe &
Klomp, 2010) but not yet in plants. In addition to local regulation
of Cu uptake, orchestrated by SPL7, a phloem companion cell-
localized, plasma membrane Cu/Fe transporter, OLIGOPEP-
TIDE TRANSPORTER3 (OPT3) participates in systemic shoot-
to-root Cu status signaling and crosstalk with systemic shoot-to-
root Fe signaling (Araki et al., 2018; Chia et al., 2023).

Transcriptional and posttranscriptional regulation of Fe home-
ostasis in A. thaliana and other nongrass species involves members
of the IVb, IVc, and Ib subgroups and FER-LIKE IRON
DEFICIENCY-INDUCED TRANSCRIPTION FACTOR
(FIT) of the basic loop–helix (bHLH) TF family (Riaz &
Guerinot, 2021; Fig. 1). This TF network regulates the expression
of genes encoding the Fe uptake system, including the H+-ATPase
2 (AHA2), FERRIC REDUCTASE OXIDASE2 (FRO2) and
IRON-REGULATED TRANSPORTER 1 (IRT1) (Fig. 1). The
upregulated expression of AHA2, FRO2 and IRT1 in A. thaliana
and their orthologous in nongrass species is a hallmark of Fe
deficiency response in the root (Riaz & Guerinot, 2021).
Posttranscriptional regulation of Fe deficiency responses includes
phosphorylation events of UPSTREAMREGULATOROF IRT1This article is a Commentary on Cai et al. (2024), 242: 1206–1217.
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(URI) that is a member of IVb subgroup bHLH family; URI
initiates bHLH-mediated transcriptional cascades leading to the
upregulation of AHA2, FRO2 and IRT1 and other Fe deficiency-
regulated genes (Riaz&Guerinot, 2021). Proteasomal degradation
of URI, IVc subgroup bHLHTFs and FIT by the BRUTUS (BTS)
and BTS-LIKE (BTSL) ubiquitin E3 ligases (BTS/BTSL) fine-
tunes Fe deficiency responses to ensure that an adequate (nontoxic)
amount of Fe is absorbed by plant roots (Fig. 1). Long-distance,
shoot-to-root, systemic Fe deficiency signaling involves OPT3 that
loads Fe into the phloem companion cells in leaves and recirculates
it via the phloem to sink tissues including roots, thereby conveying

Fe status of the shoot to the root; OPT3 is also involved in Fe
delivery to seeds (Stacey et al., 2008; Mendoza-C�ozatl et al., 2014;
Zhai et al., 2014). As noted above OPT3 also transports Cu and
participates in crosstalk between Cu and Fe in shoot-to-root
signaling (Chia et al., 2023). The recently discovered IRON
MAN/FE UPTAKE-INDUCING PEPTIDE (IMA/FEP) pep-
tides are also implicated in shoot-to-root communication of Fe
status (Grillet et al., 2018; Hirayama et al., 2018). The genome of
A. thaliana encodes eight IMA/FEPs, and all are transcriptionally
upregulated under Fe deficiency (Grillet et al., 2018; Hirayama
et al., 2018). IMA/FEPs are positive regulators of Fe deficiency

Fig. 1 IRONMAN/FE UPTAKE-INDUCING PEPTIDES (IMA/FEP) play antagonistic roles in Fe and Cu deficiency response. When Fe availability in the
rhizosphere is low, the IVc subgroup transcription factors (TFs) fromthebasic loop–helix (bHLH) family interactwithUPSTREAMREGULATOROF IRT1 (URI), a
IVb subgroupbHLHTF, and initiate Fedeficiency responses, including the transcriptional activationof Ib subgroupbHLHTFs andFER-LIKE IRONDEFICIENCY-

INDUCED TRANSCRIPTION FACTOR (FIT ). This leads to the activation of genes encoding Fe(II) uptake system that includes IRON-REGULATED
TRANSPORTER 1 (IRT1), H+-ATPase 2 (AHA2), FERRIC REDUCTASE OXIDASE 2 (FRO2). These events lead Fe uptake into roots (reviewed in Riaz &
Guerinot, 2021). BRUTUS (BTS) and BTS-LIKE (BTSL) ubiquitin E3 ligases act as negative regulators of Fe deficiency response by facilitating proteasome
degradation of IVc subgroup bHLHTFs, URI, and FIT (Riaz &Guerinot, 2021).WhenCu deficiency occurs, amaster regulator of Cu homeostasis SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) activates the expression ofCOPPERDEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1) and genes
encoding a Cu transporter COPT2, and cupric reductases FRO4 and FRO5 (reviewed in Rahmati Ishka et al., 2022). CITF1 also regulates the expression of
COPT2, FRO4, and FRO5 directly (Rahmati Ishka et al., 2022). In addition, SPL7 acts as a key regulatory hub of Cu and Fe homeostasis by directly or indirectly
repressing IRONMAN/FE UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptides and Ib bHLH TFs expression under Cu deficiency (Kastoori Ramamurthy
et al., 2018). In the posttranslational regulation of Fe and Cu deficiency response, IMA/FEP peptides play important, yet antagonistic roles. IMA/FEP peptides
positively regulate Fe deficiency response by physically interacting with BTS/BTSL and inhibiting proteasome degradation of bHLH TFs (Li et al., 2021; Riaz &
Guerinot, 2021). By contrast, Cai et al. (2024; pp. 1206–1217, in this issue of New Phytologist) have shown that IMA/FEP peptides negatively regulate Cu
deficiency response by interacting with CITF1 and preventing CITF1 from activating COPT2, FRO4 and FRO5 expression.
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signaling: they compete for binding to BTS/BTSL with IVc
subgroup bHLHs, thus relieving these TFs degradation and
contributing to the upregulation of AHA2/FRO2/IRT1 expression
(Grillet et al., 2018; Hirayama et al., 2018; Li et al., 2021; Fig. 1).

Cai et al. show that A. thaliana IMA/FEPs, act as negative
regulators of Cu homeostasis, unlike their function in Fe deficiency
(Fig. 1). Specifically, the authors showed that, as observed
previously (Kastoori Ramamurthy et al., 2018), the expression of
all eight IMA/FEP genes was downregulated in roots of Cu-
deficient A. thaliana seedlings. To evaluate the biological
significance of this finding, the authors used octuple mutants
(ima8x) generated byGrillet et al. (2018).Unlike the ima8xmutant
seedling lethality under Fe deficiency (Grillet et al., 2018), Cai et al.
found that the ima8x mutant was somewhat more tolerant to Cu
deficiency as evidenced by the longer root length of ima8x vs wild-
type. The increased tolerance to Cu deficiency of the ima8xmutant
observed in Cai et al. was accompanied by significantly increased
expression of the Cu uptake system, COPT2, FRO4 and FRO5. By
contrast, ectopic overexpression of IMA1 or IMA3 in wild-type
plants decreased the root length of seedlings grown under Cu-
limited conditions, and these changes were accompanied by
decreased levels of COPT2, FRO4 and FRO5 transcripts.

The IMA/FEP peptides negatively regulate Cu deficiency
responses in A. thaliana seedlings. But how is this achieved
considering that IMA/FEPs are positive regulators of Fe homeostasis?
Under Fe deficiency, IMA/FEPs bind to BTS/BTSL and prevent it
from degrading IVc subgroup bHLHs, and in doing so, upregulate
the expression of the Fe uptake system (Li et al., 2021; Fig. 1).
Perhaps, in regulating Cu deficiency responses, IMA/FEPs act on a
positive regulator of Cu homeostasis and inactivate it? To test this,
Cai et al. selected CITF1 as a putative IMA/FEPs interacting partner
as the authors showed that the expression of CITF1 targets,COPT2,
FRO4 and FRO5, but not other Cu deficiency-responsive genes that
are controlledmainly by SPL7, andmodulated by IMA/FEPs.Using
a variety of assays, the authors showed that indeed all eight IMA/FEPs
physically interact with CITF1, and these interactions prevent
CITF1 from binding to the promoters of its targets and CITF1’s
ability to activate gene expression (Fig. 1). Finally, the authors
generated A. thaliana plants lacking functional CITF1 and all eight
IMA/FEPs (ima8x citf1) and found that the effect of IMA/FEPs on
root growth and the expression of COPT2, FRO4 and FRO5
disappeared. Taken together, these results show that IMAs function
in Cu homeostasis is dependent on CITF1.

How is the antagonistic regulation of Cu and Fe homeostasis
achieved by IMA/FEPs? How does it relate to Cu/Fe crosstalk? Is
this crosstalk biologically relevant? IMA/FEPs are known to bind
Fe2+ and Cu2+ as well as other transitionmetals such as zinc (Zn2+)
and manganese (Mn2+) (Grillet et al., 2018). However, whether
metal binding or IMA/FEPs mismetallation affects their function
and contributes to the interplay between Cu and Fe homeostasis is
unknown. In this regard, it is noteworthy that the hallmark of
Cu/Fe crosstalk is the overaccumulation of Cu under Fe deficiency
and the overaccumulation of Fe under Cu deficiency in A. thaliana
roots and shoots (Bernal et al., 2012; Waters & Armbrust, 2013;
Kastoori Ramamurthy et al., 2018; Chia et al., 2023). In addition,
recent studies showed that Cu and Fe can partially substitute each

other in long-distance signaling (Chia et al., 2023). Thus, the
relationship of the metal bound to IMA/FEPs to their repressive or
promotive function inCu andFe deficiency responses, respectively,
is a potential area for exploration. Given the nutritive yet
potentially toxic nature of Cu and Fe, these interactions are
essential for fine-tuning Cu and Fe uptake. This adaptation allows
plants to respond effectively to fluctuations in the availability of Cu
and Fe in the rhizosphere and aligns with plant physiological
demands while avoiding toxicity. Although many unknowns in
Cu/Fe interactions remain, the work presented by Cai et al. brings
us a step closer to untangling molecular components of Cu/Fe
interactions and stimulates future studies. Understanding the basic
principles that plants use to fine-tune their Cu and Fe demands to
these elements’ uptake, transport and utilization will help in
devising targeted biofortification strategies and improving crop
yield on Cu- and Fe-deficient soils.
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