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Abstract

The esophagogastric junction (EGJ) is located at the distal end of the esophagus and acts as a
valve allowing swallowed food to enter the stomach and preventing acid reflux. Irregular weakening or
stiffening of the EGJ muscles results in changes to its opening and closing patterns which can progress
into esophageal disorders. Therefore, understanding the physics of the opening and closing cycle of the
EGJ can provide mechanistic insights into its function and can help identify the underlying conditions
that cause its dysfunction. Using clinical functional lumen imaging probe (FLIP) data, we plotted the
pressure-cross-sectional area loops at the EGJ location and distinguished two major loop types – a
pressure dominant loop (PDL) and a tone dominant loop (TDL). In this study, we aimed to identify the
key characteristics that define each loop type and determine what causes the inversion from one loop to
another. To do so, the clinical observations are reproduced using 1D simulations of flow inside a FLIP
device located in the esophagus, and the work done by the EGJ wall over time is calculated. This work
is decomposed into active and passive components, which reveal the competing mechanisms that dictate
the loop type. These mechanisms are esophagus stiffness, fluid viscosity, and the EGJ relaxation pattern.

Keywords: esophagus, esophagogastric junction, elastic tube flow, peristalsis, reduced-order model, pressure-
area hysteresis, functional lumen imaging probe

1 Introduction

The esophagus is a tubular organ responsible for transferring swallowed food to the stomach by using a
peristaltic contraction wave (muscle contraction) (Mittal, 2016). The esophagogastric junction (EGJ) is the
region at the junction of the esophagus and the stomach, which includes a neurally controlled sphincter (the
lower esophageal sphincter or LES) and the surrounding musculature. It is an important component of the
digestive track, as it controls the entry of food into the stomach while preventing gastric acid from entering
the esophagus (Mittal and Balaban, 1997).

The degradation of the muscles at the EGJ can result in a more compliant EGJ, causing acid reflux
(Pandolfino et al., 2003; Kwiatek et al., 2010). Reflux, caused by some degree of uncontrolled opening of
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the EGJ, can lead to symptoms such as heartburn, regurgitation, chest pain, dysphagia or mucosal damage
(esophagitis), all within the spectrum of gastroesophageal reflux disease (GERD) (Pandolfino et al., 2003;
Kahrilas, 2008). It has been reported that GERD is the most common gastrointestinal diagnosis during
doctors’ office visits, and that 14-20% of the adult population in the United States suffers from some degree of
GERD (Kahrilas, 2008; Shaheen et al., 2010). On the other hand, diseases such as achalasia are characterized
by a lack of peristalsis and an absence of EGJ relaxation which restricts EGJ opening and emptying of the
esophagus, causing profound dysphagia (Boeckxstaens et al., 2014; Eckardt and Eckardt, 2009). Therefore,
understanding the physics of the opening and closing of the EGJ can provide a mechanistic insight into its
functions and can help identify the underlying conditions that cause its dysfunction.

One approach to study the opening and closing pattern of the EGJ is by tracking its pressure and
cross-sectional area over time. Plotting pressure vs. volume hysteresis is common in cardiovascular studies
(Gregersen and Lo, 2018). Additionally, pressure vs. cross-sectional area plots have been previously used to
investigate the anal sphincter (Zifan et al., 2019) and the upper esophageal sphincter (Omari et al., 2015,
2016). However, a similar analysis has never been taken to study the EGJ.

The functional luminal imaging probe (FLIP) can be used to evaluate the state of the EGJ. It is unique as
it allows distensibility testing as well as simultaneously tracking pressure and cross-sectional area. The device
is composed of a catheter surrounded by a cylindrical shaped bag that measures the cross-sectional area of
the esophagus at 16 adjacent locations and pressure at one distal location as a function of time (Carlson et al.,
2015, 2016). The FLIP is inserted into the esophagus and placed within the esophageal lumen, bypassing
the EGJ. The FLIP bag is incrementally inflated with fluid and the esophageal wall responds to it with
a distinctive pattern presented in figure 1. The esophageal wall muscle contract in a peristaltic fashion,
pushing fluid towards the distal end of the esophagus. As a result of the moving contraction, the pressure
at the distal end of the FLIP bag increases. In parallel to the propelling contraction wave, the initially
contracted EGJ relaxes and opens. At the end of the contraction cycle, the muscle contraction wave merges
with the EGJ, causing it to close.

In this work, we take a mechanistic approach to explore the opening and closing pathways of the EGJ
by looking at how energy is expended at the EGJ during a contraction cycle. To do so, we examine both
clinical data and 1D simulations of flow inside a FLIP device. We reveal that there are two possible pressure-
cross-sectional area loop patterns at the EGJ and seek to: (i) identify the key characteristics that define
each loop type, (ii) find what causes the inversion from one loop to another, and (iii) examine how energy is
spent at the EGJ during a single contraction cycle. Doing so helps us identify the mechanisms and physical
parameters that characterize EGJ function.
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Fig. 1 A visual representation of the clinical data collected from a single subject using a FLIP device. The
graph on the top left shows the pressure reading and bag volume as a function of time over 120 seconds
duration. The pressure changes as a result of esophageal contractility in response to the distension. The
volume increase is dictated by the physician conducting the procedure. The graph on the bottom left is a
close-up view of the data between the two dotted lines in the plot above it (between 777.3 seconds and 785.6
seconds). It captures the pressure variation during a single contraction cycle (Carlson et al., 2015). The
right figure displays the tube shape at five different time instants, ordered chronologically, corresponding to
the five points in the pressure graph, and the location of the EGJ is marked. The pattern in this figure reveal
that the increase in pressure at the distal end of the FLIP bag corresponds to the increase of cross-sectional
area at the EGJ, and pressure decrease at the end of the contraction cycle corresponds to the decrease of
cross-sectional area at the EGJ. The maximum opening of the EGJ occurs at the same time instant as
maximum distal pressure.

2 Methods

In this section, we discuss the experimental procedure to collect clinical FLIP data at the EGJ. In addition,
we detail the simulation approach taken to reproduce FLIP experiments at different sphincters.

2.1 Subjects

The subject cohort included 24 healthy, asymptomatic adult volunteers. This number excludes subjects
with previous diagnosis of esophageal disorders, previous diagnosis of autoimmune, or eating disorders,
use of antacids or proton pump inhibitors, body mass index > 30 kg/m

2
, or a history of tobacco use or

alcohol abuse, as described in Carlson et al. (2021a). The data was collected at the Esophageal Center
of Northwestern between November 2012 and October 2018. Informed consent was obtained for subject
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participation; who were paid for their participation. The study protocol was approved by the Northwestern
University Institutional Review Board. This control cohort overlaps previous publications (Carlson et al.,
2021a,b; Acharya et al., 2020; Carlson et al., 2016, 2019; Triggs et al., 2020).

2.2 FLIP Study Protocol

The study was performed during sedated endoscopy using a 16-cm FLIP (EndoFLIP® EF-322N; Medtronic,
Inc, Shoreview, MN). The FLIP was inserted transorally, placed in the esophagus lumen, bypassing the LES.
The FLIP bag was then filled with saline at 10-mL increments, and the CSA at 16 locations and one distal
pressure measurements were recorded as the wall responded to the filling. The bag volume began at 40-mL
and increased until reaching 60-mL. Each volume was maintained for 30-60 sec. More information on the
experimental procedure is available in Carlson et al. (2021a,b); Acharya et al. (2020); Carlson et al. (2016,
2019).

2.3 Data Analysis

The FLIP data was exported using MATLAB readtable. A total of 219 contraction cycles were identified
by tracking distal pressure and cross-sectional area at the EGJ. The location of the EGJ was identified as
the location with the minimum cross-sectional area at the beginning of the contraction cycle. Due to dry
catheter artifact, we omitted 87 data points. Consequently, the study focused on 132 contraction cycles. Dry
catheter artifact is when the peristaltic contraction causes occlusion of the FLIP and therefore disrupts the
electrical current which is used for the impedance planimetry technology. The pressure at different locations
along the FLIP bag can be calculated using the provided distal pressure, as proposed by Halder et al. (2021).
Hence, one can plot the pressure-cross-sectional area loops at different locations on the esophagus.

2.4 Simulation of FLIP Experiment

To determine the key parameters that are involved and affect the shape and pattern of the pressure-cross-
sectional area hysteresis at the EGJ, we utilize a 1D model. The model attempts to imitate flow inside
a FLIP device located in the esophagus by simulating flow inside an elastic tube that is closed on both
ends. Our study builds on and extends recent studies by Acharya et al. (2021) and Elisha et al. (2022),
who proposed a minimal model for peristaltic flow in a closed-ends flexible tube, and using it to study the
esophagus. However, their model did not include the EGJ, which is implemented in this study. Additionally,
previous investigations looked at the work done by a peristaltic wave along the entire tube length, without
any EGJ contraction. In this work, we focus on the energy expended at the EGJ only by altering the work
equations.

2.4.1 Governing Equations in 1D

The mass and momentum conservation equations are

∂A

∂t
+
∂ (Au)

∂x
= 0, (1)

and
∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂P

∂x
−

8πµu

ρA
, (2)

respectively. In the equations above, A(x, t), u(x, t), and P (x, t) are the tube cross-sectional area, fluid
velocity (averaged at each cross-sectional area), and pressure inside the tube, respectively. The constants ρ
and µ are the fluid density and viscosity, respectively. These 1D forms of the continuity and the momentum
conservation equations were derived by Ottesen (2003) and have been widely used to describe valveless
pumping (Manopoulos et al., 2006; Bringley et al., 2008).
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The last equation in this system expresses pressure in terms of the tube’s cross-sectional area. This
constitutive relation, derived in (Whittaker et al., 2010) and validated experimentally in (Kwiatek et al.,
2011) is known as the ‘tube law’, and takes the form

∆P = Ke

(
A(x, t)

Aoθ(x, t)
− 1

)

. (3)

Here, ∆P is the difference between the pressure inside and outside the tube (∆P = Pi − Po), Ke is tube
stiffness, and Ao is the undeformed reference area representing the cross-sectional area of the tube when
∆P = 0. Lastly, θ(x, t) is an activation term which changes the reference cross-sectional area of the tube
wall. This term is implemented in order to mimic the function of the esophageal muscle fibers as they
contract and relax throughout the contraction cycle (Ottesen, 2003; Manopoulos et al., 2006; Bringley et al.,
2008; Mittal, 2016; Abrahao Jr et al., 2011). The activation term θ(x, t) is expressed as a piecewise function
elaborated upon in section 2.4.3.

Since the outside pressure is constant, equation (3) can be written as

P (x, t) = Ke

(
A(x, t)

Aoθ(x, t)
− 1

)

+ Po (4)

to solve for the pressure inside the tube. Note that in our simulations, the pressure outside of the tube is
assumed to be the reference pressure, so that Po = 0.

2.4.2 Non-dimensionalizing Dynamic Equations

To obtain a better understanding of the physical held of the system and reduce the number of independent
variables, we non-dimetionalize equations (1), (2) and (4) using

A = αAo, t = τ
L

c
, u = Uc, P = pKe, and x = χL, (5)

where α, τ , U , p, and χ are non-dimensional variables of area, time, velocity, pressure, and position, respec-
tively. The terms c and L are dimensional constants for the speed of the peristaltic wave and the length of
the tube, respectively.

Therefore, the mass conservation, momentum conservation, and tube law equations can be written as

∂α

∂τ
+
∂ (αU)

∂χ
= ε

(α

θ

)

χχ
, (6)

∂U

∂τ
+ U

∂U

∂χ
+ ψ

∂p

∂χ
+ β

U

α
= 0, and (7)

p =
(α

θ
− 1

)

− f(α,U), (8)

respectively. The terms ψ and β are non-dimensional stiffness and viscosity parameters, respectively, defined
as ψ = Ke/(ρc

2) and β = 8πµL/(ρAoc). Notice that ψ is inverse of Cauchy number and β is inverse
of the Reynolds number. The function f(α,U) is a damping term added to the right hand side of the
pressure equation to regularize the system and therefore help stabilize the numerical solution. It is defined

as f(α,U) = η ∂(αU)
∂χ

where η = (Y cAo)/(KeL), and Y is the damping coefficient. An additional discussion

is available in (Acharya et al., 2021) and (Wang et al., 2014). Lastly, ε (α/θ)χχ is a smoothing term added to
the right-hand side of the continuity equation in order to obtain faster convergence and reduce computational
time.

Finally, we can plug equation (8) into equation (7) to obtain

∂U

∂τ
+ U

∂U

∂χ
+ β

U

α
+ ψ

∂

∂χ

(α

θ

)

= ζ
∂2

∂χ2
(αU) , (9)

such that we have a system of two equations, equations (6), and (9). Here, ζ is equal to the product of η
and ψ.

5



2.4.3 The Peristaltic Wave and Active Relaxation

The activation function θ(χ, τ) multiplies the constant reference area term Ao in the tube law (equation
(8)) in order to change the reference area to resemble the activation of the esophageal muscle. We apply
this function to the model with the intention of mimicking both the muscle contraction of the traveling
wave which pushes fluid forward, as well as the contraction and relaxation of the EGJ muscles. Using an
activation function to vary the reference area is often used in instances that the external activation pressure
at a specific location varies sinusoidally with time (Acharya et al., 2021; Ottesen, 2003; Manopoulos et al.,
2006; Bringley et al., 2008).

In (Acharya et al., 2021; Elisha et al., 2022), the activation function only considered the peristaltic
contraction of the traveling wave and wall relaxation, but did not include the EGJ muscle contraction and
relaxation. In these studies, the muscle activation was modeled as a sinusoidal wave traveling with time
along the length of the elastic tube. The wave had constant amplitude, wave speed, and wavelength. This
form of the activation function was supported by clinical data reported in (Goyal and Chaudhury, 2008;
Crist et al., 1984). The activation function θ introduced in our model is similar to the ones in (Acharya
et al., 2021) and (Elisha et al., 2022), and is defined as a superposition of two piecewise functions, such that

θ(χ, τ) = θp(χ, τ) + θEGJ(χ, τ). (10)

Function θEGJ(χ, τ) is responsible for the active relaxation of the EGJ and function θp(χ, τ) is responsible
for the traveling peristalsis as well as the restoration of EGJ tone at the end of the contraction cycle.

The traveling wave activation function θp(χ, τ) takes the form

θp(χ, τ) =







1− 1−θc
2

[
1 + sin

(
2π
w (χ− τ) + 3π

2

)]
, τ − w ≤ χ ≤ τ , τ ≤ χ2

1− 1−θc
2

[
1 + sin

(
2π
w (χ− χ2) +

3π
2

)]
, χ1 ≤ χ ≤ χ2, τ > χ2

1, otherwise.

(11)

In the equation above, θc is the peristaltic contraction strength, w is the non-dimensional width of the
peristaltic wave, and χ1 and χ2 are the boundaries of the EGJ segment, where χ2 > χ1 and the width of
the EGJ is wEGJ = χ2 −χ1. In this work, wEGJ = w. Function θp is plotted at two time instance, τ1 and τ2
in figures 2a and 2b, respectively, where τ1 < χ2 and τ2 > χ2. As the figures show, while τ ≤ χ2, the wave
defined by θp(χ, τ) travels with time along the length of the domain. Once τ > χ2, the wave stops traveling
in time yet conserves its form (figure 2b).
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(a) τ = τ1 < χ2
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(b) τ = τ2 > χ2

Fig. 2 Two plots of function θp(χ, τ) defined in equation (11), at (a) τ = τ1 < χ2 and (b) τ = τ2 > χ2.

Function θEGJ(χ, τ) is a piecewise function which mimics the initial contraction and active relaxation of
EGJ tone. Different than function θp, function θEGJ does not travel with time, but its amplitude decreases
with time. The function is defined such that

θEGJ(χ, τ) =

{
θrθR(τ)−1

2

[

1 + sin
(

2π
wEGJ

(χ− χ2) +
3π
2

)]

, χ1 ≤ χ ≤ χ2

0, otherwise.
(12)
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where θr is the EGJ contraction strength and

θR(τ) =







1, τ ≤ τi

1 +
1+ 1

θr

τm−τi
(τ − τi), τi < τ ≤ τm

1
θr
, τm < τ.

(13)

In the equation above, τi marks the time instance at which the EGJ wall starts relaxing, and τm marks the
time instance at which the EGJ wall is fully relaxed. We define the relaxation time as γ = τm − τi.

As equations (12) and (13) indicate, at the beginning of the the contraction cycle (0 ≤ τ < τi), the
EGJ is contracted, and therefore the shape of θEGJ(χ, τ = 0) is similar to θp when τ > χ2 (figure 2b).
Once τ = τi, the EGJ wall starts relaxing, until τ = τm. At τ > τm, the EGJ is fully relaxed. Note
that the active contraction of the EGJ at the end of the contraction cycle is obtained by the peristaltic
contraction wave function θp traveling down the length of the tube and stopping at the EGJ location (stops
at χ1 ≤ χ ≤ χ2, τ > χ2). For this to occur, we set θr=θc.

The value of γ dictates the EGJ relaxation speed, which introduces a new physical component into the
parameters that define the problem. Small γ implies fast relaxation of the EGJ wall and large γ implies
slow relaxation of the EGJ wall. Figure 3 presents tube deformations of two simulations at five different
time instants. Figure 3a displays a case with slow relaxation of the EGJ wall while figure 3b displays a case
with fast relaxation of the EGJ wall, such that γa > γb. As the two figures show, at the first time instant,
the EGJ walls of both tubes are equally contracted. However, at the second time instant, this is no longer
the case. While the contraction strength of the EGJ of tube (a) has barely changed from the previous time
instant, the EGJ at case (b) is almost fully relaxed. Note that both cases start relaxing at the same time
and relax to the same maximum relaxation. However, case (b) reaches full relaxation earlier in the cycle
when compared to case (a).

Figure 4 presents a plot of the activation function θ at time instant τ1. The figure shows how functions
θp and θEGJ apply simultaneously to the tube wall. While the peristaltic contraction wave travels down the
length of the tube at constant contraction (θc) and speed (c), the tone at the EGJ relaxes.

2.4.4 Boundary and Initial Conditions

The elastic tube is closed on both ends and the volume inside the tube remains constant such that there is
no flow in or out of the tube. Therefore

U (χ = 0, τ) = 0 and U (χ = 1, τ) = 0. (14)

The boundary condition for α is obtained by applying the velocity boundary condition in equation (14) into
equation (7), which implies that ∂p/∂χ = 0. Therefore, by taking the spatial derivative of equation (8) and
setting it equal to zero, we obtain a Neumann boundary condition for α (the non-dimensional cross-sectional
area) of the form,

∂

∂χ

(α

θ

)
∣
∣
∣
∣
χ=0,τ

= 0 and
∂

∂χ

(α

θ

)
∣
∣
∣
∣
χ=1,τ

= 0. (15)

Note that this condition is derived assuming that η ≈ 0. However, as explained in (Acharya et al., 2021),
the effects due to this damping at the boundary are negligible even when η is small but not equal to zero.

At τ = 0, the traveling peristaltic wave has yet to enter the domain and the EGJ is contracted, therefore,
the fluid velocity inside the tube is equal to zero everywhere. The cross-sectional area at τ = 0 depends
on the volume of the fluid filling the tube. In this resting state the pressure in the tube would be uniform
(typically positive), which according to the tube law implies that α/θ is a constant (= SIC) for the initially
filled tube. Hence, the initial conditions are specified as such:

U (χ, τ = 0) = 0 α (χ, τ = 0) = SICθ(χ, τ = 0). (16)
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(a) Slow EGJ wall relaxation
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(b) Fast EGJ wall relaxation

Fig. 3 Tube deformation of two simulations. (a) EGJ contraction relaxes slowly in relation to the peristaltic
contraction wave entering the domain. (b) EGJ contraction relaxes rapidly in relation to the peristaltic
contraction wave entering the domain. Both examples start relaxing at the same time but reach (the same)
maximum relaxation at different times.

��

��
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Fig. 4 A plot of the activation function θ from equation (10) along the tube length at a single time instant
τ1.

2.4.5 Numerical Implementation

The MATLAB pdepe function is used to obtain the numerical solution of α(χ, τ) and U(χ, τ) by solving
equations (6) and (9) with the boundary and initial conditions in equations (14), (15), and (16), respectively.
The simulations are differentiated by a unique combination of the physical parameters defining this problem,
listed in table 1. Changing the parameters ψ, β, θc, and γ corresponds to examining the effect of tube wall
stiffness, wave speed, contraction strength, fluid density, fluid viscosity and EGJ relaxation speed on the
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tube deformation (Acharya et al., 2021). The computational procedure to solve this forward simulation is
described in greater details by Acharya et al. (2021), who also validates the 1D model by comparing it to an
equivalent 3D immersed boundary simulation.

The values for the parameters listed in table 1 are prescribed as follows. The values for w and wEGJ are
determined by scaling a typical value of the width of the traveling contraction and the EGJ by the FLIP
length. The values for θc and θr are assigned based on the results in (Halder et al., 2021) and (Elisha et al.,
2022), which showed that θc is of order 10−1. The values for γ are estimated by scaling the time it takes
the EGJ to open by the time it takes to complete a typical contraction cycle. The value for SIC depends on

the constant volume of the bag, such that SIC = V/(Ao

∫ L

0
θIC(x)dx), where V is bag volume. This value

can go up to 4. Lastly, ψ and β span over a large range to cover all possible phenomena. Small β (order 1)
and large ψ (order 103) correspond to typical clinical values. However, this range only captures scenarios
wherein viscous effects are negligible. Therefore, we also include high β and small ψ values. Note that there
is no difference in the results for β = 1 or 100, hence β = 100 represents experimental case.

Table 1: List of non-dimensional parameters

Symbol Values Definition

β 100− 10, 000 Dimensionless strength of viscous effects (inverse of Reynolds number)
ψ 100− 10, 000 Dimensionless rigidity of the elastic tube (inverse of Cauchy number)
γ 0.06− 0.6 Dimensionless EGJ relaxation speed
θc 0.05− 0.2 Peristaltic contraction strength
θr 0.05− 0.2 EGJ contraction strength
w 0.25 Width of peristaltic wave
wEGJ 0.25 EGJ width
SIC 1.25− 2.0 Constant area that depends on the volume of the bag (α(τ = 0)/θ(τ = 0))

2.5 Work Balance

In this section, we will derive an equation to examine the way in which energy is expended during a con-
traction cycle. This will helps us reveal the leading parameters that control the hysteresis.

To derive the work balance equation, we multiply the momentum equation (2) by the flow rate Q = Au,
and rewrite it such that

A
∂

∂t

(
1

2
ρu2

)

+Q
∂

∂x

(
1

2
ρu2

)

= −Au
∂P

∂x
−

8πµuQ

A
. (17)

Next, we add the continuity equation to the left hand side of equation (17) and rearrange it to obtain

∂

∂t

(
1

2
ρAu2

)

+
∂

∂x

(
1

2
ρQu2

)

= −
∂ (AuP )

∂x
+ P

∂ (Au)

∂x
−

8πµuQ

A
. (18)

From equation (1), we can replace ∂ (Au) /∂x with −∂A/∂t, to acquire the final form of the momentum
equation

∂

∂t

(
1

2
ρAu2

)

+
∂

∂x

(
1

2
ρQu2

)

= −
∂ (AuP )

∂x
− P

∂A

∂t
−

8πµuQ

A
. (19)

Integrating equation (19) with respect to length results in a power conservation equation of the form

−

x2∫

x1

P
∂A

∂t
dx

︸ ︷︷ ︸

I

=
∂

∂t

x2∫

x1

(
1

2
ρAu2

)

dx

︸ ︷︷ ︸

II

+

x2∫

x1

8πµu2dx

︸ ︷︷ ︸

III

+(AuP )

∣
∣
∣
∣

x2

x1
︸ ︷︷ ︸

IV

+

(
1

2
ρAu3

) ∣
∣
∣
∣

x2

x1
︸ ︷︷ ︸

V

. (20)
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Fig. 5 Image showing the EGJ location on the elastic tube at τ = 0.

The equation above is the power balance equation. The left hand side is the rate of work done by the tube
wall, and the right hand side includes different ways in which the power is ‘consumed’ in the section of the
esophagus between x1 and x2 (called the ‘test section’). Each term in equation (20) is numbered, where (I) is
the rate of work done by the tube wall on the fluid within the test section, (II) is the rate of change in kinetic
energy of the fluid within the test section, (III) is the rate of energy loss due to viscous dissipation in the
test section, (IV) is the net rate of work done by the fluid within the test section on the fluid adjacent to the
test section by way of pressure acting on the cross-sections of either ends of the test section (for reference:
this is the negative of the power due to the driving pressure gradient in pipe flows), and (V) is the net flux
of kinetic energy out of the test section.

Integrating equation (20) with respect to time results in the work balance equation, such that

−

t2∫

t1

x2∫

x1

P
∂A

∂t
dxdt =

t2∫

t1

∂

∂t

x2∫

x1

(
1

2
ρAu2

)

dxdt+

t2∫

t1

x2∫

x1

8πµu2dxdt

+

t2∫

t1

(AuP )

∣
∣
∣
∣

x2

x1

dt+

t2∫

t1

(
1

2
ρAu3

) ∣
∣
∣
∣

x2

x1

dt.

(21)

The non-dimensional form of equation (21) is

−ψ

τ2∫

τ1

χ2∫

χ1

p
∂α

∂τ
dχdτ =

τ2∫

τ1

∂

∂τ

χ2∫

χ1

(
1

2
αU2

)

dχdτ + β

τ2∫

τ1

χ2∫

χ1

U2dχdτ

+ ψ

τ2∫

τ1

(αUp)

∣
∣
∣
∣

χ2

χ1

dτ +

τ2∫

τ1

(
1

2
αU3

) ∣
∣
∣
∣

χ2

χ1

dτ .

(22)

In our case, we want to look at the work balance throughout the entire contraction cycle, and therefore,
τ1 = 0 and τ2 = τf where τf is the final, non-dimensional time instant. For work balance along the entire
esophageal length, we set χ1 = 0 and χ2 = 1. For work balance at the EGJ, we specify the ‘EGJ region’ of
width wEGJ = χ2 − χ1 = 0.25 (seen in figure 5), where χ1 = 0.70 and χ2 = 0.95.

2.5.1 Passive & Active Work Decomposition

First we will define active and passive pressure and then we will define active and passive work. The
pressure term can be considered to have contributions from both the passive expansion of the tube wall
and the pressure rise or drop due to active contraction or relaxation of the wall (Acharya et al., 2021).
Correspondingly, the total work done by the tube wall on the fluid (LHS of equation (21)) will be the sum
of the passive and active work. Decomposing the total work into its active and passive components makes
it convenient to explain the difference between the two pressure-area loop types, as discussed in section 3.
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We decompose the total pressure into its active and passive components:

P (x, t) = Ppassive + Pactive. (23)

Consider a tube in its unstressed (zero pressure) configuration with θIC(x) = θ(x, t = 0) as the activation
function. Now imagine deforming this tube to any instantaneous configuration A(x, t) without changing
the activation function θIC(x). The equilibrium pressure (the pressure needed to balance the elastic stress)
inside the tube in this passively deformed state is defined as the passive pressure

Ppassive(x, t) = Ke

(
A(x, t)

AoθIC(x)
− 1

)

, (24)

where Po = 0 has been used. The non-dimensional form of equation (24) is

ppassive(χ, τ) =
α(χ, τ)

θIC(χ)
− 1. (25)

Now imagine that the deformed configuration in the above thought experiment is held fixed at A(x, t) while
the activation function is changed from θIC(x) to the actual instantaneous activation function θ(x, t). Since
the reference state of the tube is changed actively, the equilibrium pressure required to balance the elastic
stress would change. This change in equilibrium pressure caused by the change in the activation function is
defined as the active pressure

Pactive(x, t) = Ke

A(x, t)

Ao

(
1

θ(x, t)
−

1

θIC(x)

)

(26)

and the non-dimensional form of the active pressure is

pactive(χ, τ) = α

(
1

θ(χ, τ)
−

1

θIC(χ)

)

. (27)

Using the above decomposition of pressure, equation (21) can be written as

−

t2∫

t1

x2∫

x1

Pactive
∂A

∂t
dxdt =

t2∫

t1

∂

∂t

x2∫

x1

(
1

2
ρAu2

)

dxdt+

t2∫

t1

x2∫

x1

8πµu2dxdt

+

t2∫

t1

(AuP )

∣
∣
∣
∣

x2

x1

dt+

t2∫

t1

(
1

2
ρAu3

) ∣
∣
∣
∣

x2

x1

dt+

t2∫

t1

x2∫

x1

Ppassive
∂A

∂t
dxdt,

(28)

and equation (22) becomes

−ψ

τ2∫

τ1

χ2∫

χ1

pactive
∂α

∂τ
dχdτ =

τ2∫

τ1

∂

∂τ

χ2∫

χ1

(
1

2
αU2

)

dχdτ + β

τ2∫

τ1

χ2∫

χ1

U2dχdτ

+ ψ

τ2∫

τ1

(αUp)

∣
∣
∣
∣

χ2

χ1

dτ +

τ2∫

τ1

(
1

2
αU3

) ∣
∣
∣
∣

χ2

χ1

dτ + ψ

τ2∫

τ1

χ2∫

χ1

ppassive
∂α

∂τ
dχdτ ,

(29)

which is the non-dimensional form of equation (28). The term involving active pressure is defined as the
active work, whereas the term involving passive pressure is defined as the passive work (also to be referred
to as the passive elastic energy).

Notice that the passive pressure term is moved to the RHS of the equation. In this form of the equation,
the work done by the active pressure is equal to the consumers of this active work, which includes the passive
elastic energy of the tube wall (the passive pressure term on the RHS). We emphasize that the passive elastic
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energy of the wall is not the actual elastic energy stored in the wall for a given configuration. It is the energy
that would have been stored in the wall if the tube were deformed to its current configuration A(x, t) without
changing the activation function from the initial state θIC(x) to its current state θ(x, t).

Note that the proposed definitions of the passive and active pressures in equations (25) and (27), respec-
tively, ensure that two important consistency conditions are satisfied. First, note that at τ = 0, the traveling
peristaltic wave has yet to enter the domain and the EGJ is contracted, therefore the active pressure must
be equal to zero for all χ. To verify that, recall that θ = θIC at τ = 0. Plugging this into equation (27)
yields pactive = 0 for all χ. Second, at τ = 0, the total pressure (p = pactive + ppassive) must be uniform along
the tube. Since pactive = 0 initially, it implies that ppassive should be uniform along the tube at the initial
instant. Recall the initial condition that α(χ, τ = 0) = SICθIC(χ), where SIC is a constant. Using equation
(25), ppassive = SIC − 1, which is a constant for all χ.

3 Results and Discussion

3.1 Clinical Pressure-Area Loops at the EGJ

Figure 6 presents two plots of the pressure at the EGJ as a function of EGJ cross-sectional area during
contraction cycles in two different subjects. The pressure-area plot creates a loop with distinct opening and
closing curves (marked in blue and red, respectively), which indicates that there is some energy that is being
gained or lost by the EGJ. By making the distinction between the opening and closing curves, we identified
two physically distinct loop types. The first loop type, displayed in figure 6a looks like a typical hysteresis
loop, wherein the opening curve is above the closing curve. In contraction cycles with this loop type, the
dominant source of energy in the opening and closing cycle of the EGJ is the contraction wave. This loop
type will be called the pressure dominant loop (PDL) and it appears in 34% of the contraction cycles. The
second loop type, displayed in figure 6b is flipped, where the closing curve is above the opening curve. In
contraction cycles with this loop type, the dominant source of energy in the opening and closing cycle of
the EGJ is the active relaxation and contraction of the EGJ tone. This loop type will be called the tone
dominant loop (TDL) and it appears in 55% of the contraction cycles. The reason behind these names is in
the succeeding section. Note that the remaining 11% are contraction cycles in which a clearly defined loop
is not obtained (the opening and closing curves cross one another).
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(a) Pressure dominant loop
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(b) Tone dominant loop

Fig. 6 Two plots of the pressure-cross-sectional area at the esophagogastric junction extracted from two
different contraction cycles of two different subjects recorded clinically by a FLIP device. The plots show
two different loop types that arise in clinical data at the esophagogastric junction.
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3.2 Simulation Pressure-Area Loops at the EGJ

In the rest of this section, we use our simulation results to identify the key characteristics that define each loop
type the physical parameters that cause one loop to occur rather than the other. This is done by considering
the energy balance in the tube over time. In the first part of this section, we analyze the simulation results
over the entire tube length so that the overall energy balance is clear to the reader but subsequently our
main efforts focus on the EGJ. Later, we utilize the conclusions obtained by the simulation results and apply
them to clinical data. As discussed later in this section, the key parameters that affect the loop types are
ψ, β, and γ. Hence, all simulation results presented in this section use the same values for θc, θr, w, wEGJ,
and SIC, which are 0.2, 0.2, 0.25, 0.25, and 2, respectively.

3.2.1 Work Curves for the Entire Tube Length

We first look at the work balance over time along the entire esophageal length. Since the tube is closed on
both ends, the velocity at both ends is zero, and equation (29) simplifies to

−ψ

τ2∫

τ1

χ2∫

χ1

pactive
∂α

∂τ
dχdτ =

τ2∫

τ1

∂

∂τ

χ2∫

χ1

(
1

2
αU2

)

dχdτ + β

τ2∫

τ1

χ2∫

χ1

U2dχdτ + ψ

τ2∫

τ1

χ2∫

χ1

ppassive
∂α

∂τ
dχdτ . (30)

Figure 7 presents a plot of the work components in equation (30), normalized by ψ (w = Work/ψ), as a
function of time. The data plotted in the figure are extracted from one simulation of a single contraction
cycle, and the spatial integration is over the entire tube length. In this simulation, β = 100, ψ = 100, and
γ = 0.6. Note that the values of β and ψ considered in this analysis are much greater than 1. The kinetic
energy term (first term on the right hand side of equation (30)) is very small compared to the other terms
and thus not plotted.

Fig. 7 Passive, active, and viscous work curves along the entire esophageal length as a function of time. At
each time instant, the sum of the energy loss due to viscous dissipation and the passive energy stored in the
tube wall is equal to the active work done by the tube wall on the fluid. Each curve depicts the cumulative
work done in the corresponding mode up to a given time instant.

Figure 7 shows that at τ = 0, immediately prior to the peristaltic wave traveling into the domain; all
work components are equal to zero. However, once the contraction wave begins traveling and the EGJ begins
relaxing (τ ≈ 0.1), all three components start increasing, each having a unique pattern. Note that each curve
depicts the cumulative work done in the corresponding mode up to a given time instant.
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The passive elastic energy of the tube wall (last term on the right hand side of equation (30)) increases
as a result of the expansion of the tube wall. This increase continues until τ ≈ 0.70, when the peristaltic
wave begins contracting the EGJ, making the tube cross-sectional area closer to its original shape. Hence
the passive energy starts decreasing. The sharp decrease continues until the end of the contraction cycle,
when the passive energy recovers (wpassive,final = 0), indicating that the tube returned to its original shape.

The active work done by the wall on the fluid (the left hand side of equation (30)) curve has a similar
pattern. It increases with time as a result of both the contraction wave and EGJ relaxation. Once τ ≈ 0.70,
the active work that is defined by the change in θ starts decreasing since the contraction of the EGJ brings
θ closer to θIC. Lastly, the curve showing the energy loss due to viscous dissipation (second term on the
right hand side of equation (30)) has a different pattern. It maintains a steady increase throughout the
contraction cycle, which ends when the peristaltic wave stops traveling. Since viscous dissipation cannot be
recovered, wviscous 6= 0 at the end of the cycle. Hence, the active work at the end of the cycle is equal to the
energy that is dissipated. All the active work, coming either from contraction in the body of the esophagus
or from the relaxation within the EGJ region, is eventually lost via viscous dissipation.

3.2.2 Work Curves for the EGJ Region

In this section, we focus on a portion of the tube length, which we referred to as ‘EGJ region.’ Note that in
this case there are a few additional terms that arise in the work balance compared to the entire tube case.
We determine the total work done by the EGJ wall on the fluid over time and examine how this work relates
to the pressure-area loop and the shape of the tube. Moreover, we look at the work balance at the EGJ
region over time by plotting the curves of each of the work components from equation (29) as a function of
time. The limits of the spatial integration in this case were discussed in section 2.5.

Figure 8 presents the results of a typical single contraction cycle simulation with β = 100, ψ = 100, and
γ = 0.6. The graph at the top left displays the total work done by the EGJ wall on the fluid as a function
of time. This is calculated using the total pressure instead of just active or passive pressure components.
The bottom left figure presents the corresponding pressure-area loop at the EGJ location. The five points
highlighted on the loop and the work curve represent five time instants in the contraction cycle. The tube
profiles at these five instants are plotted on the right. Highlighting these instants allows us to relate the
total work done by the EGJ wall on the fluid to the pressure-area loop, which helps us to better understand
the loop types.

τ ≤ τ1. Initially, right before the peristaltic contraction enters the domain, the EGJ is contracted and the
total work done by the EGJ wall on the fluid is equal to zero.

τ1 < τ < τ3. Between τ1 and τ3, the peristaltic contraction wave travels along the length of the tube and,
simultaneously, the EGJ actively relaxes. Together, they cause an increase in the cross-sectional area
and the pressure at the EGJ, as seen in the loop in figure 8. Since the EGJ opens, it does negative work
on the fluid, which explains why the work in the top left of figure 8 is negative between τ1 and τ3. The

total work done by the EGJ wall during opening is therefore wopen = −ψ
τ3∫

τ1

χ2∫

χ1

p∂α
∂τ

dχdτ , represented

by the solid blue arrow in figure 9.

τ = τ3. At this instant, the EGJ is fully open, corresponding to the minimum point on the work plot in
figure 8.

τ3 < τ < τ5. Between τ3 and τ5, the peristaltic wave travels into the EGJ region which eventually closes
the EGJ. In this process, the cross-sectional area and pressure at the EGJ generally decrease as seen
in the loop in figure 8. Since the EGJ wall closes, it squeezes the fluid, applying positive work, which
is seen on the work plot in figure 8 by an increase in work between points 3 and 5. The total work

done by the EGJ wall during closing is therefore wclose = −ψ
τ5∫

τ3

χ2∫

χ1

p∂α
∂τ

dχdτ , represented by the dotted

red arrow in figure 9.
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Fig. 8 Simulation results of a single contraction cycle. The graph at the top left shows the curve of the
cumulative total work done by the EGJ wall on the fluid as a function of time. The plot at the bottom left
presents the corresponding pressure-area loop as recorded at the EGJ location. The right figure displays the
tube profile at five consecutive instants, ordered chronologically, corresponding to the five points highlighted
on the two left plots.

τ ≥ τ5. Finally, the peristaltic wave stops traveling and the tube returns to its initial shape. The final work
value is equal to the work done by the EGJ wall on the fluid during the entire cycle.

The work done by the EGJ wall through the entire contraction cycle is equal to the difference in the
magnitude of the work needed to close the EGJ to the work needed to open the EGJ. In figure 9, it is the
difference between the length of the dotted red and solid blue arrows. If the final value is positive, as it is in
figures 8 and 9, more work is needed to close the EGJ than to open it. On the other hand, if the work value
at the end of the cycle is negative, more work is needed to open the EGJ than to close it.

Before we proceed to understand how this relates to the two loop types identified earlier (figures 6a and
6b), we will consider the detailed work balance in the EGJ region. Figure 10 presents the work components
from equation (29) evaluated at the EGJ region as a function of time. The rate of change of kinetic energy
and the kinetic energy flux terms are not plotted in the figure since ψ >> 1 and β >> 1 and consequently
these contributions are small.

As figure 10 shows, the active (left hand side of equation (29)), passive (last term on the right hand
side of equation (29)), and viscous dissipation (second term on the right hand side of equation (29)) terms
display similar trends to the ones described in section 3.2.1 with one additional observation. The total
viscous dissipation in the EGJ region at the end of the contraction cycle is not equal to that the active work
done by the EGJ wall on the fluid. There is an additional contribution. Notice how the active work and
viscous dissipation curves are not superimposed on one another at the end of the cycle in figure 10. The
final viscous dissipation is greater than the total active work. This is because additional viscous dissipation
is caused by the work done on the fluid within the EGJ region by the pressure imposed on the cross-sections
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Fig. 9 Graph of the cumulative work done by the EGJ wall on the fluid up to an instant as a function of
time. The opening, closing, and net work done by the wall on the fluid area marked.

at the two ends of the EGJ region. This pressure work is equal to the negative of the third term on the RHS
of equation (29). Figure 10 has a curve for the third term on the RHS of equation (29).

Total work done by EGJ wall

Active work done by EGJ wall

Passive energy stored in EGJ wall

Energy loss due to viscous dissipation

Work done by fluid inside EGJ section on the fluid outside 

through pressure acting on the CSA

Fig. 10 Plot of the work components from equation (29) evaluated at the EGJ region as they progress over
time. Each curve depicts the cumulative work done in the corresponding mode up to a given instant. The
total work done by the EGJ wall on the fluid (LHS of equation (22) is also plotted.

3.2.3 Using Work Curves to Identify Loop Type

We now relate the above results to the two loop types identified earlier (figures 6a and 6b). To that end,
notice that if the pressure in the EGJ region is nearly uniform (which is a reasonable approximation) then
the area under the opening and closing curves in the pressure-area loop graph multiplied by the length of
the EGJ is equal to the work done by the fluid to open and close the EGJ walls, respectively.

In the pressure dominant loop, the opening curve is above the closing curve (figure 6a), which implies
|wopen| > |wclose|. This makes the net work value at the end of the cycle negative in a figure similar to 9.
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On the other hand in a tone dominant loop, the opening curve is below the closing curve (figure 6b), which
implies |wopen| < |wclose|. This makes the net work value at the end of the cycle positive as is the case in
figure 9. Hence, we wish to understand what makes |wclose| > |wopen| in a tone dominant loop as opposed
to |wclose| < |wopen| in a pressure dominant loop.

During the opening of the EGJ, the fluid (through pressure) does positive work on the EGJ wall, while
during closing, the EGJ wall does positive work on the fluid. Hence, if |wclose| > |wopen|, the EGJ wall
applies more work on the fluid than the fluid exerts on the wall, resulting in a positive net work and a tone
dominant loop. In contrast, if |wclose| < |wopen|, the fluid applies more work on the EGJ wall than the EGJ
wall exerts on the fluid, resulting in a negative net work and a pressure dominant loop. Thus, we wish to
identify and explain the key parameters which affect the relation between wclose and wopen.

Figure 11 displays a plot of only the total, active, and passive work components from figure 10. Five
regions are marked on the figure, each representing the magnitude of work done by or stored in the EGJ
wall during either opening or closing of the EGJ. The description of each region is presented in table 2. Note
that since passive energy fully recovers, the third term also represents the passive energy stored in the EGJ
wall during closing.

Table 2: Description of highlighted regions in figure 11

Name Symbol Definition

1 wActive,close Active work done by the EGJ wall on the fluid during closing
2 wTotal,close Total work done by the EGJ wall on the fluid during closing
3 wPassive,open Passive energy stored in the EGJ wall during opening
4 wTotal,open Total work done by the EGJ wall on the fluid during opening
5 wActive,net Net active work done by the EGJ wall on the fluid

As figure 11 shows, (3) = (1) + (4) + (5). Thus, (5) = (3) − (4) − (1), or (5) = wPassive,open −
(wPassive,open −wActive,open)−wActive,close = wActive,open −wActive,close. Therefore, the loop type depends on
the active opening work relative to the active closing work, which implies that active work is the only work
component needed to define the loop type.

Note that the active work is the work required to open the EGJ only by the muscle itself relaxing.
However, this can be reduced by helping the EGJ open through mechanical distention (change in the distal
pressure). Hence, in discussing what causes wclose to be larger or smaller than wopen, we must consider the
elements which affect distal pressure.

3.3 Key Parameters in Loop Type

Using the simulation results, we conduct a parametric study to examine the leading parameters that dictate
the loop type. Out of the eight parameters listed in table 1, only three parameters affect the loop type. These
non-dimensional parameters are ψ, β, and γ, each dominated by a different physical property, which are wall
stiffness, fluid viscosity, and EGJ relaxation speed, respectively. The rest of the parameters affect the loop
quantitatively, such as slightly changing the loop shape or area, but do not contribute to the conversion
between the two loop types.

In this section, we discuss the affect of ψ, β, and γ on the loop type through looking at the total, passive
and active work done by the EGJ wall. However, it is important to note that γ, which represents the speed
of the neurogenic mediated relaxation at the EGJ, is the primary mechanism in clinical FLIP data. Fluid
properties and esophageal stiffness are mostly consistent among clinical data. Consequently, they cannot be
considered the main explanation for the presence of two loop types.

3.3.1 EGJ Relaxation Speed

Figure 12 presents the work plots and pressure-cross-sectional area loops of two different contraction cycle
simulations with the same input parameters (β = 100, ψ = 600), but the value of γ. Figures 12a and
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Fig. 11 Plot of the total, active, and passive work components at the EGJ region as they progress over
time. The five regions marked on the figure represent the work done by or stored in the EGJ wall during
either opening or closing of the EGJ, defined in table 2.

12b display the work curves and pressure-area loop, respectively, for the simulation where the EGJ relaxes
quickly (γ = 0.06). Figures 12c and 12d display the work curves and pressure-area loop, respectively, for
the simulation where the EGJ relaxes slowly (γ = 0.6). As these figures show, EGJ neurogenic mediated
relaxation speed alone can change the loop type, with tone dominant loop associated with fast relaxation
of the EGJ and pressure dominant loop associated with slow relaxation of the EGJ. Accordingly, when the
EGJ relaxes quickly, |wclose| > |wopen|, which is equivalent to |wActive,close| < |wActive,open|, and when the
EGJ relaxes slowly, |wclose| < |wopen|, which is equivalent to |wActive,close| > |wActive,open|.

Notice from figures 12a and 12c that wActive,close is equal in both fast and slow relaxation simulations.
This is because all parameters during contraction, including the contraction pattern, are the same in both
cases. Thus, the difference in both the resulting loop type and the value of the net total work must originate
from the opening active work, where |wActive,open|γ=0.6 < |wActive,open|γ=0.06. The active work done by
the EGJ wall during opening when the EGJ relaxes slowly is less than when the EGJ relaxes quickly
(|wActive,open|slow < |wActive,open|fast).

Recall that when the EGJ starts relaxing, the reference area at the EGJ starts increasing such that
the actual shape lags the relaxed shape. The active work is the work done by EGJ tone to overcome fluid
suction and match the actual shape to the relaxed shape. As previously mentioned, this work can be reduced
by helping the EGJ open through mechanical distention by increasing pressure at the EGJ location (distal
pressure). In the case of the esophagus, distal pressure increases by a peristaltic wave traveling down the
tube length, which takes place in parallel to the active relaxation of the EGJ. Through this pressure increase,
the amount of active work exerted by the EGJ wall on the fluid is reduced in two ways. First, it reduces
the effect of fluid suction. Second, it increases the cross-sectional area at the EGJ, making the actual EGJ
cross-section closer to the reference cross-section.

When the EGJ relaxes quickly, the reference area grows rapidly, but the peristaltic wave has barely
traveled, as seen in figure 3b. Consequently, the contribution from pressure increase by the traveling con-
traction wave is limited, such that the EGJ tone must apply more active work to increase the actual EGJ
cross-sectional area to match the fast-increasing reference area. The lack of contribution from mechanical
distention in this cases causes |wActive,close| < |wActive,open|.
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(a) Work curves, γ = 0.06
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(b) Pressure-area loop at EGJ, γ = 0.06

(c) Work curves, γ = 0.6
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(d) Pressure-area loop at EGJ, γ = 0.6

Fig. 12 Results of two contraction cycle simulations, differentiated by the implemented γ value. Figures
(a) and (c) present the total, passive and active work curves evaluated at the EGJ region as a function of
time. Figures (b) and (d) display the corresponding pressure-cross-sectional area plots at the EGJ location
throughout the contraction cycle. One simulation results in a tone dominant loop and the other in a pressure
dominant loop.

Notice that we only discuss EGJ relaxation speed, ignoring the potential affect of the closing pattern
on the resulting loop type. By looking at clinical FLIP recordings of different contraction cycles, it was
observed that the active contraction of the EGJ is set by the peristaltic wave traveling into and stopping
at the EGJ location, similar to the pattern used in the model above (Acharya et al., 2020; Lin et al., 2013;
Carlson et al., 2016). Thus, the speed of the contraction of the EGJ at the end of the contraction cycle
depends on the speed of the traveling wave. While we recognize that the speed of the traveling contraction is
a parameter in the system that affects the neurally controlled activation function at the EGJ, we argue that
relaxation pattern is the more dominant parameter in differentiating loop types. This is because the speed
of the traveling contraction does not widely vary across subjects. The wave speed c is a known constant
(c = 1.5 − 3 cm/s) that was determined by calculating the distance traveled by the contraction wave over
time (Kou et al., 2015; Li et al., 1994).
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3.3.2 Tube Stiffness

While the the primary mechanism of the emergence of two pressure-cross-sectional area loop types in clinical
FLIP data is the EGJ relaxation speed dictated by neurally controlled muscle activation, ψ and β also play
a role. For the purpose of completeness as well as obtaining a better understanding of peristaltic flow in a
flexible tube, we present the results attained by varying these two parameters. The following section focuses
on the affect of stiffness, through changing the value of ψ = Ke/ρc

2, on the resulting loop type.
Figure 13 presents the work plots and pressure-cross-sectional area loops of two different contraction

cycle simulations with the same input parameters (β = 100, γ = 0.6), but the value of ψ. Figures 13a and
13b display the work curves and pressure-cross-sectional area loop, respectively, for the simulation where
wall stiffness is relatively low (ψ = 100). Figures 13c and 13d display the work curves and pressure-cross-
sectional area loop, respectively, for the simulation where wall stiffness is relatively high (ψ = 2, 400). As
the figure shows, change in ψ is sufficient to affect the loop type, where high values of ψ are associated with
pressure dominant loops (figure 6a) and low values of ψ are associated with tone dominant loops (figure
6b). As expected, figure 13 shows that the tone dominant case displays |wclose| > |wopen|, while the pressure
dominant case displays |wclose| < |wopen|.

(Acharya et al., 2021) and (Elisha et al., 2022) studied the relation between wall stiffness and tube
deformation in peristaltic flow through a flexible tube closed on both ends. They revealed that when wall
stiffness is high, it resists deformation, so as the wave travels down the tube length, the displaced fluid is
forced to flow back through the peristaltic contraction. This is because more energy is needed to expand
the tube wall distal to the traveling contraction than the energy needed to overcome flow resistance across
the contraction. On the other hand, when stiffness is low, the tube wall distal to the contraction tends to
expand to accommodate for the fluid that is being displaced by the traveling peristaltic wave.

With the above knowledge in mind, we can explain the observations attained from figure 13. The lower the
stiffness, the more compliant the tube is, and the distal cross-sectional area expands further to accommodate
for the displaced fluid. The extended expansion of the distal tube wall means that a large amount of fluid
has accumulated at the EGJ location, which increases fluid resistance (Elisha et al., 2022). Hence, when the
EGJ starts closing, the resistance is high, and the EGJ tone needs to apply more work on the fluid in order
to close. Consequently, we see that |wclose| > |wopen| and a corresponding tone dominant loop. In the second
scenario, where tube stiffness is high, the wall resists its expansion so that fluid is more equally distributed
along the tube length. Thus, less work is required to contract the EGJ wall than to expand it, which implies
|wclose| < |wopen| and the corresponding loop is a pressure dominant loop.

3.3.3 Fluid Viscosity

We can do a similar analysis as in section 3.3.2, but this time, we focus on parameter β = 8πµL/ρAoc.
Figure 14 presents the work plots and pressure area loops of two different contraction cycle simulations of
the same input parameters (ψ = 100, γ = 0.6), but the value of β. In the work plot and loop in figures
14a and 14b, respectively, β = 100, and in the work plot and loop in figures 14c and 14d, respectively,
β = 1, 000. As the figure shows, change in β is sufficient to affect the loop type, where low values of β are
associated with pressure dominant loops (figure 6a) and high values of β are associated with tone dominant
loops (figure 6b). Since the parameter β is dominated by the fluid viscosity (µ), varying the value of β can
be looked at as varying fluid viscosity. Hence, pressure dominant loop is associated with low fluid viscosity
and tone dominant loop is associated with high fluid viscosity. As predicted by previous discussions, figure
14 shows that the tone dominant case displays |wclose| > |wopen|, while the pressure dominant case displays
|wclose| < |wopen|.

In order to explain this observation, we refer back to the conclusions obtained by (Acharya et al., 2021)
and (Elisha et al., 2022). As long as the traveling peristaltic wave remains contracted, the fluid resistance
increases with the increase in fluid viscosity. If the resistance to flow is high, less energy is needed to expand
the tube wall distal to the traveling contraction than the energy needed to overcome flow resistance across
the contraction. Thus, high viscosity results in cross-sectional area expansion at the distal end, causing
fluid to accumulate at the EGJ location. Both the fluid accumulation at the EGJ location and the high
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(a) Work curves, ψ = 100
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(c) Work curves, ψ = 2, 400
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Fig. 13 Results of two contraction cycle simulations, differentiated by the implemented ψ value. Figures
(a) and (c) present the total, passive and active work curves evaluated at the EGJ region as a function of
time. Figures (b) and (d) display the corresponding pressure-cross-sectional area plots at the EGJ location
throughout the contraction cycle. One simulation results in a tone dominant loop and the other in a pressure
dominant loop.

flow resistance caused by increasing viscosity requires large amount of work to close the EGJ, such that
|wclose| > |wopen| is observed and a tone dominant loop emerges. On the other hand, when the viscosity is
low, the flow resistance is low, and it is favorable for the system to allow back flow through the contraction
than to expand the tube walls to accommodate the displaced fluid. Therefore, it appears that less work
in needed to close the EGJ than to open it. In this case, |wclose| < |wopen| and a pressure dominant loop
emerges.

3.4 Application to Clinical Data

Since the fluid viscosity and esophagus stiffness are generally the same among subjects, the results pre-
sented in section 3.3 indicate that the main parameter causing the difference in the pressure-area loops is
neuromuscular. We wish to examine this conclusion by directly calculating and plotting the work curves of
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(a) Work curves, β = 100
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(c) Work curves, β = 1, 000
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(d) Pressure-area loop at EGJ, β = 1, 000

Fig. 14 Results of two contraction cycle simulations, differentiated by the implemented β value. Figures
(a) and (c) present the total, passive and active work curves evaluated at the EGJ region as a function of
time. Figures (b) and (d) display the corresponding pressure-cross-sectional area plots at the EGJ location
throughout the contraction cycle. One simulation results in a tone dominant loop and the other in a pressure
dominant loop.

clinical data alongside their pressure-cross-sectional area loops. For this calculation, the cross-sectional area
values are direct FLIP readings. The activation function (θ(x, t)), Po, and the ratio Ke/Ao are calculated
as proposed by Halder et al. (2021) using the momentum equation in equation (2). The fluid properties are

density ρ = 1000 kg/m
3
and viscosity µ = 0.001 Pa · s (Kou et al., 2015).

Figure 15 presents the graph of the total work done by the EGJ wall (left) alongside the corresponding
pressure-area loop at the EGJ location (right) of a clinical contraction cycle. As the figure shows, the overall
pattern of the work curve and its relation to the loop is the same as in the simulations, as observed by
highlighting five instances on the two figures. During EGJ opening, the total work done by the EGJ wall on
the fluid decreases while the pressure and cross-sectional area increase. At point 3, the EGJ is fully open, so
that the pressure and cross-sectional area are maximal, while the cumulative total work is at its minimum.
Once the EGJ starts to close, it does positive work on the fluid so the total work done by the EGJ wall on
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the fluid increases while pressure and cross-sectional area decrease. The value of the net work (at point 5)
is negative, a characteristic of a pressure dominant loop, which is exactly the loop type corresponding to
this work plot. Hence, we can explain the clinical work curve based on the conclusions from the simulation
results discussed in section 3.2.2.
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1

2

3

4

5

Fig. 15 Plots of the total work done by the EGJ wall of the fluid (left) and the corresponding pressure-cross-
sectional area plot at the EGJ location (right), extracted from clinical FLIP reading of a single contraction
cycle.

Figure 16 presents the work curves and pressure-cross-sectional area plots of two contraction cycles,
extracted from clinical FLIP data. Figure 16a presents a pressure dominant loop and figure 16b presents
a tone dominant loop. As the figure shows, the net work done by the EGJ wall is positive for the tone
dominant loop and negative for pressure dominant loop. In addition, the figure shows that the passive
and active work curves display similar trends to the ones obtained by the simulations. The most important
observation however can be extracted by highlighting one instance in the contraction cycle, which correspond
to when the EGJ is fully open. As the figure shows, the full opening for the tone dominant loop occurs
earlier in the cycle than for the pressure dominant loop. As concluded in section 3.3.1, this is the parameter
differentiating the two loops. The slower the opening, the higher the contribution of mechanical distention,
and the less active work the EGJ needs to exert on the fluid in order to open.
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(a) Plot of the total, active and passive work evaluated at the EGJ (left) and the corresponding pressure
cross-sectional area plot at the EGJ location (right), extracted from clinical FLIP reading of a single
contraction cycle. This contraction cycle exhibiting a pressure dominant loop.

(b) Plot of the total, active and passive work evaluated at the EGJ (left) and the corresponding pressure
cross-sectional area plot at the EGJ location (right), extracted from clinical FLIP reading of a single
contraction cycle. This contraction cycle exhibiting a tone dominant loop.

Fig. 16 Comparing work plots and pressure-area loops of two clinical contraction cycles. The figure at the
top corresponds to contraction cycle with pressure dominant loop whereas the figure at the bottom figure
corresponds to contraction cycle with tone dominant loop.

4 Conclusion

The main objective of this study was to get a better understanding of the opening and closing mechanism
of the EGJ during a contraction cycle. Post processing clinical FLIP data led to identifying two major
pressure-cross-sectional area loop types. The tone dominant loop, identified as the loop wherein the closing
curve is above the opening curve, is characterized by low esophageal stiffness, high fluid viscosity, and rapid
relaxation of EGJ tone. In contraction cycles with tone dominant loop, the net work done by the EGJ wall
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throughout the contraction cycle is positive, which implies that the EGJ wall applies more work on the fluid
than the pressure in the fluid applies on the EGJ wall. The pressure dominant loop, identified as the loop
where the opening curve is above the closing curve, is characterized by high esophageal stiffness, low fluid
viscosity, and slow relaxation of the EGJ tone. In contraction cycles with a pressure dominant loop, the net
work done by the EGJ wall throughout the contraction cycle is negative, which implies that the pressure in
the fluid applies more work on the EGJ wall than the EGJ wall applies on the fluid.

In this work, we dissected a clinical phenomenon into its physical parameters. Hence, rather than
examining the pressure-cross-sectional area loops at the EGJ as a function of time, we aimed to get a better
understanding of the EGJ function through mechanics, and therefore, identify the leading parameter that
dictates the loop shape. From the simulations and parametric study presented in this writing, we concluded
that the dominant reason for the presence of two pressure-area loop types at the EGJ during a contraction
cycle is controlled by neuromuscular mechanism. The activation function applied by the esophageal muscles
dictates the loop type rather than fluid or material properties. Moreover, this work is another example of a
fundamental study which helps us explain clinical observations. While the pressure-area loops at the EGJ
are generally viewed as noisy, they are shown to be the result of a clear, repeating pattern that we can
physically explain. The conclusions of this work give us a better view into the physical held of the system,
and a deeper understanding of the EGJ function. These insights bring us a step closer to identifying the
underlying conditions that cause EGJ dysfunction.
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