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Abstract

Transition state (TS) search is key in chemistry for elucidating reaction mechanisms and exploring
reaction networks. The search for accurate 3D TS structures, however, requires numerous com-
putationally intensive quantum chemistry calculations due to the complexity of potential energy
surfaces. Here, we developed an object-aware SE(3) equivariant diffusion model that satisfies all
physical symmetries and constraints for generating sets of structures – reactant, TS, and product –
in an elementary reaction. Provided reactant and product, this model generates a TS structure in
seconds instead of hours required when performing quantum chemistry-based optimizations. The
generated TS structures achieve a median of 0.08 Å root mean square deviation compared to the
true TS. With a confidence scoring model for uncertainty quantification, we approach an accuracy
required for reaction rate estimation (2.6 kcal/mol) by only performing quantum chemistry-based
optimizations on 14% of the most challenging reactions. We envision the proposed approach useful
in constructing large reaction networks with unknown mechanisms.

Introduction

Breaking down complex chemical reactions into their constituent elementary reactions is key for understanding

reaction mechanisms and designing processes that favor target reaction pathways.1–3 Due to the transient nature

of the intermediate and transition state (TS) involved in these elementary reactions, it is difficult to isolate and

characterize these structures experimentally. Instead, high throughput quantum chemistry computation, e.g., with

density functional theory (DFT),4 provides valuable insights on potential reaction mechanisms by constructing

comprehensive reaction networks.2, 5 These networks are established by either iteratively enumerating potential

elementary reactions on-the-fly given existing species6, 7 or propagating biased ab initio molecular dynamics followed

by elementary reaction refinement.8–10 Both approaches, however, require a tremendous number of quantum chemistry

calculations due to the large number of species potentially involved in a chemical reaction.11–13

Among all DFT energy evaluations, the overwhelming majority comes from locating an accurate TS structure

solely based on reactant and product information.2, 3 Nonetheless, obtaining these TS structures is vital for estimating

reaction rates and determining dominant reaction pathways in a reaction network. Conventional TS search algorithms

(e.g., nudged elastic band14) are computationally intensive and notorious for their difficulty in convergence,15 yielding
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low success rates and wasting significant computational resources.16 Recently, there has been growing interest in

exploring the use of machine learning techniques for TS search. This includes ideas that formulate TS search as

a 2D graph-to-structure conversion problem,17 a "shooting game" solved by reinforcement learning,18 generative

tasks addressed alternately by graph neural networks (GNN),19 a generative-adversarial network20 and a combination

of gated recurrent neural network and transformer,21 and using an ML potential as a surrogate for DFT during TS

optimizations.22 However, these approaches do not respect all the physical symmetries in describing an elementary

reaction and require further reconstruction and optimization to obtain the final 3D TS structure. In addition, they

are still far from reaching the high precision required (i.e., 3 kcal/mol, corresponding to a change of one order of

magnitude in reaction rate at 300 °C) for estimating a TS barrier height in lieu of DFT evaluation.3

Diffusion models23–25 have recently been adapted in physical science problems, such as generating organic

molecules26 and their conformations, protein-ligand docking,27 and structural-based drug design.28 There, an SE(3)

equivariant GNN is used as the scoring function to preserve the required permutation, transition, and rotation symmetry

for a 3D object (e.g., molecule or protein) in the Euclidean space, which works ideally for systems that contain only

one single object.29–31 However, there are many scenarios in chemistry and materials science where the desired system

consists of multiple objects, for which the relative positioning does not influence the system itself. This includes the

design of compounds with multiple building blocks (e.g., metal organic frameworks32), pairs of molecules that have

similar chemistry but demonstrate distinct properties (e.g., the well-known activity cliff in protein binding33), and

chemical processes that involve multiple distinct structures such as in chemical reactions.2 Existing diffusion models

with SE(3) equivariant GNNs are problematic for modeling these systems as they do not respect all symmetries and

constraints for describing these systems.

In this work, we developed a general procedure to adapt an SE(3) equivariant neural network to preserve all

desired symmetries and constraints on systems that consist of multiple objects. We demonstrated this "object-aware"

SE(3) GNN for generating sets of 3D molecules in elementary reactions under the diffusion model framework, which

we refer to as OA-ReactDiff. In particular, we focused on TS search, an essential but computationally demanding

step for estimating reaction barrier heights, rates, and exploring reaction networks. With OA-ReactDiff, the predicted

TS structures are highly similar to the true TS structures with an average root mean square deviation (RMSD) of

0.18 Å within 6 seconds on a single GPU. We further built a recommender based on confidence ranking to select

among samples generated by OA-ReactDiff, which reduced the average RMSD to 0.13 Å. Using the self-confidence

score of OA-ReactDiff for uncertainty quantification, we obtain an MAE 2.6 kcal/mol on barrier height by only

performing 14% of the DFT-based optimizations for the most challenging systems for the model, approaching the

accuracy required (i.e., 3 kcal/mol) for exploring reaction networks with unknown mechanisms.3 The excellent
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Fig. 1 | Overview of equivariant diffusion models for generative molecular system sampling. a. Equivariant
diffusion model (EDM) for single molecule generation. In the diffusion process (gray arrows), the data distribution
of molecules at time t (zt) diffuses by a Gaussian noise (ϵt) from t = 0 to t = T until zT becomes a normal
distribution. During the generation process (green arrows), a molecule is sampled from a normal distribution at
t = T after which an SE(3) equivariant denoising network (ϵ̂SE(3)

θ ) is applied iteratively on the sample to remove
noise, finally recovering the original data distribution at t = 0. b. Object-aware elementary reaction diffusion model
(OA-ReactDiff), which generates a system as a joint distribution of multiple molecules that form a elementary reaction
with reactant (R, blue), transition state structure (TS, orange), and product (P, red). Its diffusion process resembles
that in EDM, while the sampling process requires that the denoising network respects object-level SE(3) equivariance
(bottom). For conditional generation where part of the system is known a priori, a combined scheme named inpainting,
where diffusing on known parts (e.g, R and P) and denoising on unknown parts (e.g., TS), will be used for recovering
the original conditional joint distribution (top). Atoms are colored as follows: gray for C, blue for N, red for O, and
white for H.

accuracy of generated 3D structures and reaction barrier estimate achieved by OA-ReactDiff provides the possibility

of accelerating and even circumventing expensive quantum chemistry calculations normally required for TS search.

Results

Overview of OA-ReactDiff. A diffusion model contains two processes.23–25 In the forward (i.e., diffusion) pass,

Gaussian noise is continuously added to the original data distribution, which, over time, becomes an approximately

normal distribution (Fig. 1a). In the reverse (i.e., sampling) pass, a random sample is drawn from the normal

distribution, after which a denoising neural network is iteratively applied to remove noise, recovering the original

data distribution. This denoising network is trained to predict the noise added to the original data distribution

(see Equivariant diffusion models). Since a 3D molecule or macromolecule fulfills permutational, translational,

and rotational symmetry, the denoising graph neural network (GNN) used in chemistry application requires SE(3)

equivariance (Fig. 2a). For a molecule represented by atom types (i.e., scalars) and their Cartesian coordinates (i.e.,
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vectors), as one applies an SE(3) transformation (e.g., rotation), the predicted noise on atom types should be the same

while that on coordinates should undergo the same transformation.

Despite the success of SE(3) GNN-based equivariant diffusion models (EDM) in many chemistry applications,

they inherently lack the symmetries required for systems containing multiple objects (e.g., molecules) whose

interactions are independent of their coordinates in the 3D Euclidean space. An elementary reaction, as our system of

interest, consists of three objects: reactant, TS, and product. If an SE(3) transformation (i.e., rotation) is applied on

one of these object (e.g., reactant), the description of this elementary reaction should stay invariant/equivariant.2, 6 In

addition, for a reactant or product that has multiple fragments, SE(3) transformations on individual fragments should

also have no influence on the elementary reaction. A vanilla SE(3) GNN, however, would take these object-wise SE(3)

transformations as if the entire system undergoes a non-SE(3) transformation and would yield non-equivariant results,

breaking the symmetry required to predict the noise on atom types and Cartesian coordinates in EDMs (Fig. 2a).

There, we model an elementary reaction as a joint distribution of the 3D structures of the reactant, TS, and

product (Fig. 1b). The diffusion process is essentially the same as the vanilla EDM, where independent Gaussian noise

is added to reactant, TS, and product until they become independent normal distributions. In the denoising process,

however, an object-aware SE(3) equivariant GNN is used to preserve correct physical symmetries and constraints in an

elementary reaction (Supplementary Text S1). We consider two denoising schemes. One is unconditional generation

where reactant, TS, and product are all sampled from the normal distribution, which can be used to generate new

elementary reactions from scratch (Fig. 1b). In chemistry, however, many important applications are targeted for

conditional generation, where some information of an elementary reaction of interest is known a priori. For example,

in double-ended TS search, the 3D structure of both reactant and product is known, and the task is to find the unique

corresponding TS structure. For these conditional generation tasks, we applied the inpainting scheme, which models

the joint distribution of the reactant, TS, and product where the unknown objects are inpainted during the inference

time.34 In TS search, specifically, it combines distributions from the diffused reactant an product (i.e., known parts)

and denoised TS structure (i.e, unknown parts) at each step before proceeding to the following denoising step (Fig.

1b, see Inpainting for conditional generation).

In an elementary reaction, any non-SE(3) transformation on a single object (e.g., reactant) should simultaneously

influence all three objects, while any object-based SE(3) transformation on reactant, TS, and product should not

change a reaction (Fig. 2a). While a vanilla SE(3) GNN fulfills the former requirement, it violates the latter symmetry

as it considers all atoms in a system as belonging to the same molecule (Supplementary Table S1). Here, we achieve

all required physical symmetries in elementary reactions by developing a general procedure to adapt any SE(3)

equivariant GNN as object-aware SE(3) equivariant with minimal effort (Fig. 2b and Supplementary Text S1). In

this procedure, we build an object-aware SE(3) interaction layer from a regular SE(3) update layer, a series of

4



{�풢i : [ℰi,�풱i]}

ScalarizationSE(3)

update


ℰ′ i,�풱′ i

Concatenation

ℰ̃′ i, �̃풱′ i⊕

ℰ′ i,�풱′ i

Object-aware

SE(3) update

ℰf
i ,�풱f

i

SE(3) readout

�̃풢 : [ℰ̃′ i, �̃풱′ i]

SE(3) Object-aware

SE(3) 

Original

System-wise SE(3)

 transformation

Non-SE(3)

transformation

Node vector output

a b

Object-wise SE(3)

 transformation

Scalar MP 
update


ℰ̃′ ′ i , �̃풱′ ′ i

Fig. 2 | Object-aware SE(3) equivariance and its implementation based on SE(3) equivariant graph neural
networks. a. Behavior of expected outputs for different transformations (suggested by different rows) on system
with SE(3) (left) and object-aware SE(3) equivariance (right). Results that demonstrate the same behavior after
transformation are grouped and only shown once for clarity. Node outputs that are preserved by symmetry (i.e.,
are the same as the original data) are represented by blue arrows, otherwise by red arrows. Atoms are colored as
follows: blue for N, red for O, and white for H. b. Construction of Object-aware SE(3) equivariant graph neural
networks. A system consists of multiple objects (i) are represented by a set of subgraphs Gi with edges Ei and nodes
Vi, which can be both scalars (e.g., atom types), vectors (e.g., Cartesian coordinates), or higher-order tensors. This
set of subgraphs first go through an SE(3) equivariant block for message passing and updating both their scalar and
higher-order tensor features (green). The resulting high-order tensors (E ′

i and V ′
i) of all objects are scalarized and

concatenated as a system-level fully-connected graph with only scalar representation G̃ (yellow). This graph is then
processed by a scalar message-passing (MP) block to include interactions among different objects (i) in the system
(pink). The updated nodes and edges are combined with the outputs from equivariant update block as the input for the
next object-aware SE(3) interaction block. The process repeats several times until the final object representations are
readout (gray).

non-parameterized operations (i.e, scalarization and concatenation), and a scalar-only message-passing update. In

essence, the SE(3) update only operates on individual objects, where the relative positioning is not encoded, to learn

a comprehensive representation for each molecule, while the scalar-only message passing layer learns interactions

among atoms from different molecules (see Object-aware SE(3) implementation). Similar to standard SE(3) GNNs,

this object-aware SE(3) update repeats several times until a final SE(3) readout layer to pool out the final predicted

noise on atom types and Cartesian coordinates. In this work, we choose LEFTNet,35 our recently-developed SE(3)

GNN that reaches comparable state-of-the-art performance on QM936 and MD17,37 as the vanilla SE(3) GNN for

OA-ReactDiff (see LEFTNet).

OA-ReactDiff training. We trained OA-ReactDiff on Transition1x,15 a dataset that contains climbing-image

NEB38 calculated reactant, TS structure, and product at the ωB97x/6-31G(d) level of theory39, 40 on 10,073 organic

reactions of various types originated from a quite exhaustive enumeration41, 42 of product-reactant pairs based on the

GDB743 dataset. Each reaction consists of up to seven heavy atoms including C, N, and O, with the largest system

consisting of 23 total atoms. The use of climbing-image NEB ensures a relatively accurate TS structure, making
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each elementary reaction in Transition1x a unique set of reactant, TS, and product, which guarantees the necessary

condition for training OA-ReactDiff. We trained OA-ReactDiff on 9,000 elementary reactions randomly partitioned

from Transition1x, leaving 1,073 unseen reactions as the test set. Despite the potential overlap of certain chemical

species in the training and test set, there are always at least two species (reactant and TS or TS and product) that are

distinct in any test reaction compared to all training data (see Details for model training).

In OA-ReactDiff, a molecule is represented by atom types with one-hot encoding and nuclear charges and

Cartesian coordinates of its constituent atoms. It is common to consider all components of the atom representation in

the diffusion and denoising process as none of them is considered known a priori.26, 28 In chemical reactions, however,

it is reasonable to assume that we know the atom types due to the conservation of atoms.27 Therefore, we only diffused

and denoised the Cartesian coordinates of the reactant, TS structure, and product in OA-ReactDiff (Fig. 1b). Since

OA-ReactDiff satisfies all the symmetries and constraints for describing an elementary reaction, it does not require any

pre-processing of reaction data, such as atom order matching for different species and careful alignment of reactants

and products, which sometimes can be infeasible to obtain21 (see Equivariant diffusion models and Object-aware

SE(3) implementation). Due to the use of an object-aware SE(3) GNN, OA-ReactDiff breaks the reflection symmetry

and thus can distinguish chiral molecules (see LEFTNet). OA-ReactDiff also bypasses the need for data augmentation

in the case of reversing reaction direction by enforcing the same graph embedding layer for reactant and product,

and thus guarantees the outputs are invariant to the order of reactant and product as inputs.21 Lastly, there are no

post-processing steps (e.g., reconstructing the 3D structure from a distance matrix through optimizations) required as

OA-ReactDiff directly yields the Cartesian coordinates of reactant, TS structure, and product.17 These outstanding

features make OA-ReactDiff an end-to-end model for elementary reaction generation and TS search.

Overcoming the stochastic nature of diffusion models with confidence ranking. OA-ReactDiff models the

joint distribution of a set of reactant, TS, and product, and thus can generate new elementary reactions without any

conditions, including for those which the chemical composition is unseen during the model training (Supplementary

Fig. S1). Evaluating the accuracy and building a reaction network from these generated elementary reactions, however,

require significant computational resources for running DFT optimizations and may be subject to selection bias on

which chemical compositions are included during evaluation. Therefore, we focus on evaluating OA-ReactDiff under

the scheme of conditional generation, specifically for TS search where the task is to identify the 3D TS structure

provided a pair of reactant and product.

We first consider three example reactions in Transition1x that break and form a varied number of bonds,

representing different levels of complexity (Fig. 3a). Due to the stochastic nature of diffusion models, sampled TS

structures from OA-ReactDiff will not be unique with a fixed reactant-product pair. For each of the three reactions,
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Fig. 3 | Analysis of samples generated by OA-ReactDiff on select elementary reactions. a. Illustration of select
reactions: aromatic 5-membered ring to high-valence 3-membered ring rearrangement that breaks and forms one
bond (left, b1f1), 6-membered ring to saturated 3-membered ring rearrangement (middle, b2f2), and carbonyl attack
reaction (right, b2f3). All three elementary reactions have not been seen during the model training. b. Principal
component analysis (PCA) on the 128 OA-ReactDiff generated TS structures. Each structure is colored by the rank
of confidence score and sized by its rank of RMSD compared to the true TS structure. Structures that form clusters
on the PCA space are labeled by Greek letters, following an order of α, β, γ, and δ. The cluster that has the most
confident sample is always labeled by α for each reaction. c. Distribution of RMSD between 128 OA-ReactDiff
samples and the true TS structure for each reaction. Each peak in the histogram is labeled by the cluster observed in
PCA. d. Absolute energy difference (|∆E|) between 128 OA-ReactDiff samples and the true TS structure for each
reaction grouped by the cluster observed in PCA and the corresponding representative structure for each cluster. A
log scale on |∆E| is presented for better visibility of the difference among multiple clusters. Atoms are colored as
follows: gray for C, blue for N, red for O, and white for H.

we ran the OA-ReactDiff under the inpainting scheme 128 times, generating 128 distinct samples. To evaluate the

differences among these 128 samples, we featurized them with the Coulomb matrix44 representation followed by

principal component analysis (PCA) to visualize them in a 2D space. Interestingly, the number of distinct clusters

observed in PCA increases with the increasing complexity of an elementary reaction (Fig. 3b,c), which can be

rationalized by the increasing number of degrees of freedom involved during a reaction. However, there is only one

unique TS structure connecting a pair of 3D geometries for reactant and product.

To address this challenge, we further trained an object-aware SE(3) LEFTNet as a confidence model,27, 45 which

also satisfies all the symmetries and constraints for elementary reactions. There, provided a set of input reactant, TS,
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and product, the confidence model predicts its probability of being a true elementary reaction. During its training, we

provided elementary reactions sampled by OA-ReactDiff, which are labeled as good (i.e, 1) if the RMSD between

sampled and true TS structure is < 0.2 Å and bad (i.e., 0) otherwise (see Details for model training). Once trained,

the confidence model successfully distinguishes different 3D TS structures generated by OA-ReactDiff, assigning

them a distinct probability score by the identity of clusters in the PCA (Fig. 3b). Moreover, the confidence model

always give the highest probability score to generated structures with among the lowest RMSD with respect to the

true TS structure (i.e., cluster α) for all three example reactions. Without the confidence model, random selection

from samples generated by OA-ReactDiff may yield a large (> 10 kcal/mol) energy difference for the predicted

and true TS structure, which would lead to orders of magnitude differences in predicted reaction rates (Fig. 3d).

For example, there is roughly 20% chances that we obtain a TS structure with a > 50 kcal/mol energy difference

for the 6-membered-to-3-membered ring conversion and a 25% chance for a TS structure with a > 10 kcal/mol

energy difference for the carbonyl attack reaction (Fig. 3 middle and right). Even though it is not guaranteed

that the confidence model always selects the sample with the lowest RMSD compared to the true TS structure,

the confidence model will likely avoid choosing samples that have incorrect connectivity or geometries with large

deviations, especially in reactions that have multiple bonds breaking and forming.

High quality TS structures from OA-ReactDiff. We next systematically evaluated the structural similarity between

the OA-ReactDiff and true TS structures for 1,073 set-aside unseen reactions in Transition1x, as judged by RMSD.

Notably, in contrast to an average runtime of 12 hours using climbing image NEB22 with DFT, it only takes 6 seconds

on a V100 GPU to generate a TS structure with OA-ReactDiff. Compared to bond lengths, angles, and dihedrals

that mostly compare local geometry for a subset of atoms, the RMSD should provide a more accurate assessment

on overall structural agreement, which is the ultimate goal of TS search.1, 2 For each reaction, we ran OA-ReactDiff

40 times, generating 40 independent guess TS structures. For a random selection of 40 samples, OA-ReactDiff has

already reached an average RMSD of 0.183 Å with a median being 0.076 Å for the 1073 test elementary reactions (Fig.

4a). More than half (two thirds) of the TS structures have an RMSD < 0.1 (0.2) Å compared to their corresponding

true TS structures identified by climbing image NEB.

With the confidence model, we can further improve the procedure of sample selection using a recommender

approach.46 Together with the true reactant and product, these guess TS structures are fed into the confidence model

to get their probability score. The sample with highest probability score (i.e., top-1 confidence) is chosen as the final

predicted TS structure from OA-ReactDiff. With this recommender approach, the quality of selected TS structures

is greatly improved, most likely due to the removal of TS structures with incorrect connectivity and geometries

with large deviations (Fig. 3). Moreover, the recommended structures mostly reside in the low RMSD and high

confidence region, which demonstrates the effectiveness of our combined OA-ReactDiff and confidence recommender
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Fig. 4 | Evaluation of structural similarities for TS structures generated by OA-ReactDiff and true TS
structures. a. Cumulative probability for RMSD between the true TS structures and OA-ReactDiff samples on
1073 set-aside test reactions. The OA-ReactDiff samples are evaluated under one-shot generation (blue), the top-1
confidence sample (i.e., recommended, green), and the best (yet unachievable) sample out of 40 generated samples
for each reaction (red). A log scale of the RMSD is presented for better visibility of the low-RMSD region. b. 2D
density map for the RMSD vs. top-1 confidence for OA-ReactDiff generated samples. A log-scale color gradient is
applied to the color bar to reveal low-density areas, which would otherwise be difficult to distinguish. c. Example
overlapping true and OA-ReactDiff + recommender TS structures at different RMSD and RMSD percentile rank
shown in ascending order from left to right. Atoms are colored as follows: C in the true TS structure are in tan and
those in the top-1 confident OA-ReactDiff sample are in skyblue; N for blue, O for red, and H for white.

approach (Fig. 4b). The average and median of the error in RMSD become 0.129 and 0.058 Å, respectively, with

approximately two thirds (three fourths) of the recommended TS structures having RMSD < 0.1 (0.2) Å (Fig 4 a). We

observed a systematically-improving performance for the OA-ReactDiff + recommender approach as the number

of total independent runs increases (Supplementary Fig. S4). Here, we took 40 runs for each sample for a balance

between total run time (4 minutes in total) and sampling accuracy. Despite the fact that the recommender is still far

from perfect for distinguishing structures with low RMSD (i.e, < 0.2 Å) structures, it helps avoiding TS samples

that are very different from the true TS (i.e., > 0.45 Å, Fig. 4c). This feature is particularly useful in end-to-end

applications for ML models.

Approaching the energetic accuracy needed in TS search. Besides the exact 3D structure for a TS that provides

insights into how an elementary reaction happens microscopically, a TS search algorithm should also evaluate the

reaction barrier height, which is crucial for pruning large reaction networks and estimating reaction rates.2 Here, we

evaluate the performance of OA-ReactDiff on predicting the barrier height at the DFT level of theory. Specifically,

we compared the electronic energy computed by ωB97x/6-31G(d) for OA-ReactDiff recommended and true TS

structures. As one may expect, the absolute energy difference (|∆ETS|) between OA-ReactDiff and true TS structures
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has positive correlation with their RMSD. We find they follow a power law best across various type of common

algebraic fits, giving a Pearson’s r of 0.56 on a log-log plot (Fig. 5a). This relatively low Pearson’s r can be explained

by the high complexity of potential energy surfaces for molecules, where the direction of displacing an atom has large

influences on the energy change. For example, an OA-ReactDiff TS of C4H6O2 that has a relatively low RMSD of

0.078 Å compared to the true TS was found to have the highest energy difference (49.3 kcal/mol) among the 1073

test reactions(Fig. 5a). This counter-intuitive result, however, is an artifact due to self-consistent field calculations

being converged to different local minima in DFT energy evaluation for OA-ReactDiff and true TS (Supplementary

Fig. S2). On the other hand, despite an extremely large RMSD (0.821 Å) between OA-ReactDiff and the true TS

structure for C6H10O, the energy difference between the two structures is only 0.4 kcal/mol, due to the fact that this

TS consists of two fragments that only weakly interact with each other (Fig. 5a). There, OA-ReactDiff provides quite

precise geometry for both fragments, in spite of the incorrect orientation between the two fragments, leading to a

small deviation in barrier estimation (Supplementary Fig. S3).

With OA-ReactDiff and the recommender, we reach an average of 4.4 kcal/mol and median of 1.6 kcal/mol

for the absolute energy difference between the generated and true TS structure, with 71% of TS barrier errors < 3

kcal/mol (Fig. 5b). OA-ReactDiff + recommender far outperforms semi-empirical methods such as density functional

tight binding,47 which has an MAE of 16.1 kcal/mol and average runtime of 82 seconds.22 Interestingly, the MAE

would only improve marginally to 4.0 kcal/mol if we were able to select the OA-ReactDiff sample with the lowest

RMSD compared to the true TS, indicating the power of the recommender for selecting TS structures with low energy

deviations (Table 1). The performance of OA-ReactDiff with the recommender on elementary reactions with multiple

reactants and/or products is comparable to the performance for rearrangement reactions that only contain one single

reactant and product (Supplementary Fig. S5) . The slight deterioration of the performance is likely due to the

imbalance of reaction types included in Transition1x, where only one fourth of the elementary reactions contain

multiple reactants or products.

We also compare OA-ReactDiff + recommender with two pioneering works where non-diffusion-based ap-

proaches were developed for generating 3D TS structures on large diverse organic reaction datasets such as Tran-

sition1x15 or its predecessor.41 Choi developed a "PSI-based" model21 combining transformer and bidirectional

gated recurrent unit that generates TS structures from refining the linear interpolation of reactant and product,

which, however, requires the prior knowledge of atom mapping and careful alignment between reactant and product.

Schreiner et al.22 trained a machine learning potential on 10M structures (with both energy and forces) collected

during the generation of Transition1x, and, for the first time, applied the trained potential to the TS search problem

in place of DFT. There, similar to the problem of DFT-based TS search (e.g., NEB), an attempt may still encounter

convergence issues during the saddle point optimization, leading to a null prediction for the final TS structure. We
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find OA-ReactDiff + recommender systematically outperforms the prior approaches on both the RMSD and barrier

height estimate in terms of both the mean and median of the error distribution (Table 1). This superior performance

is attributed the fact that OA-ReactDiff manages to respect all physical symmetries and constraints for describing

an elementary reaction, without the need for atom order mapping, reactants or products alignment, reconstruction

of 3D geometry from distance matrix, and data augmentation of any kind. In addition, a more gradual increase of

absolute energy difference with respect to RMSD was identified in OA-ReactDiff + recommender compared with the

two other approaches, suggesting a more accurate barrier estimate can be obtained by OA-ReactDiff at the same level

of structural similarity between generated and true TS (Table 1 and Supplementary Fig. S6).

We would ideally aim to select one single TS structure sampled by OA-ReactDiff with the recommender. The

recommended sample, however, may not be confident if all 40 samples generated by OA-ReactDiff suffer from a low

confidence score (i.e, p < 0.5) due to the limited amount of training data. Further removal of these reactions (153, or

14%) from the test set leads to a significantly improved energy difference with a mean of 3.1 kcal/mol and median of

1.4 kcal/mol (Table 1). Moreover, we observe a monotonic behavior between the MAE for barrier height estimates

and the confidence threshold imposed for TS structure generation that we consider as valid (Fig. 5c). This desired

monotonic behavior suggests that we can use the confidence score for uncertainty quantification to balance the accuracy

and number of DFT calculations required in a practical workflow48 that combines OA-ReactDiff, recommender, and

DFT-based TS search. For a set of TS structures generated by OA-ReactDiff and their corresponding confidence score

evaluated by the confidence model and recommender, we can decide whether we would accept the recommended TS

structure depending on its confidence score or would rather launch a DFT-based NEB. With a confidence threshold

of 0.5, we would only perform NEB with DFT on 14% of reactions while directly accepting TS structures from

OA-ReactDiff + recommender for the remaining 86% reactions, leading to an overall accuracy of 2.6 kcal/mol. This

strategy showcases the power of combining OA-ReactDiff, recommender, and DFT-based NEB for efficient generation

of TS structures given a target accuracy level.

Table 1 | Summary of statistics for RMSD and absolute energy differences of TS structures and the linear fitting
results obtained by various approaches. The linear fit is obtained between log(|∆ETS|) vs. log(RMSD). Some
approaches invoke uncertainty quantification (OA-ReactDiff with p > 0.5) or subject to convergence issues during
optimization (PSI-based model and NeuralNEB), leading to inconclusive predictions some elementary reactions and
thus resulting an effective data fraction < 1.

Approach RMSD (Å) |∆ETS| (kcal/mol) fitting coefficeint data fraction

mean median mean median slope intercept Pearson’s r

OA-ReactDiff 0.183 0.076 6.2 1.7 0.65 0.99 0.59 1.00
OA-ReactDiff + rec. 0.129 0.058 4.4 1.6 0.63 0.99 0.56 1.00
OA-ReactDiff + rec. (p > 0.5) 0.106 0.047 3.1 1.4 0.55 0.88 0.53 0.86
OA-ReactDiff + best 0.071 0.031 4.0 1.3 0.72 1.19 0.65 1.00
OA-ReactDiff + best (p > 0.5) 0.044 0.021 1.8 1.1 0.56 0.92 0.56 0.74
PSI-based model21 0.144 0.122 13.4 8.4 0.96 1.82 0.69 0.96
NeuralNEB22 0.136 0.096 6.5 2.1 1.26 1.66 0.77 0.83
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Fig. 5 | Energetic performance for OA-ReactDiff + recommender TS structures. a. Absolute energy error
(|∆ETS|) vs. RMSD for top-1 confidence sample in log-log scale. A linear regressed black dashed line is shown with
the fitted parameters at the top. Two example TS structures that deviate the most from this linear fit are shown. b.
Cumulative probability for absolute energy error of top-1 confidence sample. The errors are evaluated by 1) all 1073
reactions in the test set (blue), 2) 783 reactions that involves only one single product (red), and 3) 290 reactions that
yield multiple products (green). c. MAE of |∆ETS| (blue, left y-axis) and the corresponding confidence threshold
(orange, right y-axis) as a function of the fraction of data considered in the 1073 test reactions. Atoms are colored as
follows: C in the true TS structure are in tan and those in the top-1 confident OA-ReactDiff sample are in skyblue; N
for blue, O for red, and H for white.

Discussion

Elucidating TS structures is essential for uncovering the underlying microscopic mechanisms of chemical reactions

and estimating reaction barriers for building large reaction networks. In this work, we extended SE(3) equivariant

diffusion models to respect the object-wise symmetries, leading to OA-ReactDiff, an object-aware SE(3) equivariant

diffusion model that first fulfills all the symmetries and constraints for generating elementary reactions. In addition,

we built a confidence-model-enabled recommender to overcome the stochastic nature of diffusion model to select

from sampled generated by OA-ReactDiff in multiple runs. OA-ReactDiff + recommender gives an RMSD of 0.129 Å

and MAE of 4.4 kcal/mol compared to the true TS structure obtained by computationally demanding climbing image

NEB calculations. By further using the confidence score for uncertainty quantification, we can selectively perform

climbing image NEB only for 14% of elementary reactions that OA-ReactDiff is most uncertain about, leading to a

reduced MAE of 2.6 kcal/mol.

The current OA-ReactDiff approach has two major limitations. First, we describe an elementary reaction as

a set of 3D structures (say N atoms for reactant, TS, and product), which leads to a system that is 3x larger (i.e.,

3N atoms). Although the most expensive equivariant update is still object-wise (i.e., scales with N ), the scalar

message-passing update requires building a fully-connected graph for the 3N atoms, which will be the bottleneck for

applying OA-ReactDiff on chemical systems > 100 atoms on a single GPU. Second, despite the workaround of using

a confidence model and recommender to select a unique sample generated by OA-ReactDiff, the stochastic nature

of diffusion model cannot be avoided. This leads to uncertainty for the sample quality of generated TS structure

and accumulated runtime for running OA-ReactDiff repeatedly. These limitations are inherent for diffusion models,
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which can potentially be addressed by reformulating elementary reaction generation as a transport problem, where

optimal transport via flow matching or Schrödinger bridge can be applied. The authors are actively exploring along

this direction as a future work.

Together with uncertainty quantification, OA-ReactDiff + recommender reached both the structural and energetic

accuracy required in TS search, which can be readily integrated in current high throughput computation workflows

for reaction network exploration. In this work, we focus on the relatively well defined TS search problem such that

we can evaluate our newly-developed OA-ReactDiff more easily and demonstrate the promise of this new model.

OA-ReactDiff, however, models the joint distribution of structures in elementary reactions and thus is not limited to

double-ended TS search problem and can be applied in single-ended (i.e, only the reactant is provided) or zero-ended

(i.e., only the chemical composition of a system is provided) scenarios. Very recently, a more diverse elementary

reaction dataset 17 times larger than Transition1x, named as RGD1, has been established.49 Provided that the quality

of diffusion model is highly dependent on the size of training data, RGD1 has the potential of unleashing the power of

OA-ReactDiff for establishing large reaction networks and exploring chemical reactions with unknown mechanisms

with a greatly reduced number of DFT calculations. Lastly, despite solely focusing on chemical reactions, the

object-aware SE(3) equivariant diffusion model developed in this work can be applied to diverse chemical problems

where the system of interest consists of multiple 3D objects, in which their interactions do not depend on their

locations in Euclidean space.

Methods

Equivariant diffusion models. Equivariance.– A function f is said to be equivariant to a group of actions G if

g ◦ f(x) = f(g ◦ x) for any g ∈ G acting on x.50, 51 In this paper, we specifically consider the Special Euclidean

group in 3D space (SE(3)) which includes permutation, translation and rotation transformations. We intentionally

break the reflection symmetry so that our model can describe molecules with chirality.

Diffusion models.– Diffusion models are originally inspired from non-equilibrium thermodynamics.23–25 A diffusion

model has two processes, the forward (diffusing) process and the reverse (denoising) process. The noise process

gradually adds noise into the data until it becomes a prior (Gaussian) distribution:

q(xt|xt−1) = N (xt|αtxt−1, σ
2
t I),

where αt controls the signal retained and σt controls the noise added. A signal-to-noise ratio is defined as SNR(t) =
α2

t

σ2
t

. We set αt =
√
1− σ2

t following the variance preserving process in.25
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The true denoising process can be written in a closed form due to the property of Gaussian noise:

q(xs|x0, xt) = N (xs|µt→s(x0, xt), σ
2
t→sI),

µt→s(x0, xt) =
αt|sσ

2
s

σ2
t

xt +
αsσ

2
t|s

σ2
t

x and σt→s =
σt|sσs

σt
,

where αt|s = αt

αs
, σ2

t|s = σ2
t − α2

t|sσ
2
s and s < t. However, this true denoising process is dependent on x0 which

is the data distribution and not accessible. Therefore, diffusion learns the denoising process by replacing x0 with

x̂ = ϵθ(xt, t) predicted by a denoising network ϵθ. The training objective is to maximize the variational lower bound

(VLB) on the likelihood of the training data:

− log p(x) ≤ DKL(q(xT |x0)||pθ(xT ))− log p(x0|x1) + ΣT
t=2DKL(q(xt−1|x0, xt)||pθ(xt−1|xt))

Empirically, a simplified objective has been found to be efficient to optimize:23

Lsimple =
1

2
||ϵ− ϵθ(xt, t)||2,

Equivariant diffusion models.– To build an SE(3)-equivariant diffusion model, it has been proven that we need an

SE(3)-invariant prior and an SE(3)-equivariant transition kernel.52 To guarantee equivariance on permutation, rotation,

and translation, a necessary condition is to use an SE(3)-equivariant transition kernel (i.e. denoising network), as we

will explain in details at a later section. (see LEFTNet). There are additional requirements for rotation and translation.

For rotations, the isotropic Gaussian prior has the nice property to transform equivariantly. For translations, we need

to limit the distribution on the linear subspace where the center of mass is the origin.52

Inpainting for conditional generation. Inpainting is a flexible technique to formulate the conditional generation

problem for diffusion models.34 Instead of modeling the conditional distribution, inpainting models the joint

distribution during training. During inference, inpainting methods combine the conditional input as part of the context

through the noising process of the diffusion model before denoising both the conditional input and the inpainting

region together. The resampling technique34 has demonstrated excellent empirical performance in harmonizing the

context of the denoising process as there is sometimes mismatch between the noised conditional input and the denoised

inpainting region. Specifically, resampling increases the total number of sampling steps in each denoising step by

sampling the inpainting region back and forth together with the conditional input. Despite resampling increases

the number of total denoising steps, this can be compensated by decreasing the number of total denoising steps

accordingly by striding the sampling schedule53 without significantly sacrificing the model performance.
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LEFTNet. We build our denoising network on top of a recently proposed SE(3)-equivariant GNN, LEFTNet.35

The main idea of LEFTNet relies on building local frames to scalarize the vector (e.g. position, velocity) and higher

order tensor (e.g. stress) which becomes invariant to SE(3) transformations. Tensorization can be applied to invert the

scalar back to vector and higher order tensor without information loss in each layer to update these quantities. The

benefit of scalarization is demonstrated by the flexibility of neural network parameterizations without breaking the

symmetry and further proved by the universal approximation theorem54 such that the resulting neural network has the

universality in the space of continuous SE(3) and permutation equivariant functions.

Scalarization and tensorization.– Scalarization and tensorization are two operations in differential geometry to

convert geometric quantities. Specifically, scalarization transforms geometric tensors into scalars while tensorization

is the inverse of scalarization, transforming scalars back to geometric tensors. In this case, scalarization is used to

transform equivariant quantities by three equivariant orthonormal frames:

F := (e1, e2, e3)

For simplicity, we use vector as an example. The geometric tensors are scalarized by the inner product between the

frames F and the input vector x as follows:

x := (x · e1, x · e2, x · e3)

On the contrary, tensorization reverses the process by:

x := x1e1 + x2e2 + x3e3.

where (x1,x2,x3) is the input scalar tuple and x is the converted tensor.

Message passing neural network (MPNN).– A molecular graph can be represented as G = (V, E) where V is a set

of nodes or atoms and E ⊆ V × V is a set of edges or bonds connecting pairs of nodes. For each node, we have

atom types h ∈ Rn×k, where n denotes number of nodes and k denotes number of atom types. Edge features are

attached to the edges connecting nodes i and j as eij . Message passing neural network is a common framework

to learn embeddings over graphs.55 MPNNs often have three parts: (1) message, (2) update and (3) readout. The

common message between each pair of nodes are:

mi =
∑

j∈N (i)

M(hi, hj , eij),

15



where M is the message function, N (i) denotes neighbors of node i and mi is the message. Then the message is

used to update the node feature as:

hi = U(hi,mi),

where U is the update function. After a number of layers, the global embedding is calculated by:

g = R(hi|i ∈ G),

where R is the readout function.

In our case, the molecular graph also has atomic coordinates x ∈ Rn×3 and the message function of the MPNN

needs to be equivariant to SE(3) transformations. It is achieved by moving the center of mass to the origin (translations)

and incorporating the scalarized coordinates sij in the message function (rotations):

mi =
∑

j∈N (i)

M(hi, hj , sij , eij),

where sij is obtained by scalarizing the input coordinate over the frames Fij between each pair of nodes i and j:

e1 =
xi − xj

||xi − xj ||
,e2 =

xi × xj

||xi × xj ||
, e3 = e1 × e2,

sij = (xi · e1, xi · e2, xi · e3)

Building towards LEFTNet.– Motivated by distinguishing local 3D geometric isomorphisms, LEFTNet introduced a

local structure encoding module to encode the local atomic environment of each atom in the scalarization operation.

In addition, LEFTNet designed another frame transition encoding block to consider the transition between two frames

(the atom and its neighbor atom) when calculating the message between them.

Object-aware SE(3) implementation. In general, a system consists of multiple objects (molecules or proteins)

that do not have interactions through the 3D Euclidean space can be described by a set of independent graphs,

{Gi = (Vi, Ei)}. In elementary reaction, for example, we have three objects which can index, reactant (i = 0), TS

(i = 1), and product (i = 2). One important addition symmetry for these systems is object-wise SE(3) equivariance,

meaning any SE(3) transformation on each individual object in a system should not influence its description:

{gi ◦ f(Gi)} = {f(gi ◦ Gi)}
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gi represents an SE(3) transformation on ith object, which is not necessarily the same for all objects. On the other

hand, any non-SE(3) transition on any objects in a system should influence its description:

{g0 ◦ f(G0), ..., qi ◦ f(Gi), ..., gn ◦ f(Gn)} ̸= {f(g0 ◦ G0), ..., f(qi ◦ Gi), ..., f(gn ◦ Gn)}

where qi represents a non-SE(3) transformation on ith object. An SE(3) GNN would hold for the latter but violate the

former symmetry.

To simultaneously fulfill these two requirements (along with other symmetries naturally fulfilled by SE(3)

equivariant diffusion models), we developed a generic approach to adapt any SE(3) GNN to its object-aware SE(3)

equivalent. The essence of this approach is to still perform equivariant update using an SE(3) GNN for individual

object, but only allow scalar-type message passing among different objects to avoid the "leak" of their relative position

information. Starting from the original graph representations, {Gi = (Vi, Ei)}, Gi first gets updated by an SE(3)

equivariant block for message passing. The resulting graphs (G′
i) of all objects are scalarized and concatenated as a

system-level fully-connected graph with only scalar representation G̃. All the scalar node features in G̃ is then updated

by a scalar message-passing block. This way, interactions among different objects (i) in the system are included

without introducing the positioning of different objects as all high-order tensors have been scalarized. Finally, the

updated nodes scalars are combined with the outputs from equivariant update block. This constitutes an object-aware

SE(3) interaction block built on top of a vanilla SE(3) update function. Similar to SE(3) GNNs, this interaction block

repeats several times until the final graph representations are readout.

Details for model training. Dataset and train/test partitioning.– Built on top a large chemically diverse dataset by

Grambow et al.,41 Transition1x15 dataset consists of 10,073 elementary reactions optimized by climbing image NEB.

We partitioned Transition1x randomly, with 9,000 reactions used in training and validation and the remaining 1,073

reactions as set-aside test set. It is not guaranteed that all species in test reactions are unseen by a trained model due to

the overlapping structures in different reactions. However, due to the uniqueness of elementary reaction, there is, at

most, one chemical species (specifically, reactant or product) that may overlap in multiple reactions. We think this

partition is reasonable because all TS structures in the test set are completely new and unseen from model training. In

addition, having a certain degree of overlap in reactants/products for the training and set-aside test set is useful to

judge whether the diffusion model only memorizes training samples rather than learning to generate new samples.

OA-ReactDiff training.– We trained OA-ReactDiff with LEFTNet as our vanilla SE(3) equivariant GNN. We used a

set of hyperparameters similar to that for QM9 dataset in the original paper,35 with 96 radial basis functions, 196

hidden channels for message passing, and 6 equivariant update blocks. A large neighbor cutoff threshold of 10 Å is

used to impose fully connected graphs within each molecule. We mostly adopted hyperparameters of the diffusion

process from the EDM paper,26 where a polynomial noise schedule and Lsimple loss function is used. We observed a
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marginal improvement in model performance as we increase the total diffusion steps and used 5000 steps for our final

model. We used a learning rate of 0.0005 and a batch size of 32, which is the largest batch size that we can afford with

a V100/16GB GPU. The OA-ReactDiff model was trained for 2,000 epochs. During the training, the 9,000 reactions

were further partitioned by a 8:1 ratio as training and validation. In practice, however, we observed that early stopping

is not required due to the near monotonic decreasing loss for both the training and validation data during the entire

training process.

Confidence model training.– The confidence model shares exactly the same set of hyperparameters as the scoring

network, with the only change being the use of sigmoid function at the final output layer. To get data for training the

confidence model, we ran OA-ReactDiff on the 9,000 training reactions for 40 runs, generating 360,000 synthetic

reactions. We labeled a reaction as "good" (i.e., 1) if the generated TS structure has a RMSD < 0.2 Å compared to the

true TS, and labeled it as "bad" (i.e., 0) otherwise. Lastly, we train the confidence model as a binary classifier, where

the predicted probability is used as the confidence score to estimate the quality of generated TS structure. Note that

we used the same partition for both scoring network and confidence model, which ensures the 1,073 reactions in the

set-aside test set are unseen to both models during evaluation.

Code and data availability

Source code and data to reproduce results of this work are under review and will be open-sourced upon publication.
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Abbreviation

The following is the list of abbreviation utilized in the main paper.

1. OA-ReactDiff: Object-aware SE(3) GNN for generating sets of 3D molecules in elementary reactions under
the diffusion model

2. RMSD: Root mean square deviation.
3. SE(3): Special Euclidean group in 3D space.
4. TS: Transition state.
5. MAE: Mean absolute error.

S1 Physical symmetries and constraints in an elementary reaction.

An elementary reaction that consists of n fragments as reactant and m fragments as product can be described as
{R(1), ...,R(n),TS,P(1), ...,P(m)}. This reaction requires the following symmetries:

1. Permutation symmetry among atoms in a fragment. For any fragment in R(i),TS,P(j), change of atom
ordering preserves the reaction.

2. Permutation symmetry among fragments in reactant and product. The change of ordering in {R(1), ...,R(n)}
and {P(1), ...,P(m)} preserve the reaction.

3. Rotation and translation symmetry for each fragment. Rotation and translation operations on any fragment
(i.e., R(i),TS,P(j)) preserve the reaction.

Table S1. Ablation studies comparing OA-ReactDiff performance on RMSD evaluation with different models.
Vanilla SE(3) LEFTNet35 is shown to demonstrate the importance of preserve object-wise symmetry in elementary
reaction. EGNN30 is shown to reflect the importance of vanilla SE(3) model.

Approach RMSD (Å)

mean median

Object-aware SE(3) LEFTNet 0.183 0.076
Vanilla SE(3) LEFTNet 0.638 0.620
Object-aware SE(3) EGNN 0.372 0.360

Preprint. Under review.



Figure S1. Elementary reactions sampled from OA-ReactDiff by only specifying the chemical composition of
interest. Here, we consider a system that contains one C, H, N, and O is chosen. This chemical composition is absent
in the Transition1x dataset, and thus is completely new to the trained OA-ReactDiff model. Atoms are colored as
follows: gray for C, blue for N, red for O, and white for H.

Figure S2. Absolute energy difference vs. RMSD for the ten interpolated structure between true (left) and
OA-ReactDiff TS (right) for C4H6O2. The abrupt change in energy difference indicates a change in converged
electronic state for self-consistent field calculation.

Figure S3. Overlapping OA-ReactDiff and true TS structures of C6H10O separated as two fragments and
their corresponding RMSD. Atoms are colored as follows: C in the true TS structure are in tan and those in the
OA-ReactDiff sample are in skyblue; O for red, and H for white.
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Figure S4. Mean absolute energy difference vs. number of runs for OA-ReactDiff sampling.. A log-log axis is
used to shown the near power law dependence. The results are shown on 1073 test elementary reactions.

Figure S5. Box plot for absolute energy difference of OA-ReactDiff + rec. TS structures grouped by single (i.e.,
n=1) and multi (i.e., n > 1) product cases.. The solid lines are shown for the quadrants (Q1, median, and Q3) and the
dashed lines are shown for the mean and standard deviation. The results are shown on 1073 test elementary reactions.

Figure S6. Absolute energy difference vs. RMSD and the corresponding linear fit in a log-log plot for
OA-ReactDiff + rec, PSI-based model,21 and NeuralNEB22.
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