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Communication-Efficient and Resilient
Distributed Q-Learning
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Abstract— This article investigates the problem of
communication-efficient and resilient multiagent reinforcement
learning (MARL). Specifically, we consider a setting where a set
of agents are interconnected over a given network, and can only
exchange information with their neighbors. Each agent observes
a common Markov Decision Process and has a local cost which
is a function of the current system state and the applied control
action. The goal of MARL is for all agents to learn a policy that
optimizes the infinite horizon discounted average of all their
costs. Within this general setting, we consider two extensions to
existing MARL algorithms. First, we provide an event-triggered
learning rule where agents only exchange information with
their neighbors if a certain triggering condition is satisfied.
We show that this enables learning while reducing the amount
of communication. Next, we consider the scenario where some
of the agents can be adversarial (as captured by the Byzantine
attack model), and arbitrarily deviate from the prescribed
learning algorithm. We establish a fundamental trade-off
between optimality and resilience when Byzantine agents are
present. We then create a resilient algorithm and show almost
sure convergence of all reliable agents’ value functions to the
neighborhood of the optimal value function of all reliable agents,
under certain conditions on the network topology. When the
optimal Q-values are sufficiently separated for different actions,
we show that all reliable agents can learn the optimal policy
under our algorithm.

Index Terms— Event-triggered communication, multiagent sys-
tems, reinforcement learning, resilience.

I. INTRODUCTION

MULTIAGENT reinforcement learning (MARL) focuses
on scenarios where multiple agents interact with an

environment and each other to learn optimal policies to
achieve long-term goals (which are typically a function of
the agents’ private rewards) [1], [2], [3], [4]. There has
been significant research on learning algorithms for such
settings, under various assumptions on the agents, networks,
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and reward structures. For example, in the case where the
global reward function is the average of the individual agents’
rewards, and all agents aim to cooperatively learn a pol-
icy that optimizes the infinite horizon discounted global
reward, the paper [1] proposes a consensus-based distributed
Q-learning (Q D-learning) algorithm where each agent main-
tains Q-value estimates and exchanges those estimates with
its neighbors. Similarly, multiagent actor–critic algorithms are
proposed in [2], [3], and [4], where linear functions are used
to approximate the Q-values.

Algorithms for MARL (as with any distributed coordina-
tion problem) generally require agents to exchange relevant
information with neighbors, which may incur a heavy burden
on the communication channels of a networked system. In the
networked systems literature, event-triggered communication
[5], originated from event-triggered control [6], has been
used to improve communication efficiency. The basic idea
of event-triggered communication is that agents only com-
municate with other agents at triggering time instants that
are determined by an event-triggering strategy. Hu et al. [7]
incorporated event-triggered communication into the MARL
problem to improve communication efficiency and learns
an optimal event-triggering strategy that satisfies the limited
bandwidth communication requirement.

In addition to the challenges imposed by distributed
availability of information (and the need to communicate),
large networked systems may also suffer from failures and
attacks on some of the nodes. Indeed, the networked nature
of the system is a double-edged sword: the same edges
that allow nodes to coordinate with each other can also
allow one or more nodes to propagate incorrect information
throughout the network [8]. Resilient algorithms that can
withstand adversarial agents have been developed to address
problems including consensus [9], [10], [11], distributed
optimization [8], [12] and distributed learning [13], [14],
[15], [16], [17]. For the resilient distributed learning problem,
both the client-server structure (with a central server that can
directly communicate with all clients) [13], [14], [15] and
the peer-to-peer (P2P) structure (where each agent can only
communicate with its neighbors in the network) [16], [17] have
been studied. Recently, the problem of MARL with Byzantine
agents is considered in [18] and [19]. Specifically, [18]
considers a client-server structure with a reliable server
agent. Wu et al. [19] addresses policy evaluation within a
P2P structure, and characterizes the learning error under the
assumption that the local rewards are sufficiently similar.
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In this article, we propose distributed learning algorithms
that address both the communication and resilience issues
discussed above. Specifically, motivated by the fact that
Q D-learning requires agents to exchange information with
neighbors at each time instant, and generally fails even when
a single Byzantine agent is present (as we will show later
in the article), we seek to find answers to the following
questions. i) When should agents exchange information with
neighbors, what should be exchanged, and what should the
agents do with the received information? ii) How can the
resilience of Q D-learning be enhanced in the presence of
Byzantine (arbitrarily misbehaving) agents? To answer these
questions, we first extend the Q D-learning algorithm for an
undirected network in [1] to a time-varying directed network
(which will capture the more general networks induced by our
algorithms). Then, we propose an event-triggered Q D-learning
algorithm, where agents only send information to neighbors
at their own triggering instants. A resilient event-triggered
Q D-learning algorithm is then devised to tolerate Byzantine
attacks. Under certain conditions on the network topology,
we prove that the value function of reliable (non-Byzantine)
agents will converge to the neighborhood of the optimal value
function of all reliable agents almost surely. If the optimal
Q-values corresponding to different actions for each state are
sufficiently separated, we show that reliable agents can learn
the optimal policy that optimizes the averaged value functions
of all reliable agents.

A. Statement of Contributions
To the best of our knowledge, this is the first article aiming

at the codesign of efficiency and resilience in MARL when
Byzantine agents are present.

The first contribution is the extension of the Q D-learning
algorithm in [1] from an undirected network to a time-varying
directed network. The extension is nontrivial for several
reasons. First, the time-varying and nondoubly stochastic
weights of information exchange among agents prevent us
from utilizing properties such as the symmetry of the Lapla-
cian matrix in the convergence analysis. As a result, the
updating rates in Q D-learning are designed differently from
those in [1]. Second, different from [1], the consensus of
Q values to the optimal Q value cannot be guaranteed
for a time-varying directed graph. It is more challenging
to estimate the region of the final consensus value and
characterize its distance to the optimal Q value. Third,
most consensus results for time-varying graphs focus on
distributed control and distributed optimization instead of
distributed learning. Consensus analysis in distributed learning
is much more involved due to the randomness in learning
dynamics.

Our second contribution is the design of the event-triggered
learning rule, where each agent only transmits information to
its neighbors when a certain condition (based on its local data)
is satisfied. This requires the design of an event-triggering
strategy and the associated triggering function. To ensure
effective learning with improved communication efficiency,
we establish requirements on the form and properties of the
triggering function.

As our third contribution, we show the vulnerability of any
consensus-based learning algorithms when Byzantine agents
are present. We establish a fundamental trade-off between opti-
mality and resilience: any learning algorithm that always finds
optimal value function in the absence of adversaries can also
be arbitrarily co-opted by an adversary. We trade off optimality
with resilience by learning the optimal value function of all
regular agents (compromised goal) instead of the optimal value
function of all agents (optimal goal). In our article, resilience
refers to allowing the regular agents to learn the compromised
goal as closely as possible. Our approach to achieving a
resilient algorithm is based on utilizing mean-subsequence
reduced filtering to mitigate and filter the adversarial effects
as long as the network has sufficient redundancy (as captured
by the r -robustness condition provided in the article).

Fourth, we provide a resilient and communication-efficient
MARL algorithm and establish the convergence properties
of that algorithm under certain conditions on the network
topology. A key challenge in this setting is to characterize
the learning error (distance-to-optimality) in the presence of
Byzantine agents; we provide such a characterization for our
algorithm.

B. Comparison With Our Conference Paper [20]

This article builds and significantly expands upon the pre-
liminary results in our conference paper [20]. In general, [20]
only focuses on the resilience design in distributed Q-learning,
whereas this article aims at the codesign of communication
efficiency and resilience in distributed Q-learning. The key
differences between this article and [20] are summarized as
follows.

First, [20] does not consider the communication efficiency
of distributed Q-learning. In particular, the algorithm in [20]
requires agents to transmit Q-values to neighbors at each
time step. In contrast, in this article, we propose Algorithm 2
(event-triggered Q D-learning for a time-varying directed net-
work) that substantially reduces communication complexity.
We provide an event-triggered learning rule where agents
only exchange information with their neighbors if a certain
triggering condition is satisfied. The triggering condition is
carefully designed to enable learning while reducing the
amount of communication. In addition to providing theoretical
guarantees for this algorithm, we provide simulations showing
the significant reduction in communications.

Building on the above algorithm, we then propose
Algorithm 3 (resilient event-triggered Q D-learning for a
time-invariant directed network) in this article with both
efficiency and resilience guarantees. This moves beyond the
resilient Q D-learning algorithm proposed in [20], which did
not include an event-triggered learning rule. We additionally
provide numerical examples to provide insight and comple-
ment the theoretical analysis, beyond what was provided
in [20].

C. Organization of Article

The MARL problem is formulated in Section II.
In Section III, the Q D-learning algorithm for an undirected
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network is extended to a time-varying directed network.
An event-triggered Q D-learning algorithm that reduces the
communication frequency among agents is proposed in
Section IV. The limitations on the performance of any
consensus-based learning algorithms with Byzantine agents
are analyzed in Section V. A new resilient event-triggered
Q D-learning algorithm is devised and the main result is given
in Section VI. Simulation results are illustrated in Section VII.
Section VIII draws a conclusion.

Notation: N is the set of all natural numbers and R is the
set of all real values. Rk is the k-dimensional Euclidean space.
The probability space (�,F) supports all random objects.
For a collection J of random objects, σ(J ) is the smallest
σ -algebra with respect to which all the random objects in
J are measurable. Probability and expectation on (�,F)
are denoted by P(·) and E(·), respectively. All inequalities
involving random objects are interpreted almost surely (a.s.).

II. PROBLEM FORMULATION

We consider a Markov Decision Process containing multiple
agents given by a tuple (S,A,P,G, {rn}

N
n=1, γ). The sets

S = {1, 2, . . . ,M} and A are the finite state space and finite
action space, respectively. The transition function P(s ′|s, a)
is the probability of transitioning to state s ′ ∈ S when the
current state is s ∈ S and action a ∈ A is taken. We denote
P(s ′|s, a) = pa

ss ′ ,∀s, s ′ ∈ S, a ∈ A with
∑

s ′∈S pa
ss ′ = 1 for

all s ∈ S . The communication topology among agents is
denoted by a time-invariant graph G = (V, E), where V =

{v1, v2, . . . , vN } and E ⊂ V × V are the node (or agent)
set and the edge set, respectively. Each edge represents a
communication link between two agents. Each agent vn can
only receive information from agents in its neighbor set,
defined as Nn = {vl ∈ V|(vl , vn) ∈ E}. Each agent vn also
has a private random cost rn : S × A → R, i.e., agent
vn receives an instantaneous random cost rn(s, a) when the
current state is s and action a is taken. The global cost
r : S × A → R is defined as r(s, a) = (1/N )

∑N
n=1 rn(s, a)

for all s ∈ S and a ∈ A. The constant γ ∈ (0, 1) is the
discounting factor. A policy π is a mapping from S to A,
i.e., at = π(st ). For a stationary policy π , the state process
induced by that policy is denoted by {sπt }, and evolves as a
homogeneous Markov chain with P(sπt+1 = s ′|sπt = s) = pπ(s)ss ′ .
For any given stationary policy π and initial state s, the
infinite horizon discounted cost for agent vn is defined as
V n

s,π = lim supT→∞ E[
∑T

t=0 γtrn(sπt , π(sπt ))|sπ0 = s]. The
global optimal value function is V∗

= [V ∗
s ] ∈ R|S| with

V ∗

s = inf
π

1
N

∑
vn∈V

V n
s,π ∀s ∈ S. (1)

The corresponding optimal policy is denoted by π∗.
There are various distributed algorithms to find the optimal

value function and corresponding policy when all agents are
reliable (e.g., the Q D-learning algorithm in [1]). However,
when some agents do not follow the prescribed algorithm, find-
ing the optimal value function [as defined in (1)] is generally
not possible, since the adversarial agents may misrepresent
their local cost functions (as we will show formally later).

In particular, in this article, we will consider a powerful
“Byzantine” model of misbehavior, where the adversarial
nodes are omniscient (i.e., know the entire network topology
and local costs of all other agents), adversarial (i.e., can arbi-
trarily deviate from any prescribed algorithm), and unknown
to reliable agents.1 We partition the agent set as V = R ∪ B,
where R is the set of reliable nodes and B is the set of
Byzantine nodes.

Based on the setting described above (consisting of an MDP
and a network of agents partitioned into a reliable set R and
a Byzantine set B), the problem of interest in this article
is to design a resilient event-triggered distributed Q-learning
algorithm (and identify associated conditions on the network
topology) to allow each reliable agent to calculate the optimal
value function of all reliable agents VR∗

= [VR∗
s ] ∈ R|S| with

VR∗

s = inf
π

1
|R|

∑
vn∈R

V n
s,π ∀s ∈ S (2)

along with the corresponding policy πR∗, regardless of the
actions of the Byzantine agents.

To address the above problem, we will first need to extend
existing results on distributed Q-learning to time-varying and
directed graphs (since such graphs will be induced by our
algorithms). We do this in Section III.

III. Q D-LEARNING FOR A TIME-VARYING
DIRECTED NETWORK

In this section, we will extend the Q D-learning algorithm
from [1] (which was derived for an undirected network) to a
time-varying directed network G(t) = (V, E(t)) when B = ∅

(i.e., there are no Byzantine agents), where E(t) ⊂ V × V
denotes the edge set at time t . Accordingly, we let Nn(t) =
{vl ∈ V|(vl , vn) ∈ E(t)} denote the neighbor set of agent vn at
time t .

Definition 1 (Rooted Graph): Consider the graph G(t) =

{V, E(t)}. At any given time t ∈ N, if there exists a node
vn ∈ V such that vn has a path to all other nodes vl ∈ V \ {vn}

in G(t), we say G(t) is rooted at vn at time t and refer to vn

as the root node.
Assumption 1: The graph G(t) = (V, E(t)) is directed and

rooted for all t ∈ N.2

Remark 1: Assumption 1 is a typical and basic condition
for consensus [22], which can be relaxed to only require
unions of graphs to be rooted over intervals of time. However,
the more general treatment requires additional notation that
will obscure the key point of this article, namely focusing on
resilient learning dynamics.

Each agent vn ∈ V keeps a sequence of action-value
functions {Qn

t , t ∈ N} and state-value functions {Vn
t , t ∈

N}. For each t ∈ N, the action-value function Qn
t can be

represented as a vector [Qn
s,a(t)] ∈ R|S×A|, specifying the

(estimated) value for taking action a when the system state is
s (under an appropriate policy). Similarly, at each time-step

1Such powerful models of misbehavior have been commonly studied in the
computer science, communications, and control systems literature to model
adversaries in networks [10], [21].

2Note that the root node can be different at different time-steps.
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Algorithm 1 Q D-Learning for a Time-Varying Directed
Network

Initialize Qn
0 , Vn

0 , vn ∈ V , arbitrarily
for t = 0, 1, 2, · · · do

Each agent vn ∈ V (operating in parallel)
Receives states st , st+1, action at , cost rn(st , at )

Receives Ql
t , l ∈ Nn(t)

Computes Qn
s,a(t + 1) as (4)

Computes V n
s (t + 1) = mina∈A Qn

s,a(t + 1)
end for

t ∈ N, the state-value function Vn
t can be represented as a

vector [V n
s (t)] ∈ R|S|, defined as

V n
s (t) = min

a∈A
Qn

s,a(t), s ∈ S. (3)

Extending from the Q D-learning algorithm in [1], for all
t ∈ N and for all (s, a) ∈ S × A, {Qn

s,a(t)} is updated as

Qn
s,a(t + 1) = Qn

s,a(t)− βs,a(t)
∑

vl∈Nn(t)

(
Qn

s,a(t)− Ql
s,a(t)

)
+αs,a(t)

(
rn(st , at )+ γ min

a′∈A
Qn

st+1,a′(t)− Qn
s,a(t)

)
(4)

where

αs,a(t) =

{
ζk, if t = Ts,a(k)
0, otherwise

(5)

βs,a(t) =

{
b, if t = Ts,a(k)
0, otherwise.

(6)

Here, Ts,a(k), k ≥ 0, is the time-step where the pair (s, a)
is sampled for the (k + 1)-st time, b ∈ [λ, (1 − λ/N − 1)),
and ζk ∈ (0,λ] is a sequence satisfying limk→∞ ζk = 0,∑

k≥0 ζk = ∞ and limk→∞(ζk−1/ζk) = 1, for some constant
λ ∈ (0, (1/N )].

Assumption 2: The probability space (�,F ,P) is a com-
plete probability space with filtration {Ft } given by Ft =

σ({sτ , aτ }τ≤t , {rn(sτ , aτ )}vn∈V,τ<t ). The conditional probabil-
ity for the controlled transition of {st } is P(st+1 = s ′|Ft ) =

pat
st s ′ . For each vn , E[rn(st , at )|Ft ] = E[rn(st , at )|st , at ], which

equals E[rn(s, a)] on the event {st = s, at = a}. Furthermore,
rn(st , at ) is adapted to Ft+1 for each t and E[rn(s, a)] <∞.

Assumption 3: For all (s, a) ∈ S × A and k ∈ N,
P(Ts,a(k) <∞) = 1.

Remark 2: Assumption 3 requires that all state-action pairs
be visited infinitely often. As pointed out in [1], Assumption 3
is a standard assumption required in all forms of central-
ized Q-learning for desired convergence with generic initial
conditions.

We summarize the above algorithm in Algorithm 1.
For each agent vn , define the local operator Gn

: R|S×A|
7→

R|S×A| with components Gn
s,a : R|S×A|

7→ R, i.e., Gn
s,a(Q) =

E[rn(s, a)] + γ
∑

s ′∈S pa
ss ′ mina′∈A Qs ′,a′ . Let Qn∗

= [Qn∗
s,a] ∈

R|S×A| be the fixed point of Gn i.e.,

Qn∗
s,a = E[rn(s, a)] + γ

∑
s ′∈S

pa
ss ′ min

a′∈A
Qn∗

s ′,a′ .

Let Vn∗
= [V n∗

s ] ∈ R|S| be the optimal value function of agent
vn , i.e., V n∗

s = mina∈A Qn∗
s,a .

Define the centralized Q-learning operator of all agents
Ḡ : R|S×A|

7→ R|S×A| with components Ḡs,a :
R|S×A|

7→ R, i.e., Ḡs,a(Q) = (1/N )
∑

vn∈V G
n
s,a(Q) =

(1/N )
∑

vn∈V E[rn(s, a)] + γ
∑

s ′∈S pa
ss ′ mina′∈A Qs ′,a′ , for all

Q = [Qs,a] ∈ R|S×A|. Let Q∗
= [Q∗

s,a] ∈ R|S×A| be the fixed
point of Ḡ, i.e.,

Q∗

s,a =
1
N

∑
vn∈V

E[rn(s, a)] + γ
∑
s ′∈S

pa
ss ′ min

a′∈A
Q∗

s ′,a′ .

As noted in Proposition 5.1 of [1], V ∗
s = mina∈A Q∗

s,a .
The following result establishes the convergence of the Q

and V values maintained by agents under Algorithm 1. This
result extends the analogous result from [1] to a time-varying
directed network. The proof can be found in [20].

Proposition 1: Consider the time-varying directed network
G(t) = (V, E(t)). Under Assumptions 1–3, Q D-learning
(Algorithm 1) guarantees that

P
(

lim sup
t→∞

∥Qn
t − Q∗

∥∞ ≤ c
)

= 1

P
(

lim sup
t→∞

∥Vn
t − V∗

∥∞ ≤ c
)

= 1

where c = maxvn ,vl∈V ∥Qn∗
−Ql∗

∥∞. Additionally, for all vn ∈

V and (s, a) ∈ S × A

P
(

lim sup
t→∞

Qn
s,a(t) ≤ M

)
= 1, P

(
lim inf

t→∞
Qn

s,a(t) ≥ m
)
= 1

where M = maxvn∈V max(s,a) Qn∗
s,a and m =

minvn∈V min(s,a) Qn∗
s,a . Furthermore, if |Q∗

s,a − Q∗

s,a′ | ≥ 2c
for all s ∈ S and a, a′

∈ A, then each agent can learn the
optimal policy π∗.

IV. EVENT-TRIGGERED Q D-LEARNING

Although Algorithm 1 provides the learning guarantees
stated in Proposition 1, it requires every agent to trans-
mit information to all its neighbors at each time instant.
Motivated by event-triggered communication in networked
systems, we will now create an event-triggered distributed
Q-learning algorithm that improves the communication
efficiency of Q D-learning for a time-varying directed
network.

To devise an event-triggered learning rule, we define
a set {Ts,a(kn

0 ), Ts,a(kn
1 ), . . . , Ts,a(kn

m), Ts,a(kn
m+1), . . .} with

Ts,a(kn
0 ) = Ts,a(0) as the sequence of triggering time instants

of agent vn for state-action pair (s, a). In particular, suppose
agent vn only broadcasts Qn

s,a(t) to its neighbors at Ts,a(kn
m),

which is the (m + 1)-st triggering instant and the (kn
m + 1)-st

sampling instant of state-action pair (s, a).
Define Q̃n

s,a(Ts,a(k)) = Qn
s,a(Ts,a(kn

m)), ∀k ∈ [kn
m, kn

m+1).
When t ̸= Ts,a(k), agent vn updates Qn

s,a(t) as

Qn
s,a(t + 1) = Qn

s,a(t). (7)
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Algorithm 2 Event-Triggered Q D-Learning for a
Time-Varying Directed Network

Initialize Qn
0 , Vn

0 , vn ∈ V , arbitrarily
for t = 0, 1, 2, · · · do

Each agent vn ∈ V (operating in parallel)
Receives states st , st+1, action at and cost
rn(st , at )

if (s, a) ̸= (st , at )

Compute Qn
s,a(t + 1) as (7)

else
if |en

s,a(Ts,a(k))| ≥ ψ(k)
Q̃n

s,a(Ts,a(k)) = Qn
s,a(Ts,a(k))

broadcasts Q̃n
s,a(Ts,a(k)) to neighbors vl ,

l ∈ Nn(Ts,a(k))
else

Q̃n
s,a(Ts,a(k)) = Q̃n

s,a(Ts,a(k − 1))
end if
Compute Qn

s,a(t + 1) via (8)
Compute V n

s (t + 1) = mina∈A Qn
s,a(t + 1)

end for

When t = Ts,a(k), agent vn updates Qn
s,a(t) as

Qn
s,a(t + 1) = Qn

s,a(Ts,a(k)+ 1) = Qn
s,a(Ts,a(k))

+ ζk

(
rn(s, a)+ γ min

a′∈A
Qn

sTs,a (k)+1,a′(Ts,a(k))

−Qn
s,a(Ts,a(k))

)
− b

∑
vl∈Nn(Ts,a(k))

(
Qn

s,a(Ts,a(k))− Q̃l
s,a(Ts,a(k))

)
.

(8)

Thus, agent vn only needs Q̃l
s,a(Ts,a(k)), vl ∈ V , that is,

Ql
s,a(Ts,a(kl

m)), i.e., the value of Ql
s,a(t) at agent vl’s latest

triggering instant before Ts,a(k).
We further define the sampled error of agent vn for

state-action pair (s, a) as en
s,a(Ts,a(k)) = Q̃n

s,a(Ts,a(k)) −
Qn

s,a(Ts,a(k)), ∀k ∈ [kn
m, kn

m+1). The event-triggering strategy
that determines the triggering time instant Ts,a(kn

m) can be
designed as follows:

Ts,a(kn
m+1) = min

{
Ts,a(k)

∣∣Ts,a(k) > Ts,a
(
kn

m

)
and

∣∣en
s,a(Ts,a(k))

∣∣ ≥ ψ(k)
}

(9)

where ψ(k) : N → R+ is a function satisfying
limk→∞ ψ(k) = 0, limk→∞(ψ(k)/ζk) = 0.

Remark 3: The triggering function ψ(k) can be chosen
arbitrarily as long as it satisfies the above conditions, which
are designed to guarantee the convergence of Algorithm 2.
Once ζk is determined, ψ(k) can be chosen accordingly.

The event-triggered Q D-Learning algorithm is summarized
in Algorithm 2.

Remark 4: If the threshold function ψ(k) = 0, Algorithm 2
reduces to Algorithm 1.

A. Equivalent Expressions of the Q-Value Update (8)

For the purposes of analysis (and to prove the convergence
properties of Algorithm 2), we now provide an alternative (but

equivalent) representation of the update rule (8) as

Qn
s,a(t + 1)
= Qn

s,a(Ts,a(k)+ 1) = Qn
s,a(Ts,a(k))

− b
∑

vl∈Nn(Ts,a(k))

(
Qn

s,a(Ts,a(k))− Ql
s,a(Ts,a(k))

)
+ ζk

(
rn(s, a)+ γ min

a′∈A
Qn

sTs,a (k)+1,a′(Ts,a(k))

−Qn
s,a(Ts,a(k))

)
+ b

∑
vl∈Nn(Ts,a(k))

el
s,a(Ts,a(k)). (10)

Under Assumption 2, (7) and (10) are equivalent to

Qn
s,a(t + 1) = Qn

s,a(t)− βs,a(t)
∑

vl∈Nn(t)

(
Qn

s,a(t)− Ql
s,a(t)

)
+αs,a(t)

(
Gn

s,a(Q
n
t )− Qn

s,a(t)+νn
st ,at
(Qn

t )
)

+ ρn
s,a(t) (11)

where νn
st ,at
(Qn

t ) = rn(st , at )+γ mina′∈A Qn
st+1,a′(t)−Gn

s,a(Qn
t )

satisfies E[νn
st ,at
(Qn

t )|Ft ] = 0 for all t , αs,a(t) and βs,a(t) are
in (5) and (6), ρn

s,a(t) = b
∑

vl∈Nn(Ts,a(k)) el
s,a(Ts,a(k)) if t =

Ts,a(k), and ρn
s,a(t) = 0, otherwise. We rewrite (11) as

Qn
s,a(t + 1) = ωnn

s,a(t)Q
n
s,a(t)+

∑
vl∈Nn(t)

ωnl
s,a(t)Q

l
s,a(t)

−αs,a(t)dn
st ,at
(Qn

t )+ ρ
n
s,a(t) (12)

where ωnn
s,a(t) = 1 − βs,a(t)|Nn(t)|, ωnl

s,a(t) = βs,a(t), vl ∈

Nn(t) and dn
st ,at
(Qn

t ) = Qn
s,a(t) − Gn

s,a(Qn
t ) − νn

st ,at
(Qn

t ). Let

Q̄n
s,a(t) = E[Qn

s,a(t)|Ft ], ∀vn ∈ V, (s, a) ∈ S × A. By (12),
{Q̄n

s,a(t)} evolves as

Q̄n
s,a(t + 1) = ωnn

s,a(t)Q̄
n
s,a(t)+

∑
vl∈Nn(t)

ωnl
s,a(t)Q̄

l
s,a(t)

−αs,a(t)(Q̄n
s,a(t)− Gn

s,a(Q̄
n
t ))+ ρ̄

n
s,a(t) (13)

where ρ̄n
s,a(t) = E[ρn

s,a(t)|Ft ] and Q̄n
t = E[Qn

t |Ft ].
For k ∈ N, let zn

s,a(k) = Q̄n
s,a(Ts,a(k)), vn ∈ V, (s, a) ∈

S × A. By (13), {zn
s,a(k)} evolves as

zn
s,a(k + 1) = ω̂nn

s,a(k)z
n
s,a(k)+

∑
vl∈Nn(Ts,a(k))

ω̂nl
s,a(k)z

l
s,a(k)

− ζkdn
s,a(z

n
k )+ ρ̄

n
s,a(Ts,a(k)) (14)

where dn
s,a(zn

k ) = zn
s,a(k) − Gn

s,a(zn
k ), with zn

k = [zn
s,a(k)] ∈

R|S×A|, ω̂nl
s,a(k) = b, vl ∈ Nn(Ts,a(k)), and ω̂nn

s,a(k) = 1 −

b|Nn(Ts,a(k))|.
For all (s, a) ∈ S × A, denote zs,a(k) = [z1

s,a(k)
z2

s,a(k), . . . , zN
s,a(k)]

⊤ and ρ̄s,a(k) = [ρ̄1
s,a(Ts,a(k)) ρ̄2

s,a
(Ts,a(k)), . . . , ρ̄N

s,a(Ts,a(k))]⊤. By (14), {zs,a(k)} evolves as

zs,a(k + 1) = Ak
s,azs,a(k)− ζk d̄s,a(zk)+ ρ̄s,a(k). (15)

Here Ak
s,a = IN − bLk

s,a = [ω̂nl
s,a(k)] ∈ RN×N and d̄s,a(zk) =

zs,a(k) − Gs,a(zk), where Lk
s,a = L(Ts,a(k)), Gs,a(zk) =

[G1
s,a(z1

k) G2
s,a(z2

k), . . . ,GN
s,a(zN

k )]
⊤, and zk = [z1

k z2
k, . . . , zN

k ]
⊤.

Authorized licensed use limited to: Purdue University. Downloaded on May 03,2024 at 03:07:54 UTC from IEEE Xplore.  Restrictions apply. 



3356 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 3, MARCH 2024

Based on the event-triggering strategy (9), |en
s,a(Ts,a(k))| ≤

ψ(k). Then, the following facts are true:

|ρ̄n
s,a(Ts,a(k))| ≤ b(N − 1)ψ(k), lim

k→∞

∥ρ̄s,a(k)∥∞ = 0

lim
k→∞

k∏
s=0

∥ρ̄s,a(s)∥∞ = 0, lim
k→∞

1
ζk
ρ̄s,a(k) = 0.

B. Convergence Analysis of Algorithm 2

We are now in place to analyze the convergence of
Algorithm 2. The proofs of Propositions 2–4 can be found
in Appendixes B–D, respectively.

Proposition 2: Consider {Qn
t } obtained by (7) and (8).

Then, under Assumptions 2 and 3, P(supt≥0 ∥Qn
t ∥∞ <∞) =

1, vn ∈ V .
Under Assumption 1, Ak

s,a is rooted for all k ∈ N. Since
b ∈ [λ, (1 − λ/N − 1)), we have ω̂nl

s,a(k) ≥ λ, ∀k ∈ N.
Denote 8s,a(k, τ ) = Ak

s,a Ak−1
s,a , . . . , Aτs,a , k ≥ τ ≥ 0.

By Lemma 3.4 in [8], for each τ , there is a stochastic vector
qs,a(τ ) = [q1

s,a(τ ) q2
s,a(τ ), . . . , q N

s,a(τ )]
⊤

∈ RN such that
limk→∞8s,a(k, τ ) = 1q⊤

s,a(τ ). Note that q⊤
s,a(τ ) = q⊤

s,a(τ +

1)Aτs,a . Denote by {Qs,a(t)} the {Ft } adapted process with
Qs,a(t) = [Q1

s,a(t) Q2
s,a(t), . . . , QN

s,a(t)]
⊤.

Proposition 3: Consider {Qn
t } obtained by (7) and (8).

Then, under Assumptions 1–3, P(lim supt→∞ ∥Qs,a(t) −

1p⊤
s,a(t)Qs,a(t)∥ = 0) = 1, where ps,a(t) = qs,a(k), t ∈

[Ts,a(k), Ts,a(k + 1)).
Proposition 4: Consider a time-varying network G(t) =

(V, E(t)). Then, under Assumptions 1–3, the event-triggered
Q D-learning algorithm (Algorithm 2) guarantees that

P
(

lim sup
t→∞

∥Qn
t − Q∗

∥∞ ≤ c
)
= 1

P
(

lim sup
t→∞

∥Vn
t − V∗

∥∞ ≤ c
)
= 1

where c = maxvn ,vl∈V ∥Qn∗
− Ql∗

∥∞. Additionally, for all
vn ∈ V, (s, a) ∈ S × A P(lim supt→∞ Qn

s,a(t) ≤ M) =

1 and P(lim inft→∞ Qn
s,a(t) ≥ m) = 1, where M =

maxvn∈V maxs,a Qn∗
s,a and m = minvn∈V mins,a Qn∗

s,a . Further-
more, if |Q∗

s,a − Q∗

s,a′ | ≥ 2c, ∀s ∈ S, a, a′
∈ A, all agents

can learn the optimal policy π∗.
Remark 5: As shown by the above result, Algorithm 2

provides the same convergence guarantees as Algorithm 1,
despite the fact that the former only requires each agent to
transmit to its neighbors at certain instants of time (based
on comparing its error to the threshold function ψ(k)). This
has the potential to greatly reduce the communication among
agents as we will show later using a numerical example.
Generally speaking, we trade computation for communication.

Remark 6: We note that the phrase “event-triggering mech-
anism” is also used in [23] to refer to a mechanism that
triggers an event. To clarify the difference between “event-
triggering” and “event-triggered”, we provide the following
explanations. “Event-triggered A” is used to refer to a pro-
cedure or action A that is initiated when a certain condition
(or “event”) occurs. For example, an “event-triggered commu-
nication” is a communication that is initiated when a certain
event occurs. Similar usages include “event-triggered control,”

“event-triggered computation,” “event-triggered algorithm,”
and “event-triggered learning rule.” On the other hand, “event-
triggering B” or “triggering B” is used to refer to a type of
event B that triggers the procedure. For example, an “event-
triggering strategy” is a strategy that triggers an event. Similar
usages include “event-triggering scheme,” “triggering time
instants,” “triggering condition,” and “triggering function”.

V. VULNERABILITY OF DISTRIBUTED LEARNING
ALGORITHMS TO BYZANTINE BEHAVIOR

Having established an event-triggered distributed
Q-learning algorithm, we next analyze the algorithm
when Byzantine agents are present. First, we will show the
vulnerability of the event-triggered Q D-learning algorithm
(Algorithm 2) even if there is a single Byzantine agent in
the network. Then, we will show a stronger result that any
consensus-based learning algorithm is vulnerable to Byzantine
behavior, which will then establish fundamental limitations in
terms of what can be achieved in the presence of such agents.

Proposition 5: Consider a time-invariant undirected and
connected network G = (V, E) with the Byzantine set B =

{vN }. Suppose all reliable agents run the event-triggered
Q D-learning algorithm (Algorithm 2). If the Byzantine agent
vN keeps its Q-value estimate QN

s,a(t) fixed at some arbitrary
value C for all (s, a), for each reliable agent vn , Qn

s,a(t)→ C
and V n

s (t)→ C as t → ∞ almost surely (a.s.).
Proof: Since the agent vN updates {QN

s,a(t)} as QN
s,a(t +

1) = QN
s,a(t), t ∈ N, with QN

s,a(0) = C , the dynamics of
zs,a(k) take the form of (15), with

Ak
s,a =

[
AR,R

s,a (k) AR,B
s,a (k)

0 1

]
where AR,R

s,a (k) = [ω̂nl
s,a(k)] ∈ RN−1×N−1 contains the

weights placed by reliable agents on other reliable agents,
and AR,B

s,a (k) = [ω̂1N
s,a (k) ω̂

2N
s,a (k), . . . , ω̂

N N
s,a (k)]

⊤
∈ RN . For all

k ∈ N, Ak
s,a have a common left-eigenvector q⊤

= [01×N−1 1].
Then, by Proposition 3, zn

s,a(k) will converge to q⊤zs,a(k) =
zN

s,a(k) = C , which indicates that Qn
s,a(t) and V n

s (t) will
converge to C a.s., ∀vn ∈ R.

The above result shows that a consensus-based algorithm
can be easily corrupted by a single adversary simply keeping
its value fixed at some constant, mirroring results for dis-
tributed optimization shown in [8]. One might imagine that
such a misbehavior may be easily overcome by modifying
the algorithm appropriately. However, as in [8], one has the
following proposition which illustrates that any consensus-
based learning algorithm that always finds the optimal value
function and the optimal policy in the absence of Byzantine
agents can also be arbitrarily co-opted by an adversary.

Proposition 6: Suppose 0 is a consensus-based learning
algorithm guaranteeing that all agents learn the optimal value
function V∗ and the optimal policy π∗ in the absence of
Byzantine agents. Then a single adversarial agent can cause
all agents to converge to any arbitrary value when running
algorithm 0.

Proof: Assume vN is a Byzantine agent wishing all agents
to learn VN∗ as an outcome of running the algorithm 0. Agent
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vN chooses a cost function r̄ N (s, a) = −
∑

vn∈V\{vN }
rn(s, a)+

rN (s, a). Now agent vN participates in algorithm 0 by pretend-
ing its local cost function is r̄ N (s, a) instead of rN (s, a). Since
r̄ N (s, a) is a legitimate cost that could have been assigned to
vN , this scenario is indistinguishable from the case where vN

is a reliable agent. Thus, algorithm 0 must cause all agents to
learn VN∗.

VI. RESILIENT EVENT-TRIGGERED Q D-LEARNING

As indicated by Proposition 6, consensus-based learn-
ing algorithms (including the event-triggered Q D-learning
algorithm as a special case) are not resilient when Byzantine
agents are present. This motivates us to create a resilient
algorithm to find approximately optimal solutions, focusing on
the objective given in (2), despite the actions of the (unknown)
set of Byzantine agents. In exchange for endowing the Byzan-
tine agents with significant capabilities (including knowing the
private costs of other agents), we will impose a limitation on
the number of Byzantine agents in the neighborhood of any
reliable agent. This is captured by the following definition and
assumption.

Definition 2 ([10] F-Local Set): For F ∈ N, the Byzantine
set B is an F-local set if |Nn ∩ B| ≤ F , for all vn ∈ R.

Assumption 4: The Byzantine set B is F-local for some
given F ∈ N.

In our modified algorithm, each reliable agent vn updates
Qn

s,a(t) for (s, a) at t = Ts,a(k) as

Qn
s,a(t + 1)
= Qn

s,a(Ts,a(k))

− b
∑

vl∈J n
s,a(k)

(
Qn

s,a(Ts,a(k))− Q̃l
s,a(Ts,a(k))

)
+ ζk

(
rn(s, a)

+ γ min
a′∈A

Qn
sTs,a (k)+1,a′(Ts,a(k))− Qn

s,a(Ts,a(k)
)

(16)

where ζk and b are in (5) and (6), and J n
s,a(k) ⊂ Nn(Ts,a(k))

is the refined neighbor set of agent vn at Ts,a(k), computed by
the following steps.

1) Agent vn receives Q̃l
s,a(Ts,a(k)), l ∈ Nn(Ts,a(k)).

2) Agent vn removes the F highest and F smallest values
that are larger and smaller than Qn

s,a(Ts,a(k)), respec-
tively. If there are fewer than F values higher than
Qn

s,a(Ts,a(k)), agent vn removes all values that are
strictly larger than Qn

s,a(Ts,a(k)). Likewise, if there are
less than F values strictly smaller than Qn

s,a(Ts,a(k)),
then agent vn removes all values that are strictly smaller
than Qn

s,a(Ts,a(k)).
3) Let J n

s,a(k) ⊂ Nn(Ts,a(k)) denote the set of agents
whose values were retained by reliable agent vn at time
Ts,a(k) for state-action pair (s, a).

We summarize the resilient event-triggered Q D-learning
algorithm in Algorithm 3. As explained above, the main
modification to Algorithm 2 is that in Algorithm 3, each
reliable agent filters out extreme values from its neighbors
at each communication step. More precisely, it removes the
highest F and lowest F values that it receives, based on the
fact that up to F of its neighbors may be Byzantine and

Algorithm 3 Resilient Event-Triggered Q D-Learning for a
Time-Invariant Directed Network

Initialize Qn
0 , Vn

0 , vn ∈ R, arbitrarily
for t = 0, 1, 2, · · · do

Each agent vn ∈ R (operating in parallel)
Receives states st , st+1, action at and cost
rn(st , at )

if (s, a) ̸= (st , at )

Compute Qn
s,a(t + 1) as (7)

else
if |en

s,a(Ts,a(k))| ≥ ψ(k)
Q̃n

s,a(Ts,a(k)) = Qn
s,a(Ts,a(k))

broadcasts Q̃n
s,a(Ts,a(k)) to neighbors vl ,

l ∈ Nn(Ts,a(k))
else

Q̃n
s,a(Ts,a(k)) = Q̃n

s,a(Ts,a(k − 1))
end if
Compute J n

s,a(k) ⊂ Nn(Ts,a(k))
Compute Qn

s,a(t + 1) as (16)
Compute V n

s (t + 1) = mina∈A Qn
s,a(t + 1)

end for

sending it incorrect values, and only incorporates information
from its neighbors in the set J n

s,a(k).
Remark 7: If the threshold function ψ(k) = 0, Algorithm 3

reduces to the resilient Q D-learning proposed in our confer-
ence paper [20].

Since Algorithm 3 requires each reliable agent to discard
certain values received from its neighbors, the underly-
ing network must have sufficient redundancy to allow all
reliable nodes to still compute approximately optimal solu-
tions. To capture this redundancy, we will use the following
definitions.

Definition 3 ([10] r-Reachable Set): Consider a graph G =

(V, E). For any given r ∈ N, a subset of nodes S0 ⊆ V is said
to be r -reachable if there exists a node vn ∈ S0 such that
|Nn \ S0| ≥ r .

Definition 4 ([10] r-Robust Graphs): For r ∈ N, graph G
is said to be r -robust if for all pairs of disjoint nonempty
subsets S1, S2 ⊂ V , at least one of S1 or S2 is r -reachable.

Assumption 5: The graph G = {V, E} is time-invariant and
(2F + 1)-robust.

Lemma 1 ([8], [24]): Consider a network G = (V, E), with
a reliable set R and a Byzantine set B. Suppose that B is
F-local, and each reliable node has at least 2F +1 neighbors.
Consider the following iteration:

yn(k+1) = ann(k)yn(k)+
∑

vl∈J n(k)

anl(k)yl(k)− ζkdn(k) (17)

where anl(k) ≥ λ,
∑

l anl(k) = 1, vl ∈ {vn} ∪ J n(k), with
J n(k) being generated in the same way as J n

s,a(k), and dn(k)
is a given sequence. Then, (17) can be equivalently written as

yn(k + 1) = ānn(k)yn(k)+
∑

vl∈Nn∩R

ānl(k)yl(k)− ζkdn(k)
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where the weights ānl(k) satisfy: 1) ānl(k) ≥ 0, 2) ānn(k) +∑
vl∈Nn∩R ānl(k) = 1 and 3) ānn(k) ≥ λ and at least |Nn|−2F

of other weights are lower bounded by λ/2.
Define the centralized Q-learning operator of all reliable

agents ḠR : R|S×A|
7→ R|S×A| with components ḠRs,a :

R|S×A|
7→ R, i.e., ḠRs,a(Q) = (1/|R|)

∑
vn∈R Gn

s,a(Q). Let

QR∗
= [QR∗

s,a ] ∈ R|S×A| be the fixed point of ḠR. The optimal
value function defined in (2) is VR∗

s = mina∈A QR∗
s,a .

The main result of our article is given as follows.
Theorem 1: Consider the network G = (V, E) with reli-

able set R and Byzantine set B. Under Assumptions 2–5,
Algorithm 3 guarantees that, for each reliable agent vn ∈ R

P
(

lim sup
t→∞

∥∥Qn
t − QR∗

∥∥
∞

≤ c
)

= 1

P
(

lim sup
t→∞

∥Vn
t − VR∗

∥∞ ≤ c
)

= 1

where

c = max
vn ,vl∈R

∥Qn∗
− Ql∗

∥∞. (18)

Additionally, for vn ∈ R and (s, a) ∈ S × A,

P
(

lim sup
t→∞

Qn
s,a(t) ≤ MR

)
= 1 (19)

P
(

lim inf
t→∞

Qn
s,a(t) ≥ mR

)
= 1 (20)

where MR
= maxvn∈R maxs,a Qn∗

s,a and mR
=

minvn∈R mins,a Qn∗
s,a . Furthermore, if |QR∗

s,a − QR∗

s,a′ | ≥ 2c, for
s ∈ S and a, a′

∈ A, then each reliable agent can learn the
optimal policy πR∗.

Proof: We can rewrite (16) as

Qn
s,a(t + 1)

= Qn
s,a(Ts,a(k))− b

∑
vl∈J n

s,a(k)

(
Qn

s,a(Ts,a(k))− Ql
s,a(Ts,a(k))

)
+ ζk

(
rn(s, a)+ γ min

a′∈A
Qn

sTs,a (k)+1,a′(Ts,a(k))− Qn
s,a(Ts,a(k))

)
+ b

∑
vl∈J n

s,a(k)

el
s,a(Ts,a(k)). (21)

By (21), {zn
s,a(k)} evolves as

zn
s,a(k + 1) = ω̂nn

s,a(k)z
n
s,a(k)+

∑
vl∈J n

s,a(k)

ω̂nl
s,a(k)z

l
s,a(k)

− ζk

dn
s,a

(
zn

k

)
+

1
ζk

b
∑

vl∈J n
s,a(k)

el
s,a(Ts,a(k))

 (22)

where ω̂nn
s,a(k) = 1 − b|J n

s,a(k)|, ω̂
nl
s,a(k) = b, vl ∈ Jn(Ts,a(k))

and dn
s,a(zn

k ) = zn
s,a(k) − Gn

s,a(zn
k ) with zn

k ∈ R|S×A| whose
components are zn

s,a(k).
By Lemma 1, (22) is equivalent to

zn
s,a(k + 1) = −ζkdn

s,a

(
zn

k

)
+ ρ̄n

s,a(k)+ ω̄
nn
s,a(k)z

n
s,a(k)

+

∑
vl∈Nn(Ts,a(k))∩R

ω̄nl
s,a(k)z

l
s,a(k) (23)

where ρ̄n
s,a(k) = b

∑
vl∈J n

s,a(k)
el

s,a(Ts,a(k)) and the weights
ω̄nl

s,a(k) satisfy:

1) ω̄nl
s,a(k) ≥ 0;

2) ω̄nn
s,a(k)+

∑
vl∈Nn∩R ω̄nl(k) = 1;

3) ω̄nn
s,a(k) ≥ λ and at least |Nn| − 2F of other weights are

lower bounded by (λ/2).

Assume, without loss of generality, that vn , n = 1, 2, . . . ,
|R|, are reliable agents. For all (s, a) ∈ S × A,
let zRs,a(k) = [z1

s,a(k), . . . , z|R|

s,a (k)]⊤, ρ̄Rs,a(k) =

[ρ̄1
s,a(Ts,a(k)) ρ̄2

s,a(Ts,a(k)), . . . , ρ̄
|R|

s,a (Ts,a(k))]⊤, dRs,a(zRk ) =

[d1
s,a(z1

k), . . . , d |R|

s,a (z|R|

k )]⊤ and Ās,a(k) = [ω̄nl
s,a(k)] ∈

R|R|×|R|. Then, we have

zRs,a(k + 1) = Ās,a(k)zRs,a(k)− ζkdRs,a(z
R
k )+ ρ̄

R
s,a(k). (24)

Consider the graph G, and remove all edges whose weights
are smaller than (λ/2) in Ās,a(k). If the graph is (2F +

1)-robust, [18, Lemma 2.3] implies that the subgraph con-
sisting of reliable nodes will be rooted after removing 2F or
fewer edges from each reliable node, which further implies
that Ās,a(k) is rooted for any k ∈ N, with a tree whose
edge-weights are all lower-bounded by (λ/2). Since (24) is in
the same form of (15), we can obtain Theorem 1 by applying
Proposition 4.

Remark 8: From the reliable agents’ perspective, the refine-
ment operation (of discarding extreme neighbor values at each
update step) alters a time-invariant undirected network to a
time-varying directed network (since discarding values from a
neighbor is equivalent to removing that edge from the network,
and the set of values discarded by a given agent may vary
over time, and be asymmetric). This is the reason why we
first needed to extend the existing Q D-learning algorithm
(for an undirected graph) from [1] to a time-varying directed
graph in Algorithm 1. Then, by incorporating event-triggered
communication into Algorithm 1, we obtained a distributed
Q-learning algorithm for a time-varying directed network with
improved communication efficiency (Algorithm 2). As noted
in Remark 4, if the threshold function ψ(k) = 0, Algorithm 2
reduces to Algorithm 1. We then built on Algorithm 2 to
create a distributed Q-learning algorithm with resilience and
efficiency guarantees for a (2F + 1)-robust network under the
F-local Byzantine adversary model (Algorithm 3).

Remark 9: Regardless of the behavior of Byzantine agents,
the error between the value function Vn

t of each reliable
agent vn and the optimal value function VR∗ can be further
bounded by the quantity R ≤ maxvn ,vl∈R(1/1 − γ)∥E[rn] −

E[rl]∥∞, where rn = [rn(s, a)] ∈ R|S×A|, and R gets
smaller as the local costs of reliable agents get closer together.
In particular, if all reliable agents have the same local costs,
R becomes zero.

Remark 10: Equations (19) and (20) further imply
P(lim supt→∞ ∥Qn

t ∥∞ ≤ maxvl∈R ∥Ql∗
∥∞) = 1, ∀vn ∈ R.

Unlike standard (optimal) distributed learning algorithms that
can be arbitrarily disrupted by an adversary, the Q-values of
each reliable agent will eventually be less than the largest
maximum norm of local optimal Q-values among all reliable
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agents under Algorithms 2 and 3 regardless of the Byzantine
behaviors.

Remark 11: Compared with the F-total model (there are no
more than F Byzantine nodes in the entire network) considered
in [19], we discuss a more general adversary model: the
F-local model (there are no more than F Byzantine nodes
in the neighborhood of every reliable node).

Remark 12: As defined in [10], Byzantine agents are omni-
scient, adversarial and unknown to reliable agents. They are
allowed to deviate arbitrarily from any prescribed algorithm,
and send different (incorrect) values to different neighbors.
Thus, Byzantine behavior is a very powerful model for
adversaries, and other types of attacks can be regarded as
a special case of Byzantine attacks. For example, the “mali-
cious” attack model considered in the literature (e.g., [10])
focuses on adversaries that can update their values arbitrarily
(i.e., do not have to follow the prescribed updating rule), but
are forced to transmit the same value to all neighbors. This
is an appropriate model for applications where each node
simultaneously communicates with all of its out-neighbors via
a broadcast mechanism (e.g., as in wireless sensor networks).
Since Byzantine adversaries can send arbitrary values to
different neighbors, malicious behavior can be viewed as a
special case of Byzantine behavior. Similarly, “stuck-at faults”
(where the failed or adversarial node never updates its value
and transmits the same value at each time-step) or models
the adversarial agent stops transmitting forever can also be
captured by the Byzantine model.

It is worth pointing out that although the Byzantine model
is extremely powerful and capable of capturing a wide variety
of adversarial models as special cases, this generality comes
at a cost of requiring more restrictive conditions on the
network topology and the performance guarantees. In other
words, if one knew that the adversaries were restricted to
more specific behaviors (e.g., dropping out of the network
entirely), one could formulate algorithms that require less
network redundancy, or that provide stronger guarantees.
However, if one does not have a compelling justification for
restricting attention to simpler adversary models a priori, the
Byzantine model provides guarantees that span a large class
of adversaries.

VII. SIMULATION

We consider a network consisting of 8 agents with
binary-value state space S = {1, 2} and binary-valued
action spaces A = {1, 2}. The controlled transition
parameters pa

ss ′ , s, s ′ ∈ S , a ∈ A are chosen randomly
as p1

11 = 0.5065, p1
12 = 0.4935, p1

21 = 0.8417, p1
22 = 0.1583,

p2
11 = 0.2924, p2

12 = 0.7076, p2
21 = 0.7509, and

p2
22 = 0.2491. The costs for agents are chosen randomly

as [r1(1, 1) r1(1, 2) r1(2, 1) r1(2, 2)] = [50 99 25 35],
[r2(1, 1) r2(1, 2) r2(2, 1) r2(2, 2)] = [39 7 25 34],
[r3(1, 1) r3(1, 2) r3(2, 1) r3(2, 2)] = [42 61 27 34, [r4(1, 1)
r4(1, 2) r4(2, 1) r4(2, 2)] = [43 62 2 51], [r5(1, 1)
r5(1, 2) r5(2, 1) r5(2, 2)] = [1 65 27 39], [r6(1, 1)
r6(1, 2) r6(2, 1) r6(2, 2)] = [4 57 24 35],
[r7(1, 1) r7(1, 2) r7(2, 1) r7(2, 2)] = [493 7 20 58],
[r8(1, 1) r8(1, 2) r8(2, 1) r8(2, 2)] = [39 61 51 54]. The

Fig. 1. Communication topology among agents.

Fig. 2. Q-values of agent v5 in Algorithm 1 and centralized Q-values with
a time-invariant network without adversaries.

Fig. 3. Q-values of all agents in Algorithm 1 with a time-invariant network
without adversaries.

discounting factor is γ = 0.1. The communication topology
among agents is shown in Fig. 1, which is directed and
3-robust.

First, we compare the distributed Q-learning algorithm
(Algorithm 1) with the centralized Q-learning, where the
Q-value for (s, a) updates as Qc

s,a(t + 1) = Qc
s,a(t) +

αs,a(t)((1/N )
∑n

n=1 rn(st , at )+γ mina′∈A Qn
st+1,a′(t)−Qn

s,a(t)).
The initial Q values for the centralized Q-learning are
[100 100 100 100]⊤. The initial Q values for agents vn ,
n = 1, 2, . . . , 8, and state-action pairs (1, 1), (1, 2), (2, 1),
and (2, 2) in distributed Q-learning are chosen randomly
as Q1

0 = [0 0 0 100]⊤, Q2
0 = [10 1 210 23]⊤,

Q3
0 = [120 20 0 20]⊤, Q4

0 = [30 43 73 3]⊤, Q5
0 =

[20 200 200 20]⊤, Q6
0[50 5 24 50]⊤, Q7

0 = [60 46 26 10]⊤,
Q8

0 = [70 17 30 70]⊤. Set ζk = 0.125/(k + 1)0.51 and
b = 0.125. Fig. 2 shows the convergence of Q-values of
agent v5 to the centralized Q-values. Fig. 3 illustrates the
evolutions of the Q-values of all agents, indicating that they
reach consensus on each (s, a).

To further verify the distributed Q D-learning algorithm
(Algorithm 1) for a time-varying network, each agent vn ∈ V
uses the refined neighbor set J n

s,a with F = 1. Since the
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Fig. 4. Q-values of agent v5 in Algorithm 1 and centralized Q-values with
a time-varying network without adversaries.

Fig. 5. Q-values of all agents in Algorithm 1 with a time-varying network
without adversaries.

TABLE I
NUMBERS OF SAMPLINGS IN ALGORITHM 1

graph G is directed and 3-robust, the graph G ′ obtained
by removing at most two incoming edges from each node
in G is time-varying and rooted. Fig. 4 shows that the
Q-values of agent v5 are in the neighborhood of the centralized
Q-values, bounded by M = maxvn∈V maxs,a Qn∗

s,a , and m =

minvn∈V mins,a Qn∗
s,a . Fig. 5 illustrates the consensus of agents’

Q-values on each (s, a).
Next, we verify the effectiveness of the event-triggered

Q D-learning (Algorithm 2). Set the threshold function ψ(k) =
0.5/(k + 1)0.515. Fig. 6 shows the convergence of Q-values
of agent v5 to the centralized Q-values. Fig. 7 illustrates
the evolutions of the Q-values of all agents, indicating that
consensus on each (s, a) is reached. In the first 3000 time-
steps, the numbers of samplings of each state-action pair are
listed in Table I. The numbers of triggers of all agents for
each state-action pair are listed in Table II. In comparison
with Tables I and II, we observe reduced communication
among agents. For example, the number of samplings of the
state-action pair (2, 2) in Q D-learning (Algorithm 1) is 658.
In event-triggered Q D-learning (Algorithm 2), the number of
averaged triggers all agents of the state-action pair (2, 2) is 77,
which is 11.7% of the communication load in Q D-learning
(Algorithm 1). The triggering instants of agent v5 are plotted
in Fig. 8.

Next, we check the vulnerability of the event-triggered
Q D-learning (Algorithm 2) to adversarial behavior. Assume

Fig. 6. Q-values of agent v5 in Algorithm 2 and centralized Q-values.

Fig. 7. Q-values of all agents in Algorithm 2.

TABLE II
NUMBERS OF TRIGGERS IN ALGORITHM 2

Fig. 8. Triggering instants for agent v5 in Algorithm 2.

that agent v8 is adversarial and sets Q8
s,a(t) = 1000, ∀t and

(s, a). Fig. 9 illustrates the evolutions of the Q-values of all
agents. It shows that consensus is reached on each (s, a)
to the Q value of the adversarial agent v8 instead of the
optimal Q-values, indicating the vulnerability of the event-
triggered Q D-learning (Algorithm 2) when adversarial agents
are present, in accordance with our theoretical analysis.
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Fig. 9. Q-values of all agents in Algorithm 2 with adversarial agent v8.

Fig. 10. Q-values of all agents in Algorithm 3 with adversarial agent v8.

Fig. 11. Q-values of agent v5 in Algorithm 3 with adversarial agent v8 and
centralized Q-values of all reliable agents.

TABLE III
NUMBERS OF TRIGGERING INSTANTS IN ALGORITHM 3

Finally, we verify the effectiveness of the resilient event-
triggered Q D-learning algorithm (Algorithm 3) with adversar-
ial agent v8 in the network. Fig. 10 illustrates the evolutions
of the Q-values of all agents, indicating that all reliable
agents reach consensus on each (s, a). Fig. 11 shows that the
Q-values of agent v5 finally converge to the neighborhood
the centralized Q-values of all reliable agents, indicating the
resilience of Algorithm 3. The numbers of triggers of all agents
for each state-action pair are listed in Table III. To further
illustrate the benefit of the event-triggered learning rule, we list

TABLE IV
NUMBERS OF SAMPLING INSTANTS IN ALGORITHM 3 WITH φ(k) = 0

Fig. 12. Triggering instants for agent v5 in Algorithm 3.

the numbers of samplings of each state-action pair of resilient
Q D-learning (Algorithm 3 with φ(k) = 0) in Table IV.
Comparing Tables III and IV, we observe the reduced commu-
nication among agents. For example, the averaged number of
triggers of all agents for state-action pair (2, 2) is 136 in the
resilient event-triggered Q D-learning (Algorithm 3), which
is 21% of the communication load in resilient Q D-learning
(Algorithm 3 with φ(k) = 0). The triggering instants of agent
v5 are plotted in Fig. 12.

VIII. CONCLUSION

We devised a resilient event-triggered distributed Q-learning
algorithm for a networked system containing Byzantine agents.
Our event-triggered learning rule requires the agents to trans-
mit less frequently than under a standard algorithm, while
providing the same convergence guarantees. Furthermore,
under the F-local Byzantine adversary model, and under
certain conditions on the network topology, we analyzed the
convergence of the value function of each reliable agent to
the neighborhood of the optimal value function of all reliable
agents. The proposed algorithm ensures reliable agents learn
the optimal policy of all reliable agents if the optimal Q-values
corresponding to different actions are sufficiently separated.

APPENDIX A
PRELIMINARY LEMMAS

Lemma 2: For ∀(s, a), let {ys,a(t)} be the {Ft } adapted
process with

ys,a(t + 1) = (IN − βs,a(t)L(t)− αs,a(t)IN )ys,a(t)

+αs,a(t)ν̄s,a(t)+ ϵ(t)

where {αs,a} and {βs,a} are given by (5) and (6), {ν̄s,a(t)} is
an {Ft+1} adapted process satisfying E[ν̄s,a(t)|Ft ] = 0, t ≥

0 and limt→∞ ϵ(t) = 0. Then, under Assumption 3, we have
ys,a → 0 as t → ∞ a.s..

Proof: Since limt→∞ ϵ(t) = 0, following a similar analysis
as [25, Lemma 2], we can obtain Lemma 2.
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Lemma 3: For any (s, a) and t0 ≥ 0, consider the process
{zs,a(t : t0)}t≥t0 evolving as

zs,a(t + 1 : t0) = (IN − βs,a(t)L(t)− αs,a(t)IN )zs,a(t : t0)

+αs,a(t)ν̄s,a(t)+ ϵ(t)

with zs,a(t0 : t0) = 0, where αs,a(t), βs,a(t), ν̄s,a(t) and ϵ(t)
satisfy the hypothesis of Lemma 2. Then, for any ε > 0,
there exists a random time tε such that ∥zs,a(t : t0)∥∞ ≤ ε,
tε ≤ t0 ≤ t .

Proof: With Lemma 2, following a similar analysis as [25,
Lemma 3], we can obtain Lemma 3.

APPENDIX B
PROOF OF PROPOSITION 2

With Lemma 3, following a similar analysis as [1,
Lemma 5.1], we can obtain Proposition 2.

APPENDIX C
PROOF OF PROPOSITION 3

Rewrite (15) as

zs,a(k + 1)

= Ak
s,azs,a(k)− ζk

(
d̄s,a(zk)−

ρ̄s,a(k)
ζk

)
= 8s,a(k, 0)zs,a(0)

−

k−1∑
r=0

ζr8s,a(k, r + 1)
(

d̄s,a(zr )−
ρ̄s,a(r)
ζr

)
− ζk

(
d̄s,a(zk)−

ρ̄s,a(k)
ζk

)
.

The residual zs,a(k + 1)− 1q⊤
s,a(k + 1)zs,a(k + 1) evolves as

zs,a(k + 1)− 1q⊤

s,a(k + 1)zs,a(k + 1)

= (8s,a(k, 0)− 1q⊤

s,a(0))zs,a(0)

−

k−1∑
r=0

ζr
(
8s,a(k, r + 1)− 1q⊤

s,a(r + 1)
)
d̄s,a(zr )

− ζk(I − 1q⊤

s,a(k + 1))d̄s,a(zk)+(I − 1q⊤

s,a(k + 1))ρ̄s,a(k)

+

k−1∑
r=0

(
8s,a(k, r + 1)− 1q⊤

s,a(r + 1)
)
ρ̄s,a(r). (25)

The boundedness of d̄s,a(zk) is implied by the boundedness
of Qn

t by Proposition 2. Along with limk→∞8s,a(k, τ ) =

1q⊤
s,a(τ ), limk→∞ ζk = 0 and limk→∞ ρ̄s,a(k) = 0, we con-

clude that lim supk→∞ ∥zs,a(k) − 1q⊤
s,a(k)zs,a(k)∥ = 0. Since

zn
s,a(k) = Q̄n

s,a(t) and Q̄n
s,a(t) = E[Qn

s,a(t)|Ft ], the desired
assertion follows.

APPENDIX D
PROOF OF PROPOSITION 4

Proposition 3 implies lim supk→∞ ∥1q⊤
s,a(k)zs,a(k) −

(1/N )1⊤zs,a(k)∥ = 0. Next, we estimate (1/N )1⊤zs,a(k +

1)− Q∗
s,a . By (15)

1
N

1⊤zs,a(k + 1) =
1
N

1⊤
(
I − bLk

s,a

)
zs,a(k)

− ζk
1
N

1⊤d̄s,a(zk)+
1
N

1⊤ρ̄s,a(k)

= (1 − ζk)
1
N

1⊤zs,a(k)+
ζk

N
1⊤Gs,a(zk)

+
b
N

1⊤Lk
s,azs,a(k)+

1
N

1⊤ρ̄s,a(k)

from which, we obtain that

1
N

1⊤zs,a(k + 1)− Q∗

s,a

= ζk

(
1
N

1⊤Gs,a(zk)− Ḡs,a(Q∗)−
b
ζk

1
N

1⊤Lk
s,azs,a(k)

)
+ (1 − ζk)

(
1
N

1⊤zs,a(k)− Q∗

s,a

)
+

1
N

1⊤ρ̄s,a(k). (26)

In the above equation

1
N

1⊤Gs,a(zk)− Ḡs,a(Q∗)

= γ pa
ss ′
∑
s ′∈S

(
1
N

N∑
n=1

min
a′∈A

zn
s ′,a′(k)− min

a′∈A

1
N

1⊤zs ′,a′(k)

)

+γ pa
ss ′
∑
s ′∈S

1
N

N∑
n=1

(
min
a′∈A

zn
s ′,a′(k)− min

a′∈A
Q∗

s ′,a′

)
.

Since all agents reach consensus asymptotically, we have

lim
k→∞

∣∣∣∣∣ 1
N

N∑
n=1

min
a′∈A

zn
s ′,a′(k)− min

a′∈A

1
N

1⊤zs ′,a′(k)

∣∣∣∣∣ = 0.

Thus, from (26), we have

lim sup
k→∞

1
N

(
1⊤Gs,a(zk)− Ḡs,a(Q∗)

)
≤ γF(k)

lim inf
k→∞

1
N

(
1⊤Gs,a(zk)− Ḡs,a(Q∗)

)
≥ γ f (k)

where F(k) = max(s,a)((1/N )1⊤zs,a(k) − Q∗
s,a) and f (k) =

min(s,a)((1/N )1⊤zs,a(k)− Q∗
s,a). Let

Ws,a(k) = −
b
ζk

1
N

1⊤Lk
s,azs,a(k)

= −
b
N

1⊤Lk
s,a

1
ζk

(
zs,a(k)− 1q⊤

s,a(k)zs,a(k)
)

(27)

where we have used the fact that Lk
s,a1 = 0. From (25)

1
ζk

(
zs,a(k)− 1q⊤

s,a(k)zs,a(k)
)

=
8s,a(k − 1, 0)− 1q⊤

s,a(0)
ζk

zs,a(0)

−

k−2∑
r=0

ζr
(
8s,a(k − 1, r + 1)− 1q⊤

s,a(r + 1)
)

ζk
d̄s,a(zr )

+

k−2∑
r=0

(
8s,a(k − 1, r + 1)− 1q⊤

s,a(r + 1)
)

ζk
ρ̄s,a(r)

+
ζk−1

ζk

(
1q⊤

s,a(k)− I
)
d̄s,a(zk−1)

+
(
I − 1q⊤

s,a(k)
)ζk−1

ζk

1
ζk−1

ρ̄s,a(k − 1).
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It is implied in [24] that 8s,a(k, τ ) converges to 1q⊤
s,a(τ )

exponentially fast. Since
∑

k≥0 ζk = ∞, the convergence speed
of ζk is much slower than the exponential convergence speed.
Then limk→∞((ζs−1(8s,a(k − 1, s)− 1q⊤

s,a(s)))/ζk) = 0, ∀s ∈

[0, k − 1] and limk→∞((8s,a(k − 1, s)− 1q⊤
s,a(s))/ζk) = 0.

Note that limk→∞(ζk−1/ζk) = 1 and limk→∞(ρ̄s,a(k)/ζk) = 0.
From (27)

lim
k→∞

Ws,a(k)

= −
b
N

1⊤ lim
k→∞

Lk
s,a

(
1q⊤

s,a(k + 1)− I
)
d̄s,a(zk)

= −
b
N

1⊤ lim
k→∞

Lk
s,a d̄s,a(zk)

= −
b
N

1⊤ lim
k→∞

Lk
s,a(zs,a(k)− Gs,a(zk))

= −
b
N

1⊤ lim
k→∞

Lk
s,aGs,a(zk)

= lim
k→∞

b
N

∑
vl∈Nn(Ts,a(k))

(rl(s, a)− rn(s, a)).

Note that

rl(s, a)− rn(s, a) ≥ (1 − γ)min
s ′,a′

(
Ql∗

s ′,a′ − Qn∗
s ′,a′

)
rl(s, a)− rn(s, a) ≤ (1 − γ)max

s ′,a′

(
Ql∗

s ′,a′ − Qn∗
s ′,a′

)
.

Let Ms ′,a′ = maxvn∈V Qn∗
s ′,a′ and ms ′,a′ = minvn∈V Qn∗

s ′,a′ .
Then

lim sup
k→∞

Ws,a(k) ≤ (1 − γ)max
s ′,a′

(Ms ′,a′ − ms ′,a′)

lim inf
k→∞

Ws,a(k) ≥ (1 − γ)min
s ′,a′

(ms ′,a′ − Ms ′,a′).

From (26), we obtain

F(k + 1) ≤ (1 − ζk(1 − γ))F(k)

+ ζk(1 − γ)max
s ′,a′

(Ms ′,a′ − ms ′,a′)

f (k + 1) ≥ (1 − ζk(1 − γ)) f (k)

+ ζk(1 − γ)min
s ′,a′

(ms ′,a′ − Ms ′,a′).

By [1, Proposition 4.1], lim supk→∞ F(k) ≤

maxs ′,a′(Ms ′,a′−ms ′,a′). By [25, Lemma 4], lim infk→∞ f (k) ≥
mins ′,a′(ms ′,a′ − Ms ′,a′). These imply

lim sup
k→∞

∣∣∣∣ 1
N

1⊤zs,a(k)− Q∗

s,a

∣∣∣∣ ≤ max
vn ,vl∈V

∥Qn∗
− Ql∗

∥∞.

Since zn
s,a(k), ∀vn reach consensus as k → ∞, the above

inequality further implies

lim sup
k→∞

∣∣zn
s,a(k)− Q∗

s,a

∣∣ ≤ max
vn ,vl∈V

∥Qn∗
− Ql∗

∥∞ = R.

Note that zn
s,a(k) = Q̄n

s,a(t) and Q̄n
s,a(t) = E[Qn

s,a(t)|Ft ].
We have

P
(

lim sup
t→∞

|Qn
s,a(t)− Q∗

s,a| ≤ R
)

= 1

P
(

lim sup
t→∞

∥Qn
t − Q∗

∥∞ ≤ R
)

= 1.

From (3)

max
s

|V n
s (t)− V ∗

s | ≤ max
s,a

|Qn
s,a(t)− Q∗

s,a| ≤ R

P
(

lim sup
t→∞

∥Vn
t − V∗

∥∞ ≤ R
)

= 1.

Define Fn(k) = maxs,a(zn
s,a(k) − Qn∗

s,a) and f n(k) =

mins,a(zn
s,a(k)− Qn∗

s,a), vn ∈ V . Following the similar analysis
as F(k) and f (k), we can prove that:

lim sup
k→∞

(
zn

s,a(k)− Qn∗
s,a

)
≤ max

s ′,a′

(
max
vl

Ql∗
s ′,a′ − Qn∗

s ′,a′

)
lim inf

k→∞

(
zn

s,a(k)− Qn∗
s,a

)
≥ min

s ′,a′

(
min
vl

Ql∗
s ′,a′ − Qn∗

s ′,a′

)
.

Since maxvl Ql∗
s ′,a′ ≤ M and minl Ql∗

s ′,a′ ≥ m, we obtain

lim sup
k→∞

zn
s,a(k) ≤ M − max

s ′,a′

Qn∗
s ′,a′ + Qn∗

s,a ≤ M

lim inf
k→∞

zn
s,a(k) ≥ m − min

s ′,a′
Qn∗

s ′,a′ + Qn∗
s,a ≥ m

which indicate

P
(

lim sup
t→∞

Qn
s,a(t) ≤ M

)
= 1, P

(
lim inf

t→∞
Qn

s,a(t) ≥ m
)
= 1.

If |Q∗
s,a − Q∗

s,a′ | ≥ 2R, a, a′
∈ A, the set (Q∗

s,a + R, Q∗
s,a −

R) and the set (Q∗

s,a′ + R, Q∗

s,a′ − R) do not overlap. Thus,
argmina Qn

s,a(t) = argmina Q∗
s,a as t → ∞, indicating agents

learn the optimal policy π∗.
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