360 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

Scalable Distributed Optimization of
Multi-Dimensional Functions Despite
Byzantine Adversaries

Kananart Kuwaranancharoen
and Shreyas Sundaram

Abstract—The problem of distributed optimization requires a
group of networked agents to compute a parameter that mini-
mizes the average of their local cost functions. While there are
a variety of distributed optimization algorithms that can solve
this problem, they are typically vulnerable to “Byzantine” agents
that do not follow the algorithm. Recent attempts to address this
issue focus on single dimensional functions, or assume certain
statistical properties of the functions at the agents. In this paper, we
provide two resilient, scalable, distributed optimization algorithms
for multi-dimensional functions. Our schemes involve two filters,
(1) a distance-based filter and (2) a min-max filter, which each
remove neighborhood states that are extreme (defined precisely
in our algorithms) at each iteration. We show that these algorithms
can mitigate the impact of up to F' (unknown) Byzantine agents
in the neighborhood of each regular agent. In particular, we show
that if the network topology satisfies certain conditions, all of the
regular agents’ states are guaranteed to converge to a bounded
region that contains the minimizer of the average of the regular
agents’ functions.

Index Terms—Byzantine attacks, convex optimization,
distributed algorithms, fault tolerance, graph theory, machine
learning, multi-agent systems, network security.

I. INTRODUCTION

HE design of distributed algorithms has received signifi-
T cant attention in the past few decades [1], [2]. In particular,
for the problem of distributed optimization, a set of agents in a
network are required to reach agreement on a parameter that
minimizes the average of their local objective functions, using
information received from their neighbors [3], [4], [5], [6]. A

Manuscript received 27 July 2023; revised 20 December 2023; accepted 3
March 2024. Date of publication 22 March 2024; date of current version 9 April
2024. This work was supported by the National Science Foundation CAREER
under Award 1653648. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Lifeng Lai. ( Corresponding
author: Lei Xin.)

Kananart Kuwaranancharoen was with Purdue University, West Lafayette,
IN 47907 USA. He is now with Intel Corporation, Hillsboro, OR 97124 USA
(e-mail: kananart.kuwaranancharoen @intel.com).

Lei Xin is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong (e-mail: Ixinshenqing@
gmail.com).

Shreyas Sundaram is with the Elmore Family School of Electrical and Com-
puter Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
sundara2 @ purdue.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSIPN.2024.3379844, provided by the authors.

Digital Object Identifier 10.1109/TSIPN.2024.3379844

, Member, IEEE, 1 ei Xin
, Senior Member, IEEE

, Student Member, IEEE,

variety of approaches have been proposed to tackle different
challenges of this problem, e.g., distributed optimization un-
der constraints [7], distributed optimization under time-varying
graphs [8], and distributed optimization for non-convex non-
smooth functions [9]. However, these existing works typically
make the assumption that all agents are trustworthy and coop-
erative (i.e., they follow the prescribed protocol); indeed, such
protocols fail if even a single agent behaves in a malicious or
incorrect manner [10].

As security becomes a more important consideration in large
scale systems, it is crucial to develop algorithms that are resilient
to agents that do not follow the prescribed algorithm. A handful
of recent papers have considered fault tolerant algorithms for
the case where agent misbehavior follows specific patterns [11],
[12]. A more general (and serious) form of misbehavior is cap-
tured by the Byzantine adversary model from computer science,
where misbehaving agents can send arbitrary (and conflicting)
values to their neighbors at each iteration of the algorithm. Under
such Byzantine behavior, it has been shown that it is impossible
to guarantee computation of the true optimal point [10], [13].
Thus, researchers have begun formulating distributed optimiza-
tion algorithms that allow the non-adversarial nodes to converge
to a certain region surrounding the true minimizer, regardless of
the adversaries’ actions [10], [13], [14], [15].

It is worth noting that one major limitation of the above
works [10], [13], [14], [15] is that they all make the assumption
of scalar-valued objective functions, and the extension of the
above ideas to general multi-dimensional convex functions re-
mains largely open. In fact, one major challenge for minimizing
multi-dimensional functions is that the region containing the
minimizer of the sum of functions is itself difficult to charac-
terize. Specifically, in contrast to the case of scalar functions,
where the global minimizer' always lies within the smallest
interval containing all local minimizers, the region containing
the minimizer of the sum of multi-dimensional functions may
not necessarily be in the convex hull of the minimizers [16].

There exists a branch of literature focusing on secure dis-
tributed machine learning in a client-server architecture [17],
[18], [19], where the server appropriately filters the information

'We will use the terms “global minimizer” and “minimizer of the sum”
interchangeably since we only consider convex functions.

2373-776X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html! for more information.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-0769-1399
https://orcid.org/0000-0001-6349-5774
https://orcid.org/0000-0002-5390-2505
mailto:kananart.kuwaranancharoen@intel.com
mailto:lxinshenqing@gmail.com
mailto:lxinshenqing@gmail.com
mailto:sundara2@purdue.edu
https://doi.org/10.1109/TSIPN.2024.3379844

KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 361

received from the clients. However, their extensions to a dis-
tributed (peer-to-peer) setting remains unclear. The papers [20],
[21], [22] consider a vector version of the resilient machine
learning problem in a distributed (peer-to-peer) setting. These
papers show that the states of regular nodes will converge to
the statistical minimizer with high probability (as the amount of
data of each node goes to infinity), but the analysis is restricted to
i.i.d training data across the network. However, when each agent
has a finite amount of data, these algorithms are still vulnerable
to sophisticated attacks as shown in [23]. The work [24] con-
siders a Byzantine distributed optimization problem for multi-
dimensional functions, but relies on redundancy among the
local functions, and also requires the underlying communication
network to be complete. The work presented in [25] proposes a
resilient algorithm under statistical characteristic assumptions
but lacks guarantees. The recent work [26] studies resilient
stochastic optimization problem under non-convex and smooth
assumptions on local functions, which differs from our focus.
The algorithm proposed in that work achieves convergence to
a stationary point up to a constant error but does not ensure
asymptotic consensus. Additionally, the recent work [27] offers
convergence guarantees to a neighborhood of the optimal so-
lution under deterministic settings, but it pertains to a distinct
class of functions — strongly convex and smooth functions.

To the best of our knowledge, our conference paper [28] is
the first one that provides a scalable algorithm with convergence
guarantees in general networks under very general conditions on
the multi-dimensional convex functions held by the agents in the
presence of Byzantine faults. Different from existing works, the
algorithm in [28] does not rely on any statistical assumptions
or redundancy of local functions. Technically, the analysis ad-
dresses the challenge of finding a region that contains the global
minimizer for multiple-dimensional functions, and shows that
regular states are guaranteed to converge to that region under the
proposed algorithm. The Distance-MinMax Filtering Dynamics
in [28] requires each regular node to compute an auxiliary
point using resilient asymptotic consensus techniques on their
individual functions’ minimizers in advance. After that, there are
two filtering steps in the main algorithm that help regular nodes
to discard extreme states. The first step is to remove extreme
states (based on the distance to the auxiliary point), and the
second step is to remove states that have extreme values in any
of their components. On the other hand, the algorithm in [28]
suffers from the need to compute the auxiliary point prior to
running the main algorithm, since the fixed auxiliary pointis only
achieved by the resilient consensus algorithm asymptotically.

In this paper, we eliminate this drawback. The algorithms
and analysis we propose here expand upon the work in [28]
in the following significant ways. First, the algorithms in this
paper bring the computation of the auxiliary point into the main
algorithm, so that the local update of auxiliary point and local
filtering strategies are performed simultaneously. This makes the
analysis much more involved since we need to take into account
the coupled dynamics of the estimated auxiliary point and the
optimization variables. Second, the algorithms make better use
of local information by including each regular node’s own state
as a metric. In practice, we observe that this performs better than

the approach in [28], since each agent may discard fewer states
and hence, there are more non-extreme states that can help the
regular agents get close to the true global minimizer. Again, we
characterize the convergence region that all regular states are
guaranteed to converge to using the proposed algorithm. Third,
we present an alternate algorithm in this paper which only makes
use of the distance filter (as opposed to both the distance and min-
max filter); we show that this algorithm significantly reduces
the requirements on the network topology for our convergence
guarantees, at the cost of losing guarantees on consensus of the
regular nodes’ states. Importantly, our work represents the first
attempt to provide convergence guarantees in a geometric sense,
characterizing a region where all states are ensured to converge
to, without relying on any statistical assumptions or redundancy
of local functions.

Our paper is organized as follows. Section II introduces
various mathematical preliminaries, and states the problem of
resilient distributed optimization. We provide our proposed al-
gorithms in Section III. We then state the assumptions and some
important results related to properties of the proposed algorithms
in SectionIV. In Section V, we provide discussion on the results.
Finally, we simulate our algorithms to numerically evaluate their
performance in Section VI, and conclude in Section VII.

II. MATHEMATICAL NOTATION AND PROBLEM FORMULATION

Let N, Z and R denote the set of natural numbers (including
zero), integers, and real numbers, respectively. We also denote
the set of positive integers by Z,. The cardinality of a set is
denoted by | - |. The set of subgradients of a convex function f
at point x is called the subdifferential of f at =, and is denoted

af ().

A. Linear Algebra

Vectors are taken to be column vectors, unless otherwise
noted. We use x(%) to represent the £-th component of a vector
x. The Euclidean norm on R? is denoted by || - ||. We de-
note by (u,v) the Euclidean inner product of » and v, i.e.,
{(u,v) = uTv and by Z(u, v) the angle between vectors u and
v, ie., Z(u,v) = a;rccos(“%‘rm'f—!:”). We use S to denote the
set of positive definite matrices in R?*?. The Euclidean ball

in d-dimensional space with center at xp and radius r € R is
denoted by B(xg,r) :={z € R : || — x| < r}.

B. Graph Theory

We denote a network by a directed graph G = (V, £), which
consists of the set of nodes V = {v1,vs,..., vy} and the set
of edges £ CV x V. If (v;,v;) € &, then node v; can receive
information from node v;. The in-neighbor and out-neighbor
sets are denoted by N}" = {v; € Vi (vj,v;) € €} and NP™ =
{v; € V: (v;,v;) € £}, respectively. A path from node v; € V
to node v; € V is a sequence of nodes vy, , vg,,. .., Vg, such
that vg, = v;, vg, = v; and (vg,,vk,,,) E€ for 1 <r <1 —
1. Throughout the paper, the terms nodes and agents will be
used interchangeably. Given a set of vectors {1, ®2,..., TN},

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



362 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

where each x; € R, we define forall S C V,
{zi}s = {xi e R?:v; € S}.

Definition 1: A graph G = (V, ) is said to be rooted at node
v; € V if for all nodes v; € V' \ {v;}, there is a path from v;
to v;. A graph is said to be rooted if it is rooted at some node
v; € V.

We will rely on the following definitions from [29].

Definition 2 (r-reachable set): For a given graph G and a
positive integer r € Z , a subset of nodes S C V is said to be
r-reachable if there exists anode v; € S such that |NVf"\ S| > r.

Definition 3 (r-robust graph): Forr € 7. ,agraph G issaidto
be r-robust if for all pairs of disjoint nonempty subsets Sy, Sz C
V), at least one of Sy or Sy is r-reachable.

The above definitions capture the idea that sets of nodes
should contain individual nodes that have a sufficient number of
neighbors outside that set. This will be important for the local
decisions made by each node in the network under our algorithm,
and will allow information from the rest of the network to
penetrate into different sets of nodes.

C. Adversarial Behavior

Definition 4: A node v; € V is said to be Byzantine if during
eachiteration of the prescribed algorithm, it is capable of sending
arbitrary (and perhaps conflicting) values to different neighbors.
It is also allowed to update its local information arbitrarily at
each iteration of any prescribed algorithm.

The set of Byzantine nodes is denoted by A C V. The set of
regular nodes is denoted by R = V' \ A.

The identities of the Byzantine agents are unknown to regular
agents in advance. Furthermore, we allow the Byzantine agents
to know the entire topology of the network, functions equipped
by the regular nodes, and the deployed algorithm. In addition,
Byzantine agents are allowed to coordinate with other Byzantine
agents and access the current and previous information con-
tained by the nodes in the network (e.g. current and previous
states of all nodes). Such extreme behavior is typical in the
study of the adversarial models [10], [13], [20]. In exchange for
allowing such extreme behavior, we will consider a limitation
on the number of such adversaries in the neighborhood of each
regular node, as follows.

Definition 5 (F-local model): For F' € Z., we say that the
set of adversaries A is an F-local set if |[V}" N A| < F, for all
v; € R.

Thus, the F-local model captures the idea that each regular
node has at most ' Byzantine in-neighbors.

D. Problem Formulation

Consider a group of N agents ) interconnected over a graph
G = (V,&). Each agent v; € V has a local convex cost func-
tion f; : R? — R. The objective is to collaboratively solve the
minimization problem

min — " i(a),

v eV

ey

where « € R9 is the common decision variable. A common
approach to solve such problems is for each agent to maintain
a local estimate of the solution to the above problem, which
it iteratively updates based on communications with its imme-
diate neighbors. However, since Byzantine nodes are allowed
to send arbitrary values to their neighbors at each iteration of
any algorithm, it is not possible to solve Problem (1) under such
misbehavior (since one is not guaranteed to infer any information
about the true functions of the Byzantine agents) [10], [13].
Thus, the optimization problem is recast into the following form:

.1
min, w7 Y filz), )
i eER
i.e., we restrict our attention only to the functions held by regular
nodes.

Remark 1: In the resilient distributed optimization problem,
the agents are required to compute a value that (approximately)
minimizes the sum of functions held by each (regular) agent.
Compared to the resilient consensus problem, this necessitates
more information than simply the initial vectors held by each
agent (even if those vectors are initialized to be the local min-
imizers of the agents’ functions). Indeed, the need to combine
estimates of the multi-dimensional minimizer from neighbors,
while incorporating gradient dynamics, all in a resilient fashion
is what makes the resilient distributed optimization problem
more difficult than the standard consensus problem.

Remark 2: The additional challenge in solving the above
problem lies in the fact that no regular agent is aware of the
identities or actions of the Byzantine agents. Furthermore, in
the worst-case scenario, it is not feasible to achieve an exact
solution to Problem (2), as the Byzantine agents can modify
the functions while still adhering to the algorithm, making it
impossible to differentiate them [10], [13].

In the next section, we propose two scalable algorithms that al-
low the regular nodes to approximately solve the above problem,
regardless of the identities or actions of the Byzantine agents (as
proven later in the paper).

ITI. RESILIENT DISTRIBUTED OPTIMIZATION ALGORITHMS
A. Proposed Algorithms

The algorithms that we propose are stated as Algorithms 1
and 2. We start with Algorithm 1. At each time-step k, each
regular node? v; € R maintains and updates a vector z;[k] €
R4, which is its estimate of the solution to Problem (2), and a
vector y,[k] € RY, which is its estimate of an auxiliary point that
provides a general sense of direction for each agent to follow.

Remark 3: The purpose of the estimates x;[k] is to be an
approximation to the minimizer of the sum of the functions.
To update this estimate, the agents have to decide which of the
estimates provided by their neighbors to retain at each iteration
of the algorithm (since up to F' of those neighboring estimates
may be adversarially chosen by Byzantine agents). To help
each regular agent decide which estimates to keep, the auxiliary

2Byzantine nodes do not necessarily need to follow the above algorithm, and
can update their states however they wish.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 363

Algorithm 1: Simultaneous Distance-MinMax Filtering
Dynamics.

Input Network G, functions {f;} ,, parameter F

1:

2
3:
4

AN

o

10:

11:
12:
13:
14:

Each v; € R sets &; « optimize(f;)
Each v; € R sets «;[0] « & and y;[0] < &;
fork=0,1,2,3,...do
for v; € Rdo > Implement in parallel
Step I: Broadcast and Receive
broadcast(N™, x;[k], y;[k])
Xi[k], Vilk] + receive(Ni™)
Step II: Resilient Consensus Step
X8UE] «+ dist_filt(F, y;[k], Xi[k])
Xmm (k] + x_minmax filt(F, XIsk])
zilk] +— x_weighted average(X™™[k])
Step III: Gradient Update
x;[k + 1] + gradient(f;, zi[k])
Step I'V: Update the Estimated Auxiliary Point
yrng] + y_minmax_f£ilt(F, Yi[k])
y;[k + 1] + v_weighted_average(Y"™[k])
end for
end for

points y; [k] are used to perform the distance-based filtering step
(Line 7). In fact, each auxiliary point provides a general sense
of direction for the agents’ estimates, and thus helps them filter
out adversarial estimates that attempt to draw them away from
the true minimizer.

We now explain each step used in Algorithm 1 in detail.?

Line 1: &; + optimize (f;)

Each node v; € R uses any appropriate optimization algo-
rithm to get an approximate minimizer &; € R? of its local
function f;. We assume that there exists €* € R such
that the algorithm achieves ||} — x}|| < €* forallv; € R
where =} € R is a true minimizer of the function f;; we
assume formally that such a true (but not necessary unique)
minimizer exists for each v; € R in the next section.

Line 2: z;[0] + &; and y,[0] + &;

Each node v; € R initializes its own estimated solution
to Problem (2) (z;[0] € R?) and estimated auxiliary point
(y;[0] € R?) to be &}.

Line 5: broadcast (N™, z;[k], y;[k])

Node v; € R broadcasts its current state x;[k] and esti-
mated auxiliary point y,[] to its out-neighbors ™.
Line 6: X;[k], Vi[k] + receive(N])

Node v; € R receives the current states x;[k] and y;[k]
from its in-neighbors N';“ So, at time step k, node v;
possesses the sets of states*

X;[k] == {x;[k] e R? : v; e N* U{v;}} and
Vilk] = {y;[k] € R? : v; € Nj" U{uvi}}.

3In the algorithm, X;[k], X&s[k], X™™ k], V;[k] and Y™ [k] are multisets.

“In case a regular node v; has a Byzantine neighbor v;, we abuse notation
and take the value x; [k] to be the value received from node v; (i.e., it does not
have to represent the true state of node v;).

The sets X;[k] and );[k] have an indirect relationship
through the distance-based filter (Line 7) as only y;[k] €
V(K] is used as the reference to remove states in X;[k].

e Line 7: XIU[k] + dist_£file(F, y,lk], Xi[k])

Intuitively, regular node v; ignores the states that are far
away from its own auxiliary state y;[k] in L? sense. For-
mally, node v; € R computes the distance between each
vector in X;[k] and its own estimated auxiliary point y; [k]:

Dy k] = ||lz;[k] — yi[k]l| for a;[k] € Xi[k].  (3)

Then, node v; € R sorts the values in the set {D;;[k] :
v; € Ni" U {v;}} and removes the F largest values that
are larger than its own value D;;[k]. If there are fewer
than F' values higher than its own value, v; removes all
of those values. Ties in values are broken arbitrarily. The
corresponding states of the remaining values are stored in
Xdist[k]. In other words, regular node v; removes up to F
of its neighbors’ vectors that are furthest away from the
auxiliary point y; [k].
Line 8: X™[k] + x_minmax_filt(F, X3[k])
Intuitively, regular node v; ignores the states that contains
extreme values in any of their components in the ordering
sense. Formally, for each time-step £ € N and dimen-
sion £ € {1,2,...,d}, define the set Vme(¢)[k] C N,
where a node v; is in V™ (£) k] if and only if
- x;g) [k] is within the F-largest values of {a:g) kleR:
@, [k] € X8[k]} and 2\ [K] > z{"[k], or
- :L':(';g) [k] is within the F-smallest values of {a:g) kleR:
@, [k] € XI[K]} and =V [k] < 27 [K].

Ties in values are broken arbitrarily. Node v; then removes the
state of allnodes in Uyc 1 o gy Vi"™"*(£)[k] and the remaining
states are stored in X™™[k]:

XMk = { k] e RY:

v e VIR | VER(OR]p, @)

£e{1,....d}

where VIU[k] = {v; € R : x;[k] € XI[k]}.
® Line 9: z;|k] + x_weighted_average(X™™[k])

Each node v; € R computes

zi[k] = Z

@ [kl Xm]K]

wy,ij[k] x;[k], (5)

where wy ;;[k] >0 for all
ij[k]e:f;’m[k] wg,i5[k] = 1.

x;[k] € A™[k] and

e Line 10: x;[k + 1] + gradient (f;, z;[k])

Node v; € R computes the gradient update as follows:
ik 4 1] = zi[k] — n[k] g,[K], (6)

where g;[k] € 8f:(zi[k]) and n[k] is the step-size at time
k. The conditions corresponding to the step-size are given
in the next section.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



364 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

Algorithm 2: Simultaneous Distance Filtering Dynamics.

Algorithm 2 is the same as Algorithm 1 except that
® Line 8 is removed, and _
e X™[k] in Line 9 is replaced by X3 [k].

e Line 11: Y™ [k] +— y_minmax filt(F, Y;[k])
For each dimension £ € {1,2,...,d}, node v; € R re-
moves the F highest and F’ lowest values of its neighbors’
auxiliary points along that dimension. More specifically,
foreach dimension £ € {1,2,...,d}, node v; sorts the val-
ues in the set of scalars {y}'z)[k] : y;[k] € Vi[k]} and then
removes the F' largest and F' smallest values that are larger
and smaller than its own value, respectively. If there are
fewer than F values higher (resp. lower) than its own value,
v; removes all of those values. Ties in values are broken
arbitrarily. The remaining values are stored in Y™™ [k](£)
and the set Y™™ [k] is the collection of Y™™ [k](£), ie.,
Y[kl = { VK0 : €€ {1,2,...,d}}.

e Linel2:y,[k+ 1] +v_weighted_average(Y"[k])
For each dimension £ € {1,2,...,d}, each node v; € R

computes
wlk+= 3> wKy'H O
v, KleymK](€)
where w [k] >0 for all ygg) [k] € Y™™[k](£) and

0)
Zﬁ%mw%m)yﬂH_L

Note that the filtering process x_minmax filt (Line
8) and the filtering process y_minmax_ filt (Line 11)
are different. In x minmax filt, each node removes the
whole state vector for a neighbor if it contains an ex-
treme value in any component, while in v_minmax filt,
each node only removes the extreme components in each
vector. In addition, x_weighted_average (Line 9) and
v_weighted average_ 2 (Line 12) are also different in
that x_weighted_average designates agent v; at time-
step k to utilize the same set of weights {w, ;; € R : x;[k] €
A™m[k]} for all components while y_weighted average
allows agent v; at time-step k to use a different set of weights

{wg(ﬂ ; € (f) [k] € Y™ [k](£)} for each coordinate £ (since
the number of remammg values in each component | Y™™ [k](£)
is not necessarily the same). These differences will become clear
when considering the example provided in the next subsection.
We consider a variant of Algorithm 1 defined as follows.
Although Algorithms 1 and 2 are very similar (differing only
in the use of an additional filter in Algorithm 1), our subsequent
analysis will reveal the relative costs and benefits of each algo-
rithm. We emphasize that both algorithms involve only simple
operations in each iteration, and that the regular agents do not
need to know the network topology, or functions possessed by
another agents. Furthermore, the regular agents do not need to
know the identities of adversaries; they only need to know the
upper bound for the number of local adversaries. However, we

assume that all regular agents use the same step-size nj[k| (Line
10, (6)).
Remark 4: While the BRIDGE framework, introduced
in [21], encompasses several Byzantine-resilient distributed op-
timization algorithms, including those presented in [10], [13],
[14], our proposed algorithms, namely Algorithms 1 and 2,
introduce a novel concept of auxiliary states. Specifically, each
regular agent v; in our algorithms maintains an auxiliary state
y;[k], updated using a consensus algorithm, placing them within
the broader framework of REDGRAF [27].
While Algorithm 1 from our work shares a similarity with
BRIDGE-T [21] by utilizing the coordinate-wise trimmed mean,
there are distinctive differences as follows.
® Firstly, our algorithm employs a distance-based filter in
addition to the trimmed mean filter, allowing for an asymp-
totic convergence guarantee under milder assumptions (as
provided in Section IV-A). In contrast, the convergence
analysis of BRIDGE-T relies on the more restrictive as-
sumption of i.i.d. training data.
® Secondly, the trimmed mean filter in BRIDGE-T elim-
inates both the smallest and largest F' values, whereas
our filter discards a subset of these values, similar to
the implementation in [10]. This variant in our approach
results in faster convergence in practice due to the resulting
denser network connectivity after the filtering steps which
facilitates quicker information flow [30].

® [ astly, while BRIDGE-T uses a simple average to combine
the remaining states, our algorithm employs a weighted
average. These weights are chosen to satisfy Assumption 5,
ensuring that the weights are lower bounded by a posi-
tive constant if the corresponding agents remain after the
trimmed mean filter. This provides a more versatile and
general scheme.

B. Example of Algorithm 1

Before we prove the convergence properties of the algorithms,
we first demonstrate Algorithm 1, which is more complicated
due to the min-max filtering step (Line 8), step by step using an
example.

Suppose there are 8 agents forming the complete graph (for
the purpose of illustration). Let node v; have the local objective
function f; : R? — Rdefinedas fi(x) = (2™ +i)2 + (=@ —
i)2 for all i € {1,2,...,8}. Let the set of adversarial nodes
be A = {vy, vs} and thus, we have R = {vy, v, v3, s, v6, U7 }-
Note that only the regular nodes execute the algorithm (and they
do not know which agents are adversarial). Let /' = 2 and at
some time-step k& € N, each regular node has the following state
and the estimated auxiliary point:3

a:l[f&]z[4 2}T, yl[fc]z[o O}T,
wifi=[a 1], wll=[1 2|,

5The number of agents in this demonstration is not enough to satisfy the
robustness condition (Assumption 4) presented in the next section. However,
for our purpose here, it is enough to consider a small number of agents to gain
an understanding for each step of the algorithm.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 365

.. [ AT o T
wolk=[3 3], wlhl=[-2 1],
.. [ AT .. [ AT
$C5[k]: 2 1 3 yS[k]: 0 2 b
.. [ AT Y
mﬁ[k]: 1 4 b yﬁ[k]: 1 3 y
.. T .. [ 1T
w7kl = [0 O , ys[k]=1|1 3

Let @4 _[K] (resp. y4_,5[K]) be the state (resp. estimated auxil-
iary point) that is sent from the adversarial node v, € A to the
regular node v, € R at time-step k. Suppose that in time-step
k, each adversarial agent sends the same states and the same
estimated auxiliary points to its neighbors (although this is not
necessary) as follows:

3:44,;[11-]:[3 zr, y4_,g-[§:]:[—1 1]T,

a:géi[ié]z[o 5}T, ygg,,-[fc]z[2 2]T

forall:i € {1,2,3,5,6, 7}. We will demonstrate the calculation
of @1 [k + 1] and y, [k + 1], computed by regular node vy .
Since the network is the complete graph, the set of in-
neighbors and out-neighbors of node v; is Ni" = A" =V \
{v1} and X;[k] (resp. V;[k]) includes all the states (resp. esti-
mated auxiliary points). Then, node v; performs the distance
filtering step (Line 7) as follows. First, it calculates the squared
distances D2 [k] (since squaring does not alter the order) for all

[k] € Xi[k ] as in (3). Node v, has
D} [k] = 20, Dh,[k] = 17, D[k =
Dfs['%] =5, D%s["}] =17, D%?[E] =0, D%s[‘i'] = 25.

Since D2, [k] is the second largest, node v; discards only node
vg’s state (which is the furthest away from v, ’s auxiliary point)
and X'dist contains all states except xg[k] = x5 1 [k].

Then node v; performs the min-max filtering process (Line
8) as follows. First, consider the first component of the states
in X3, The states of nodes v; and vy contain the highest
value in the first component (which is 4). Since the tie can be
broken arbitrarily, we choose _::( )[k] to come first followed by

a:gl)[ﬂr] in the ordering, so none of these values are discarded.
On the other hand, the state of node v; contains the lowest
value in its first component, while node vg’s state contains
the second lowest value in that component (since node wvg
has already been discarded by the distance filtering process).
Node vy thus sets V*™¥(1)[k] = {ve, v7 }. Next, consider the
second component in which the states of vg and w3 contain
the highest and second highest values, respectively, and the
states of v; and vy contain the lowest and second lowest values,
respectively. Thus, node v; sets Viemo¥e(2)[k] = {vs, vs, vg, v7}.
Since node v; removes the entire state from all the nodes in
both Vre“’°“e(1)[A] and V{e“"""f(Q)[J::] according to (4), we have
X k] = {1 k], k], zalk]} = {14 27,4 17,13 27}
Next, node v; performs the weighted average step (Line 9) as
follows, Suppose node v; assigns the weights w, 11[k] = 0.5,

Wy 12[k] = 0.25 and wy 14[k] = 0.25. Node v; calculates the
welghted average according to (5) yielding zll)[k] = 3.75 and

(2) [k] = 1.75. In the gradient step (Line 10), suppose 5[k] =
0 1. Node v calculates the gradient of its local function f; at
z1[k] which yields g;[k] = [9.5 1.5]7 and then calculates the
state x4 [k + 1] as described in (6) which yields @[k + 1] =
[2.8 1.6]T.

Next, we consider the estimated auxiliary point update of node
v1. In fact, we can perform the update (Line 11 and Line 12) for
each component separately. First, consider the first component
in which vg and v~ contain the largest and second largest values,
respectively, and vz and v contain the smallest and second
smallest values, respectively. Node v; removes these values

and  ths,  YP7IE](L) = {ur” IR, w3 18, u [R), g [R]) =

{0,—1,0,1}. Suppose node w; assigns the weights
wih k] = wi),[k] = w)s[k] = w()g[k] =0.25.  Th
yll[ ] = 4[ ]_wy,IS[ ]_wy,lﬁ[ ] = 0.25. en,

the welghted average of the first component according to (7)
becomes y [k + 1] = 0. Finally, for the second component,
vg and vy contain the largest values, and vy and v; contain
the smallest and second smallest values, respectively. Node v
removes the value obtamed from vy, vg and 1;7 and thus, the
st VPm(R](2) = {ui” (), u5” M, i K], us” (), 5" [R]) =
{0,1,1,2,2}. Suppose node v; assigns the weights to each
value in Y™@[£](2) equally. The weighted average of the
second component becomes y{z) [k + 1] = 1.2. Thus, we have
y,[k+1) =0 1.2].

IV. ASSUMPTIONS AND MAIN RESULTS

Having defined the steps in Algorithms 1 and 2, we now turn
to proving their resilience and convergence properties.

A. Assumptions

Assumption I: Forallv; € V, the functions f;(x) are convex,
and the sets argmin f;(x) are non-empty and bounded.

Since the set argmin f; () is non-empty, let &} be an arbitrary
minimizer of the function f;.

Assumption 2: There exists L € R~ such that ||g;(x)||2 <
Lforallz € R% v; € V, and g;(z) € 0fi(x).

The bounded subgradient assumption above is common in the
distributed convex optimization literature [31], [32], [33].

Assumption 3: The step-size sequence {n[k]}3>, C R0
used in Line 11 of Algorithm 1 is of the form

nlk] = - i . for some cp, e € Rug. ()]

Note that the step-size in (8) satisfies n[k + 1] < n[k] for all
k € N, and

lim p[k] =0 and ) nlk] = oo ©)

k—o0

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



366 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

for any choices of ¢, c2 € R~p.

Assumption 4: Given a positive integer ' € Z ., the Byzan-
tine agents form a F-local set.

Assumption 5: For all ke N and £ e {1,2,...,d}, the
weights w,, ;;[k] and wgfzj[k] (used in Line 9 and Line 12
of Algorithm 1) are positive if and only if x;[k] € X™™[k]
for Algorithm 1 (and x;[k] € X3s![k] for Algorithm 2) and
y;.g) [k] € Y™™ [k](£), respectively. Furthermore, there exists w €
R-psuchthatforallk € Nand £ € {1,2,...,d}, the non-zero
weights are lower bounded by w.

Remark 5: Regarding the prior knowledge of F' in Assump-
tion 4, we note that, as with any reliable or secure system, one has
to design the system to provide a desired degree of reliability. If
one requires the system to provide resilience to a certain number
of faulty nodes, one has to design the algorithm (and network) to
facilitate that. This is the standard philosophy and methodology
in the literature [18], [20], [34]. Note that F' does not have to
be the exact number of adversarial nodes — it is only an upper
bound on the number of adversarial nodes locally.

B. Analysis of Auxiliary Point Update

Since the dynamics of the estimated auxiliary points {y;[k] }»
are independent of the dynamics of the estimated solutions
{x;[k]}r, we begin by analyzing the convergence properties
of the estimated auxiliary points {y,[k] }x-

In order to establish this result, we need to define the
following scalar quantities. For k € N and £ € {1,2,...,d},
let M©[k] := max,,cx yg) (K], m®[k] := min,,cx yg) [k],
and DO [k] := MY [k] — m®[k]. Define the vector D|[k] :=
[DD[k], DP[k],..., DD[K]]".

The proposition below shows that the estimated auxiliary
points {y;[k]}r converge exponentially fast to a single point
called y[oo].

Proposition 1: Suppose Assumption 4 hold, the graph G is

(2F + 1)-robust, and the weights wgfz ;[K] satisfy Assumption 5.
Suppose the estimated auxiliary points of the regular agents
{y;[k]}r follow the update rule described as Line 11 and
Line 12 in Algorithm 1. Then, in both Algorithms 1 and 2,
there exists y[oo] € R? with ¢y [oc] € [m(©)[k], M [k]] for
all ke N and £ € {1,2,...,d} such that for all v; € R, we
have

lly[k] = yloo]ll < Be™®F,

where a:= Wll_—llog% >0, B:= %HD[O]", and y:=1—

WRI-1

%‘he proof of the above proposition follows by noting that the
updates for {y,[k] }r essentially boil down to a set of d scalar
consensus updates (one for each dimension of the vector), Thus,
one can directly leverage the proof for scalar consensus (with
filtering of extreme values) from [10, Proposition 6.3]. Although
we extend that proof to provide the explicit convergence rate in
Proposition 1, we omit the proof here.

Recall that {& } is the set containing the approximate min-
imizers of the regular nodes’ local functions. Let « be a matrix
in R4*IRI where each column of x is a different vector from

{&; }x. In addition, let T and z be the vectors in R? defined by
T; = max;<j<g|[€]i; and z; = min, ;< g([€]:;, respectively.
Since we set y,[0] = & for all v; € R according to Line 2 in
Algorithm 1, we can write

1 1
= —||ID[0)|| = =|F — z||.
B 7|| ol ,}(Ilw z||

C. Convergence fo Consensus of States

Having established convergence of the auxiliary points to
a common value (for the regular nodes), we now consider
the state update and show that the states of all regular nodes
{zx;[k]}r asymptotically reach consensus under Algorithm 1.
Before stating the main theorem, we provide a result from [10,
Lemma 2.3] which is important for proving the main theorem.

Lemma 1: Suppose the graph G satisfies Assumption 4 and is
((2 d+1)F + 1)-robust. Let G’ be a graph obtained by remov-
ing (2 d+ 1)F or fewer incoming edges from each node in G.
Then G’ is rooted.

This means that if we have enough redundancy in the net-
work (in this case, captured by the ((2 d 4+ 1)F + 1)-robustness
condition), information from at least one node can still flow to
the other nodes in the network even after each regular node
discards up to F' neighboring states in the distance filtering
step (Line 7) and up to 2dF neighboring states in the min-max
filtering step (Line 8). This transmissibility of information is a
crucial condition for reaching consensus among regular nodes.

Theorem 1 (Consensus): Suppose Assumptions 2—5 hold, and
the graph G is ((2 d + 1)F + 1)-robust. If the regular agents
follow Algorithm 1 then for all v;, v; € R, it holds that

Tim [l2i[K] — ;K] = 0.

Proof: 1t is sufficient to show that all regular nodes v; € R
reach consensus on each component of their vectors x;[k] as
k — oco.For all £ € {1,2,...,d} and for all v; € R, from (5)
and (6), the £-th component of the vector x; [k] evolves as

D

@5 [K]e X K]

Ok +1] = wai5 k] 27 K] — nlk] ¢\ [K].

From [10, Proposition 5.1], the above equation can be rewritten

>

Ok +1] = o)
v E(WPNR)U{v:}

T,if

(k] =\ k] — nlk] o' [K],

(10)
where @05 (K] + 5y, cxom @y K] = 1, and wii[k] > w
and at least | V}"| — 2F of the other weights are lower bounded
by £.

Czonsider the set X™™[k| which is obtained by removing at
most F' + 2dF states received from v;’s neighbors (up to F
states removed by the distance filtering process in line 7, and up
to 2F additional states removed by the min-max filtering process
on each of the d components in line 8). Since the graph is ((2d +
1)F + 1)-robust and the Byzantine agents form an F'-local set by
Assumption4, from Lemma 1, the subgraph consisting of regular
nodes will be rooted. Using the fact that the term n[k] g? (k]

i

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 367

asymptotically goes to zero (by Assumption 2 and (9)) and (10),
we can proceed as in the proof of [10, Theorem 6.1] to show that

; (© O
;}1_{1;0 |z " [k] — Iy k]l =0,

for all v;,v; € R, which completes the proof. O

Theorem 1 established consensus of the states of the regular
agents, leveraging (and extending) similar analysis for scalar
functions from [10], only for Algorithm 1. However, this does
not hold for Algorithm 2 since there might exist a regular
agentv; € R, time-step k € Nand dimension £ € {1,2,...,d}
such that an adversarial state =" [k] & {:c;g) k] € R:x;[k] €
X' [k],v; € A} cannot be written as a convex combination of
{:c;g)[k] €R:v; € (M"NR)U {v;}}, and thus we cannot ob-
tain (10). On the other hand, Proposition 1 established consensus
of the auxiliary points, which will be now used to characterize
the convergence region of both Algorithms 1 and 2.

D. The Region to Which the States Converge

We now analyze the trajectories of the states of the agents
under Algorithms 1 and 2. We start with the following result
regarding the intermediate state z;[k] calculated in Lines 7-9 of
Algorithm 1.

Lemma 2: Suppose Assumptions 4 and 5 hold. Furthermore:

¢ if the regular agents follow Algorithm 1, suppose the graph

Gis ((2d+ 1)F + 1)-robust;

® otherwise, if the regular agents follow Algorithm 2, sup-

pose the graph G is (2F + 1)-robust.

Forallk € Nandv; € R,ifthereexists R;[k] € Rxq such that
|lz;[k] — y;[K]|| < R;i[k] for all v; € (N"NR) U {v;} then
l|zi[k] — v [K]l| < Ra[K].

Proof: Consider the distance filtering step in Line 7 of Al-
gorithm 1. Recall the definition of D;;[k] from (3). We will first
prove the following claim. For each k € N and v; € R, there
exists v, € (N;" NR) U {v;} such that for all z;[k] € X'[k],

llz; (k] — yslK]ll < llzr k] — yilK]ll,

or equivalently, D;;[k] < D;,[k].

There are two possible cases. First, if the set X% [k] contains
only regular nodes, we can simply choose v, € (V" NR) U
{vi} to be the node whose state x,[k] is furthest away from
y;[k]. Next, consider the case where X35[k] contains the state
of one or more Byzantine nodes. Since node v; € R removes the
F states from /" that are furthest away from y,[k| (Line 7), and
there are at most F' Byzantine nodes in A}, there is at least one
regular state removed by node v;. Let v, be one of the regular
nodes whose state is removed. We then have D;..[k] > D;; k],
forallv; € {vs € V : x,[k] € X¥'[k]} which proves the claim.

If Algorithm 1 is implemented, let X;[k] = X™[k] and we
have that ™" [k| C X35![k] due to the min-max filtering step
in Line 8. If Algorithm 2 is implemented, let X;[k] = X%![k]
since Line 8 is removed. Then, consider the weighted average
step in Line 9. From (5), we have

zilkl —wilk] = Y waslk] (z5[k] - wilk]) -

@ ;K| di[k]

Since [|5[k] — ys[K]|| < [l (K] — y,[K]]| for all z; k] € Xi[K]
(where v,. is the node identified in the claim at the start of the
proof), we obtain

lzsk] — wlklll < Y weslK] [l (k] — wi[K]|
@;[k|eXi[k]
< Z wg i5[k] |2 [k] — y;[K]]-

x;j [k]eX; K]

Since v, € (NJ"NR) U {v;}, by our assumption, we have
||z, [k] — y;[k]|| < R;[k]. Thus, using the above inequality and
Assumption 5, we obtain that ||z;[k] — y;[K]|| < R:[k]. O

Lemma 2 essentially states that if the set of states
{x;[k] : v; € (MW" NR)U{v;}} is a subset of the local ball
B(y;[k], R:[K]) then the intermediate state z;[k] is still in the
ball. This is a consequence of using the distance filter (and adding
the min-max filter in Algorithm 1 does not destroy this property),
and this will play an important role in proving the convergence
theorem.

Next, we will establish certain quantities that will be useful for
our analysis of the convergence region. For v; € R and € > 0,
define

Ci(e) ={z € R? : fi(x) < fi(@]) + €} (11)

For all v; € R, since the set argminf;(x) is bounded (by As-
sumption 1), there exists d;(e) € (0, oo) such that

Ci(e) € B(a}, 6i(e)) (12)

The following proposition, whose proof is provided in the sup-
plementary material, introduces an angle #; which is an upper
bound on the angle between the negative of the gradient of f; at
a given point  and the vector x} — x.

Proposition 2: If Assumptions 1 and 2 hold then for all v; €
R and € > 0, there exists ¢;(¢) € [0, ) such that for all x ¢
Ci(e) and g;(x) € dfi(x),

£(=g;(z), zj — ) < bi(e). (13)
Before stating the main theorem, we define
Ri = |l — ylod]|| (14)

Furthermore, for all £ € R and € € R, we define the con-
vergence radius

s* (&) = max {ma.x{f{, secb;(e), R; —|—§¢(f)}} +£. (15

where R;, fi(e) and é;(e) are defined in (14), (13) and
(12), respectively. Based on the definition above, we refer to
B(y[oc], s*(€, €)) as the convergence ball.

We now come to the main result of this paper, showing that
the states of all the regular nodes will converge to a ball of
radius inf.~q s*(0,€) around the auxiliary point y[oo] under
Algorithms 1 and 2.

Theorem 2 (Convergence): Suppose Assumptions 1-5 hold.
Furthermore:

o if the regular agents follow Algorithm 1, suppose the graph

Gis ((2d+ 1)F + 1)-robust;

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



368 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

lllustration of Each Key Quantity

)

X2t
LN

-24

—44

-6

Fig. 1. Local minimizers =} and the global minimizer =* are shown in
the plot. The estimated auxiliary point y[eo] is in the rectangle formed by
the local minimizers (Proposition 1) whereas the global minimizer x* is not
necessarily in the rectangle [16]. However, the ball centered at y[oc] with radius
inf.~ ¢ &%(0, €) contains both the supremum limit of the state vectors x; [k] and
the global minimizer =* (Theorems 2 and 3).

® otherwise, if the regular agents follow Algorithm 2, sup-
pose the graph G is (2F + 1)-robust.
Then regardless of the actions of any F'-local set of Byzantine
adversaries, for all v; € R, we have

lim sup [[2:[K] — ylod]l| < inf 5°(0,¢).
k >0

The proof of the theorem requires several technical lemmas
and propositions, and thus, we provide a proof sketch in Sec-
tion IV-E and a formal proof in the supplementary material.

The following theorem, whose proof is provided in the sup-
plementary material, provides possible locations of the true
minimizer x*, which is in fact inside the convergence region,
even in the presence of adversarial agents.

Theorem 3: Let x* be a solution of Problem (2). If Assump-
tions 1 and 2 hold, then * € B(y[oo], infeso s*(0,€)).

Theorems 2 and 3 show that both Algorithms 1 and 2 cause all
regular nodes to converge to a region that also contains the true
solution, regardless of the actions of any F'-local set of Byzantine
adversaries. The size of this region scales with the quantity
infc~p (0, €). Loosely speaking, this quantity becomes smaller
as the minimizers of the local functions of the regular agents
get closer together. More specifically, consider a fixed € € R~.
If the functions f;(x) are translated so that the minimizers x;}
get closer together (i.e., R; is smaller while 6;(¢) and §;(¢) are
fixed), then s*(0, €) also decreases. Consequently, the state x;[k]
is guaranteed to become closer to the true minimizer x* as k
goes to infinity. Fig. 1 illustrates the key quantities outlined in
the main theorems. A detailed discussion of the convergence
region is further provided in Section V-D.

We would like to highlight the scalability of our algorithms in
terms of both computational complexity and graph robustness re-
quirements, specifically in relation to the number of dimensions
d. Algorithms 1 and 2 exhibit computational complexities of
O(d?) and O(d) operations per agent per iteration, respectively.
A detailed calculation is provided in Section V-C. Furthermore,
they impose robustness requirements of O(d) and O(1) to
achieve the convergence result, as demonstrated in Theorem 2.

While Algorithm 2 is more scalable, it lacks a consensus guar-
antee, unlike Algorithm 1 (refer to Theorem 1). Further insights
and discussions on this topic are presented in Section V-B and
Remark 6.

E. Proof Sketch of the Convergence Theorem

We work towards the proof of Theorem 2 in several steps,
which we provide an overview below. The proofs of the in-
termediate results presented in this section are provided in the
supplementary material.

For the subsequent analysis, we suppose that the graph G

® is((2d+1)F + 1)-robust for Algorithm 1, and

® is (2F + 1)-robust for Algorithm 2.

Furthermore, unless stated otherwise, we will fix £ € Ry
and € € R, and hide the dependence of £ and ¢ in §;(¢) and
s*(&, €) by denoting them as d; and s*, respectively.

1) Gradient Update Step Analysis: First, we consider the
update from the intermediate states {z;[k]}r to the states
{zx;[k + 1]}x via the gradient step (6) (i.e., Line 10). In par-
ticular, we provide a relationship between ||z;[k] — y[oc]|| and
lz:[k + 1] — y[oo]|| for three different cases:

* |Izi[k] — y[oo]|| € [0, maxy,er{R; + d;}].

* ||zi[k] — y[oo]|| € (maxy,er{H; + 65}, s*],

o lz:[K] - yloo|| € (s*,00).

The corresponding formal statements are presented as fol-
lows. Lemma 3 below essentially says that if k is sufficiently
large and z;[k] € B(y[oc], max,,cr{R; + 8;}), then after ap-
plying the gradient update (6), the state x;[k + 1] will still be
in the convergence ball. To establish the result, let k] € N be a
time-step such that n[k}] < %

Lemma 3: Suppose Assumptions 2-5 hold. Forallv; € R and
k > ki, if z4[k] € B(y[oo], max,, cr{R; + d;}) then x;[k +
1] € B(y[oo], s%).

Lemma 4, based on Proposition 2, analyzes the relation-
ship between ||z;[k] — y[oo]|| and ||x;[k + 1] — y[oo]|| when
l|z:[k] — y[oc]|| > Ri + d;. The result will be used to prove
Lemma 5. _

For v; € R, define A; : [R;,00) x R>g — R to be the func-
tion

Ai(p, 1) =21 (1,;‘302 — R?cos; — R; sinﬂg) — 2. (16)

Lemma 4: Suppose Assumptions 1, 2, 4 and 5 hold. For all
v; € Rand k € N, if || z;[k] — y[oo]|| > R; + 4; then

I3[k + 1] — yloo] |* < lz:[k] — yloo]||?
— Ai(llzi[k] = yloolll, nlk] llg: kI, (A7)

where g,[k] € R is defined in (6).

Similar to Lemmas 3, 5 below states that if £ is sufficiently
large and ||z;[k] — y[oo]|| € (maxy,er{Ri + d;}, s*] then by
applying the gradient step (6), we have that the state z;[k + 1]
is still in the convergence ball.

To simplify the notations, define

af = —R,sinf; + \/(S*)z — ﬁ? cos2@; and

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 369

by =2 (\/(3*)2 — R2 cos b —Ra-sinﬁﬁ). (18)
Let kieN be a timestep such that pylk}] <

+ min,,cg {min{a;", b;}}.

Lemma 5: Suppose Assumptions 1-5 hold. For all v; €
R and k > K, if || z;[k] — y[oo]|| € (max,,er{R; +d;}, s*]
then [[;[k + 1] — y[oo]| € [0, s"].

The following lemma is useful for bounding the term A;
appeared in (17) for the case that ||z;[k] — y[o0]|| > s*.

Define the set of agents

L[k := {vi € R : ||zi[k] — y[oo]l > s}, (19)

and let k3 € N be a time-step such that n[k3] < 5% miny, e b;.
Lemma 6: If Assumptions 1-5 hold then for all k£ > k3 and
v € Iz [k],

Ai([lz:[k] — yloo]ll, nlk] llg:[K]Il) > %bém[k],

where A; and g,[k] are defined in (16) and (6), respectively, and
Li:=55>0.

Note that the quantity L; defined above can be interpreted
as a lower bound on a subgradient of the function f;(x) when
x ¢ Ci(e).

Lemmas 3-6 collectively establish the complete relationship
governing the update from {z;[k]}x to {z;[k + 1]}, which
will be used to prove Lemma 7.

2) Bounds on States of Regular Agents: Next, we consider
the update from the states {z;[k]}x to the intermediate states
{z;[k] }r viatwo filtering steps (Lines 7 and 8) and the weighted
average step (Line 9). In particular, utilizing Lemma 2, we derive
the following relationship.

Proposition 3: 1f Assumptions4 and Shold, thenforallk € N
and v; € R, it holds that

[124[k] — yloc]|| < max [l [K] = yloolll + 2]ly;[k] — yloo]||-

By combining the above inequality with the relation-
ship between ||z;[k] — y[od]|| and ||z;[k + 1] — y[oo]|| from
Lemmas 3-6, and bounding the second term on the RHS,
||w;[k] — y[oa]||, using Proposition 1, we obtain a relationship
between [|@;[k + 1] — y(oo]|| and maxy,er ||2;[k] — yoo]|-
As aresult, we can bound the distance maxy, ¢ ||@;:[k] — y[oc]||
by a particular bounded sequence defined below.

Define the time-step ko € Nas ko := max,.; 5 3) kj. Recall
the definition of & and S from Proposition 1. Let

ko—1 ko—1

dlko] = max |[2:[0] — yloo]l| +28 > e +L Y nlk]

(20)
and define a sequence {¢[k]}3_, satisfying the update rule

Pl 1] = m{(s*)z,

(6lk]+ 264)° = Zulil minbLif .- @1

Lemma 7: Suppose Assumptions 1-5 hold. For all £ > ko, it

holds that

max ||z; k] — y[oo]|| < &[K].

v;€R
Furthermore, there exists ¢ € Rxq such that for all k > kg, the
sequence @[k| can be uniformly bounded as ¢[k] < @.

3) Convergence Analysis: Finally, we will utilize the follow-
ing lemma to further analyze the sequence {@[k]} defined in
@10).

Lemma 8: Consider a sequence {7[k]}3° , C R that satis-
fies Z?:O ﬁ[k] =o0.Ify € RZO, Y2 € ]R),g and A € (—1, 1),
then there is no sequence {u[k]}?2, C R> that satisfies the
update rule

w?lk +1] = (ulk] +712*)? — y2i[k].

By employing Lemmas 7 and 8, Proposition 4 demonstrates
that any repulsion of the state z;[k] from the convergence
ball B(y[oo], s*) due to inconsistency of the estimates of the
auxiliary point (Propositions 1 and 3) is compensated by the
gradient term pulling the state x;[k] to the convergence ball.
Consequently, the quantity ¢[k] decreases until it does not
exceed s*. In other words, the sequence analysis results in

max[2:{k] ~ y[oc]| < ¢lK] <

(22)

for a sufficiently large time-step k. The crucial finite time con-
vergence result is formally stated as follows.

Proposition 4: Suppose Assumptions 1-5 hold. Then, there
exists K € N such that for all v; € R and k > K, we have
x;[k] € B(y[oo], s*).

Since all the prior analyses valid for all £ € R, and € €
R-p, the convergence result in Theorem 2 follows from taking
infe~0,e>0 and lim supy, to (22).

V. DISCUSSION
A. Fundamental Limitation

One would ideally expect an algorithm to provide conver-
gence to the exact minimizer of the sum of the regular agents’
functions when there are no Byzantine agents in the network.
However, prior works [10], [14] have established a fundamental
limitation, showing that achieving such a guarantee is not pos-
sible unless the set of local functions possesses a redundancy
property, known as 2F-redundancy [24]. This limitation arises
from the strong model of Byzantine attacks considered, where
a Byzantine agent can substitute the given local function with a
forged function that remains legitimate. Consequently, detecting
such suspicious behavior or determining the total number of
Byzantine agents |.4| in the network is not possible, as the
Byzantine agent can follow the algorithm while influencing
the outcome of distributed optimization (as discussed in Re-
mark 2). In other words, in settings where Byzantine agents
are potentially present (i.e., F' > 0) and there is no known
redundancy among the functions, achieving zero steady state
error is impossible even when there are no Byzantine agents
actually present (i.e., |.4| = 0) [10], [14].

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



370 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

Our work, imposing only mild assumptions on the local
functions, is constrained by this fundamental limit. Although
our approach can recover the distributed subgradient method [8],
[31] when selecting the parameter F' = 0, in the worst case
scenario, there is no way to determine the number of Byzantine
agents. As discussed in Remark 5, in practice, we need to choose
the parameter F in the design phase, i.e., prior to the execution
of the algorithm. Thus, in our work, the parameter F' serves as
the maximal number of Byzantine agents in a set of neighbors
that the designed system can tolerate, providing a convergence
guarantee, as stated in Theorem 2.

It is crucial to acknowledge that the fundamental limit is
well-established for distributed optimization problems. How-
ever, the question of the dependence of the smallest size of
the convergence region on the parameters characterizing the
function class remains an important open problem [27].

B. Redundancy and Guarantees Trade-Off

An appropriate notion of network redundancy is necessary
for any Byzantine resilient optimization algorithm [10]; for both
Algorithms 1 and 2, this is captured by the corresponding robust-
ness conditions in Theorem 2. In particular, Algorithm 1 requires
the graphtobe ((2 d 4 1)F + 1)-robustsince it implements two
filters (a distance-based filter (Line 7) and a min-max filter (Line
8)) while Algorithm 2 requires the graph to only be (2F + 1)-
robust as a result of only using the distance-based filter. Since
each of these filtering steps discards a set of state vectors,
the robustness condition allows the graph to retain some flow
of information. Thus, while Algorithm 1 requires significantly
stronger conditions on the network topology (i.e., requiring the
robustness parameter to scale linearly with the dimension of the
functions), it provides the benefit of guaranteeing consensus.
Algorithm 2 only requires the robustness parameter to scale with
the number of adversaries in each neighborhood, and thus can be
used for optimizing high-dimensional functions with relatively
sparse networks, at the cost of losing the guarantee on consensus.

Remark 6: The linear dependence of the redundancy require-
ment on the number of dimensions d is, in fact, typical for
resilient vector consensus (e.g., see [35], [36], [37], [38], [39],
[40], [41]); The survey paper [42, Section 5.3] provides a de-
tailed discussion of papers that require this assumption. Despite
such a condition/restriction being “standard™ in the literature,
the linear growth in the number of neighbors with the dimension
of the state is undesirable. To address the drawback of requiring
high redundancy, we provide Algorithm 2 which is an alternative
solution that does not depend on the number of dimensions d;
however, in this case, we lose the consensus guarantee unlike
Algorithm 1.

C. Time Complexity

Suppose the network is r-robust and the number of in-
neighbors |[N}| is linearly proportional to + for all v; € V.
For the distance-based filter (Line 7), each regular agent v; €
R computes the L?-norm between its auxiliary state and in-
neighbor states and then finds the F' agents that attain the
maximum value; this procedure takes O(dr) operations. On

the other hand, for the min-max filter (Line 8), each regular
agent v; € R is required to sort the in-neighbor states for each
dimension which takes O(dr log ) operations. For Algorithms 1
and 2, the total computational complexities for filtering process
are O(d?) and O(d), respectively. Compared to the resilient
vector consensus literature [35], [36], [37], [38], [39], [40],
[41], which requires exponential in the number of dimensions d
for computational complexity, our algorithms have significantly
lower computation costs.

D. Convergence Ball

In terms of the size of the convergence ball, it is crucial to note
that the convergence radius defined in (15) remains independent
of the Lipschitz constant L, the number of regular agents |R|
(in confrast to the result in [26]), or the maximum number
of neighboring Byzantine agents F. Instead, the radius hinges
solely on specific characteristics of local functions: the locations
of local minimizers (captured by R). sensitivity (captured by
6;), and the size of the set of local minimizers (captured by 4;).
However, the quantity R; canbe proportional to v/d in the worst
case as analyzed in [27]. As we will discuss next, remarkably,
the sensitivity ¢; defined in Proposition 2 is intimately linked to
the condition number of a function.

For simplicity, we will omit the agent index subscript
i in the subsequent analysis and assume x} =0. Con-
sider a quadratic function f(x) = %||A:I:||2, where A€
R9*4 is a positive definite matrix. Now, we will exam-
ine the quantity sup,.qZ(g(x),x) from Proposition 2,
where g(x) = Vf(z) = ATAz. We aim to demonstrate
that sec(supg.q £(g(z),z)) < (||A] - |A~Y))2 := &k, where
|| - || denotes the induced matrix norm, and & is the condition
number associated with the function f [43]. It is noteworthy that
this inequality, with the replacement of sup,_.o £(g(x), x) by
SUPg+q, £(9(T), ® — x.), holds for the more general case of
f(x) = 3| A(x — x.) + b||? with ,, € R% and b € R4

To show such result, we proceed as follows:

cos (21;13 4(g(m),m)) = inf (cos £(9(), 2))

A 2
me( (9(),z) ):mf (u ol _ Lo )
=20 \ lg(@)| - llzll / =#0 \ [lz[* | AT Az
2 -1
o | Az]] | AT Az||
> | inf sup
220 ||z|| =20 ||
. -2
> (A7t 1Al -
In the last inequality,
i.].']fa:_—)&o ﬂﬁ%ﬂﬁﬂ = ”T];W due
and  supgo AAZl = |ATA| < |AI? due to the
sub-multiplicative property of induced matrix norm, and
IAT] = [l A].
To get a sense of the convergence region, we consider univari-
ate functions (i.e., the d = 1 case). To facilitate the discussion,

we denote min,, ¢ x; and max,, % x} by z and T, respectively.
Suppose that the local minimizer =} is unique for all v; € R so

we utilize the properties that
to the invertibility of A

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 37

that the quantity é; defined in (12) can be chosen arbitrarily
close to zero for all v; € R. In this case, we have that for all
v; € R, 6; defined in (13) is zero. Therefore, the convergence
radius s* in (15) simplifies to max, .z Rs (where Rs defined
in (14)). In the best case, we can have y[oo] = %(z + Z) which
results in the convergence region [z, T] as derived in [10]. In the
worst case, (assuming numerical error €* in Line 1 is zero) we
can have y[oo] = z or T which results in the convergence region
[2z — T, T] or [z, 2T — x|, respectively. In such worst case, the
region is two times bigger than the region derived in [10]. These
results are due to our “radius analysis” which is uniform in all
directions from y/[oo].

Remark 7: Regarding the convergence rate, given the general
convex (possibly non-smooth) nature of the problem, achieving
only sublinear convergence is typical in centralized settings [44].
Specifically, the anticipated convergence rate may align with the
ok : ) rate observed in [8] for non-faulty distributed cases.
While our current work provides asymptotic analysis due to
inherent challenges, our future endeavors aim to explore explicit
convergence rates for a broader class of Byzantine-resilient
distributed optimization algorithms.

E. Maximum Tolerance

Based on the robustness condition for each algorithm and a
formula from [45], given the number of agents NV in the complete
graph and number of dimensions for the optimization variables
d, the upper bound on the number of local Byzantine agents I
such that the corresponding guarantees still hold, is as follows:

* F = |y3gy ] for Algorithm 1, and

* F =|%(N — 1)] for Algorithm 2.

From a practical perspective, the robustness property demon-
strates a natural trade-off for the system designer. A network that
has a stronger robustness property can tolerate more adversaries,
but can also induce more costs.

E Importance of Main States Computation

If we simply implement a resilient consensus protocol on local
minimizers similar to the auxiliary states, y,[k], computation (in
Lines 11-12) and remove the main states, z;[k], computation (in
Lines 7-9), we would obtain that the states of the regular agents
converge to the hyper-rectangle formed by the local minimizers
(for resilient component-wise consensus algorithms [46]), or
the convex hull of the local minimizers (for resilient vector
consensus algorithms [39], [47]). Even though using a resilient
consensus protocol seems to be a good method for the single
dimension case since the resilient distributed optimization al-
gorithm also pushes the states of the regular agents to such
sets [10], [13] (and they are identical in this case), it might not
give a desired result for the multi-dimensional case. First, it
is possible that the minimizer of the sum lies outside both the
hyper-rectangle and convex hull [16], [48] as shown in Fig. 1.
Second, using only a resilient consensus protocol, one ignores
the gradient information which steers the regular agents’ states
to the true minimizer. Third, we empirically show in Section VI
that implementing a resilient distributed optimization algorithm

(especially Algorithm 1) usually gives better results (compared
to the quality of the solution provided by directly using the auxil-
iary point, which was obtained by running a resilient consensus
protocol on the local minimizers) in terms of both optimality
gap and distance to the global minimizer.

G. Importance of Auxiliary States Computation

Essentially, when the main states of regular agents are signifi-
cantly far away from their local minimizers x}, these minimizers
tend to form a cluster from the perspective of a regular agent
v;. In addition, building on prior works [16], [48], [49], we
know that the true optimal solution x* (which is the minimizer
of the function sum) cannot be located too far away from this
cluster. Thus, the auxiliary states y,, guaranteed to be inside the
cluster (in L;-sense) as shown in Proposition 1, act as valuable
references for providing a directional sense to regular agents
v; in their pursuit of the true minimizer =*. By our design, the
distance filter in Algorithms 1 and 2 assumes the role of a guiding
mechanism by eliminating extreme states that pull the overall
state away from the cluster.

From a technical standpoint, in the multi-dimensional case,
relying solely on resilient consensus for the main states x;
and the update using a subgradient g, with respect to the local
function f; may not suffice to ensure a convergence guarantee.
In the worst case, resilient consensus could lead to a state further
away from the cluster, especially considering that the strength of
this divergence due to Byzantine agents can be proportional to
V/d, where d is the problem dimension. Even though following
the subgradient g, usually mitigates the divergence, it might not
be sufficient for guaranteed convergence in such worst cases.
Thus, our introduced distance-based filter using a local auxiliary
state plays a crucial role in further reducing the severity of
the divergence, allowing us to achieve a convergence guarantee
under mild assumptions.

VI. NUMERICAL EXPERIMENT

We now provide a numerical experiment to illustrate Al-
gorithms 1 and 2. In the experiment, we generate quadratic
functions for the local objective functions. Using these functions,
we demonstrate the performance (e.g., optimality gaps, distances
to the global minimizer) of our algorithms. We also compare the
optimality gaps of the function value obtained using the states
x; [k] and the value obtained using the auxiliary points y,[k], and
plot the trajectories of the states of a subset of regular nodes.
Preliminary Settings
® Main Parameters: We set the number of nodes tobe n = 25
and the dimension of each function to be d = 2.

® Adversary Parameters: We consider the F-local model,
and set F' = 2 for Algorithm 1 and F' = 5 for Algorithm 2.

Network Settings

® Topology Generation: We construct an 11-robust graph on
n = 25 nodes following the approach from [29], [45]. This
graph can tolerate up to 2 local adversaries for Algorithm 1,
and up to 5 local adversaries for Algorithm 2 according to
Theorem 2. Note that the same graph is used to perform
numerical experiments for both Algorithms 1 and 2.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



372

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

Adversaries’ Strategy
® Adversarial Nodes: We construct the set of adversarial

nodes .A by randomly choosing nodes in V so that the set of
adversarial nodes form a F-local set. Note that in general,
constructing .4 depends on the topology of the network. In
our experiment, we have A = {vg, v16} for Algorithm 1
and A = {TJ5, v11, V12, V17, V22, TJ24} for Algorithm 2.

® Adversarial Values Transmifted: Here, we use a sophisti-

cated approach rather than simply choosing the transmitted
values at random. Suppose v, is an adversary node and
v; is a regular node which is an out-neighbor of v, i.e.,
Vg € N;’“ First, consider the state of nodes in the network
at time-step k. The adversarial node v, uses an oracle to
determine the region in the state space for the regular node
v; in which if the adversarial node selects the transmitted
value to be outside the region then the value will be dis-
carded by that regular agent v;. Then, v chooses x . _,;[k]
(the forged state sent from v, to v; at time k) so that it
is in the safe region and far from the global minimizer.
In this way, the adversaries’ values will not be discarded
and also try to prevent the regular nodes from getting close
to the minimizer. Similarly, for the auxiliary point update,
the adversarial node v, uses an oracle to determine the safe
region in the auxiliary point’s space for the regular node
v;. Since the safe region is a hyper-rectangle in general,
vg chooses y,_,;[k] (the forged estimated auxiliary point
sent from v, to v; at time k) to be near a corner (chosen
randomly) of the hyper-rectangle.

Objective Functions Settings
® Local Functions: For v; € V, we set the local objective

functions f; : R? — R to be
1

2:;n::TQ,i::t: + bgra:,

fi(z) =
where Q, € S and b; € R? are chosen randomly. Note
that the same local functions are used to perform numerical
experiments for both Algorithms 1 and 2.
Global Objective Function: According to our objective (2),
we then have the global objective function f : R? — R as
follows:

T
f(a:)=|%| %wT(ZQi)M(Zbi) x|,

v;iER v eR

where the set of regular nodes R = V' \ A.

Algorithm Settings
® [nitialization: For each regular node v; € R, we compute

the exact minimizer ¥ = —QY b; and use it as the initial
state and auxiliary point of v; as suggested in Line 1-2 of
Algorithm 1.

Weights Selection: For each time-step £k € N and reg-
ular node v; € R, we randomly choose the weights

wy ik, wggj [k] so that they follow the description of
Line 9 and Line 12, and Assumption 5.
Step-size Selection: We choose the step-size schedule (in

Line 11 of Algorithm 1) to be n[k] = 5.

Optimality Gap at Each Time-step (Algerithm 1)

1o — A
_— gkl — 1"
. n ALk

10°
101
o 50 100 150 200 250 300
Time-step, k

Optimality Gap
5

Optimality Gap at Each Time-step (Algorithm 2)

— Ak -
— R§lkn -

g

Optimality Gap

L

=

o 50 100 150 200 250 300
Time-step, k

Fig. 2. Plots show the optimality gap evaluated at the average of the regular
nodes” states f(x[k]) — f* averaged over 10 runs (blue), and the optimality
gap evaluated at the average of the regular nodes’ auxiliary points f(gy[k]) —
f* averaged over 10 runs (red) against the time-step k obtained from (top)
Algorithm 1 and (bottom) Algorithm 2. The shaded regions represent +1/-1
standard deviation.

® Gradient Norm Bound: We choose the upper bound of
the gradient norm to be L = 10°. If the norm exceeds the
bound, we scale the gradient down so that its norm is equal
to L, i.e.,

g,k = {st(fi[k]) if [V fi(zlk)I < L,
' TV Filz: kDT -V fi(zi[k]) otherwise.

Simulation Settings and Results

® Time Horizon: We set the time horizon of our simulations
to be K = 300 (starting from k = 0).

e FExperiments Detail: For both Algorithms 1 and 2, we fix
the graph, local functions, and step-size schedule. How-
ever, since the set of adversaries are different, the global
objective functions, and hence the global minimizers are
different. For each algorithm, we run the experiment 10
times setting the same states initialization across the runs.
The results from the runs are different due to the random-
ness in the adversaries’ strategy.

® Performance Metrics: We examine the performance of our
algorithms by considering the optimality gaps (Fig. 2),
distances to the global minimizer (Fig. 3), and trajectories
of randomly selected regular agents (Fig. 4).

® Algorithm 1’s Results: The lines corresponding to the
optimality gap and distance to the global minimizer evalu-
ated using auxiliary points are almost horizontal since the
convergence to consensus is very fast. However, one can
see that the optimality gap and distance to the minimizer
obtained from the regular states are significantly smaller
than that from the auxiliary points due to the use of gradient
information (Line 10) and extreme states filtering (Line 8)
in the regular state update. In particular, at k& = 300, the

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 373

Distance to the Minimizer at Each Time-step (Algorithm 1)

— Ixfkl-x"|

— Iyikl-x"|
10t

107

Distance to the Minimizer

o

50 100 150 200 250 300
Time-step, k

Distance to the Minimizer at Each Time-step (Algorithm 2)

— Ik - x|

— Iyikl=x"|

Bx10"

4x10°

UISTANCe [0 TNe MInImizer

3x10°

o

50 100 150 200 250 300
Time-step, k

Fig. 3. Plots show the distance between the average of the regular nodes’
states and the global minimizer ||Z[k] — x*|| averaged over 10 runs (blue), and
the distance between the average of the regular nodes” auxiliary points and the
global minimizer || y[k] — «*|| averaged over 10 runs (red) against the time-step
k obtained from (top) Algorithm 1 and (bottom) Algorithm 2. The shaded regions
represent +1/-1 standard deviation.

Trajectory of Regular States (Algorithm 1)

) / *x Agent2 ]
% Agent 4
. Agent 13

x  Agent15
Agent 19

-0.10

-0.15

-0.20
-0.05 0.00 0.05 0.10 0.15 0.20 0.25

®x  Agent6
Agent 10
Agent 15
Agent 16
Agent 23

XA K M

Fig. 4. Plots show the trajectory of the states of a subset of the regular nodes
obtained from (top) Algorithm 1 and (bottom) Algorithm 2. Different colors of
the trajectory represent different regular agents v; in the network. In each figure,
the contour plot shows the level sets of the global objective function (in this case,
a quadratic function) and the red dot represents the global minimizer.

optimality gap and distance to the global minimizer at the
regular states’ average are only about 0.030 and 0.206,
respectively. Moreover, the state trajectories converge to-
gether and stay close to the global minimizer even in
the presence of sophisticated adversaries. Note that, from
our observations, Algorithm 1 yields better results than
Algorithm 2 given the same settings.

® Algorithm 2’s Results: The optimality gaps and distances to
the global minimizer evaluated using the states are slightly
better than the values obtained using the auxiliary points,
and the state trajectories remain reasonably close to the
global minimizer showing that the algorithm can tolerate
F = 5local adversaries (which is more than Algorithm 1).
Interestingly, the state trajectories seem to converge to-
gether even though the consensus guarantee is lacking due
to the absence of the distance-based filter.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the distributed optimization
problem in the presence of Byzantine agents. We developed
two resilient distributed optimization algorithms for multi-
dimensional functions. The key improvement over our previous
work in [28] is that the algorithms proposed in this paper do not
require a fixed auxiliary point to be computed in advance (which
will not happen under finite time in general). Our algorithms
have low complexity and each regular node only needs local
information to execute the steps. Algorithm 1 (with the min-max
state filter), which requires more network redundancy, guaran-
tees that the regular states can asymptotically reach consensus
and enter a bounded region that contains the global minimizer,
irrespective of the actions of Byzantine agents. On the other
hand, Algorithm 2 (without the min-max filter) has a more
relaxed condition on the network topology and can guarantee
asymptotic convergence to the same region, but cannot guarantee
consensus. For both algorithms, we explicitly characterized the
size of the convergence region, and showed through simulations
that Algorithm 1 appears to yield results that are closer to
optimal, as compared to Algorithm 2.

As noted earlier, the consensus guarantee for Algorithm 1
requires linear scaling of network robustness with the dimension
of the local functions, which can be limiting in practice. This
seems to be a common challenge for resilient consensus-based
algorithms in systems with multi-dimensional states, e.g., [24],
[47], [50]. Finding a relaxed condition on the network topology
for high-dimensional resilient distributed optimization problems
(with guaranteed consensus) would be a rich area for future
research.

REFERENCES

[1] I. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” IEEE Trans.
Autom. Control, vol. 31, no. 9, pp. 803-812, Sep. 1986.

[2] L.Xiao and S. Boyd, “Optimal scaling of a gradient method for distributed
resource allocation,” J. Optim. Theory Appl., vol. 129, no. 3, pp. 469-488,
2006.

[3] J. Wang and N. Elia, “A control perspective for centralized and distributed

convex optimization,” in Proc. IEEE 50th Conf. Decis. Control Eur.

Control Conf., 2011, pp. 3800-3805.

S. Boyd et al., “Distributed optimization and statistical learning via the

alternating direction method of multipliers,” Found. Trends Mach. Learn.,

vol. 3, no. 1, pp. 1-122, 2011.

[5] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-newton

methods,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2613-2628,

May 2017.

R. Xin, C. Xi, and U. A. Khan, “FROST-Fast row-stochastic optimiza-

tion with uncoordinated step-sizes,” EURASIP J. Adv. Signal Process.,

vol. 2019, no. 1, 2019, Art. no. 1.

4

—_—

[6

—

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.



374

[71

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

M. Zhu and S. Martinez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57,
no. 1, pp. 151-164, Jan. 2011.

A. Nedi¢ and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601-615,
Mar. 2015.

J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE
Trans. Signal Process., vol. 66, no. 11, pp. 28342848, Jun. 2018.

S. Sundaram and B. Gharesifard, “Distributed optimization under adver-
sarial nodes,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1063-1076,
Mar. 2019.

N.Ravi, A. Scaglione, and A. Nedi¢, “A case of distributed optimization in
adversarial environment,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2019, pp. 5252-5256.

S. X. Wu, H.-T. Wai, A. Scaglione, A. Nedi¢, and A. Leshem, “Data
injection attack on decentralized optimization,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2018, pp. 3644-3648.

L. Su and N. H. Vaidya, “Byzantine-resilient multiagent optimization,”
IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2227-2233, May 2021.
L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimization: Optimal
iterative distributed algorithms.” in Proc. ACM Symp. Princ. Distrib.
Comput., 2016, pp. 425-434.

C. Zhao, J. He, and Q.-G. Wang, “Resilient distributed optimization algo-
rithm against adversarial attacks,” IEEE Trans. Autom. Control, vol. 65,
no. 10, pp. 4308-4315, Oct. 2020.

K. Kuwaranancharoen and S. Sundaram, “On the location of the minimizer
of the sum of two strongly convex functions,” in Proc. [EEE Conf. Decis.
Control, 2018, pp. 1769-1774.

N. Gupta and N. H. Vaidya, “Byzantine fault tolerant distributed linear
regression,” 2019, arXiv:1903.08752.

P. Blanchard et al., “Machine learning with adversaries: Byzantine tol-
erant gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 119-129.

K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” IEEE Trans. Signal Process., vol. 70, pp. 1142-1154,
2022.

Z. Yang and W. U. Bajwa, “ByRDIE: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.
Process. Netw., vol. 5, no. 4, pp. 611-627, Dec. 2019.

C. Fang, Z. Yang, and W. U. Bajwa, “BRIDGE: Byzantine-resilient decen-
tralized gradient descent,” IEEE Trans. Signal Inf. Process. Netw., vol. 8,
pp. 610626, 2022.

A.R.Elkordy, S. Prakash, and S. Avestimehr, “Basil: A fast and byzantine-
resilient approach for decentralized training,” IEEE J. Sel. Areas Commun..,
vol. 40, no. 9, pp. 26942716, Sep. 2022.

S. Guo, T. Zhang, X. Xie, L. Ma, T. Xiang, and Y. Liu, “Towards
byzantine-resilient learning in decentralized systems,” IEEE Trans. Cir-
cuits Syst. Video Technol. vol. 32, no 6, pp. 40964106, Jun. 2022,
doi: 10.1109/TCSVT.2021.3116976.

N. Gupta, T. T. Doan, and N. H. Vaidya, “Byzantine fault-tolerance in
decentralized optimization under 2F-redundancy.” in Proc. Amer. Control
Conf., 2021, pp. 3632-3637.

N. Ravi and A. Scaglione, “Detection and isolation of adversaries in
decentralized optimization for non-strongly convex objectives,” IFAC-
PapersOnLine, vol. 52, no. 20, pp. 381-386, 2019.

Z.Wu, T. Chen, and Q. Ling, “Byzantine-resilient decentralized stochastic
optimization with robust aggregation rules,” IEEE Trans. Signal Process.,
vol. 71, pp. 3179-3195, 2023.

K. Kuwaranancharoen and S. Sundaram, “On the geometric conver-
gence of byzantine-resilient distributed optimization algorithms,” 2023,
arXiv:2305.10810.

K. Kuwaranancharoen, L. Xin, and S. Sundaram, “Byzantine-resilient
distributed optimization of multi-dimensional functions,” in Proc. Amer.
Control Conf., 2020, pp. 4399-4404.

H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 4, pp. 766781, Apr. 2013.

A. Sinclair, “Improved bounds for mixing rates of Markov chains and
multicommodity flow,” Combinatorics Probab. Comput., vol. 1, no. 4,
pp. 351-370, 1992.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48-61,
Jan. 2009.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Trans. Autom. Control, vol. 57, no. 3, pp. 592-606, Mar. 2012.

[33]

[34]
[35]
[36]
[371

[38]

[39]

[40]

[41]

[42]

[43]

[44

—_—

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

D. Jakoveti¢, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131-1146,
May 2014.

N. A. Lynch, Distributed Algorithms. Amsterdam, The Netherlands: El-
sevier, 1996.

H. Tverberg, “A generalization of radon’s theorem,” J. London Math. Soc.,
vol. 1, no. 1, pp. 123128, 1966.

J. R. Reay, “An extension of radon’s theorem.” Illinois J. Math., vol. 12,
no. 2, pp. 184-189, 1968.

N. H. Vaidya, “Tterative byzantine vector consensus in incomplete graphs,”
in Proc. 15th Int. Conf. Distrib. Comput. Netw., 2014, pp. 14-28.

Z. Xiang and N. H. Vaidya, “Brief announcement: Relaxed byzantine
vector consensus,” in Proc. 28th ACM Symp. Parallelism Algorithms
Architectures, 2016, pp. 401-403.

H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of mul-
tirobot systems,” JEEE Trans. Robot., vol. 33, no. 3, pp.565-582,
Jun. 2017.

W. Abbas, M. Shabbir, J. Li, and X. Koutsoukos, “Interplay be-
tween resilience and accuracy in resilient vector consensus in multi-
agent networks,” in Proc. IEEE 59h Conf. Decis. Control, 2020,
pp. 3127-3132.

J. Yan, Y. Mo, X. Li, and C. Wen, “A “safe kernel” approach for re-
silient multi-dimensional consensus,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 2507-2512, 2020.

M. Pirani, A. Mitra, and S. Sundaram, “Graph-theoretic ap-
proaches for analyzing the resilience of distributed control systems:
A tutorial and survey,” vol. 157, Nov. 2023, Art. no. 111264,
doi: 10.1016/j.automatica.2023.111264.

D. H. Gutman and J. F. Pena, “The condition number of a function relative
to a set,” Math. Program., vol. 188, pp. 255-294, 2021.

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87, Berlin, Germany: Springer Science & Business Media,
2003.

L. Guerrero-Bonilla, A. Prorok, and V. Kumar, “Formations for resilient
robot teams,” IEEE Robot. Automat. Lett., vol. 2, no. 2, pp. 841-848,
Apr. 2017.

D. Saldana, A. Prorok, S. Sundaram, M. F. Campos, and V. Kumar,
“Resilient consensus for time-varying networks of dynamic agents,” in
Proc. Amer. Control Conf., 2017, pp. 252-258.

W. Abbas, M. Shabbir, J. Li, and X. Koutsoukos, “Resilient dis-
tributed vector consensus using centerpoint,” Automatica, vol. 136, 2022,
Art. no. 110046.

K. Kuwaranancharoen and S. Sundaram, “On the set of possible minimiz-
ers of a sum of known and unknown functions,” in Proc. Amer. Control
Conf., 2020, pp. 106-111.

K. Kuwaranancharoen and S. Sundaram, “The minimizer of the sum of
two strongly convex functions,” 2023, arXiv:2305.13134.

J. Yan, Y. Mo, X. Li, L. Xing, and C. Wen, “Resilient vector consensus: An
event-based approach,” in Proc. IEEE 16th Int. Conf. Control Automat.,
2020, pp. 889-894.

B. S. Mordukhovich and N. M. Nam, “An easy path to convex analysis
and applications,” Synth. Lectures Math. Statist., vol. 6, no. 2, pp. 1-218,
2013.

D. Castano, V. E. Paksoy, and F. Zhang, “Angles, triangle inequalities,
correlation matrices and metric-preserving and subadditive functions,”
Linear Algebra Appl., vol. 491, pp. 15-29, 2016.

Kananart Kuwaranancharoen (Member, IEEE) re-
ceived the B.Eng. degree in electrical engineering
from Chulalongkorn University, Bangkok, Thailand,
in 2016, and the Ph.D. degree from the Elmore Family
School of Electrical and Computer Engineering, Pur-
due University, West Lafayette, IN, USA. During his
doctoral studies, he was a Research Intern with Intel
Labs. He holds the position of AI Research Scientist
with Intel Labs. His research interests include dis-
tributed optimization and reinforcement learning. He
was the recipient of the prestigious University Gold

Medal at Chulalongkorn University.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1109/TCSVT.2021.3116976
https://dx.doi.org/10.1016/j.automatica.2023.111264

KUWARANANCHAROEN et al.: SCALABLE DISTRIBUTED OPTIMIZATION OF MULTI-DIMENSIONAL FUNCTIONS DESPITE BYZANTINE 375

Lei Xin (Student Member, IEEE) received the B.S.
degree in electrical and computer engineering (high-
est distinction) and the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2018 and 2023, respectively.
He is currently a Postdoctoral Researcher with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.
He was a finalist for the Best Student Paper Award
at the 2022 American Control Conference. His re-
search interests include machine learning, system
identification, and optimization.

Shreyas Sundaram (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 2005 and 2009, respectively.
He is currently the Marie Gordon Associate Pro-
fessor with the Elmore Family School of Electrical
and Computer Engineering, Purdue University, West
N Lafayette, IN, USA. From 2009 to 2010, he was a
\ Postdoctoral Researcher with the University of Penn-
‘ \_ . sylvania, Philadelphia, PA, USA, and an Assistant
a Professor with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo, ON, Canada, from 2010
to 2014. His research interests include network science, analysis of large-scale
dynamical systems, fault-tolerant and secure control, linear system and estima-
tion theory, game theory, and the application of algebraic graph theory to system
analysis. He was the recipient of the NSF CAREER Award, and an Air Force
Research Lab Summer Faculty Fellowship, Hesselberth Award for Teaching
Excellence and Ruth and Joel Spira Outstanding Teacher Award, Department of
Electrical and Computer Engineering Research Award at Waterloo, Faculty of
Engineering Distinguished Performance Award, M. E. Van Valkenburg Graduate
Research Award, and the Robert T. Chien Memorial Award from the University
of Illinois. He was a finalist for the Best Student Paper Award at the 2007 and
2008 American Control Conferences.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:05:01 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


