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S c al a bl e  Distri b ut e d  O pti mi z ati o n of
M ulti- Di m e nsi o n al F u n cti o ns  D es pit e

B y z a nti n e  A d v ers ari es
K a n a n art  K u w ar a n a n c h ar o e n ,  M e m b er, I E E E, L ei Xi n , St u d e nt  M e m b er, I E E E,

a n d S hr e y as S u n d ar a m , S e ni or  M e m b er, I E E E

A bstr a ct — T h e p r o bl e m of dist ri b ut e d o pti mi z ati o n r e q ui r es a
g r o u p of n et w o r k e d a g e nts t o c o m p ut e a p a r a m et e r t h at  mi ni-
mi z es t h e a v e r a g e of t h ei r l o c al c ost f u n cti o ns.  W hil e t h e r e a r e
a v a ri et y of dist ri b ut e d o pti mi z ati o n al g o rit h ms t h at c a n s ol v e
t his p r o bl e m, t h e y a r e t y pi c all y v ul n e r a bl e t o “ B y z a nti n e ” a g e nts
t h at d o n ot f oll o w t h e al g o rit h m.  R e c e nt att e m pts t o a d d r ess t his
iss u e f o c us o n si n gl e di m e nsi o n al f u n cti o ns, o r ass u m e c e rt ai n
st atisti c al p r o p e rti es of t h e f u n cti o ns at t h e a g e nts. I n t his p a p e r,  w e
p r o vi d e t w o r esili e nt, s c al a bl e, dist ri b ut e d o pti mi z ati o n al g o rit h ms
f o r  m ulti- di m e nsi o n al f u n cti o ns.  O u r s c h e m es i n v ol v e t w o filt e rs,
( 1) a dist a n c e- b as e d filt e r a n d ( 2) a  mi n- m a x filt e r,  w hi c h e a c h
r e m o v e n ei g h b o r h o o d st at es t h at a r e e xt r e m e ( d e fi n e d p r e cis el y
i n o u r al g o rit h ms) at e a c h it e r ati o n.  We s h o w t h at t h es e al g o rit h ms
c a n  miti g at e t h e i m p a ct of u p t o F ( u n k n o w n)  B y z a nti n e a g e nts
i n t h e n ei g h b o r h o o d of e a c h r e g ul a r a g e nt. I n p a rti c ul a r,  w e s h o w
t h at if t h e n et w o r k t o p ol o g y s atis fi es c e rt ai n c o n diti o ns, all of t h e
r e g ul a r a g e nts’ st at es a r e g u a r a nt e e d t o c o n v e r g e t o a b o u n d e d
r e gi o n t h at c o nt ai ns t h e  mi ni mi z e r of t h e a v e r a g e of t h e r e g ul a r
a g e nts’ f u n cti o ns.

I n d e x  Ter ms — B y z a nti n e att a c ks, c o n v e x o pti mi z ati o n,
dist ri b ut e d al g o rit h ms, f a ult t ol e r a n c e, g r a p h t h e o r y,  m a c hi n e
l e a r ni n g,  m ulti- a g e nt s yst e ms, n et w o r k s e c u rit y.

I. IN T R O D U C TI O N

T H E d esi g n of distri b ut e d al g orit h ms h as r e c ei v e d si g ni fi-
c a nt att e nti o n i n t h e p ast f e w d e c a d es [ 1], [ 2]. I n p arti c ul ar,

f or t h e pr o bl e m of distri b ut e d o pti mi z ati o n, a s et of a g e nts i n a
n et w or k ar e r e q uir e d t o r e a c h a gr e e m e nt o n a p ar a m et er t h at
mi ni mi z es t h e a v er a g e of t h eir l o c al o bj e cti v e f u n cti o ns, usi n g
i nf or m ati o n r e c ei v e d fr o m t h eir n ei g h b ors [ 3], [ 4], [ 5], [ 6]. A

M a n us cri pt r e c ei v e d 2 7 J ul y 2 0 2 3; r e vis e d 2 0  D e c e m b er 2 0 2 3; a c c e pt e d 3
M ar c h 2 0 2 4.  D at e of p u bli c ati o n 2 2  M ar c h 2 0 2 4; d at e of c urr e nt v ersi o n 9  A pril
2 0 2 4.  T his  w or k  w as s u p p ort e d b y t h e  N ati o n al S ci e n c e F o u n d ati o n  C A R E E R
u n d er  A w ar d 1 6 5 3 6 4 8.  T h e ass o ci at e e dit or c o or di n ati n g t h e r e vi e w of t his
m a n us cri pt a n d a p pr o vi n g it f or p u bli c ati o n  w as  Dr.  Lif e n g  L ai. ( C orr es p o n di n g
a ut h or: L ei  Xi n.)

K a n a n art  K u w ar a n a n c h ar o e n  w as  wit h P ur d u e  U ni v ersit y,  West  L af a y ett e,
I N 4 7 9 0 7  U S A.  H e is n o w  wit h I nt el  C or p or ati o n,  Hills b or o,  O R 9 7 1 2 4  U S A
( e- m ail: k a n a n art. k u w ar a n a n c h ar o e n @i nt el. c o m).

L ei  Xi n is  wit h t h e  D e p art m e nt of  C o m p ut er S ci e n c e a n d  E n gi n e eri n g,
T h e  C hi n es e  U ni v ersit y of  H o n g  K o n g,  H o n g  K o n g ( e- m ail: l xi ns h e n qi n g @
g m ail. c o m).

S hr e y as S u n d ar a m is  wit h t h e  El m or e F a mil y S c h o ol of  El e ctri c al a n d  C o m-
p ut er  E n gi n e eri n g, P ur d u e  U ni v ersit y,  West  L af a y ett e, I N 4 7 9 0 7  U S A ( e- m ail:
s u n d ar a 2 @ p ur d u e. e d u).
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v ari et y of a p pr o a c h es h a v e b e e n pr o p os e d t o t a c kl e diff er e nt
c h all e n g es of t his pr o bl e m, e. g., distri b ut e d o pti mi z ati o n u n-
d er c o nstr ai nts [ 7], distri b ut e d o pti mi z ati o n u n d er ti m e- v ar yi n g
gr a p hs [ 8], a n d distri b ut e d o pti mi z ati o n f or n o n- c o n v e x n o n-
s m o ot h f u n cti o ns [ 9].  H o w e v er, t h es e e xisti n g  w or ks t y pi c all y
m a k e t h e ass u m pti o n t h at all a g e nts ar e tr ust w ort h y a n d c o o p-
er ati v e (i. e., t h e y f oll o w t h e pr es cri b e d pr ot o c ol); i n d e e d, s u c h
pr ot o c ols f ail if e v e n a si n gl e a g e nt b e h a v es i n a  m ali ci o us or
i n c orr e ct  m a n n er [ 1 0].

As s e c urit y b e c o m es a  m or e i m p ort a nt c o nsi d er ati o n i n l ar g e
s c al e s yst e ms, it is cr u ci al t o d e v el o p al g orit h ms t h at ar e r esili e nt
t o a g e nts t h at d o n ot f oll o w t h e pr es cri b e d al g orit h m.  A h a n df ul
of r e c e nt p a p ers h a v e c o nsi d er e d f a ult t ol er a nt al g orit h ms f or
t h e c as e  w h er e a g e nt  mis b e h a vi or f oll o ws s p e ci fi c p att er ns [ 1 1],
[ 1 2].  A  m or e g e n er al ( a n d s eri o us) f or m of  mis b e h a vi or is c a p-
t ur e d b y t h e B yz a nti n e a d v ers ar y  m o d el fr o m c o m p ut er s ci e n c e,
w h er e  mis b e h a vi n g a g e nts c a n s e n d ar bitr ar y ( a n d c o n fli cti n g)
v al u es t o t h eir n ei g h b ors at e a c h it er ati o n of t h e al g orit h m.  U n d er
s u c h  B y z a nti n e b e h a vi or, it h as b e e n s h o w n t h at it is i m p ossi bl e
t o g u ar a nt e e c o m p ut ati o n of t h e tr u e o pti m al p oi nt [ 1 0], [ 1 3].
T h us, r es e ar c h ers h a v e b e g u n f or m ul ati n g distri b ut e d o pti mi z a-
ti o n al g orit h ms t h at all o w t h e n o n- a d v ers ari al n o d es t o c o n v er g e
t o a c ert ai n r e gi o n s urr o u n di n g t h e tr u e  mi ni mi z er, r e g ar dl ess of
t h e a d v ers ari es’ a cti o ns [ 1 0], [ 1 3], [ 1 4], [ 1 5].

It is  w ort h n oti n g t h at o n e  m aj or li mit ati o n of t h e a b o v e
w or ks [ 1 0], [ 1 3], [ 1 4], [ 1 5] is t h at t h e y all  m a k e t h e ass u m pti o n
of s c al ar- v al u e d o bj e cti v e f u n cti o ns, a n d t h e e xt e nsi o n of t h e
a b o v e i d e as t o g e n er al  m ulti- di m e nsi o n al c o n v e x f u n cti o ns r e-
m ai ns l ar g el y o p e n. I n f a ct, o n e  m aj or c h all e n g e f or  mi ni mi zi n g
m ulti- di m e nsi o n al f u n cti o ns is t h at t h e r e gi o n c o nt ai ni n g t h e
mi ni mi z er of t h e s u m of f u n cti o ns is its elf dif fi c ult t o c h ar a c-
t eri z e. S p e ci fi c all y, i n c o ntr ast t o t h e c as e of s c al ar f u n cti o ns,
w h er e t h e gl o b al  mi ni mi z er 1 al w a ys li es  wit hi n t h e s m all est
i nt er v al c o nt ai ni n g all l o c al  mi ni mi z ers, t h e r e gi o n c o nt ai ni n g
t h e  mi ni mi z er of t h e s u m of  m ulti- di m e nsi o n al f u n cti o ns  m a y
n ot n e c ess aril y b e i n t h e c o n v e x h ull of t h e  mi ni mi z ers [ 1 6].

T h er e e xists a br a n c h of lit er at ur e f o c usi n g o n s e c ur e dis-
tri b ut e d  m a c hi n e l e ar ni n g i n a cli e nt-s er v er ar c hit e ct ur e [ 1 7],
[ 1 8], [ 1 9],  w h er e t h e s er v er a p pr o pri at el y filt ers t h e i nf or m ati o n

1 We  will us e t h e t er ms “ gl o b al  mi ni mi z er ” a n d “ mi ni mi z er of t h e s u m ”
i nt er c h a n g e a bl y si n c e  w e o nl y c o nsi d er c o n v e x f u n cti o ns.
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r e c ei v e d fr o m t h e cli e nts.  H o w e v er, t h eir e xt e nsi o ns t o a dis-
tri b ut e d ( p e er-t o- p e er) s etti n g r e m ai ns u n cl e ar.  T h e p a p ers [ 2 0],
[ 2 1], [ 2 2] c o nsi d er a v e ct or v ersi o n of t h e r esili e nt  m a c hi n e
l e ar ni n g pr o bl e m i n a distri b ut e d ( p e er-t o- p e er) s etti n g.  T h es e
p a p ers s h o w t h at t h e st at es of r e g ul ar n o d es  will c o n v er g e t o
t h e st atisti c al  mi ni mi z er  wit h hi g h pr o b a bilit y ( as t h e a m o u nt of
d at a of e a c h n o d e g o es t o i n fi nit y), b ut t h e a n al ysis is r estri ct e d t o
i.i. d tr ai ni n g d at a a cr oss t h e n et w or k.  H o w e v er,  w h e n e a c h a g e nt
h as a fi nit e a m o u nt of d at a, t h es e al g orit h ms ar e still v ul n er a bl e
t o s o p histi c at e d att a c ks as s h o w n i n [ 2 3]. T h e w or k [ 2 4] c o n-
si d ers a  B y z a nti n e distri b ut e d o pti mi z ati o n pr o bl e m f or  m ulti-
di m e nsi o n al f u n cti o ns, b ut r eli es o n r e d u n d a n c y a m o n g t h e
l o c al f u n cti o ns, a n d als o r e q uir es t h e u n d erl yi n g c o m m u ni c ati o n
n et w or k t o b e c o m pl et e.  T h e  w or k pr es e nt e d i n [ 2 5] pr o p os es a
r esili e nt al g orit h m u n d er st atisti c al c h ar a ct eristi c ass u m pti o ns
b ut l a c ks g u ar a nt e es.  T h e r e c e nt  w or k [ 2 6] st u di es r esili e nt
st o c h asti c o pti mi z ati o n pr o bl e m u n d er n o n- c o n v e x a n d s m o ot h
ass u m pti o ns o n l o c al f u n cti o ns,  w hi c h diff ers fr o m o ur f o c us.
T h e al g orit h m pr o p os e d i n t h at  w or k a c hi e v es c o n v er g e n c e t o
a st ati o n ar y p oi nt u p t o a c o nst a nt err or b ut d o es n ot e ns ur e
as y m pt oti c c o ns e ns us.  A d diti o n all y, t h e r e c e nt  w or k [ 2 7] off ers
c o n v er g e n c e g u ar a nt e es t o a n ei g h b or h o o d of t h e o pti m al s o-
l uti o n u n d er d et er mi nisti c s etti n gs, b ut it p ert ai ns t o a disti n ct
cl ass of f u n cti o ns – str o n gl y c o n v e x a n d s m o ot h f u n cti o ns.

T o t h e b est of o ur k n o wl e d g e, o ur c o nf er e n c e p a p er [ 2 8] is
t h e first o n e t h at pr o vi d es a s c al a bl e al g orit h m  wit h c o n v er g e n c e
g u ar a nt e es i n g e n er al n et w or ks u n d er v er y g e n er al c o n diti o ns o n
t h e  m ulti- di m e nsi o n al c o n v e x f u n cti o ns h el d b y t h e a g e nts i n t h e
pr es e n c e of  B y z a nti n e f a ults.  Diff er e nt fr o m e xisti n g  w or ks, t h e
al g orit h m i n [ 2 8] d o es n ot r el y o n a n y st atisti c al ass u m pti o ns
or r e d u n d a n c y of l o c al f u n cti o ns.  Te c h ni c all y, t h e a n al ysis a d-
dr ess es t h e c h all e n g e of fi n di n g a r e gi o n t h at c o nt ai ns t h e gl o b al
mi ni mi z er f or  m ulti pl e- di m e nsi o n al f u n cti o ns, a n d s h o ws t h at
r e g ul ar st at es ar e g u ar a nt e e d t o c o n v er g e t o t h at r e gi o n u n d er t h e
pr o p os e d al g orit h m.  T h e  Dist a n c e- Mi n M a x Filt eri n g  D y n a mi cs
i n [ 2 8] r e q uir es e a c h r e g ul ar n o d e t o c o m p ut e a n a u xili ar y
p oi nt usi n g r esili e nt as y m pt oti c c o ns e ns us t e c h ni q u es o n t h eir
i n di vi d u al f u n cti o ns’  mi ni mi z ers i n a d v a n c e.  Aft er t h at, t h er e ar e
t w o filt eri n g st e ps i n t h e  m ai n al g orit h m t h at h el p r e g ul ar n o d es
t o dis c ar d e xtr e m e st at es.  T h e first st e p is t o r e m o v e e xtr e m e
st at es ( b as e d o n t h e dist a n c e t o t h e a u xili ar y p oi nt), a n d t h e
s e c o n d st e p is t o r e m o v e st at es t h at h a v e e xtr e m e v al u es i n a n y
of t h eir c o m p o n e nts.  O n t h e ot h er h a n d, t h e al g orit h m i n [ 2 8]
s uff ers fr o m t h e n e e d t o c o m p ut e t h e a u xili ar y p oi nt pri or t o
r u n ni n g t h e  m ai n al g orit h m, si n c e t h e fi x e d a u xili ar y p oi nt is o nl y
a c hi e v e d b y t h e r esili e nt c o ns e ns us al g orit h m as y m pt oti c all y.

I n t his p a p er,  w e eli mi n at e t his dr a w b a c k.  T h e al g orit h ms
a n d a n al ysis  w e pr o p os e h er e e x p a n d u p o n t h e  w or k i n [ 2 8]
i n t h e f oll o wi n g si g ni fi c a nt  w a ys. First, t h e al g orit h ms i n t his
p a p er bri n g t h e c o m p ut ati o n of t h e a u xili ar y p oi nt i nt o t h e  m ai n
al g orit h m, s o t h at t h e l o c al u p d at e of a u xili ar y p oi nt a n d l o c al
filt eri n g str at e gi es ar e p erf or m e d si m ult a n e o usl y.  T his  m a k es t h e
a n al ysis  m u c h  m or e i n v ol v e d si n c e  w e n e e d t o t a k e i nt o a c c o u nt
t h e c o u pl e d d y n a mi cs of t h e esti m at e d a u xili ar y p oi nt a n d t h e
o pti mi z ati o n v ari a bl es. S e c o n d, t h e al g orit h ms  m a k e b ett er us e
of l o c al i nf or m ati o n b y i n cl u di n g e a c h r e g ul ar n o d e’s o w n st at e
as a  m etri c. I n pr a cti c e,  w e o bs er v e t h at t his p erf or ms b ett er t h a n

t h e a p pr o a c h i n [ 2 8], si n c e e a c h a g e nt  m a y dis c ar d f e w er st at es
a n d h e n c e, t h er e ar e  m or e n o n- e xtr e m e st at es t h at c a n h el p t h e
r e g ul ar a g e nts g et cl os e t o t h e tr u e gl o b al  mi ni mi z er.  A g ai n,  w e
c h ar a ct eri z e t h e c o n v er g e n c e r e gi o n t h at all r e g ul ar st at es ar e
g u ar a nt e e d t o c o n v er g e t o usi n g t h e pr o p os e d al g orit h m.  T hir d,
w e pr es e nt a n alt er n at e al g orit h m i n t his p a p er  w hi c h o nl y  m a k es
us e of t h e dist a n c e filt er ( as o p p os e d t o b ot h t h e dist a n c e a n d  mi n-
m a x filt er);  w e s h o w t h at t his al g orit h m si g ni fi c a ntl y r e d u c es
t h e r e q uir e m e nts o n t h e n et w or k t o p ol o g y f or o ur c o n v er g e n c e
g u ar a nt e es, at t h e c ost of l osi n g g u ar a nt e es o n c o ns e ns us of t h e
r e g ul ar n o d es’ st at es. I m p ort a ntl y, o ur  w or k r e pr es e nts t h e first
att e m pt t o pr o vi d e c o n v er g e n c e g u ar a nt e es i n a g e o m etri c s e ns e,
c h ar a ct eri zi n g a r e gi o n  w h er e all st at es ar e e ns ur e d t o c o n v er g e
t o,  wit h o ut r el yi n g o n a n y st atisti c al ass u m pti o ns or r e d u n d a n c y
of l o c al f u n cti o ns.

O ur p a p er is or g a ni z e d as f oll o ws. S e cti o n II i ntr o d u c es
v ari o us  m at h e m ati c al pr eli mi n ari es, a n d st at es t h e pr o bl e m of
r esili e nt distri b ut e d o pti mi z ati o n.  We pr o vi d e o ur pr o p os e d al-
g orit h ms i n S e cti o n III.  We t h e n st at e t h e ass u m pti o ns a n d s o m e
i m p ort a nt r es ults r el at e d t o pr o p erti es of t h e pr o p os e d al g orit h ms
i n S e cti o n I V. I n S e cti o n V ,  w e pr o vi d e dis c ussi o n o n t h e r es ults.
Fi n all y,  w e si m ul at e o ur al g orit h ms t o n u m eri c all y e v al u at e t h eir
p erf or m a n c e i n S e cti o n VI , a n d c o n cl u d e i n S e cti o n VII .

II.  MA T  H E  M  A T I C  A L N O T A TI O N  A N D P R O B L E M F O R M U L A TI O N

L et N , Z a n d R d e n ot e t h e s et of n at ur al n u m b ers (i n cl u di n g
z er o), i nt e g ers, a n d r e al n u m b ers, r es p e cti v el y.  We als o d e n ot e
t h e s et of p ositi v e i nt e g ers b y Z + .  T h e c ar di n alit y of a s et is
d e n ot e d b y | · |.  T h e s et of s u b gr a di e nts of a c o n v e x f u n cti o n f
at p oi nt x is c all e d t h e s u b diff er e nti al of f at x , a n d is d e n ot e d
∂ f (x ).

A. Li n e ar  Al g e br a

Ve ct ors ar e t a k e n t o b e c ol u m n v e ct ors, u nl ess ot h er wis e
n ot e d.  We us e x ( ) t o r e pr es e nt t h e -t h c o m p o n e nt of a v e ct or
x .  T h e  E u cli d e a n n or m o n R d i s d e n ot e d b y · .  We d e-
n ot e b y u , v t h e  E u cli d e a n i n n er pr o d u ct of u a n d v , i. e.,
u , v = u T v a n d b y ∠ (u , v ) t h e a n gl e b et w e e n v e ct ors u a n d

v , i. e., ∠ (u , v )  = ar c c o s( u ,v
u v ) . We us e S +

d t o d e n ot e t h e

s et of p ositi v e d e fi nit e  m atri c es i n R d × d .  T h e  E u cli d e a n b all
i n d - di m e nsi o n al s p a c e  wit h c e nt er at x 0 a n d r a di us r ∈ R > 0 i s
d e n ot e d b y B (x 0 , r) : = { x ∈ R d : x − x 0 ≤ r } .

B.  Gr a p h T h e or y

We d e n ot e a n et w or k b y a dir e ct e d gr a p h G = ( V , E ),  w hi c h
c o nsists of t h e s et of n o d es V = { v 1 , v2 , . . . , vN } a n d t h e s et
of e d g es E ⊆ V × V . If (v i , vj ) ∈ E , t h e n n o d e v j c a n r e c ei v e
i nf or m ati o n fr o m n o d e v i .  T h e i n- n ei g h b or a n d o ut- n ei g h b or
s ets ar e d e n ot e d b y N i n

i = { v j ∈ V : (v j , vi ) ∈ E } a n d N o ut
i =

{ v j ∈ V : (v i , vj ) ∈ E } , r es p e cti v el y.  A p at h fr o m n o d e v i ∈ V
t o n o d e v j ∈ V is a s e q u e n c e of n o d es v k 1

, vk 2
, . . . , vk l

s u c h
t h at v k 1

= v i , v k l
= v j a n d (v k r

, vk r + 1
) ∈ E f or 1 ≤ r ≤ l −

1 .  T hr o u g h o ut t h e p a p er, t h e t er ms n o d es a n d a g e nts  will b e
us e d i nt er c h a n g e a bl y.  Gi v e n a s et of v e ct ors { x 1 , x 2 , . . . , x N } ,
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w h er e e a c h x i ∈ R d ,  w e d e fi n e f or all S ⊆ V ,

{ x i } S : = { x i ∈ R d : v i ∈ S } .

D e fi niti o n 1: A gr a p h G = ( V , E ) is s ai d t o b e r o ot e d at n o d e
v i ∈ V if f or all n o d es v j ∈ V \ { v i } , t h er e is a p at h fr o m v i

t o v j .  A gr a p h is s ai d t o b e r o ot e d if it is r o ot e d at s o m e n o d e
v i ∈ V .

We  will r el y o n t h e f oll o wi n g d e fi niti o ns fr o m [ 2 9].
D e fi niti o n 2 ( r -r e a c h a bl e s et): F or a gi v e n gr a p h G a n d a

p ositi v e i nt e g er r ∈ Z + , a s u bs et of n o d es S ⊆ V is s ai d t o b e
r -r e a c h a bl e if t h er e e xists a n o d e v i ∈ S s u c h t h at | N i n

i \ S| ≥ r .
D e fi niti o n 3 ( r -r o b ust gr a p h): F or r ∈ Z + , a gr a p h G is s ai d t o

b e r -r o b ust if f or all p airs of disj oi nt n o n e m pt y s u bs ets S 1 , S 2 ⊂
V , at l e ast o n e of S 1 or S 2 i s r -r e a c h a bl e.

T h e a b o v e d e fi niti o ns c a pt ur e t h e i d e a t h at s ets of n o d es
s h o ul d c o nt ai n i n di vi d u al n o d es t h at h a v e a s uf fi ci e nt n u m b er of
n ei g h b ors o utsi d e t h at s et.  T his  will b e i m p ort a nt f or t h e l o c al
d e cisi o ns  m a d e b y e a c h n o d e i n t h e n et w or k u n d er o ur al g orit h m,
a n d  will all o w i nf or m ati o n fr o m t h e r est of t h e n et w or k t o
p e n etr at e i nt o diff er e nt s ets of n o d es.

C.  A d v ers ari al  B e h a vi or

D e fi niti o n 4: A n o d e v i ∈ V is s ai d t o b e  B y z a nti n e if d uri n g
e a c h it er ati o n of t h e pr es cri b e d al g orit h m, it is c a p a bl e of s e n di n g
ar bitr ar y ( a n d p er h a ps c o n fli cti n g) v al u es t o diff er e nt n ei g h b ors.
It is als o all o w e d t o u p d at e its l o c al i nf or m ati o n ar bitr aril y at
e a c h it er ati o n of a n y pr es cri b e d al g orit h m.

T h e s et of  B y z a nti n e n o d es is d e n ot e d b y A ⊂ V . T h e s et of
r e g ul ar n o d es is d e n ot e d b y R = V \ A .

T h e i d e ntiti es of t h e  B y z a nti n e a g e nts ar e u n k n o w n t o r e g ul ar
a g e nts i n a d v a n c e. F urt h er m or e,  w e all o w t h e  B y z a nti n e a g e nts
t o k n o w t h e e ntir e t o p ol o g y of t h e n et w or k, f u n cti o ns e q ui p p e d
b y t h e r e g ul ar n o d es, a n d t h e d e pl o y e d al g orit h m. I n a d diti o n,
B y z a nti n e a g e nts ar e all o w e d t o c o or di n at e  wit h ot h er  B y z a nti n e
a g e nts a n d a c c ess t h e c urr e nt a n d pr e vi o us i nf or m ati o n c o n-
t ai n e d b y t h e n o d es i n t h e n et w or k ( e. g. c urr e nt a n d pr e vi o us
st at es of all n o d es). S u c h e xtr e m e b e h a vi or is t y pi c al i n t h e
st u d y of t h e a d v ers ari al  m o d els [ 1 0], [ 1 3], [ 2 0]. I n e x c h a n g e f or
all o wi n g s u c h e xtr e m e b e h a vi or,  w e  will c o nsi d er a li mit ati o n
o n t h e n u m b er of s u c h a d v ers ari es i n t h e n ei g h b or h o o d of e a c h
r e g ul ar n o d e, as f oll o ws.

D e fi niti o n 5 ( F -l o c al  m o d el): F or F ∈ Z + ,  w e s a y t h at t h e
s et of a d v ers ari es A is a n F -l o c al s et if | N i n

i ∩ A| ≤ F , f or all
v i ∈ R .

T h us, t h e F -l o c al  m o d el c a pt ur es t h e i d e a t h at e a c h r e g ul ar
n o d e h as at  m ost F B y z a nti n e i n- n ei g h b ors.

D.  Pr o bl e m  F or m ul ati o n

C o nsi d er a gr o u p of N a g e nts V i nt er c o n n e ct e d o v er a gr a p h
G = ( V , E ).  E a c h a g e nt v i ∈ V h as a l o c al c o n v e x c ost f u n c-
ti o n f i : R d → R .  T h e o bj e cti v e is t o c oll a b or ati v el y s ol v e t h e
mi ni mi z ati o n pr o bl e m

mi n
x ∈ R d

1

N
v i ∈ V

f i ( x ), ( 1)

w h er e x ∈ R d i s t h e c o m m o n d e cisi o n v ari a bl e.  A c o m m o n
a p pr o a c h t o s ol v e s u c h pr o bl e ms is f or e a c h a g e nt t o  m ai nt ai n
a l o c al esti m at e of t h e s ol uti o n t o t h e a b o v e pr o bl e m,  w hi c h
it it er ati v el y u p d at es b as e d o n c o m m u ni c ati o ns  wit h its i m m e-
di at e n ei g h b ors.  H o w e v er, si n c e  B y z a nti n e n o d es ar e all o w e d
t o s e n d ar bitr ar y v al u es t o t h eir n ei g h b ors at e a c h it er ati o n of
a n y al g orit h m, it is n ot p ossi bl e t o s ol v e Pr o bl e m ( 1) u n d er s u c h
mis b e h a vi or (si n c e o n e is n ot g u ar a nt e e d t o i nf er a n y i nf or m ati o n
a b o ut t h e tr u e f u n cti o ns of t h e  B y z a nti n e a g e nts) [ 1 0], [ 1 3].
T h us, t h e o pti mi z ati o n pr o bl e m is r e c ast i nt o t h e f oll o wi n g f or m:

mi n
x ∈ R d

1

| R|
v i ∈ R

f i ( x ), ( 2)

i. e.,  w e r estri ct o ur att e nti o n o nl y t o t h e f u n cti o ns h el d b y r e g ul ar
n o d es.

R e m ar k 1: I n t h e r esili e nt distri b ut e d o pti mi z ati o n pr o bl e m,
t h e a g e nts ar e r e q uir e d t o c o m p ut e a v al u e t h at ( a p pr o xi m at el y)
mi ni mi z es t h e s u m of f u n cti o ns h el d b y e a c h (r e g ul ar) a g e nt.
C o m p ar e d t o t h e r esili e nt c o ns e ns us pr o bl e m, t his n e c essit at es
m or e i nf or m ati o n t h a n si m pl y t h e i niti al v e ct ors h el d b y e a c h
a g e nt ( e v e n if t h os e v e ct ors ar e i niti ali z e d t o b e t h e l o c al  mi n-
i mi z ers of t h e a g e nts’ f u n cti o ns). I n d e e d, t h e n e e d t o c o m bi n e
esti m at es of t h e  m ulti- di m e nsi o n al  mi ni mi z er fr o m n ei g h b ors,
w hil e i n c or p or ati n g gr a di e nt d y n a mi cs, all i n a r esili e nt f as hi o n
is  w h at  m a k es t h e r esili e nt distri b ut e d o pti mi z ati o n pr o bl e m
m or e dif fi c ult t h a n t h e st a n d ar d c o ns e ns us pr o bl e m.

R e m ar k 2: T h e a d diti o n al c h all e n g e i n s ol vi n g t h e a b o v e
pr o bl e m li es i n t h e f a ct t h at n o r e g ul ar a g e nt is a w ar e of t h e
i d e ntiti es or a cti o ns of t h e  B y z a nti n e a g e nts. F urt h er m or e, i n
t h e  w orst- c as e s c e n ari o, it is n ot f e asi bl e t o a c hi e v e a n e x a ct
s ol uti o n t o Pr o bl e m ( 2), as t h e  B y z a nti n e a g e nts c a n  m o dif y
t h e f u n cti o ns  w hil e still a d h eri n g t o t h e al g orit h m,  m a ki n g it
i m p ossi bl e t o diff er e nti at e t h e m [ 1 0], [ 1 3].

I n t h e n e xt s e cti o n,  w e pr o p os e t w o s c al a bl e al g orit h ms t h at al-
l o w t h e r e g ul ar n o d es t o a p pr o xi m at el y s ol v e t h e a b o v e pr o bl e m,
r e g ar dl ess of t h e i d e ntiti es or a cti o ns of t h e  B y z a nti n e a g e nts ( as
pr o v e n l at er i n t h e p a p er).

III.  RE SI LI E N T D I S T RI B U T E D O P TI MI Z A TI O N A L G O RI T H M S

A.  Pr o p os e d  Al g orit h ms

T h e al g orit h ms t h at  w e pr o p os e ar e st at e d as  Al g orit h ms 1
a n d 2 .  We st art  wit h  Al g orit h m 1 .  At e a c h ti m e-st e p k , e a c h
r e g ul ar n o d e2 v i ∈ R m ai nt ai ns a n d u p d at es a v e ct or x i [k ] ∈
R d ,  w hi c h is its esti m at e of t h e s ol uti o n t o Pr o bl e m ( 2), a n d a
v e ct or y i [k ] ∈ R d ,  w hi c h is its esti m at e of a n a u xili ar y p oi nt t h at
pr o vi d es a g e n er al s e ns e of dir e cti o n f or e a c h a g e nt t o f oll o w.

R e m ar k 3: T h e p ur p os e of t h e esti m at es x i [k ] is t o b e a n
a p pr o xi m ati o n t o t h e  mi ni mi z er of t h e s u m of t h e f u n cti o ns.
T o u p d at e t his esti m at e, t h e a g e nts h a v e t o d e ci d e  w hi c h of t h e
esti m at es pr o vi d e d b y t h eir n ei g h b ors t o r et ai n at e a c h it er ati o n
of t h e al g orit h m (si n c e u p t o F of t h os e n ei g h b ori n g esti m at es
m a y b e a d v ers ari all y c h os e n b y  B y z a nti n e a g e nts).  T o h el p
e a c h r e g ul ar a g e nt d e ci d e  w hi c h esti m at es t o k e e p, t h e a u xili ar y

2 B y z a nti n e n o d es d o n ot n e c ess aril y n e e d t o f oll o w t h e a b o v e al g orit h m, a n d
c a n u p d at e t h eir st at es h o w e v er t h e y  wis h.
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Al g o rit h m 1: Si m ult a n e o us  Dist a n c e- Mi n M a x Filt eri n g
D y n a mi cs.

I n p ut N et w or k G , f u n cti o ns { f i }
N
i = 1 , p ar a m et er F

1:  E a c h v i ∈ R s ets x̂ ∗
i ← o p t i m i z e (f i )

2:  E a c h v i ∈ R s ets x i [ 0] ← x̂ ∗
i a n d y i [ 0] ← x̂ ∗

i

3: f o r k = 0 , 1 , 2 , 3 , . . . d o
4: f o r v i ∈ R d o I m pl e m e nt i n p ar all el

St e p I: Br o a d c ast a n d  R e c ei v e
5: b r o a d c a s t (N o ut

i , x i [k ], y i [k ])
6: X i [k ], Y i [k ] ← r e c e i v e (N i n

i )
St e p II: R esili e nt  C o ns e ns us St e p

7: X dist
i [k ] ← d i s t _ f i l t (F, y i [k ], X i [k ])

8: X m m
i [k ] ← x _ m i n m a x _ f i l t (F, X dist

i [k ])
9: z i [k ] ← x _ w e i g h t e d _ a v e r a g e (X m m

i [k ])
St e p III: Gr a di e nt  U p d at e

1 0: x i [k + 1] ← g r a d i e n t (f i , z i [k ])
St e p I V: U p d at e t h e  Esti m at e d  A u xili ar y P oi nt

1 1: Y m m
i [k ] ← y _ m i n m a x _ f i l t (F, Y i [k ])

1 2: y i [k + 1] ← y _ w e i g h t e d _ a v e r a g e (Y m m
i [k ])

1 3: e n d f o r
1 4: e n d f o r

p oi nts y i [k ] ar e us e d t o p erf or m t h e dist a n c e- b as e d filt eri n g st e p
(Li n e 7 ). I n f a ct, e a c h a u xili ar y p oi nt pr o vi d es a g e n er al s e ns e
of dir e cti o n f or t h e a g e nts’ esti m at es, a n d t h us h el ps t h e m filt er
o ut a d v ers ari al esti m at es t h at att e m pt t o dr a w t h e m a w a y fr o m
t h e tr u e  mi ni mi z er.

We n o w e x pl ai n e a c h st e p us e d i n  Al g orit h m 1 i n d et ail.3

Li n e 1: x̂ ∗
i ← o p t i m i z e (f i )

E a c h n o d e v i ∈ R us es a n y a p pr o pri at e o pti mi z ati o n al g o-
rit h m t o g et a n a p pr o xi m at e  mi ni mi z er x̂ ∗

i ∈ R d of its l o c al
f u n cti o n f i .  We ass u m e t h at t h er e e xists ∗ ∈ R ≥ 0 s u c h
t h at t h e al g orit h m a c hi e v es x̂ ∗

i − x ∗
i ≤ ∗ f or all v i ∈ R

w h er e x ∗
i ∈ R d i s a tr u e  mi ni mi z er of t h e f u n cti o n f i ; w e

ass u m e f or m all y t h at s u c h a tr u e ( b ut n ot n e c ess ar y u ni q u e)
mi ni mi z er e xists f or e a c h v i ∈ R i n t h e n e xt s e cti o n.
Li n e 2: x i [ 0] ← x̂ ∗

i a n d y i [ 0] ← x̂ ∗
i

E a c h n o d e v i ∈ R i niti ali z es its o w n esti m at e d s ol uti o n
t o Pr o bl e m ( 2) (x i [ 0] ∈ R d ) a n d esti m at e d a u xili ar y p oi nt
(y i [ 0] ∈ R d ) t o b e x̂ ∗

i .
Li n e 5: b r o a d c a s t (N o ut

i , x i [k ], y i [k ])
N o d e v i ∈ R br o a d c asts its c urr e nt st at e x i [k ] a n d esti-
m at e d a u xili ar y p oi nt y i [k ] t o its o ut- n ei g h b ors N o ut

i .
Li n e 6: X i [k ], Y i [k ] ← r e c e i v e (N i n

i )
N o d e v i ∈ R r e c ei v es t h e c urr e nt st at es x j [k ] a n d y j [k ]
fr o m its i n- n ei g h b ors N i n

i . S o, at ti m e st e p k , n o d e v i

p oss ess es t h e s ets of st at es 4

X i [k ] : = x j [k ] ∈ R d : v j ∈ N i n
i ∪ { v i } a n d

Y i [k ] : = y j [k ] ∈ R d : v j ∈ N i n
i ∪ { v i } .

3 I n t h e al g orit h m, X i [k ], X dist
i [k ], X m m

i [k ], Y i [k ] a n d Y m m
i [k ] ar e  m ultis ets.

4 I n c as e a r e g ul ar n o d e v i h as a  B y z a nti n e n ei g h b or v j ,  w e a b us e n ot ati o n
a n d t a k e t h e v al u e x j [k ] t o b e t h e v al u e r e c ei v e d fr o m n o d e v j (i. e., it d o es n ot
h a v e t o r e pr es e nt t h e tr u e st at e of n o d e v j ).

T h e s ets X i [k ] a n d Y i [k ] h a v e a n i n dir e ct r el ati o ns hi p
t hr o u g h t h e dist a n c e- b as e d filt er (Li n e 7 ) as o nl y y i [k ] ∈
Y i [k ] is us e d as t h e r ef er e n c e t o r e m o v e st at es i n X i [k ].
Li n e 7: X dist

i [k ] ← d i s t _ f i l t (F, y i [k ], X i [k ])
I nt uiti v el y, r e g ul ar n o d e v i i g n or es t h e st at es t h at ar e f ar
a w a y fr o m its o w n a u xili ar y st at e y i [k ] i n L 2 s e ns e. F or-
m all y, n o d e v i ∈ R c o m p ut es t h e dist a n c e b et w e e n e a c h
v e ct or i n X i [k ] a n d its o w n esti m at e d a u xili ar y p oi nt y i [k ]:

D i j [k ] : = x j [k ] − y i [k ] f or x j [k ] ∈ X i [k ]. ( 3)

T h e n, n o d e v i ∈ R s orts t h e v al u es i n t h e s et { D i j [k ] :
v j ∈ N i n

i ∪ { v i } } a n d r e m o v es t h e F l ar g est v al u es t h at
ar e l ar g er t h a n its o w n v al u e D i i [k ]. If t h er e ar e f e w er
t h a n F v al u es hi g h er t h a n its o w n v al u e, v i r e m o v es all
of t h os e v al u es.  Ti es i n v al u es ar e br o k e n ar bitr aril y.  T h e
c orr es p o n di n g st at es of t h e r e m ai ni n g v al u es ar e st or e d i n
X dist

i [k ]. I n ot h er  w or ds, r e g ul ar n o d e v i r e m o v es u p t o F
of its n ei g h b ors’ v e ct ors t h at ar e f urt h est a w a y fr o m t h e
a u xili ar y p oi nt y i [k ].
Li n e 8: X m m

i [k ] ← x _ m i n m a x _ f i l t (F, X dist
i [k ])

I nt uiti v el y, r e g ul ar n o d e v i i g n or es t h e st at es t h at c o nt ai ns
e xtr e m e v al u es i n a n y of t h eir c o m p o n e nts i n t h e or d eri n g
s e ns e. F or m all y, f or e a c h ti m e-st e p k ∈ N a n d di m e n-
si o n ∈ { 1 , 2 , . . . , d} , d e fi n e t h e s et V r e m o v e

i ( )[ k ] ⊆ N i n
i ,

w h er e a n o d e v j i s i n V r e m o v e
i ( )[ k ] if a n d o nl y if

– x
( )
j [k ] is  wit hi n t h e F -l ar g est v al u es of { x

( )
r [k ] ∈ R :

x r [k ] ∈ X dist
i [k ]} a n d x

( )
j [k ] > x

( )
i [k ], or

– x
( )
j [k ] is  wit hi n t h e F -s m all est v al u es of { x

( )
r [k ] ∈ R :

x r [k ] ∈ X dist
i [k ]} a n d x

( )
j [k ] < x

( )
i [k ].

Ti es i n v al u es ar e br o k e n ar bitr aril y.  N o d e v i t h e n r e m o v es t h e
st at e of all n o d es i n ∈ { 1 ,2 ,..., d} V r e m o v e

i ( )[ k ] a n d t h e r e m ai ni n g

st at es ar e st or e d i n X m m
i [k ]:

X m m
i [k ] =

⎧
⎨

⎩
x j [k ] ∈ R d :

v j ∈ V dist
i [k ] \

∈ { 1 ,..., d}

V r e m o v e
i ( )[ k ]

⎫
⎬

⎭
, ( 4)

w h er e V dist
i [k ] = { v j ∈ R : x j [k ] ∈ X dist

i [k ]} .
Li n e 9: z i [k ] ← x _ w e i g h t e d _ a v e r a g e (X m m

i [k ])
E a c h n o d e v i ∈ R c o m p ut es

z i [k ] =
x j [k ]∈ X m m

i [k ]

w x, i j [k ] x j [k ], ( 5)

w h er e w x, i j [k ] > 0 f or all x j [k ] ∈ X m m
i [k ] a n d

x j [k ]∈ X m m
i [k ] w x, i j [k ] = 1.

Li n e 1 0: x i [k + 1] ← g r a d i e n t (f i , z i [k ])
N o d e v i ∈ R c o m p ut es t h e gr a di e nt u p d at e as f oll o ws:

x i [k + 1] = z i [k ] − η [k ] g i [k ], ( 6)

w h er e g i [k ] ∈ ∂ f i ( z i [k ]) a n d η [k ] is t h e st e p-si z e at ti m e
k .  T h e c o n diti o ns c orr es p o n di n g t o t h e st e p-si z e ar e gi v e n
i n t h e n e xt s e cti o n.

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Al g o rit h m 2: Si m ult a n e o us  Dist a n c e Filt eri n g  D y n a mi cs.

Al g orit h m 2 is t h e s a m e as  Al g orit h m 1 e x c e pt t h at
Li n e 8 is r e m o v e d, a n d
X m m

i [k ] i n Li n e 9 is r e pl a c e d b y X dist
i [k ].

Li n e 1 1: Y m m
i [k ] ← y _ m i n m a x _ f i l t (F, Y i [k ])

F or e a c h di m e nsi o n ∈ { 1 , 2 , . . . , d} , n o d e v i ∈ R r e-
m o v es t h e F hi g h est a n d F l o w est v al u es of its n ei g h b ors’
a u xili ar y p oi nts al o n g t h at di m e nsi o n.  M or e s p e ci fi c all y,
f or e a c h di m e nsi o n ∈ { 1 , 2 , . . . , d} , n o d e v i s orts t h e v al-

u es i n t h e s et of s c al ars { y
( )
j [k ] : y j [k ] ∈ Y i [k ]} a n d t h e n

r e m o v es t h e F l ar g est a n d F s m all est v al u es t h at ar e l ar g er
a n d s m all er t h a n its o w n v al u e, r es p e cti v el y. If t h er e ar e
f e w er t h a n F v al u es hi g h er (r es p. l o w er) t h a n its o w n v al u e,
v i r e m o v es all of t h os e v al u es.  Ti es i n v al u es ar e br o k e n
ar bitr aril y.  T h e r e m ai ni n g v al u es ar e st or e d i n Y m m

i [k ]( )
a n d t h e s et Y m m

i [k ] is t h e c oll e cti o n of Y m m
i [k ]( ), i. e.,

Y m m
i [k ] = { Y m m

i [k ]( ) : ∈ { 1 , 2 , . . . , d} } .
Li n e 1 2: y i [k + 1] ← y _ w e i g h t e d _ a v e r a g e (Y m m

i [k ])
F or e a c h di m e nsi o n ∈ { 1 , 2 , . . . , d} , e a c h n o d e v i ∈ R
c o m p ut es

y
( )
i [k + 1] =

y
( )
j [k ]∈ Y m m

i [k ] ( )

w
( )
y, i j [k ] y

( )
j [k ], ( 7)

w h er e w
( )
y, i j [k ] > 0 f or all y

( )
j [k ] ∈ Y m m

i [k ]( ) a n d

y
( )
j [k ]∈ Y m m

i [k ] ( )
w

( )
y, i j [k ] = 1.

N ot e t h at t h e filt eri n g pr o c ess x _ m i n m a x _ f i l t (Li n e
8 ) a n d t h e filt eri n g pr o c ess y _ m i n m a x _ f i l t (Li n e 1 1 )
ar e diff er e nt. I n x _ m i n m a x _ f i l t , e a c h n o d e r e m o v es t h e
w h ol e st at e v e ct or f or a n ei g h b or if it c o nt ai ns a n e x-
tr e m e v al u e i n a n y c o m p o n e nt,  w hil e i n y _ m i n m a x _ f i l t ,
e a c h n o d e o nl y r e m o v es t h e e xtr e m e c o m p o n e nts i n e a c h
v e ct or. I n a d diti o n, x _ w e i g h t e d _ a v e r a g e (Li n e 9 ) a n d
y _ w e i g h t e d _ a v e r a g e _ 2 (Li n e 1 2 ) ar e als o diff er e nt i n
t h at x _ w e i g h t e d _ a v e r a g e d esi g n at es a g e nt v i at ti m e-
st e p k t o utili z e t h e s a m e s et of  w ei g hts { w x, i j ∈ R : x j [k ] ∈
X m m

i [k ]} f or all c o m p o n e nts  w hil e y _ w e i g h t e d _ a v e r a g e
all o ws a g e nt v i at ti m e-st e p k t o us e a diff er e nt s et of  w ei g hts

{ w
( )
y, i j ∈ R : y

( )
j [k ] ∈ Y m m

i [k ]( )} f or e a c h c o or di n at e (si n c e
t h e n u m b er of r e m ai ni n g v al u es i n e a c h c o m p o n e nt | Ym m

i [k ]( )|
is n ot n e c ess aril y t h e s a m e).  T h es e diff er e n c es  will b e c o m e cl e ar
w h e n c o nsi d eri n g t h e e x a m pl e pr o vi d e d i n t h e n e xt s u bs e cti o n.

We c o nsi d er a v ari a nt of  Al g orit h m 1 d e fi n e d as f oll o ws.
Alt h o u g h  Al g orit h ms 1 a n d 2 ar e v er y si mil ar ( diff eri n g o nl y

i n t h e us e of a n a d diti o n al filt er i n  Al g orit h m 1 ), o ur s u bs e q u e nt
a n al ysis  will r e v e al t h e r el ati v e c osts a n d b e n e fits of e a c h al g o-
rit h m.  We e m p h asi z e t h at b ot h al g orit h ms i n v ol v e o nl y si m pl e
o p er ati o ns i n e a c h it er ati o n, a n d t h at t h e r e g ul ar a g e nts d o n ot
n e e d t o k n o w t h e n et w or k t o p ol o g y, or f u n cti o ns p oss ess e d b y
a n ot h er a g e nts. F urt h er m or e, t h e r e g ul ar a g e nts d o n ot n e e d t o
k n o w t h e i d e ntiti es of a d v ers ari es; t h e y o nl y n e e d t o k n o w t h e
u p p er b o u n d f or t h e n u m b er of l o c al a d v ers ari es.  H o w e v er,  w e

ass u m e t h at all r e g ul ar a g e nts us e t h e s a m e st e p-si z e η [k ] (Li n e
1 0 , ( 6)).

R e m ar k 4: W hil e t h e  B RI D G E fr a m e w or k, i ntr o d u c e d
i n [ 2 1], e n c o m p ass es s e v er al  B y z a nti n e-r esili e nt distri b ut e d o p-
ti mi z ati o n al g orit h ms, i n cl u di n g t h os e pr es e nt e d i n [ 1 0], [ 1 3],
[ 1 4], o ur pr o p os e d al g orit h ms, n a m el y  Al g orit h ms 1 a n d 2 ,
i ntr o d u c e a n o v el c o n c e pt of a u xili ar y st at es. S p e ci fi c all y, e a c h
r e g ul ar a g e nt v i i n o ur al g orit h ms  m ai nt ai ns a n a u xili ar y st at e
y i [k ], u p d at e d usi n g a c o ns e ns us al g orit h m, pl a ci n g t h e m  wit hi n
t h e br o a d er fr a m e w or k of  R E D G R A F [ 2 7].

W hil e  Al g orit h m 1 fr o m o ur  w or k s h ar es a si mil arit y  wit h
B RI D G E- T [ 2 1] b y utili zi n g t h e c o or di n at e- wis e tri m m e d  m e a n,
t h er e ar e disti n cti v e diff er e n c es as f oll o ws.

Firstl y, o ur al g orit h m e m pl o ys a dist a n c e- b as e d filt er i n
a d diti o n t o t h e tri m m e d  m e a n filt er, all o wi n g f or a n as y m p-
t oti c c o n v er g e n c e g u ar a nt e e u n d er  mil d er ass u m pti o ns ( as
pr o vi d e d i n S e cti o n I V- A). I n c o ntr ast, t h e c o n v er g e n c e
a n al ysis of  B RI D G E- T r eli es o n t h e  m or e r estri cti v e as-
s u m pti o n of i.i. d. tr ai ni n g d at a.
S e c o n dl y, t h e tri m m e d  m e a n filt er i n  B RI D G E- T eli m-
i n at es b ot h t h e s m all est a n d l ar g est F v al u es,  w h er e as
o ur filt er dis c ar ds a s u bs et of t h es e v al u es, si mil ar t o
t h e i m pl e m e nt ati o n i n [ 1 0].  T his v ari a nt i n o ur a p pr o a c h
r es ults i n f ast er c o n v er g e n c e i n pr a cti c e d u e t o t h e r es ulti n g
d e ns er n et w or k c o n n e cti vit y aft er t h e filt eri n g st e ps  w hi c h
f a cilit at es q ui c k er i nf or m ati o n fl o w [ 3 0].
L astl y,  w hil e  B RI D G E- T us es a si m pl e a v er a g e t o c o m bi n e
t h e r e m ai ni n g st at es, o ur al g orit h m e m pl o ys a  w ei g ht e d
a v er a g e.  T h es e  w ei g hts ar e c h os e n t o s atisf y  Ass u m pti o n 5 ,
e ns uri n g t h at t h e  w ei g hts ar e l o w er b o u n d e d b y a p osi-
ti v e c o nst a nt if t h e c orr es p o n di n g a g e nts r e m ai n aft er t h e
tri m m e d  m e a n filt er.  T his pr o vi d es a  m or e v ers atil e a n d
g e n er al s c h e m e.

B.  E x a m pl e of  Al g orit h m 1

B ef or e  w e pr o v e t h e c o n v er g e n c e pr o p erti es of t h e al g orit h ms,
w e first d e m o nstr at e  Al g orit h m 1 ,  w hi c h is  m or e c o m pli c at e d
d u e t o t h e  mi n- m a x filt eri n g st e p ( Li n e 8 ), st e p b y st e p usi n g a n
e x a m pl e.

S u p p os e t h er e ar e 8 a g e nts f or mi n g t h e c o m pl et e gr a p h (f or
t h e p ur p os e of ill ustr ati o n).  L et n o d e v i h a v e t h e l o c al o bj e cti v e
f u n cti o n f i : R 2 → R d e fi n e d as f i ( x ) = ( x ( 1 ) + i) 2 + ( x ( 2 ) −
i) 2 f or all i ∈ { 1 , 2 , . . . , 8 } .  L et t h e s et of a d v ers ari al n o d es
b e A = { v 4 , v8 } a n d t h us,  w e h a v e R = { v 1 , v2 , v3 , v5 , v6 , v7 } .
N ot e t h at o nl y t h e r e g ul ar n o d es e x e c ut e t h e al g orit h m ( a n d t h e y
d o n ot k n o w  w hi c h a g e nts ar e a d v ers ari al).  L et F = 2 a n d at
s o m e ti m e-st e p k̂ ∈ N , e a c h r e g ul ar n o d e h as t h e f oll o wi n g st at e
a n d t h e esti m at e d a u xili ar y p oi nt: 5

x 1 [k̂ ] = 4 2
T

, y 1 [k̂ ] = 0 0
T

,

x 2 [k̂ ] = 4 1
T

, y 2 [k̂ ] = − 1 − 2
T

,

5 T h e n u m b er of a g e nts i n t his d e m o nstr ati o n is n ot e n o u g h t o s atisf y t h e
r o b ust n ess c o n diti o n ( Ass u m pti o n 4 ) pr es e nt e d i n t h e n e xt s e cti o n.  H o w e v er,
f or o ur p ur p os e h er e, it is e n o u g h t o c o nsi d er a s m all n u m b er of a g e nts t o g ai n
a n u n d erst a n di n g f or e a c h st e p of t h e al g orit h m.

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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x 3 [k̂ ] = 3 3
T

, y 3 [k̂ ] = − 2 1
T

,

x 5 [k̂ ] = 2 1
T

, y 5 [k̂ ] = 0 2
T

,

x 6 [k̂ ] = 1 4
T

, y 6 [k̂ ] = 1 3
T

,

x 7 [k̂ ] = 0 0
T

, y 7 [k̂ ] = 1 3
T

.

L et x a → b [k ] (r es p. y a → b [k ]) b e t h e st at e (r es p. esti m at e d a u xil-
i ar y p oi nt) t h at is s e nt fr o m t h e a d v ers ari al n o d e v a ∈ A t o t h e
r e g ul ar n o d e v b ∈ R at ti m e-st e p k . S u p p os e t h at i n ti m e-st e p
k̂ , e a c h a d v ers ari al a g e nt s e n ds t h e s a m e st at es a n d t h e s a m e
esti m at e d a u xili ar y p oi nts t o its n ei g h b ors ( alt h o u g h t his is n ot
n e c ess ar y) as f oll o ws:

x 4 → i [k̂ ] = 3 2
T

, y 4 → i [k̂ ] = − 1 1
T

,

x 8 → i [k̂ ] = 0 5
T

, y 8 → i [k̂ ] = 2 2
T

f or all i ∈ { 1 , 2 , 3 , 5 , 6 , 7 } .  We  will d e m o nstr at e t h e c al c ul ati o n

of x 1 [k̂ + 1] a n d y 1 [k̂ + 1] , c o m p ut e d b y r e g ul ar n o d e v 1 .
Si n c e t h e n et w or k is t h e c o m pl et e gr a p h, t h e s et of i n-

n ei g h b ors a n d o ut- n ei g h b ors of n o d e v 1 i s N i n
1 = N o ut

1 = V \

{ v 1 } a n d X i [k̂ ] (r es p. Y i [k̂ ]) i n cl u d es all t h e st at es (r es p. esti-
m at e d a u xili ar y p oi nts).  T h e n, n o d e v 1 p erf or ms t h e dist a n c e
filt eri n g st e p ( Li n e 7 ) as f oll o ws. First, it c al c ul at es t h e s q u ar e d
dist a n c es D 2

1 j [k̂ ] ( si n c e s q u ari n g d o es n ot alt er t h e or d er) f or all

x j [k̂ ] ∈ X i [k̂ ] a s i n ( 3).  N o d e v 1 h as

D 2
1 1 [k̂ ] = 2 0, D 2

1 2 [k̂ ] = 1 7, D 2
1 3 [k̂ ] = 1 8, D 2

1 4 [k̂ ] = 1 3,

D 2
1 5 [k̂ ] = 5, D 2

1 6 [k̂ ] = 1 7, D 2
1 7 [k̂ ] = 0, D 2

1 8 [k̂ ] = 2 5.

Si n c e D 2
1 1 [k̂ ] i s t h e s e c o n d l ar g est, n o d e v 1 dis c ar ds o nl y n o d e

v 8 ’s st at e ( w hi c h is t h e f urt h est a w a y fr o m v 1 ’s a u xili ar y p oi nt)
a n d X dist

1 c o nt ai ns all st at es e x c e pt x 8 [k̂ ] = x 8 → 1 [k̂ ].
T h e n n o d e v 1 p erf or ms t h e  mi n- m a x filt eri n g pr o c ess ( Li n e

8 ) as f oll o ws. First, c o nsi d er t h e first c o m p o n e nt of t h e st at es
i n X dist

1 .  T h e st at es of n o d es v 1 a n d v 2 c o nt ai n t h e hi g h est
v al u e i n t h e first c o m p o n e nt ( w hi c h is 4). Si n c e t h e ti e c a n b e

br o k e n ar bitr aril y,  w e c h o os e x
( 1 )
1 [k̂ ] t o c o m e first f oll o w e d b y

x
( 1 )
2 [k̂ ] i n t h e or d eri n g, s o n o n e of t h es e v al u es ar e dis c ar d e d.

O n t h e ot h er h a n d, t h e st at e of n o d e v 7 c o nt ai ns t h e l o w est
v al u e i n its first c o m p o n e nt,  w hil e n o d e v 6 ’s st at e c o nt ai ns
t h e s e c o n d l o w est v al u e i n t h at c o m p o n e nt (si n c e n o d e v 8

h as alr e a d y b e e n dis c ar d e d b y t h e dist a n c e filt eri n g pr o c ess).
N o d e v 1 t h us s ets V r e m o v e

1 ( 1 )[ k̂ ] = { v 6 , v7 } .  N e xt, c o nsi d er t h e
s e c o n d c o m p o n e nt i n  w hi c h t h e st at es of v 6 a n d v 3 c o nt ai n
t h e hi g h est a n d s e c o n d hi g h est v al u es, r es p e cti v el y, a n d t h e
st at es of v 7 a n d v 5 c o nt ai n t h e l o w est a n d s e c o n d l o w est v al u es,
r es p e cti v el y.  T h us, n o d e v 1 s ets V r e m o v e

1 ( 2 )[ k̂ ] = { v 3 , v5 , v6 , v7 } .
Si n c e n o d e v 1 r e m o v es t h e e ntir e st at e fr o m all t h e n o d es i n
b ot h V r e m o v e

1 ( 1 )[ k̂ ] a n d V r e m o v e
1 ( 2 )[ k̂ ], a c c or di n g t o ( 4), w e h a v e

X m m
1 [k̂ ] = { x 1 [k̂ ], x 2 [k̂ ], x 4 [k̂ ]} = { [ 4 2]T , [ 4 1]T , [ 3 2]T } .
N e xt, n o d e v 1 p erf or ms t h e  w ei g ht e d a v er a g e st e p ( Li n e 9 ) as

f oll o ws, S u p p os e n o d e v 1 a ssi g ns t h e  w ei g hts w x, 1 1 [k̂ ] = 0.5 ,

w x, 1 2 [k̂ ] = 0.2 5 a n d w x, 1 4 [k̂ ] = 0.2 5 .  N o d e v 1 c al c ul at es t h e

w ei g ht e d a v er a g e a c c or di n g t o ( 5) yi el di n g z
( 1 )
1 [k̂ ] = 3.7 5 a n d

z
( 2 )
1 [k̂ ] = 1.7 5 . I n t h e gr a di e nt st e p (Li n e 1 0 ), s u p p os e η [k̂ ] =

0 .1 .  N o d e v 1 c al c ul at es t h e gr a di e nt of its l o c al f u n cti o n f 1 at
z 1 [k̂ ] w hi c h yi el ds g 1 [k̂ ] = [ 9.5 1 .5] T a n d t h e n c al c ul at es t h e

st at e x 1 [k̂ + 1] as d es cri b e d i n ( 6) w hi c h yi el ds x 1 [k̂ + 1] =
[ 2.8 1 .6] T .

N e xt,  w e c o nsi d er t h e esti m at e d a u xili ar y p oi nt u p d at e of n o d e
v 1 . I n f a ct,  w e c a n p erf or m t h e u p d at e (Li n e 1 1 a n d Li n e 1 2 ) f or
e a c h c o m p o n e nt s e p ar at el y. First, c o nsi d er t h e first c o m p o n e nt
i n  w hi c h v 8 a n d v 7 c o nt ai n t h e l ar g est a n d s e c o n d l ar g est v al u es,
r es p e cti v el y, a n d v 3 a n d v 2 c o nt ai n t h e s m all est a n d s e c o n d
s m all est v al u es, r es p e cti v el y.  N o d e v 1 r e m o v es t h es e v al u es

a n d t h us, Y m m
1 [k̂ ] ( 1)  = { y

( 1 )
1 [k̂ ], y

( 1 )
4 [k̂ ], y

( 1 )
5 [k̂ ], y

( 1 )
6 [k̂ ]} =

{ 0 , − 1 , 0 , 1 } . S u p p os e n o d e v 1 a ssi g ns t h e  w ei g hts

w
( 1 )
y, 1 1 [k̂ ] = w

( 1 )
y, 1 4 [k̂ ] = w

( 1 )
y, 1 5 [k̂ ] = w

( 1 )
y, 1 6 [k̂ ] = 0.2 5 .  T h e n,

t h e  w ei g ht e d a v er a g e of t h e first c o m p o n e nt a c c or di n g t o ( 7)

b e c o m es y
( 1 )
1 [k̂ + 1] = 0 . Fi n all y, f or t h e s e c o n d c o m p o n e nt,

v 6 a n d v 7 c o nt ai n t h e l ar g est v al u es, a n d v 2 a n d v 1 c o nt ai n
t h e s m all est a n d s e c o n d s m all est v al u es, r es p e cti v el y.  N o d e v 1

r e m o v es t h e v al u e o bt ai n e d fr o m v 2 , v 6 a n d v 7 a n d t h us, t h e
s et Y m m

1 [k̂ ] ( 2)  = { y
( 2 )
1 [k̂ ], y

( 2 )
3 [k̂ ], y

( 2 )
4 [k̂ ], y

( 2 )
5 [k̂ ], y

( 2 )
8 [k̂ ]} =

{ 0 , 1 , 1 , 2 , 2 } . S u p p os e n o d e v 1 a ssi g ns t h e  w ei g hts t o e a c h

v al u e i n Y m m
1 [k̂ ] ( 2) e q u all y.  T h e  w ei g ht e d a v er a g e of t h e

s e c o n d c o m p o n e nt b e c o m es y
( 2 )
1 [k̂ + 1] = 1 .2 .  T h us,  w e h a v e

y 1 [k̂ + 1] = [ 0  1 .2] T .

I V.  AS S U M P TI O N S  A N D M AI N R E S U L T S

H a vi n g d e fi n e d t h e st e ps i n  Al g orit h ms 1 a n d 2 , w e n o w t ur n
t o pr o vi n g t h eir r esili e n c e a n d c o n v er g e n c e pr o p erti es.

A.  Ass u m pti o ns

Ass u m pti o n 1: F or all v i ∈ V , t h e f u n cti o ns f i ( x ) ar e c o n v e x,
a n d t h e s ets ar g mi n f i ( x ) ar e n o n- e m pt y a n d b o u n d e d.

Si n c e t h e s et ar g mi n f i ( x ) is n o n- e m pt y, l et x ∗
i b e a n ar bitr ar y

mi ni mi z er of t h e f u n cti o n f i .
Ass u m pti o n 2: T h er e e xists L ∈ R > 0 s u c h t h at g̃ i ( x ) 2 ≤

L f or all x ∈ R d , v i ∈ V , a n d g̃ i ( x ) ∈ ∂ f i ( x ).
T h e b o u n d e d s u b gr a di e nt ass u m pti o n a b o v e is c o m m o n i n t h e

distri b ut e d c o n v e x o pti mi z ati o n lit er at ur e [ 3 1], [ 3 2], [ 3 3].
Ass u m pti o n 3: T h e st e p-si z e s e q u e n c e { η [k ]} ∞

k = 0 ⊂ R > 0

u s e d i n Li n e 1 1 of  Al g orit h m 1 is of t h e f or m

η [k ] =
c 1

k + c 2
f or s o m e c 1 , c2 ∈ R > 0 . ( 8)

N ot e t h at t h e st e p-si z e i n ( 8) s atis fi es η [k + 1] < η [k ] f or all
k ∈ N , a n d

li m
k → ∞

η [k ] = 0 a n d

∞

k = 0

η [k ] = ∞ ( 9)

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



3 6 6 I E E E  T R A N S A C TI O N S  O N SI G N A L  A N D I N F O R M A TI O N P R O C E S SI N G  O V E R  N E T W O R K S,  V O L. 1 0, 2 0 2 4

f or a n y c h oi c es of c 1 , c 2 ∈ R > 0 .
A ss u m pti o n 4: Gi v e n a p ositi v e i nt e g er F ∈ Z + , t h e  B y z a n-

ti n e a g e nts f or m a F -l o c al s et.
Ass u m pti o n 5: F or all k ∈ N a n d ∈ { 1 , 2 , . . . , d} , t h e

w ei g hts w x, i j [k ] a n d w
( )
y, i j [k ] ( us e d i n Li n e 9 a n d Li n e 1 2

of  Al g orit h m 1 ) ar e p ositi v e if a n d o nl y if x j [k ] ∈ X m m
i [k ]

f or  Al g orit h m 1 ( a n d x j [k ] ∈ X dist
i [k ] f or  Al g orit h m 2 ) a n d

y
( )
j [k ] ∈ Y m m

i [k ]( ), r es p e cti v el y. F urt h er m or e, t h er e e xists ω ∈
R > 0 s u c h t h at f or all k ∈ N a n d ∈ { 1 , 2 , . . . , d} , t h e n o n- z er o
w ei g hts ar e l o w er b o u n d e d b y ω .

R e m ar k 5: R e g ar di n g t h e pri or k n o wl e d g e of F i n  Ass u m p-
ti o n 4 ,  w e n ot e t h at, as  wit h a n y r eli a bl e or s e c ur e s yst e m, o n e h as
t o d esi g n t h e s yst e m t o pr o vi d e a d esir e d d e gr e e of r eli a bilit y. If
o n e r e q uir es t h e s yst e m t o pr o vi d e r esili e n c e t o a c ert ai n n u m b er
of f a ult y n o d es, o n e h as t o d esi g n t h e al g orit h m ( a n d n et w or k) t o
f a cilit at e t h at.  T his is t h e st a n d ar d p hil os o p h y a n d  m et h o d ol o g y
i n t h e lit er at ur e [ 1 8], [ 2 0], [ 3 4].  N ot e t h at F d o es n ot h a v e t o
b e t h e e x a ct n u m b er of a d v ers ari al n o d es – it is o nl y a n u p p er
b o u n d o n t h e n u m b er of a d v ers ari al n o d es l o c all y.

B.  A n al ysis of  A u xili ar y  P oi nt  U p d at e

Si n c e t h e d y n a mi cs of t h e esti m at e d a u xili ar y p oi nts { y i [k ]} R

ar e i n d e p e n d e nt of t h e d y n a mi cs of t h e esti m at e d s ol uti o ns
{ x i [k ]} R ,  w e b e gi n b y a n al y zi n g t h e c o n v er g e n c e pr o p erti es
of t h e esti m at e d a u xili ar y p oi nts { y i [k ]} R .

I n or d er t o est a blis h t his r es ult,  w e n e e d t o d e fi n e t h e
f oll o wi n g s c al ar q u a ntiti es. F or k ∈ N a n d ∈ { 1 , 2 , . . . , d} ,

l et M ( ) [k ] : = m a xv i ∈ R y
( )
i [k ], m ( ) [k ] : = mi nv i ∈ R y

( )
i [k ],

a n d D ( ) [k ] : = M ( ) [k ] − m ( ) [k ].  D e fi n e t h e v e ct or D [k ] : =
[D ( 1 ) [k ], D( 2 ) [k ], . . . , D( d ) [k ]]T .

T h e pr o p ositi o n b el o w s h o ws t h at t h e esti m at e d a u xili ar y
p oi nts { y i [k ]} R c o n v er g e e x p o n e nti all y f ast t o a si n gl e p oi nt
c all e d y [∞ ].

Pr o p ositi o n 1: S u p p os e  Ass u m pti o n 4 h ol d, t h e gr a p h G is

( 2F + 1) -r o b ust, a n d t h e  w ei g hts w
( )
y, i j [k ] s atisf y  Ass u m pti o n 5 .

S u p p os e t h e esti m at e d a u xili ar y p oi nts of t h e r e g ul ar a g e nts
{ y i [k ]} R f oll o w t h e u p d at e r ul e d es cri b e d as Li n e 1 1 a n d
Li n e 1 2 i n  Al g orit h m 1 .  T h e n, i n b ot h  Al g orit h ms 1 a n d 2 ,
t h er e e xists y [∞ ] ∈ R d wit h y ( ) [∞ ] ∈ [m ( ) [k ], M ( ) [k ]] f or
all k ∈ N a n d ∈ { 1 , 2 , . . . , d} s u c h t h at f or all v i ∈ R , w e
h a v e

y i [k ] − y [∞ ] < β e − α k ,

w h er e α : = 1
| R| −1 l o g 1

γ > 0 , β : = 1
γ D [ 0] , a n d γ : = 1 −

ω | R| −1

2 .
T h e pr o of of t h e a b o v e pr o p ositi o n f oll o ws b y n oti n g t h at t h e

u p d at es f or { y i [k ]} R e ss e nti all y b oil d o w n t o a s et of d s c al ar
c o ns e ns us u p d at es ( o n e f or e a c h di m e nsi o n of t h e v e ct or),  T h us,
o n e c a n dir e ctl y l e v er a g e t h e pr o of f or s c al ar c o ns e ns us ( wit h
filt eri n g of e xtr e m e v al u es) fr o m [ 1 0 , Pr o p ositi o n 6. 3].  Alt h o u g h
w e e xt e n d t h at pr o of t o pr o vi d e t h e e x pli cit c o n v er g e n c e r at e i n
Pr o p ositi o n 1 ,  w e o mit t h e pr o of h er e.

R e c all t h at { x̂ ∗
i } R i s t h e s et c o nt ai ni n g t h e a p pr o xi m at e  mi n-

i mi z ers of t h e r e g ul ar n o d es’ l o c al f u n cti o ns.  L et x b e a  m atri x
i n R d ×| R| ,  w h er e e a c h c ol u m n of x is a diff er e nt v e ct or fr o m

{ x̂ ∗
i } R . I n a d diti o n, l et x a n d x b e t h e v e ct ors i n R d d e fi n e d b y

x i = m a x 1 ≤ j ≤| R| [x ]i j a n d x i = mi n 1 ≤ j ≤| R| [x ]i j , r es p e cti v el y.
Si n c e  w e s et y i [ 0]  = x̂ ∗

i f or all v i ∈ R a c c or di n g t o Li n e 2 i n
Al g orit h m 1 ,  w e c a n  writ e

β =
1

γ
D [ 0] =

1

γ
x − x .

C.  C o n v er g e n c e t o  C o ns e ns us of St at es

H a vi n g est a blis h e d c o n v er g e n c e of t h e a u xili ar y p oi nts t o
a c o m m o n v al u e (f or t h e r e g ul ar n o d es),  w e n o w c o nsi d er
t h e st at e u p d at e a n d s h o w t h at t h e st at es of all r e g ul ar n o d es
{ x i [k ]} R a s y m pt oti c all y r e a c h c o ns e ns us u n d er  Al g orit h m 1 .
B ef or e st ati n g t h e  m ai n t h e or e m,  w e pr o vi d e a r es ult fr o m [ 1 0 ,
L e m m a 2. 3]  w hi c h is i m p ort a nt f or pr o vi n g t h e  m ai n t h e or e m.

L e m m a 1: S u p p os e t h e gr a p h G s atis fi es  Ass u m pti o n 4 a n d is
(( 2 d + 1) F + 1) -r o b ust.  L et G b e a gr a p h o bt ai n e d b y r e m o v-
i n g (2 d + 1) F or f e w er i n c o mi n g e d g es fr o m e a c h n o d e i n G .
T h e n G is r o ot e d.

T his  m e a ns t h at if  w e h a v e e n o u g h r e d u n d a n c y i n t h e n et-
w or k (i n t his c as e, c a pt ur e d b y t h e ((2 d + 1) F + 1) -r o b ust n ess
c o n diti o n), i nf or m ati o n fr o m at l e ast o n e n o d e c a n still fl o w t o
t h e ot h er n o d es i n t h e n et w or k e v e n aft er e a c h r e g ul ar n o d e
dis c ar ds u p t o F n ei g h b ori n g st at es i n t h e dist a n c e filt eri n g
st e p ( Li n e 7 ) a n d u p t o 2 d F n ei g h b ori n g st at es i n t h e  mi n- m a x
filt eri n g st e p ( Li n e 8 ).  T his tr a ns missi bilit y of i nf or m ati o n is a
cr u ci al c o n diti o n f or r e a c hi n g c o ns e ns us a m o n g r e g ul ar n o d es.

T h e or e m 1 ( C o ns e ns us): S u p p os e  Ass u m pti o ns 2 – 5 h ol d, a n d
t h e gr a p h G is ((2 d + 1) F + 1) -r o b ust. If t h e r e g ul ar a g e nts
f oll o w  Al g orit h m 1 t h e n f or all v i , vj ∈ R , it h ol ds t h at

li m
k → ∞

x i [k ] − x j [k ] = 0 .

Pr o of: It is s uf fi ci e nt t o s h o w t h at all r e g ul ar n o d es v i ∈ R
r e a c h c o ns e ns us o n e a c h c o m p o n e nt of t h eir v e ct ors x i [k ] as
k → ∞ . F or all ∈ { 1 , 2 , . . . , d} a n d f or all v i ∈ R , fr o m ( 5)
a n d ( 6), t h e -t h c o m p o n e nt of t h e v e ct or x i [k ] e v ol v es as

x
( )
i [k + 1] =

x j [k ]∈ X m m
i [k ]

w x, i j [k ] x
( )
j [k ] − η [k ] g

( )
i [k ].

Fr o m [ 1 0 , Pr o p ositi o n 5. 1], t h e a b o v e e q u ati o n c a n b e r e writt e n
as

x
( )
i [k + 1] =

v j ∈ ( N i n
i ∩ R ) ∪ { v i }

w̄
( )
x, i j [k ] x

( )
j [k ] − η [k ] g

( )
i [k ],

( 1 0)

w h er e w̄
( )
x, i i [k ] + v j ∈ N i n

i ∩ R w̄
( )
x, i j [k ] = 1, a n d w̄

( )
x, i i [k ] > ω

a n d at l e ast | N i n
i | − 2 F of t h e ot h er  w ei g hts ar e l o w er b o u n d e d

b y ω
2 .

C o nsi d er t h e s et X m m
i [k ] w hi c h is o bt ai n e d b y r e m o vi n g at

m ost F + 2 d F st at es r e c ei v e d fr o m v i ’s n ei g h b ors ( u p t o F
st at es r e m o v e d b y t h e dist a n c e filt eri n g pr o c ess i n li n e 7, a n d u p
t o 2 F a d diti o n al st at es r e m o v e d b y t h e  mi n- m a x filt eri n g pr o c ess
o n e a c h of t h e d c o m p o n e nts i n li n e 8). Si n c e t h e gr a p h is (( 2 d +
1) F + 1) -r o b ust a n d t h e  B y z a nti n e a g e nts f or m a n F -l o c al s et b y
Ass u m pti o n 4 , fr o m  L e m m a 1 , t h e s u b gr a p h c o nsisti n g of r e g ul ar

n o d es  will b e r o ot e d.  Usi n g t h e f a ct t h at t h e t er m η [k ] g
( )
i [k ]
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a s y m pt oti c all y g o es t o z er o ( b y  Ass u m pti o n 2 a n d ( 9)) a n d ( 1 0),
w e c a n pr o c e e d as i n t h e pr o of of [ 1 0 ,  T h e or e m 6. 1] t o s h o w t h at

li m
k → ∞

|x
( )
i [k ] − x

( )
j [k ]| = 0 ,

f or all v i , vj ∈ R ,  w hi c h c o m pl et es t h e pr o of.
T h e or e m 1 est a blis h e d c o ns e ns us of t h e st at es of t h e r e g ul ar

a g e nts, l e v er a gi n g ( a n d e xt e n di n g) si mil ar a n al ysis f or s c al ar
f u n cti o ns fr o m [ 1 0], o nl y f or  Al g orit h m 1 .  H o w e v er, t his d o es
n ot h ol d f or  Al g orit h m 2 si n c e t h er e  mi g ht e xist a r e g ul ar
a g e nt v i ∈ R , ti m e-st e p k ∈ N a n d di m e nsi o n ∈ { 1 , 2 , . . . , d}

s u c h t h at a n a d v ers ari al st at e x
( )
s [k ] ∈ { x

( )
j [k ] ∈ R : x j [k ] ∈

X dist
i [k ], vj ∈ A } c a n n ot b e  writt e n as a c o n v e x c o m bi n ati o n of

{ x
( )
j [k ] ∈ R : v j ∈ (N i n

i ∩ R ) ∪ { v i } } , a n d t h us  w e c a n n ot o b-
t ai n ( 1 0).  O n t h e ot h er h a n d, Pr o p ositi o n 1 est a blis h e d c o ns e ns us
of t h e a u xili ar y p oi nts,  w hi c h  will b e n o w us e d t o c h ar a ct eri z e
t h e c o n v er g e n c e r e gi o n of b ot h  Al g orit h ms 1 a n d 2 .

D. T h e  R e gi o n t o  W hi c h t h e St at es  C o n v er g e

We n o w a n al y z e t h e tr aj e ct ori es of t h e st at es of t h e a g e nts
u n d er  Al g orit h ms 1 a n d 2 .  We st art  wit h t h e f oll o wi n g r es ult
r e g ar di n g t h e i nt er m e di at e st at e z i [k ] c al c ul at e d i n Li n es 7- 9 of
Al g orit h m 1 .

L e m m a 2: S u p p os e  Ass u m pti o ns 4 a n d 5 h ol d. F urt h er m or e:
if t h e r e g ul ar a g e nts f oll o w  Al g orit h m 1 , s u p p os e t h e gr a p h
G is ((2 d + 1) F + 1) -r o b ust;
ot h er wis e, if t h e r e g ul ar a g e nts f oll o w  Al g orit h m 2 , s u p-
p os e t h e gr a p h G is ( 2F + 1) -r o b ust.

F or all k ∈ N a n d v i ∈ R , if t h er e e xists R i [k ] ∈ R ≥ 0 s u c h t h at
x j [k ] − y i [k ] ≤ R i [k ] f or all v j ∈ (N i n

i ∩ R ) ∪ { v i } t h e n
z i [k ] − y i [k ] ≤ R i [k ].
Pr o of: C o nsi d er t h e dist a n c e filt eri n g st e p i n Li n e 7 of  Al-

g orit h m 1 .  R e c all t h e d e fi niti o n of D i j [k ] fr o m ( 3).  We  will first
pr o v e t h e f oll o wi n g cl ai m. F or e a c h k ∈ N a n d v i ∈ R , t h er e
e xists v r ∈ (N i n

i ∩ R ) ∪ { v i } s u c h t h at f or all x j [k ] ∈ X dist
i [k ],

x j [k ] − y i [k ] ≤ x r [k ] − y i [k ] ,

or e q ui v al e ntl y, D i j [k ] ≤ D i r [k ].
T h er e ar e t w o p ossi bl e c as es. First, if t h e s et X dist

i [k ] c o nt ai ns
o nl y r e g ul ar n o d es,  w e c a n si m pl y c h o os e v r ∈ (N i n

i ∩ R ) ∪
{ v i } t o b e t h e n o d e  w h os e st at e x r [k ] is f urt h est a w a y fr o m
y i [k ].  N e xt, c o nsi d er t h e c as e  w h er e X dist

i [k ] c o nt ai ns t h e st at e
of o n e or  m or e  B y z a nti n e n o d es. Si n c e n o d e v i ∈ R r e m o v es t h e
F st at es fr o m N i n

i t h at ar e f urt h est a w a y fr o m y i [k ] (Li n e 7 ), a n d
t h er e ar e at  m ost F B y z a nti n e n o d es i n N i n

i , t h er e is at l e ast o n e
r e g ul ar st at e r e m o v e d b y n o d e v i . L et v r b e o n e of t h e r e g ul ar
n o d es  w h os e st at e is r e m o v e d.  We t h e n h a v e D i r [k ] ≥ D i j [k ],
f or all v j ∈ { v s ∈ V : x s [k ] ∈ X dist

i [k ]} w hi c h pr o v es t h e cl ai m.

If  Al g orit h m 1 is i m pl e m e nt e d, l et ˆX i [k ] = X m m
i [k ] a n d  w e

h a v e t h at X m m
i [k ] ⊆ X dist

i [k ] d u e t o t h e  mi n- m a x filt eri n g st e p

i n Li n e 8 . If  Al g orit h m 2 is i m pl e m e nt e d, l et ˆX i [k ] = X dist
i [k ]

si n c e Li n e 8 is r e m o v e d.  T h e n, c o nsi d er t h e  w ei g ht e d a v er a g e
st e p i n Li n e 9 . Fr o m ( 5), w e h a v e

z i [k ] − y i [k ] =

x j [k ]∈ ˆX i [k ]

w x, i j [k ] (x j [k ] − y i [k ]) .

Si n c e x j [k ] − y i [k ] ≤ x r [k ] − y i [k ] f or all x j [k ] ∈ ˆX i [k ]
( w h er e v r i s t h e n o d e i d e nti fi e d i n t h e cl ai m at t h e st art of t h e
pr o of),  w e o bt ai n

z i [k ] − y i [k ] ≤

x j [k ]∈ ˆX i [k ]

w x, i j [k ] x j [k ] − y i [k ]

≤

x j [k ]∈ ˆX i [k ]

w x, i j [k ] x r [k ] − y i [k ] .

Si n c e v r ∈ (N i n
i ∩ R ) ∪ { v i } , b y o ur ass u m pti o n,  w e h a v e

x r [k ] − y i [k ] ≤ R i [k ].  T h us, usi n g t h e a b o v e i n e q u alit y a n d
Ass u m pti o n 5 ,  w e o bt ai n t h at z i [k ] − y i [k ] ≤ R i [k ].

L e m m a 2 ess e nti all y st at es t h at if t h e s et of st at es
{ x j [k ] : v j ∈ (N i n

i ∩ R ) ∪ { v i } } is a s u bs et of t h e l o c al b all
B (y i [k ], Ri [k ]) t h e n t h e i nt er m e di at e st at e z i [k ] is still i n t h e
b all.  T his is a c o ns e q u e n c e of usi n g t h e dist a n c e filt er ( a n d a d di n g
t h e  mi n- m a x filt er i n  Al g orit h m 1 d o es n ot d estr o y t his pr o p ert y),
a n d t his  will pl a y a n i m p ort a nt r ol e i n pr o vi n g t h e c o n v er g e n c e
t h e or e m.

N e xt,  w e  will est a blis h c ert ai n q u a ntiti es t h at  will b e us ef ul f or
o ur a n al ysis of t h e c o n v er g e n c e r e gi o n. F or v i ∈ R a n d > 0 ,
d e fi n e

C i ( ) : = { x ∈ R d : f i ( x ) ≤ f i ( x
∗
i ) + } . ( 1 1)

F or all v i ∈ R , si n c e t h e s et ar g mi nf i ( x ) is b o u n d e d ( b y  As-
s u m pti o n 1 ), t h er e e xists δ i ( ) ∈ ( 0, ∞ ) s u c h t h at

C i ( ) ⊆ B (x ∗
i , δi ( )) . ( 1 2)

T h e f oll o wi n g pr o p ositi o n,  w h os e pr o of is pr o vi d e d i n t h e s u p-
pl e m e nt ar y  m at eri al, i ntr o d u c es a n a n gl e θ i w hi c h is a n u p p er
b o u n d o n t h e a n gl e b et w e e n t h e n e g ati v e of t h e gr a di e nt of f i at
a gi v e n p oi nt x a n d t h e v e ct or x ∗

i − x .
Pr o p ositi o n 2: If  Ass u m pti o ns 1 a n d 2 h ol d t h e n f or all v i ∈

R a n d > 0 , t h er e e xists θ i ( ) ∈ [ 0, π
2 ) s u c h t h at f or all x /∈

C i ( ) a n d g̃ i ( x ) ∈ ∂ f i ( x ),

∠ (− g̃ i ( x ), x ∗
i − x ) ≤ θ i ( ). ( 1 3)

B ef or e st ati n g t h e  m ai n t h e or e m,  w e d e fi n e

R̃ i : = x ∗
i − y [∞ ] . ( 1 4)

F urt h er m or e, f or all ξ ∈ R ≥ 0 a n d ∈ R > 0 ,  w e d e fi n e t h e c o n-
v er g e n c e r a di us

s ∗ ( ξ, ) : = m a x
v i ∈ R

m a x { R̃ i s e c θ i ( ), R̃ i + δ i ( ) } + ξ. ( 1 5)

w h er e R̃ i , θ i ( ) a n d δ i ( ) ar e d e fi n e d i n ( 1 4), ( 1 3) a n d
( 1 2), r es p e cti v el y.  B as e d o n t h e d e fi niti o n a b o v e,  w e r ef er t o
B (y [∞ ], s∗ ( ξ, )) as t h e c o n v er g e n c e b all .

We n o w c o m e t o t h e  m ai n r es ult of t his p a p er, s h o wi n g t h at
t h e st at es of all t h e r e g ul ar n o d es  will c o n v er g e t o a b all of
r a di us i nf > 0 s ∗ ( 0 , ) ar o u n d t h e a u xili ar y p oi nt y [∞ ] u n d er
Al g orit h ms 1 a n d 2 .

T h e or e m 2 ( C o n v er g e n c e): S u p p os e  Ass u m pti o ns 1 – 5 h ol d.
F urt h er m or e:

if t h e r e g ul ar a g e nts f oll o w  Al g orit h m 1 , s u p p os e t h e gr a p h
G is ((2 d + 1) F + 1) -r o b ust;

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fi g. 1.  L o c al  mi ni mi z ers x ∗
i a n d t h e gl o b al  mi ni mi z er x ∗ ar e s h o w n i n

t h e pl ot.  T h e esti m at e d a u xili ar y p oi nt y [∞ ] is i n t h e r e ct a n gl e f or m e d b y
t h e l o c al  mi ni mi z ers ( Pr o p ositi o n 1 )  w h er e as t h e gl o b al  mi ni mi z er x ∗ i s n ot
n e c ess aril y i n t h e r e ct a n gl e [ 1 6].  H o w e v er, t h e b all c e nt er e d at y [∞ ] wit h r a di us
i nf > 0 s ∗ ( 0 , ) c o nt ai ns b ot h t h e s u pr e m u m li mit of t h e st at e v e ct ors x i [k ] a n d
t h e gl o b al  mi ni mi z er x ∗ ( T h e or e ms 2 a n d 3 ).

ot h er wis e, if t h e r e g ul ar a g e nts f oll o w  Al g orit h m 2 , s u p-
p os e t h e gr a p h G is ( 2F + 1) -r o b ust.

T h e n r e g ar dl ess of t h e a cti o ns of a n y F -l o c al s et of  B y z a nti n e
a d v ers ari es, f or all v i ∈ R , w e h a v e

li m s u p
k

x i [k ] − y [∞ ] ≤ i nf
> 0

s ∗ ( 0 , ).

T h e pr o of of t h e t h e or e m r e q uir es s e v er al t e c h ni c al l e m m as
a n d pr o p ositi o ns, a n d t h us,  w e pr o vi d e a pr o of s k et c h i n S e c-
ti o n I V- E a n d a f or m al pr o of i n t h e s u p pl e m e nt ar y  m at eri al.

T h e f oll o wi n g t h e or e m,  w h os e pr o of is pr o vi d e d i n t h e s u p-
pl e m e nt ar y  m at eri al, pr o vi d es p ossi bl e l o c ati o ns of t h e tr u e
mi ni mi z er x ∗ ,  w hi c h is i n f a ct i nsi d e t h e c o n v er g e n c e r e gi o n,
e v e n i n t h e pr es e n c e of a d v ers ari al a g e nts.

T h e or e m 3: L et x ∗ b e a s ol uti o n of Pr o bl e m ( 2). If  Ass u m p-
ti o ns 1 a n d 2 h ol d, t h e n x ∗ ∈ B (y [∞ ], i nf > 0 s ∗ ( 0 , )) .

T h e or e ms 2 a n d 3 s h o w t h at b ot h  Al g orit h ms 1 a n d 2 c a us e all
r e g ul ar n o d es t o c o n v er g e t o a r e gi o n t h at als o c o nt ai ns t h e tr u e
s ol uti o n, r e g ar dl ess of t h e a cti o ns of a n y F -l o c al s et of  B y z a nti n e
a d v ers ari es.  T h e si z e of t his r e gi o n s c al es  wit h t h e q u a ntit y
i nf > 0 s ∗ ( 0 , ).  L o os el y s p e a ki n g, t his q u a ntit y b e c o m es s m all er
as t h e  mi ni mi z ers of t h e l o c al f u n cti o ns of t h e r e g ul ar a g e nts
g et cl os er t o g et h er.  M or e s p e ci fi c all y, c o nsi d er a fi x e d ∈ R > 0 .
If t h e f u n cti o ns f i ( x ) ar e tr a nsl at e d s o t h at t h e  mi ni mi z ers x ∗

i

g et cl os er t o g et h er (i. e., R̃ i i s s m all er  w hil e θ i ( ) a n d δ i ( ) ar e
fi x e d), t h e n s ∗ ( 0 , ) als o d e cr e as es.  C o ns e q u e ntl y, t h e st at e x i [k ]
is g u ar a nt e e d t o b e c o m e cl os er t o t h e tr u e  mi ni mi z er x ∗ a s k
g o es t o i n fi nit y. Fi g. 1 ill ustr at es t h e k e y q u a ntiti es o utli n e d i n
t h e  m ai n t h e or e ms.  A d et ail e d dis c ussi o n of t h e c o n v er g e n c e
r e gi o n is f urt h er pr o vi d e d i n S e cti o n V-  D .

We  w o ul d li k e t o hi g hli g ht t h e s c al a bilit y of o ur al g orit h ms i n
t er ms of b ot h c o m p ut ati o n al c o m pl e xit y a n d gr a p h r o b ust n ess r e-
q uir e m e nts, s p e ci fi c all y i n r el ati o n t o t h e n u m b er of di m e nsi o ns
d .  Al g orit h ms 1 a n d 2 e x hi bit c o m p ut ati o n al c o m pl e xiti es of
˜O (d 2 ) a n d ˜O (d ) o p er ati o ns p er a g e nt p er it er ati o n, r es p e cti v el y.
A d et ail e d c al c ul ati o n is pr o vi d e d i n S e cti o n V- C . F urt h er m or e,
t h e y i m p os e r o b ust n ess r e q uir e m e nts of O (d ) a n d O ( 1) t o
a c hi e v e t h e c o n v er g e n c e r es ult, as d e m o nstr at e d i n  T h e or e m 2 .

W hil e  Al g orit h m 2 is  m or e s c al a bl e, it l a c ks a c o ns e ns us g u ar-
a nt e e, u nli k e  Al g orit h m 1 (r ef er t o  T h e or e m 1 ). F urt h er i nsi g hts
a n d dis c ussi o ns o n t his t o pi c ar e pr es e nt e d i n S e cti o n V- B a n d
R e m ar k 6 .

E.  Pr o of S k et c h of t h e  C o n v er g e n c e T h e or e m

We  w or k t o w ar ds t h e pr o of of  T h e or e m 2 i n s e v er al st e ps,
w hi c h  w e pr o vi d e a n o v er vi e w b el o w.  T h e pr o ofs of t h e i n-
t er m e di at e r es ults pr es e nt e d i n t his s e cti o n ar e pr o vi d e d i n t h e
s u p pl e m e nt ar y  m at eri al.

F or t h e s u bs e q u e nt a n al ysis,  w e s u p p os e t h at t h e gr a p h G
is ((2 d + 1) F + 1) -r o b ust f or  Al g orit h m 1 , a n d
is ( 2F + 1) -r o b ust f or  Al g orit h m 2 .

F urt h er m or e, u nl ess st at e d ot h er wis e,  w e  will fi x ξ ∈ R > 0

a n d ∈ R > 0 , a n d hi d e t h e d e p e n d e n c e of ξ a n d i n δ i ( ) a n d
s ∗ ( ξ, ) b y d e n oti n g t h e m as δ i a n d s ∗ , r es p e cti v el y.

1)  Gr a di e nt  U p d at e St e p  A n al ysis: First,  w e c o nsi d er t h e
u p d at e fr o m t h e i nt er m e di at e st at es { z i [k ]} R t o t h e st at es
{ x i [k + 1] } R vi a t h e gr a di e nt st e p ( 6) (i. e., Li n e 1 0 ). I n p ar-
ti c ul ar,  w e pr o vi d e a r el ati o ns hi p b et w e e n z i [k ] − y [∞ ] a n d
x i [k + 1] − y [∞ ] f or t hr e e diff er e nt c as es:

z i [k ] − y [∞ ] ∈ [ 0, m a x v j ∈ R { R̃ j + δ j } ],

z i [k ] − y [∞ ] ∈ ( m a x v j ∈ R { R̃ j + δ j } , s∗ ],
z i [k ] − y [∞ ] ∈ (s ∗ , ∞ ).

T h e c orr es p o n di n g f or m al st at e m e nts ar e pr es e nt e d as f ol-
l o ws.  L e m m a 3 b el o w ess e nti all y s a ys t h at if k is s uf fi ci e ntl y
l ar g e a n d z i [k ] ∈ B (y [∞ ], m a x v i ∈ R { R̃ i + δ i } ) , t h e n aft er a p-
pl yi n g t h e gr a di e nt u p d at e ( 6), t h e st at e x i [k + 1] will still b e
i n t h e c o n v er g e n c e b all.  T o est a blis h t h e r es ult, l et k ∗

1 ∈ N b e a
ti m e-st e p s u c h t h at η [k ∗

1 ] ≤ ξ
L .

L e m m a 3: S u p p os e  Ass u m pti o ns 2 – 5 h ol d. F or all v i ∈ R a n d
k ≥ k ∗

1 , if z i [k ] ∈ B (y [∞ ], m a x v j ∈ R { R̃ j + δ j } ) t h e n x i [k +
1] ∈ B (y [∞ ], s∗ ) .

L e m m a 4 , b as e d o n Pr o p ositi o n 2 , a n al y z es t h e r el ati o n-
s hi p b et w e e n z i [k ] − y [∞ ] a n d x i [k + 1] − y [∞ ] w h e n
z i [k ] − y [∞ ] > R̃ i + δ i .  T h e r es ult  will b e us e d t o pr o v e

L e m m a 5 .
F or v i ∈ R , d e fi n e Δ i : [R̃ i , ∞ ) × R ≥ 0 → R t o b e t h e f u n c-

ti o n

Δ i ( p, l ) : = 2 l p 2 − R̃ 2
i c o s θ i − R̃ i si n θ i − l2 . ( 1 6)

L e m m a 4: S u p p os e  Ass u m pti o ns 1 , 2 , 4 a n d 5 h ol d. F or all
v i ∈ R a n d k ∈ N , if z i [k ] − y [∞ ] > R̃ i + δ i t h e n

x i [k + 1] − y [∞ ] 2 ≤ z i [k ] − y [∞ ] 2

− Δ i ( z i [k ] − y [∞ ] , η[k ] g i [k ] ), ( 1 7)

w h er e g i [k ] ∈ R d i s d e fi n e d i n ( 6).
Si mil ar t o  L e m m as 3 , 5 b el o w st at es t h at if k is s uf fi ci e ntl y

l ar g e a n d z i [k ] − y [∞ ] ∈ ( m a x v i ∈ R { R̃ i + δ i } , s∗ ] t h e n b y
a p pl yi n g t h e gr a di e nt st e p ( 6),  w e h a v e t h at t h e st at e x i [k + 1]
is still i n t h e c o n v er g e n c e b all.

T o si m plif y t h e n ot ati o ns, d e fi n e

a ±
i : = − R̃ i si n θ i ± (s ∗ ) 2 − R̃ 2

i c o s 2 θ i a n d
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b i : = 2 (s ∗ ) 2 − R̃ 2
i c o s θ i − R̃ i si n θ i . ( 1 8)

L et k ∗
2 ∈ N b e a ti m e-st e p s u c h t h at η [k ∗

2 ] ≤
1
L mi n v i ∈ R { mi n { a +

i , bi } } .
L e m m a 5: S u p p os e  Ass u m pti o ns 1 – 5 h ol d. F or all v i ∈

R a n d k ≥ k ∗
2 , if z i [k ] − y [∞ ] ∈ ( m a x v j ∈ R { R̃ j + δ j } , s∗ ]

t h e n x i [k + 1] − y [∞ ] ∈ [ 0, s∗ ].
T h e f oll o wi n g l e m m a is us ef ul f or b o u n di n g t h e t er m Δ i

a p p e ar e d i n ( 1 7) f or t h e c as e t h at z i [k ] − y [∞ ] > s ∗ .
D e fi n e t h e s et of a g e nts

I z [k ] : = { v i ∈ R : z i [k ] − y [∞ ] > s ∗ } , ( 1 9)

a n d l et k ∗
3 ∈ N b e a ti m e-st e p s u c h t h at η [k ∗

3 ] ≤ 1
2 L mi n v i ∈ R b i .

L e m m a 6: If  Ass u m pti o ns 1 – 5 h ol d t h e n f or all k ≥ k ∗
3 a n d

v i ∈ I z [k ],

Δ i ( z i [k ] − y [∞ ] , η[k ] g i [k ] ) >
1

2
b i L i η [k ],

w h er e Δ i a n d g i [k ] ar e d e fi n e d i n ( 1 6) a n d ( 6), r es p e cti v el y, a n d
L i : = δ i ( ) > 0 .

N ot e t h at t h e q u a ntit y L i d e fi n e d a b o v e c a n b e i nt er pr et e d
as a l o w er b o u n d o n a s u b gr a di e nt of t h e f u n cti o n f i ( x ) w h e n
x /∈ C i ( ).

L e m m as 3 – 6 c oll e cti v el y est a blis h t h e c o m pl et e r el ati o ns hi p
g o v er ni n g t h e u p d at e fr o m { z i [k ]} R t o { x i [k + 1] } R ,  w hi c h
will b e us e d t o pr o v e  L e m m a 7 .

2)  B o u n ds o n St at es of  R e g ul ar  A g e nts: N e xt,  w e c o nsi d er
t h e u p d at e fr o m t h e st at es { x i [k ]} R t o t h e i nt er m e di at e st at es
{ z i [k ]} R vi a t w o filt eri n g st e ps ( Li n es 7 a n d 8 ) a n d t h e  w ei g ht e d
a v er a g e st e p ( Li n e 9 ). I n p arti c ul ar, utili zi n g  L e m m a 2 ,  w e d eri v e
t h e f oll o wi n g r el ati o ns hi p.

Pr o p ositi o n 3: If  Ass u m pti o ns 4 a n d 5 h ol d, t h e n f or all k ∈ N
a n d v i ∈ R , it h ol ds t h at

z i [k ] − y [∞ ] ≤ m a x
v j ∈ R

x j [k ] − y [∞ ] + 2 y i [k ] − y [∞ ] .

B y c o m bi ni n g t h e a b o v e i n e q u alit y  wit h t h e r el ati o n-
s hi p b et w e e n z i [k ] − y [∞ ] a n d x i [k + 1] − y [∞ ] fr o m
L e m m as 3 – 6 , a n d b o u n di n g t h e s e c o n d t er m o n t h e  R H S,
y i [k ] − y [∞ ] , usi n g Pr o p ositi o n 1 ,  w e o bt ai n a r el ati o ns hi p

b et w e e n x i [k + 1] − y [∞ ] a n d m a x v j ∈ R x j [k ] − y [∞ ] .
As a r es ult,  w e c a n b o u n d t h e dist a n c e m a x v i ∈ R x i [k ] − y [∞ ]
b y a p arti c ul ar b o u n d e d s e q u e n c e d e fi n e d b el o w.

D e fi n e t h e ti m e-st e p k 0 ∈ N as k 0 : =  m a x ∈ { 1 ,2 ,3 } k ∗ .  R e c all
t h e d e fi niti o n of α a n d β fr o m Pr o p ositi o n 1 . L et

φ [k 0 ] = m a x
v i ∈ R

x i [ 0] − y [∞ ] + 2 β

k 0 − 1

k = 0

e − α k + L

k 0 − 1

k = 0

η [k ],

( 2 0)
a n d d e fi n e a s e q u e n c e { φ [k ]} ∞

k = k 0
s atisf yi n g t h e u p d at e r ul e

φ 2 [k + 1] =  m a x (s ∗ ) 2 ,

φ [k ] + 2β e − α k 2
−

1

2
η [k ] mi n

v i ∈ R
b i L i . ( 2 1)

L e m m a 7: S u p p os e  Ass u m pti o ns 1 – 5 h ol d. F or all k ≥ k 0 , it
h ol ds t h at

m a x
v i ∈ R

x i [k ] − y [∞ ] ≤ φ [k ].

F urt h er m or e, t h er e e xists φ̄ ∈ R ≥ 0 s u c h t h at f or all k ≥ k 0 , t h e
s e q u e n c e φ [k ] c a n b e u nif or ml y b o u n d e d as φ [k ] < φ̄ .

3)  C o n v er g e n c e  A n al ysis: Fi n all y,  w e  will utili z e t h e f oll o w-
i n g l e m m a t o f urt h er a n al y z e t h e s e q u e n c e { φ [k ]} d e fi n e d i n
( 2 1).

L e m m a 8: C o nsi d er a s e q u e n c e { η̂ [k ]} ∞
k = 0 ⊂ R ≥ 0 t h at s atis-

fi es ∞
k = 0 η̂ [k ] = ∞ . If γ 1 ∈ R ≥ 0 , γ 2 ∈ R > 0 a n d λ ∈ (− 1 , 1) ,

t h e n t h er e is n o s e q u e n c e { u [k ]} ∞
k = 0 ⊂ R ≥ 0 t h at s atis fi es t h e

u p d at e r ul e

u 2 [k + 1] = ( u [k ] + γ 1 λ k ) 2 − γ 2 η̂ [k ].

B y e m pl o yi n g  L e m m as 7 a n d 8 , Pr o p ositi o n 4 d e m o nstr at es
t h at a n y r e p ulsi o n of t h e st at e z i [k ] fr o m t h e c o n v er g e n c e
b all B (y [∞ ], s∗ ) d u e t o i n c o nsist e n c y of t h e esti m at es of t h e
a u xili ar y p oi nt ( Pr o p ositi o ns 1 a n d 3 ) is c o m p e ns at e d b y t h e
gr a di e nt t er m p ulli n g t h e st at e x i [k ] t o t h e c o n v er g e n c e b all.
C o ns e q u e ntl y, t h e q u a ntit y φ [k ] d e cr e as es u ntil it d o es n ot
e x c e e d s ∗ . I n ot h er  w or ds, t h e s e q u e n c e a n al ysis r es ults i n

m a x
v i ∈ R

x i [k ] − y [∞ ] ≤ φ [k ] ≤ s ∗ ( 2 2)

f or a s uf fi ci e ntl y l ar g e ti m e-st e p k .  T h e cr u ci al fi nit e ti m e c o n-
v er g e n c e r es ult is f or m all y st at e d as f oll o ws.

Pr o p ositi o n 4: S u p p os e  Ass u m pti o ns 1 – 5 h ol d.  T h e n, t h er e
e xists K ∈ N s u c h t h at f or all v i ∈ R a n d k ≥ K , w e h a v e
x i [k ] ∈ B (y [∞ ], s∗ ) .

Si n c e all t h e pri or a n al ys es v ali d f or all ξ ∈ R > 0 a n d ∈
R > 0 , t h e c o n v er g e n c e r es ult i n  T h e or e m 2 f oll o ws fr o m t a ki n g
i nfξ > 0 , > 0 a n d li m s u pk t o ( 2 2).

V.  D I S C U S SI O N

A.  F u n d a m e nt al Li mit ati o n

O n e  w o ul d i d e all y e x p e ct a n al g orit h m t o pr o vi d e c o n v er-
g e n c e t o t h e e x a ct  mi ni mi z er of t h e s u m of t h e r e g ul ar a g e nts’
f u n cti o ns  w h e n t h er e ar e n o  B y z a nti n e a g e nts i n t h e n et w or k.
H o w e v er, pri or  w or ks [ 1 0], [ 1 4] h a v e est a blis h e d a f u n d a m e nt al
li mit ati o n, s h o wi n g t h at a c hi e vi n g s u c h a g u ar a nt e e is n ot p os-
si bl e u nl ess t h e s et of l o c al f u n cti o ns p oss ess es a r e d u n d a n c y
pr o p ert y, k n o w n as 2 F -r e d u n d a n c y [ 2 4].  T his li mit ati o n aris es
fr o m t h e str o n g  m o d el of  B y z a nti n e att a c ks c o nsi d er e d,  w h er e
a  B y z a nti n e a g e nt c a n s u bstit ut e t h e gi v e n l o c al f u n cti o n  wit h a
f or g e d f u n cti o n t h at r e m ai ns l e giti m at e.  C o ns e q u e ntl y, d et e cti n g
s u c h s us pi ci o us b e h a vi or or d et er mi ni n g t h e t ot al n u m b er of
B y z a nti n e a g e nts | A| i n t h e n et w or k is n ot p ossi bl e, as t h e
B y z a nti n e a g e nt c a n f oll o w t h e al g orit h m  w hil e i n fl u e n ci n g
t h e o ut c o m e of distri b ut e d o pti mi z ati o n ( as dis c uss e d i n  R e-
m ar k 2 ). I n ot h er  w or ds, i n s etti n gs  w h er e  B y z a nti n e a g e nts
ar e p ot e nti all y pr es e nt (i. e., F > 0 ) a n d t h er e is n o k n o w n
r e d u n d a n c y a m o n g t h e f u n cti o ns, a c hi e vi n g z er o st e a d y st at e
err or is i m p ossi bl e e v e n  w h e n t h er e ar e n o  B y z a nti n e a g e nts
a ct u all y pr es e nt (i. e., | A| = 0 ) [ 1 0], [ 1 4].
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O ur  w or k, i m p osi n g o nl y  mil d ass u m pti o ns o n t h e l o c al
f u n cti o ns, is c o nstr ai n e d b y t his f u n d a m e nt al li mit.  Alt h o u g h
o ur a p pr o a c h c a n r e c o v er t h e distri b ut e d s u b gr a di e nt  m et h o d [ 8],
[ 3 1] w h e n s el e cti n g t h e p ar a m et er F = 0 , i n t h e  w orst c as e
s c e n ari o, t h er e is n o  w a y t o d et er mi n e t h e n u m b er of  B y z a nti n e
a g e nts.  As dis c uss e d i n  R e m ar k 5 , i n pr a cti c e,  w e n e e d t o c h o os e
t h e p ar a m et er F i n t h e d esi g n p h as e, i. e., pri or t o t h e e x e c uti o n
of t h e al g orit h m.  T h us, i n o ur  w or k, t h e p ar a m et er F s er v es as
t h e  m a xi m al n u m b er of  B y z a nti n e a g e nts i n a s et of n ei g h b ors
t h at t h e d esi g n e d s yst e m c a n t ol er at e, pr o vi di n g a c o n v er g e n c e
g u ar a nt e e, as st at e d i n  T h e or e m 2 .

It is cr u ci al t o a c k n o wl e d g e t h at t h e f u n d a m e nt al li mit is
w ell- est a blis h e d f or distri b ut e d o pti mi z ati o n pr o bl e ms.  H o w-
e v er, t h e q u esti o n of t h e d e p e n d e n c e of t h e s m all est si z e of
t h e c o n v er g e n c e r e gi o n o n t h e p ar a m et ers c h ar a ct eri zi n g t h e
f u n cti o n cl ass r e m ai ns a n i m p ort a nt o p e n pr o bl e m [ 2 7].

B.  R e d u n d a n c y a n d  G u ar a nt e es Tr a d e- Off

A n a p pr o pri at e n oti o n of n et w or k r e d u n d a n c y is n e c ess ar y
f or a n y  B y z a nti n e r esili e nt o pti mi z ati o n al g orit h m [ 1 0]; f or b ot h
Al g orit h ms 1 a n d 2 , t his is c a pt ur e d b y t h e c orr es p o n di n g r o b ust-
n ess c o n diti o ns i n  T h e or e m 2 . I n p arti c ul ar,  Al g orit h m 1 r e q uir es
t h e gr a p h t o b e ((2 d + 1) F + 1) -r o b ust si n c e it i m pl e m e nts t w o
filt ers ( a dist a n c e- b as e d filt er ( Li n e 7 ) a n d a  mi n- m a x filt er (Li n e
8 ))  w hil e  Al g orit h m 2 r e q uir es t h e gr a p h t o o nl y b e ( 2F + 1) -
r o b ust as a r es ult of o nl y usi n g t h e dist a n c e- b as e d filt er. Si n c e
e a c h of t h es e filt eri n g st e ps dis c ar ds a s et of st at e v e ct ors,
t h e r o b ust n ess c o n diti o n all o ws t h e gr a p h t o r et ai n s o m e fl o w
of i nf or m ati o n.  T h us,  w hil e  Al g orit h m 1 r e q uir es si g ni fi c a ntl y
str o n g er c o n diti o ns o n t h e n et w or k t o p ol o g y (i. e., r e q uiri n g t h e
r o b ust n ess p ar a m et er t o s c al e li n e arl y  wit h t h e di m e nsi o n of t h e
f u n cti o ns), it pr o vi d es t h e b e n e fit of g u ar a nt e ei n g c o ns e ns us.
Al g orit h m 2 o nl y r e q uir es t h e r o b ust n ess p ar a m et er t o s c al e  wit h
t h e n u m b er of a d v ers ari es i n e a c h n ei g h b or h o o d, a n d t h us c a n b e
us e d f or o pti mi zi n g hi g h- di m e nsi o n al f u n cti o ns  wit h r el ati v el y
s p ars e n et w or ks, at t h e c ost of l osi n g t h e g u ar a nt e e o n c o ns e ns us.

R e m ar k 6: T h e li n e ar d e p e n d e n c e of t h e r e d u n d a n c y r e q uir e-
m e nt o n t h e n u m b er of di m e nsi o ns d is, i n f a ct, t y pi c al f or
r esili e nt v e ct or c o ns e ns us ( e. g., s e e [ 3 5], [ 3 6], [ 3 7], [ 3 8], [ 3 9],
[ 4 0], [ 4 1]);  T h e s ur v e y p a p er [4 2 , S e cti o n 5. 3] pr o vi d es a d e-
t ail e d dis c ussi o n of p a p ers t h at r e q uir e t his ass u m pti o n.  D es pit e
s u c h a c o n diti o n/r estri cti o n b ei n g “st a n d ar d ” i n t h e lit er at ur e,
t h e li n e ar gr o wt h i n t h e n u m b er of n ei g h b ors  wit h t h e di m e nsi o n
of t h e st at e is u n d esir a bl e.  T o a d dr ess t h e dr a w b a c k of r e q uiri n g
hi g h r e d u n d a n c y,  w e pr o vi d e  Al g orit h m 2 w hi c h is a n alt er n ati v e
s ol uti o n t h at d o es n ot d e p e n d o n t h e n u m b er of di m e nsi o ns d ;
h o w e v er, i n t his c as e,  w e l os e t h e c o ns e ns us g u ar a nt e e u nli k e
Al g orit h m 1 .

C. Ti m e  C o m pl e xit y

S u p p os e t h e n et w or k is r -r o b ust a n d t h e n u m b er of i n-
n ei g h b ors | N i n

i | i s li n e arl y pr o p orti o n al t o r f or all v i ∈ V .
F or t h e dist a n c e- b as e d filt er ( Li n e 7 ), e a c h r e g ul ar a g e nt v i ∈
R c o m p ut es t h e L 2 - n or m b et w e e n its a u xili ar y st at e a n d i n-
n ei g h b or st at es a n d t h e n fi n ds t h e F a g e nts t h at att ai n t h e
m a xi m u m v al u e; t his pr o c e d ur e t a k es O (d r ) o p er ati o ns.  O n

t h e ot h er h a n d, f or t h e  mi n- m a x filt er (Li n e 8 ), e a c h r e g ul ar
a g e nt v i ∈ R is r e q uir e d t o s ort t h e i n- n ei g h b or st at es f or e a c h
di m e nsi o n  w hi c h t a k es O (d r l o g r ) o p er ati o ns. F or  Al g orit h ms 1
a n d 2 , t h e t ot al c o m p ut ati o n al c o m pl e xiti es f or filt eri n g pr o c ess
ar e ˜O (d 2 ) a n d ˜O (d ), r es p e cti v el y.  C o m p ar e d t o t h e r esili e nt
v e ct or c o ns e ns us lit er at ur e [ 3 5], [ 3 6], [ 3 7], [ 3 8], [ 3 9], [ 4 0],
[ 4 1],  w hi c h r e q uir es e x p o n e nti al i n t h e n u m b er of di m e nsi o ns d
f or c o m p ut ati o n al c o m pl e xit y, o ur al g orit h ms h a v e si g ni fi c a ntl y
l o w er c o m p ut ati o n c osts.

D.  C o n v er g e n c e  B all

I n t er ms of t h e si z e of t h e c o n v er g e n c e b all, it is cr u ci al t o n ot e
t h at t h e c o n v er g e n c e r a di us d e fi n e d i n ( 1 5) r e m ai ns i n d e p e n d e nt
of t h e  Li ps c hit z c o nst a nt L , t h e n u m b er of r e g ul ar a g e nts | R|
(i n c o ntr ast t o t h e r es ult i n [ 2 6]), or t h e  m a xi m u m n u m b er
of n ei g h b ori n g  B y z a nti n e a g e nts F . I nst e a d, t h e r a di us hi n g es
s ol el y o n s p e ci fi c c h ar a ct eristi cs of l o c al f u n cti o ns: t h e l o c ati o ns
of l o c al  mi ni mi z ers ( c a pt ur e d b y R̃ i ), s e nsiti vit y ( c a pt ur e d b y
θ i ), a n d t h e si z e of t h e s et of l o c al  mi ni mi z ers ( c a pt ur e d b y δ i ).
H o w e v er, t h e q u a ntit y R̃ i c a n b e pr o p orti o n al t o

√
d i n t h e  w orst

c as e as a n al y z e d i n [ 2 7].  As  w e  will dis c uss n e xt, r e m ar k a bl y,
t h e s e nsiti vit y θ i d e fi n e d i n Pr o p ositi o n 2 is i nti m at el y li n k e d t o
t h e c o n diti o n n u m b er of a f u n cti o n.

F or si m pli cit y,  w e  will o mit t h e a g e nt i n d e x s u bs cri pt
i i n t h e s u bs e q u e nt a n al ysis a n d ass u m e x ∗

i = 0 .  C o n-
si d er a q u a dr ati c f u n cti o n f (x ) = 1

2 A x 2 ,  w h er e A ∈
R d × d i s a p ositi v e d e fi nit e  m atri x.  N o w,  w e  will e x a m-
i n e t h e q u a ntit y s u p x = 0 ∠ ( g (x ), x ) fr o m Pr o p ositi o n 2 ,

w h er e g (x ) = ∇ f (x ) = A T A x .  We ai m t o d e m o nstr at e
t h at s e c( s u p x = 0 ∠ ( g (x ), x )) ≤ ( A · A − 1 ) 2 : = κ ,  w h er e

· d e n ot es t h e i n d u c e d  m atri x n or m, a n d κ is t h e c o n diti o n
n u m b er ass o ci at e d  wit h t h e f u n cti o n f [ 4 3]. It is n ot e w ort h y t h at
t his i n e q u alit y,  wit h t h e r e pl a c e m e nt of s u p x = 0 ∠ ( g (x ), x ) b y
s u p x = x ∗

∠ ( g (x ), x − x ∗ ) , h ol ds f or t h e  m or e g e n er al c as e of

f (x ) = 1
2 A ( x − x ∗ ) + b 2 wit h x ∗ ∈ R d a n d b ∈ R d .

T o s h o w s u c h r es ult,  w e pr o c e e d as f oll o ws:

c o s s u p
x = 0

∠ ( g (x ), x ) = i nf
x = 0

( c o s ∠ (g (x ), x ))

= i nf
x = 0

g ( x ), x

g (x ) · x
= i nf

x = 0

A x 2

x 2
·

x

A T A x

≥ i nf
x = 0

A x

x

2

s u p
x = 0

A T A x

x

− 1

≥ A − 1 · A
− 2

.

I n t h e l ast i n e q u alit y,  w e utili z e t h e pr o p erti es t h at

i nfx = 0
A x
x = 1

A − 1 d u e t o t h e i n v erti bilit y of A

a n d s u p x = 0
A T A x

x = A T A ≤ A 2 d u e t o t h e
s u b- m ulti pli c ati v e pr o p ert y of i n d u c e d  m atri x n or m, a n d
A T = A .
T o g et a s e ns e of t h e c o n v er g e n c e r e gi o n,  w e c o nsi d er u ni v ari-

at e f u n cti o ns (i. e., t h e d = 1 c as e).  T o f a cilit at e t h e dis c ussi o n,
w e d e n ot e mi n v i ∈ R x ∗

i a n d m a x v i ∈ R x ∗
i b y x a n d x , r es p e cti v el y.

S u p p os e t h at t h e l o c al  mi ni mi z er x ∗
i i s u ni q u e f or all v i ∈ R s o
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t h at t h e q u a ntit y δ i d e fi n e d i n ( 1 2) c a n b e c h os e n ar bitr aril y
cl os e t o z er o f or all v i ∈ R . I n t his c as e,  w e h a v e t h at f or all
v i ∈ R , θ i d e fi n e d i n ( 1 3) is z er o.  T h er ef or e, t h e c o n v er g e n c e
r a di us s ∗ i n ( 1 5) si m pli fi es t o m a x v i ∈ R R̃ i ( w h er e R̃ i d e fi n e d
i n ( 1 4)). I n t h e b est c as e,  w e c a n h a v e y [∞ ] = 1

2 ( x + x ) w hi c h
r es ults i n t h e c o n v er g e n c e r e gi o n [x , x ] as d eri v e d i n [ 1 0]. I n t h e
w orst c as e, ( ass u mi n g n u m eri c al err or ∗ i n Li n e 1 is z er o)  w e
c a n h a v e y [∞ ] = x or x w hi c h r es ults i n t h e c o n v er g e n c e r e gi o n
[ 2x − x, x ] or [x , 2 x − x ], r es p e cti v el y. I n s u c h  w orst c as e, t h e
r e gi o n is t w o ti m es bi g g er t h a n t h e r e gi o n d eri v e d i n [ 1 0].  T h es e
r es ults ar e d u e t o o ur “r a di us a n al ysis ”  w hi c h is u nif or m i n all
dir e cti o ns fr o m y [∞ ].

R e m ar k 7: R e g ar di n g t h e c o n v er g e n c e r at e, gi v e n t h e g e n er al
c o n v e x ( p ossi bl y n o n-s m o ot h) n at ur e of t h e pr o bl e m, a c hi e vi n g
o nl y s u bli n e ar c o n v er g e n c e is t y pi c al i n c e ntr ali z e d s etti n gs [ 4 4].
S p e ci fi c all y, t h e a nti ci p at e d c o n v er g e n c e r at e  m a y ali g n  wit h t h e
O ( l o g k√

k
) r at e o bs er v e d i n [ 8] f or n o n-f a ult y distri b ut e d c as es.

W hil e o ur c urr e nt  w or k pr o vi d es as y m pt oti c a n al ysis d u e t o
i n h er e nt c h all e n g es, o ur f ut ur e e n d e a v ors ai m t o e x pl or e e x pli cit
c o n v er g e n c e r at es f or a br o a d er cl ass of  B y z a nti n e-r esili e nt
distri b ut e d o pti mi z ati o n al g orit h ms.

E.  M a xi m u m T ol er a n c e

B as e d o n t h e r o b ust n ess c o n diti o n f or e a c h al g orit h m a n d a
f or m ul a fr o m [ 4 5], gi v e n t h e n u m b er of a g e nts N i n t h e c o m pl et e
gr a p h a n d n u m b er of di m e nsi o ns f or t h e o pti mi z ati o n v ari a bl es
d , t h e u p p er b o u n d o n t h e n u m b er of l o c al  B y z a nti n e a g e nts F
s u c h t h at t h e c orr es p o n di n g g u ar a nt e es still h ol d, is as f oll o ws:

F = N − 1
2 ( 2 d + 1 ) f or  Al g orit h m 1 , a n d

F = 1
4 ( N − 1) f or  Al g orit h m 2 .

Fr o m a pr a cti c al p ers p e cti v e, t h e r o b ust n ess pr o p ert y d e m o n-
str at es a n at ur al tr a d e- off f or t h e s yst e m d esi g n er.  A n et w or k t h at
h as a str o n g er r o b ust n ess pr o p ert y c a n t ol er at e  m or e a d v ers ari es,
b ut c a n als o i n d u c e  m or e c osts.

F. I m p ort a n c e of  M ai n St at es  C o m p ut ati o n

If  w e si m pl y i m pl e m e nt a r esili e nt c o ns e ns us pr ot o c ol o n l o c al
mi ni mi z ers si mil ar t o t h e a u xili ar y st at es, y i [k ], c o m p ut ati o n (i n
Li n es 1 1- 1 2 ) a n d r e m o v e t h e  m ai n st at es, x i [k ], c o m p ut ati o n (i n
Li n es 7- 9 ),  w e  w o ul d o bt ai n t h at t h e st at es of t h e r e g ul ar a g e nts
c o n v er g e t o t h e h y p er-r e ct a n gl e f or m e d b y t h e l o c al  mi ni mi z ers
(f or r esili e nt c o m p o n e nt- wis e c o ns e ns us al g orit h ms [ 4 6]), or
t h e c o n v e x h ull of t h e l o c al  mi ni mi z ers (f or r esili e nt v e ct or
c o ns e ns us al g orit h ms [ 3 9], [ 4 7]).  E v e n t h o u g h usi n g a r esili e nt
c o ns e ns us pr ot o c ol s e e ms t o b e a g o o d  m et h o d f or t h e si n gl e
di m e nsi o n c as e si n c e t h e r esili e nt distri b ut e d o pti mi z ati o n al-
g orit h m als o p us h es t h e st at es of t h e r e g ul ar a g e nts t o s u c h
s ets [ 1 0], [ 1 3] ( a n d t h e y ar e i d e nti c al i n t his c as e), it  mi g ht n ot
gi v e a d esir e d r es ult f or t h e  m ulti- di m e nsi o n al c as e. First, it
is p ossi bl e t h at t h e  mi ni mi z er of t h e s u m li es o utsi d e b ot h t h e
h y p er-r e ct a n gl e a n d c o n v e x h ull [ 1 6], [ 4 8] as s h o w n i n Fi g. 1 .
S e c o n d, usi n g o nl y a r esili e nt c o ns e ns us pr ot o c ol, o n e i g n or es
t h e gr a di e nt i nf or m ati o n  w hi c h st e ers t h e r e g ul ar a g e nts’ st at es
t o t h e tr u e  mi ni mi z er.  T hir d,  w e e m piri c all y s h o w i n S e cti o n VI
t h at i m pl e m e nti n g a r esili e nt distri b ut e d o pti mi z ati o n al g orit h m

( es p e ci all y  Al g orit h m 1 ) us u all y gi v es b ett er r es ults ( c o m p ar e d
t o t h e q u alit y of t h e s ol uti o n pr o vi d e d b y dir e ctl y usi n g t h e a u xil-
i ar y p oi nt,  w hi c h  w as o bt ai n e d b y r u n ni n g a r esili e nt c o ns e ns us
pr ot o c ol o n t h e l o c al  mi ni mi z ers) i n t er ms of b ot h o pti m alit y
g a p a n d dist a n c e t o t h e gl o b al  mi ni mi z er.

G. I m p ort a n c e of  A u xili ar y St at es  C o m p ut ati o n

Ess e nti all y,  w h e n t h e  m ai n st at es of r e g ul ar a g e nts ar e si g ni fi-
c a ntl y f ar a w a y fr o m t h eir l o c al  mi ni mi z ers x ∗

i , t h es e  mi ni mi z ers
t e n d t o f or m a cl ust er fr o m t h e p ers p e cti v e of a r e g ul ar a g e nt
v i . I n a d diti o n, b uil di n g o n pri or  w or ks [ 1 6], [ 4 8], [ 4 9], w e
k n o w t h at t h e tr u e o pti m al s ol uti o n x ∗ ( w hi c h is t h e  mi ni mi z er
of t h e f u n cti o n s u m) c a n n ot b e l o c at e d t o o f ar a w a y fr o m t his
cl ust er.  T h us, t h e a u xili ar y st at es y i , g u ar a nt e e d t o b e i nsi d e t h e
cl ust er (i n L 1 - s e ns e) as s h o w n i n Pr o p ositi o n 1 , a ct as v al u a bl e
r ef er e n c es f or pr o vi di n g a dir e cti o n al s e ns e t o r e g ul ar a g e nts
v i i n t h eir p urs uit of t h e tr u e  mi ni mi z er x ∗ .  B y o ur d esi g n, t h e
dist a n c e filt er i n  Al g orit h ms 1 a n d 2 ass u m es t h e r ol e of a g ui di n g
m e c h a nis m b y eli mi n ati n g e xtr e m e st at es t h at p ull t h e o v er all
st at e a w a y fr o m t h e cl ust er.

Fr o m a t e c h ni c al st a n d p oi nt, i n t h e  m ulti- di m e nsi o n al c as e,
r el yi n g s ol el y o n r esili e nt c o ns e ns us f or t h e  m ai n st at es x i

a n d t h e u p d at e usi n g a s u b gr a di e nt g i wit h r es p e ct t o t h e l o c al
f u n cti o n f i m a y n ot s uf fi c e t o e ns ur e a c o n v er g e n c e g u ar a nt e e.
I n t h e  w orst c as e, r esili e nt c o ns e ns us c o ul d l e a d t o a st at e f urt h er
a w a y fr o m t h e cl ust er, es p e ci all y c o nsi d eri n g t h at t h e str e n gt h of
t his di v er g e n c e d u e t o  B y z a nti n e a g e nts c a n b e pr o p orti o n al t o√

d ,  w h er e d is t h e pr o bl e m di m e nsi o n.  E v e n t h o u g h f oll o wi n g
t h e s u b gr a di e nt g i u s u all y  miti g at es t h e di v er g e n c e, it  mi g ht n ot
b e s uf fi ci e nt f or g u ar a nt e e d c o n v er g e n c e i n s u c h  w orst c as es.
T h us, o ur i ntr o d u c e d dist a n c e- b as e d filt er usi n g a l o c al a u xili ar y
st at e pl a ys a cr u ci al r ol e i n f urt h er r e d u ci n g t h e s e v erit y of
t h e di v er g e n c e, all o wi n g us t o a c hi e v e a c o n v er g e n c e g u ar a nt e e
u n d er  mil d ass u m pti o ns.

VI.  N U M E RI C A L E X P E RI M E N T

We n o w pr o vi d e a n u m eri c al e x p eri m e nt t o ill ustr at e  Al-
g orit h ms 1 a n d 2 . I n t h e e x p eri m e nt,  w e g e n er at e q u a dr ati c
f u n cti o ns f or t h e l o c al o bj e cti v e f u n cti o ns.  Usi n g t h es e f u n cti o ns,
w e d e m o nstr at e t h e p erf or m a n c e ( e. g., o pti m alit y g a ps, dist a n c es
t o t h e gl o b al  mi ni mi z er) of o ur al g orit h ms.  We als o c o m p ar e t h e
o pti m alit y g a ps of t h e f u n cti o n v al u e o bt ai n e d usi n g t h e st at es
x i [k ] a n d t h e v al u e o bt ai n e d usi n g t h e a u xili ar y p oi nts y i [k ], a n d
pl ot t h e tr aj e ct ori es of t h e st at es of a s u bs et of r e g ul ar n o d es.

P r eli mi n a r y S etti n gs
M ai n  P ar a m et ers: We s et t h e n u m b er of n o d es t o b e n = 2 5
a n d t h e di m e nsi o n of e a c h f u n cti o n t o b e d = 2 .
A d v ers ar y  P ar a m et ers: We c o nsi d er t h e F -l o c al  m o d el,
a n d s et F = 2 f or  Al g orit h m 1 a n d F = 5 f or  Al g orit h m 2 .

N et w o r k S etti n gs
T o p ol o g y  G e n er ati o n: We c o nstr u ct a n 1 1-r o b ust gr a p h o n
n = 2 5 n o d es f oll o wi n g t h e a p pr o a c h fr o m [ 2 9], [ 4 5]. T his
gr a p h c a n t ol er at e u p t o 2 l o c al a d v ers ari es f or  Al g orit h m 1 ,
a n d u p t o 5 l o c al a d v ers ari es f or  Al g orit h m 2 a c c or di n g t o
T h e or e m 2 .  N ot e t h at t h e s a m e gr a p h is us e d t o p erf or m
n u m eri c al e x p eri m e nts f or b ot h  Al g orit h ms 1 a n d 2 .

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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A d v e rs a ri es’ St r at e g y
A d v ers ari al  N o d es: We c o nstr u ct t h e s et of a d v ers ari al
n o d es A b y r a n d o ml y c h o osi n g n o d es i n V s o t h at t h e s et of
a d v ers ari al n o d es f or m a F -l o c al s et.  N ot e t h at i n g e n er al,
c o nstr u cti n g A d e p e n ds o n t h e t o p ol o g y of t h e n et w or k. I n
o ur e x p eri m e nt,  w e h a v e A = { v 9 , v1 6 } f or  Al g orit h m 1
a n d A = { v 5 , v1 1 , v1 2 , v1 7 , v2 2 , v2 4 } f or  Al g orit h m 2 .
A d v ers ari al  Val u es Tr a ns mitt e d: H er e,  w e us e a s o p histi-
c at e d a p pr o a c h r at h er t h a n si m pl y c h o osi n g t h e tr a ns mitt e d
v al u es at r a n d o m. S u p p os e v s i s a n a d v ers ar y n o d e a n d
v i i s a r e g ul ar n o d e  w hi c h is a n o ut- n ei g h b or of v s , i. e.,
v s ∈ N i n

i . First, c o nsi d er t h e st at e of n o d es i n t h e n et w or k
at ti m e-st e p k .  T h e a d v ers ari al n o d e v s u s es a n or a cl e t o
d et er mi n e t h e r e gi o n i n t h e st at e s p a c e f or t h e r e g ul ar n o d e
v i i n  w hi c h if t h e a d v ers ari al n o d e s el e cts t h e tr a ns mitt e d
v al u e t o b e o utsi d e t h e r e gi o n t h e n t h e v al u e  will b e dis-
c ar d e d b y t h at r e g ul ar a g e nt v i .  T h e n, v s c h o os es x s → i [k ]
(t h e f or g e d st at e s e nt fr o m v s t o v i at ti m e k ) s o t h at it
is i n t h e s af e r e gi o n a n d f ar fr o m t h e gl o b al  mi ni mi z er.
I n t his  w a y, t h e a d v ers ari es’ v al u es  will n ot b e dis c ar d e d
a n d als o tr y t o pr e v e nt t h e r e g ul ar n o d es fr o m g etti n g cl os e
t o t h e  mi ni mi z er. Si mil arl y, f or t h e a u xili ar y p oi nt u p d at e,
t h e a d v ers ari al n o d e v s u s es a n or a cl e t o d et er mi n e t h e s af e
r e gi o n i n t h e a u xili ar y p oi nt’s s p a c e f or t h e r e g ul ar n o d e
v i . Si n c e t h e s af e r e gi o n is a h y p er-r e ct a n gl e i n g e n er al,
v s c h o os es y s → i [k ] (t h e f or g e d esti m at e d a u xili ar y p oi nt
s e nt fr o m v s t o v i at ti m e k ) t o b e n e ar a c or n er ( c h os e n
r a n d o ml y) of t h e h y p er-r e ct a n gl e.

O bj e cti v e  F u n cti o ns S etti n gs
L o c al  F u n cti o ns: F or v i ∈ V ,  w e s et t h e l o c al o bj e cti v e
f u n cti o ns f i : R d → R t o b e

f i ( x ) =
1

2
x T Q i x + b T

i x ,

w h er e Q i ∈ S +
d a n d b i ∈ R d ar e c h os e n r a n d o ml y.  N ot e

t h at t h e s a m e l o c al f u n cti o ns ar e us e d t o p erf or m n u m eri c al
e x p eri m e nts f or b ot h  Al g orit h ms 1 a n d 2 .
Gl o b al  O bj e cti v e  F u n cti o n: A c c or di n g t o o ur o bj e cti v e ( 2),
w e t h e n h a v e t h e gl o b al o bj e cti v e f u n cti o n f : R d → R as
f oll o ws:

f (x ) =
1

| R|

⎛

⎝ 1

2
x T

v i ∈ R

Q i x +
v i ∈ R

b i

T

x

⎞

⎠ ,

w h er e t h e s et of r e g ul ar n o d es R = V \ A .
Al g o rit h m S etti n gs

I niti aliz ati o n: F or e a c h r e g ul ar n o d e v i ∈ R ,  w e c o m p ut e
t h e e x a ct  mi ni mi z er x ∗

i = − Q T
i b i a n d us e it as t h e i niti al

st at e a n d a u xili ar y p oi nt of v i a s s u g g est e d i n Li n e 1- 2 of
Al g orit h m 1 .
Wei g hts S el e cti o n: F or e a c h ti m e-st e p k ∈ N a n d r e g-
ul ar n o d e v i ∈ R ,  w e r a n d o ml y c h o os e t h e  w ei g hts

w x, i j [k ], w
( )
y, i j [k ] s o t h at t h e y f oll o w t h e d es cri pti o n of

Li n e 9 a n d Li n e 1 2 , a n d  Ass u m pti o n 5 .
St e p-siz e S el e cti o n: We c h o os e t h e st e p-si z e s c h e d ul e (i n
Li n e 1 1 of  Al g orit h m 1 ) t o b e η [k ] = 1

k + 1 .

Fi g. 2. Pl ots s h o w t h e o pti m alit y g a p e v al u at e d at t h e a v er a g e of t h e r e g ul ar
n o d es’ st at es f ( x̄ [k ] ) − f ∗ a v er a g e d o v er 1 0 r u ns ( bl u e), a n d t h e o pti m alit y
g a p e v al u at e d at t h e a v er a g e of t h e r e g ul ar n o d es’ a u xili ar y p oi nts f ( ȳ [k ] ) −
f ∗ a v er a g e d o v er 1 0 r u ns (r e d) a g ai nst t h e ti m e-st e p k o bt ai n e d fr o m (t o p)
Al g orit h m 1 a n d ( b ott o m)  Al g orit h m 2 .  T h e s h a d e d r e gi o ns r e pr es e nt + 1/- 1
st a n d ar d d e vi ati o n.

G r a di e nt  N or m  B o u n d: We c h o os e t h e u p p er b o u n d of
t h e gr a di e nt n or m t o b e L = 1 0 5 . If t h e n or m e x c e e ds t h e
b o u n d,  w e s c al e t h e gr a di e nt d o w n s o t h at its n or m is e q u al
t o L , i. e.,

g i [k ] =
∇ f i ( z i [k ]) if ∇ f i ( z i [k ]) ≤ L,

L
∇ f i ( z i [k ] ) · ∇f i ( z i [k ]) ot h er wis e .

Si m ul ati o n S etti n gs a n d  R es ults
Ti m e  H oriz o n: We s et t h e ti m e h ori z o n of o ur si m ul ati o ns
t o b e K = 3 0 0 (st arti n g fr o m k = 0 ).
E x p eri m e nts  D et ail: F or b ot h  Al g orit h ms 1 a n d 2 , w e fi x
t h e gr a p h, l o c al f u n cti o ns, a n d st e p-si z e s c h e d ul e.  H o w-
e v er, si n c e t h e s et of a d v ers ari es ar e diff er e nt, t h e gl o b al
o bj e cti v e f u n cti o ns, a n d h e n c e t h e gl o b al  mi ni mi z ers ar e
diff er e nt. F or e a c h al g orit h m,  w e r u n t h e e x p eri m e nt 1 0
ti m es s etti n g t h e s a m e st at es i niti ali z ati o n a cr oss t h e r u ns.
T h e r es ults fr o m t h e r u ns ar e diff er e nt d u e t o t h e r a n d o m-
n ess i n t h e a d v ers ari es’ str at e g y.
Perf or m a n c e  M etri cs: We e x a mi n e t h e p erf or m a n c e of o ur
al g orit h ms b y c o nsi d eri n g t h e o pti m alit y g a ps ( Fi g. 2 ),
dist a n c es t o t h e gl o b al  mi ni mi z er ( Fi g. 3 ), a n d tr aj e ct ori es
of r a n d o ml y s el e ct e d r e g ul ar a g e nts ( Fi g. 4 ).
Al g orit h m 1 ’s  R es ults: T h e li n es c orr es p o n di n g t o t h e
o pti m alit y g a p a n d dist a n c e t o t h e gl o b al  mi ni mi z er e v al u-
at e d usi n g a u xili ar y p oi nts ar e al m ost h ori z o nt al si n c e t h e
c o n v er g e n c e t o c o ns e ns us is v er y f ast.  H o w e v er, o n e c a n
s e e t h at t h e o pti m alit y g a p a n d dist a n c e t o t h e  mi ni mi z er
o bt ai n e d fr o m t h e r e g ul ar st at es ar e si g ni fi c a ntl y s m all er
t h a n t h at fr o m t h e a u xili ar y p oi nts d u e t o t h e us e of gr a di e nt
i nf or m ati o n (Li n e 1 0 ) a n d e xtr e m e st at es filt eri n g (Li n e 8 )
i n t h e r e g ul ar st at e u p d at e. I n p arti c ul ar, at k = 3 0 0 , t h e

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fi g. 3. Pl ots s h o w t h e dist a n c e b et w e e n t h e a v er a g e of t h e r e g ul ar n o d es’
st at es a n d t h e gl o b al  mi ni mi z er x̄ [k ] − x ∗ a v er a g e d o v er 1 0 r u ns ( bl u e), a n d
t h e dist a n c e b et w e e n t h e a v er a g e of t h e r e g ul ar n o d es’ a u xili ar y p oi nts a n d t h e
gl o b al  mi ni mi z er ȳ [k ] − x ∗ a v er a g e d o v er 1 0 r u ns (r e d) a g ai nst t h e ti m e-st e p
k o bt ai n e d fr o m (t o p)  Al g orit h m 1 a n d ( b ott o m)  Al g orit h m 2 .  T h e s h a d e d r e gi o ns
r e pr es e nt + 1/- 1 st a n d ar d d e vi ati o n.

Fi g. 4. Pl ots s h o w t h e tr aj e ct or y of t h e st at es of a s u bs et of t h e r e g ul ar n o d es
o bt ai n e d fr o m (t o p)  Al g orit h m 1 a n d ( b ott o m)  Al g orit h m 2 .  Diff er e nt c ol ors of
t h e tr aj e ct or y r e pr es e nt diff er e nt r e g ul ar a g e nts v i i n t h e n et w or k. I n e a c h fi g ur e,
t h e c o nt o ur pl ot s h o ws t h e l e v el s ets of t h e gl o b al o bj e cti v e f u n cti o n (i n t his c as e,
a q u a dr ati c f u n cti o n) a n d t h e r e d d ot r e pr es e nts t h e gl o b al  mi ni mi z er.

o pti m alit y g a p a n d dist a n c e t o t h e gl o b al  mi ni mi z er at t h e
r e g ul ar st at es’ a v er a g e ar e o nl y a b o ut 0. 0 3 0 a n d 0. 2 0 6,
r es p e cti v el y.  M or e o v er, t h e st at e tr aj e ct ori es c o n v er g e t o-
g et h er a n d st a y cl os e t o t h e gl o b al  mi ni mi z er e v e n i n
t h e pr es e n c e of s o p histi c at e d a d v ers ari es.  N ot e t h at, fr o m
o ur o bs er v ati o ns,  Al g orit h m 1 yi el ds b ett er r es ults t h a n
Al g orit h m 2 gi v e n t h e s a m e s etti n gs.

Al g orit h m 2 ’s  R es ults: T h e o pti m alit y g a ps a n d dist a n c es t o
t h e gl o b al  mi ni mi z er e v al u at e d usi n g t h e st at es ar e sli g htl y
b ett er t h a n t h e v al u es o bt ai n e d usi n g t h e a u xili ar y p oi nts,
a n d t h e st at e tr aj e ct ori es r e m ai n r e as o n a bl y cl os e t o t h e
gl o b al  mi ni mi z er s h o wi n g t h at t h e al g orit h m c a n t ol er at e
F = 5 l o c al a d v ers ari es ( w hi c h is  m or e t h a n  Al g orit h m 1 ).
I nt er esti n gl y, t h e st at e tr aj e ct ori es s e e m t o c o n v er g e t o-
g et h er e v e n t h o u g h t h e c o ns e ns us g u ar a nt e e is l a c ki n g d u e
t o t h e a bs e n c e of t h e dist a n c e- b as e d filt er.

VII.  C O N C L U SI O N  A N D F U T U R E W O R K

I n t his p a p er,  w e c o nsi d er e d t h e distri b ut e d o pti mi z ati o n
pr o bl e m i n t h e pr es e n c e of  B y z a nti n e a g e nts.  We d e v el o p e d
t w o r esili e nt distri b ut e d o pti mi z ati o n al g orit h ms f or  m ulti-
di m e nsi o n al f u n cti o ns.  T h e k e y i m pr o v e m e nt o v er o ur pr e vi o us
w or k i n [ 2 8] is t h at t h e al g orit h ms pr o p os e d i n t his p a p er d o n ot
r e q uir e a fi x e d a u xili ar y p oi nt t o b e c o m p ut e d i n a d v a n c e ( w hi c h
will n ot h a p p e n u n d er fi nit e ti m e i n g e n er al).  O ur al g orit h ms
h a v e l o w c o m pl e xit y a n d e a c h r e g ul ar n o d e o nl y n e e ds l o c al
i nf or m ati o n t o e x e c ut e t h e st e ps.  Al g orit h m 1 ( wit h t h e  mi n- m a x
st at e filt er),  w hi c h r e q uir es  m or e n et w or k r e d u n d a n c y, g u ar a n-
t e es t h at t h e r e g ul ar st at es c a n as y m pt oti c all y r e a c h c o ns e ns us
a n d e nt er a b o u n d e d r e gi o n t h at c o nt ai ns t h e gl o b al  mi ni mi z er,
irr es p e cti v e of t h e a cti o ns of  B y z a nti n e a g e nts.  O n t h e ot h er
h a n d,  Al g orit h m 2 ( wit h o ut t h e  mi n- m a x filt er) h as a  m or e
r el a x e d c o n diti o n o n t h e n et w or k t o p ol o g y a n d c a n g u ar a nt e e
as y m pt oti c c o n v er g e n c e t o t h e s a m e r e gi o n, b ut c a n n ot g u ar a nt e e
c o ns e ns us. F or b ot h al g orit h ms,  w e e x pli citl y c h ar a ct eri z e d t h e
si z e of t h e c o n v er g e n c e r e gi o n, a n d s h o w e d t hr o u g h si m ul ati o ns
t h at  Al g orit h m 1 a p p e ars t o yi el d r es ults t h at ar e cl os er t o
o pti m al, as c o m p ar e d t o  Al g orit h m 2 .

As n ot e d e arli er, t h e c o ns e ns us g u ar a nt e e f or  Al g orit h m 1
r e q uir es li n e ar s c ali n g of n et w or k r o b ust n ess  wit h t h e di m e nsi o n
of t h e l o c al f u n cti o ns,  w hi c h c a n b e li miti n g i n pr a cti c e.  T his
s e e ms t o b e a c o m m o n c h all e n g e f or r esili e nt c o ns e ns us- b as e d
al g orit h ms i n s yst e ms  wit h  m ulti- di m e nsi o n al st at es, e. g., [ 2 4],
[ 4 7], [ 5 0]. Fi n di n g a r el a x e d c o n diti o n o n t h e n et w or k t o p ol o g y
f or hi g h- di m e nsi o n al r esili e nt distri b ut e d o pti mi z ati o n pr o bl e ms
( wit h g u ar a nt e e d c o ns e ns us)  w o ul d b e a ri c h ar e a f or f ut ur e
r es e ar c h.
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d y n a mi c al s yst e ms, f a ult-t ol er a nt a n d s e c ur e c o ntr ol, li n e ar s yst e m a n d esti m a-
ti o n t h e or y, g a m e t h e or y, a n d t h e a p pli c ati o n of al g e br ai c gr a p h t h e or y t o s yst e m
a n al ysis.  H e  w as t h e r e ci pi e nt of t h e  N S F  C A R E E R  A w ar d, a n d a n  Air F or c e
R es e ar c h  L a b S u m m er F a c ult y F ell o ws hi p,  H ess el b ert h  A w ar d f or  Te a c hi n g
E x c ell e n c e a n d  R ut h a n d J o el S pir a  O utst a n di n g  Te a c h er  A w ar d,  D e p art m e nt of
El e ctri c al a n d  C o m p ut er  E n gi n e eri n g  R es e ar c h  A w ar d at  Wat erl o o, F a c ult y of
E n gi n e eri n g  Disti n g uis h e d P erf or m a n c e  A w ar d,  M.  E.  Va n  Val k e n b ur g  Gr a d u at e
R es e ar c h  A w ar d, a n d t h e  R o b ert  T.  C hi e n  M e m ori al  A w ar d fr o m t h e  U ni v ersit y
of Illi n ois.  H e  w as a fi n alist f or t h e  B est St u d e nt P a p er  A w ar d at t h e 2 0 0 7 a n d
2 0 0 8  A m eri c a n  C o ntr ol  C o nf er e n c es.

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n M a y 0 3, 2 0 2 4 at 0 3: 0 5: 0 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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