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As the scale of distributed control systems over networks increases and interactions between different
subsystems become more sophisticated, questions of the resilience of such networks to attacks and
faults increase in importance. The need to adapt (and redefine) classical system and control-theoretic
notions to answer such questions using the language of graphs has recently started to gain attention as
a fertile and important area of research. This paper presents an overview of graph-theoretic methods
for analyzing the resilience of distributed control systems. We survey distributed algorithms that have
been proposed to solve a variety of problems in networked systems, and summarize their resilience
against adversarial actions in the context of the structure of the underlying networks. We also discuss
graph-theoretic methods to quantify the attack impact, and reinterpret some system-theoretic notions

of robustness from a graph-theoretic standpoint to mitigate the impact of the attacks. We conclude
by introducing some avenues for further research in this field.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed control systems (DCS) are systems consisting of
multiple autonomous units (also referred to as agents, nodes,
or components) that are spatially distributed and communicate
with each other to perform tasks such as monitoring, estimation,
learning, and control with no central operator. Depending on
the specific application and deployed technologies, the nodes can
represent sensors, controllers, and actuators (or combinations of
the above elements into larger platforms), and the communica-
tion between nodes can be through wired or wireless communi-
cation channels. An example of a DCS is shown in Fig. 1. DCSs are
often also highly dynamic, with subsystems, actuators, sensors
and communication channels which turn on and off over time, or
with the network topology changing due to mobility of the nodes
(as would be the case where the nodes represent platforms such
as robots or vehicles).

As opposed to monolithic systems where a single decision-
maker (human or machine) possesses all available knowledge and
information related to the system, each node in a DCS typically
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Fig. 1. A schematic figure of a distributed control system.

has access to information that is not available to other nodes.
Coordination among the nodes in such systems can be achieved
through the use of distributed algorithms. These algorithms are
executed concurrently by each of the nodes, incorporating both
their local information and any information received from other
nodes in the network (via the communication channels). How-
ever, as the scale and complexity of interconnections in DCSs
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increase, these distributed algorithms become more prone to
failures, degradation, and attacks. In this paper, our focus is
specifically on attacks carried out by adversarial agents in DCSs.
A crucial distinction between a fault and an attack is that in the
latter, the attacker exploits their knowledge of the system model
to target the most vulnerable parts of a DCS. The aim may be
to maximize the impact of the attack, minimize its detectability,
or minimize the effort required to carry out the attack. As the
attacker intelligently optimizes its actions, distributed algorithms
have to be carefully designed to withstand adversarial actions,
rather than more generic classes of faults considered by classical
fault-tolerant control methods. We will use the term “resilient”
to describe distributed algorithms that are able to mitigate such
sophisticated and targeted misbehavior by certain nodes in the
network, in keeping with the terminology from the classical
computer science literature where such algorithms were first
studied (Lynch, 1997). Since our focus is on attacks, we will also
use the term “secure” interchangeably with “resilient” in this
survey. Among various approaches to the resilience of distributed
algorithms, the goal of this survey paper is to focus specifically
on tools and analysis at the intersection of systems and control
theory, graph theory, and communication and computation tech-
niques. Notably, addressing the resilience of distributed control
systems is a complex and multifaceted challenge that requires a
synergistic integration of several disciplines and tool sets, some
of which are discussed in this paper.

1.1. Resilience of distributed systems

As mentioned above, the main difference between adversarial
actions and faults stems from the ability of the attacker to care-
fully target vulnerable parts of the system, potentially by learning
about the system (and the deployed algorithms) before the attack.
Attacks are thus classified into different categories based on their
knowledge level and their ability to disrupt resources. In addition
to system-theoretic properties, the structure of the underlying
network plays a key role in determining the outcomes of specific
attacks. The following simple example shows the role of the graph
structure in distinguishing attacks from faults.

Example 1. Consider the DCS shown in Fig. 1. If the network
experiences a single fault distributed uniformly at random over
set of n nodes in the network, then any given node fails with
probability p = % In particular, when n is large, the probability
that the node labeled v fails under this model is small. On the
other hand, an attacker that wishes to disconnect the graph can
do so simply by targeting agent v. This prevents nodes in the left
cluster from receiving information from nodes in the right cluster.
This example shows how targeted attacks can lead to significantly

larger impacts than random faults in networked systems.

The dichotomy between random failures and targeted node
removal has been studied in the complex networks literature,
particularly in the case of scale-free networks (Albert, Jeong,
& Barabasi, 2000). Scale-free networks are those in which the
degree distribution follows a power law, meaning that a few
“hub” nodes have a very high number of connections while the
majority of nodes have relatively few connections. This results
in a network that is resilient to random failures but vulnerable
to targeted attacks on the hubs. Such networks can be found in
many real-world systems, such as the internet, social networks,
and biological systems, and substantial research has been ded-
icated to studying them across disciplines including computer
science, biology, and sociology (Albert et al., 2000; Barabasi &
Albert, 1999; Newman, 2001).

Other than simply removing agents from the network as dis-
cussed in Example 1, the attacker can perform more complex
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actions. One such action is to manipulate the dynamics of a subset
of agents in the network by injecting carefully crafted attack
signals (or incorrect data) into their dynamics. These attacks
create a discrepancy between the information that the targeted
agents send to their neighbors and the true information they are
supposed to send. Here, based on the communication medium,
another network-theoretic feature of attacks arises which distin-
guishes the severity of the attacker: if the communication is
point-to-point (as opposed to wireless broadcast), the attacker
has the ability to send incorrect and inconsistent information to
different neighbors; however, for broadcast models, attackers can
transmit arbitrary information, but such information is consistent
across neighbors. We formally distinguish between these two
kinds of attacks (termed “Byzantine” and “malicious” attacks,
respectively) in Definition 1 of Section 3 later in the paper. An
example is shown in Fig. 1 where the agent whose true value is
a sends a wrong but consistent value of a + a to its neighbors,
whereas the agent with value b shares wrong and inconsistent
information to neighbors, i.e., it sends b+b to one agent and b+b
to the other.

1.2. Applications

Distributed control systems have found numerous applications
in today’s engineering systems, such as intelligent transporta-
tion systems, smart buildings, and power systems (Bemporad,
Heemels, & Johansson, 2010). Some of these applications are
briefly discussed below.

Automotive and intelligent transportation systems

The concept of connected vehicles, denoted by V2X, effectively
transforms transportation systems into a network of processors.
From this perspective, V2X refers to (i) each vehicle’s wireless
communications with its surroundings, including other vehicles,
road infrastructure, and the cloud, and (ii) wired communica-
tion within each vehicle between several electronic control units
(ECU) in a controller area network (CAN). At the higher level,
the agents represent vehicles, road infrastructure, the cloud, and
any other component that is able to send information. The wire-
less communication between those agents is modeled by edges,
e.g., the dedicated short-range communication system (DSRC)
for vehicle-to-vehicle (V2V) communication. For the wired intra-
vehicle network, the agents are ECUs and the edges are buses
transmitting data. Wireless communications between vehicles
and their surroundings are prone to intrusions. Several works
have reported different types of attacks on inter-vehicular net-
works, along with defense mechanisms (Biron, Dey, & Pisu, 2018;
Mokdad, Ben-Othman, & Nguyen, 2015). An example of an attack
on vehicular networks is the “Sybil attack”, which involves an
attacker creating multiple fake identities in a network to gain
control or influence over it. In the context of vehicular networks,
a Sybil attack could involve an attacker creating virtual vehicles in
the network, making it appear as though there are more vehicles
on the road than there actually are. Attacks on the wired intra-
vehicle network or on safety critical ECUs (e.g., engine control
unit, active steering, or brake system) can have life-threatening
consequences. Moreover, stealthy attacks on the CAN bus system,
including an attack that embeds malicious code in a car’s telem-
atics unit and completely erases any evidence of its presence after
a crash, have been reported (Koscher et al., 2010). Several other
attacks using both wired and wireless communications have been
studied in the literature. An example is an attack that can enter
the vehicle via a Bluetooth connection through the radio ECU and
be disseminated to other safety-critical ECUs (Checkoway et al.,
2011). This shows that intra-vehicle network structure through
the CAN bus can determine the security of critical ECUs.
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Smart buildings and internet of things

Smart buildings are the integration of a vast number of sen-
sors, smart devices, and appliances to control heating, ventilation
and air conditioning, lighting, and home security systems through
a building automation system (BAS). In a building automation
networked system, the home appliances are the agents and the
wireless communications between them and between each ap-
pliance and the center are the edges. When home devices are
connected to the internet, they form a key part of the Internet of
Things (1oT). The objectives of building automation are to improve
occupant comfort, ensure efficient operation of building systems,
and reduce energy consumption and operating costs. However,
the high level of connectivity, automation, and remote accessi-
bility of devices also makes it critical to protect smart buildings
against failures and attacks (Stankovic, 2014).

Power systems

The traditional practice in power grids is to institute safe-
guards against physical faults using protective devices (Hooshyar
& Iravani, 2017). However, the emergence of new technologies
including smart meters, smart appliances, and renewable energy
resources, together with available communication technologies
introduces further vulnerabilities to potential cyber-attacks (Srid-
har, Hahn, & Govindarasu, 2011). Cyber-attacks in power systems
can happen at three different levels: (i) Generation and transmis-
sion level: Generation is the process of converting mechanical
or chemical energy into electrical energy and transmission is the
process of transporting electrical energy over long distances from
the point of generation to the point of consumption. Examples
of security issues in these levels include possible cyberattacks
in automatic generation control (AGC) loops and ways to detect
those attacks (Huang, Satchidanandan, Kumar, & Xie, 2018; Teix-
eira, Amin, Sandberg, Johansson, & Sastry, 2010). (ii) Distribution
level: Power distribution is the final step in the delivery of elec-
trical energy consisting of delivering electricity from high-voltage
transmission lines to homes, businesses, and other end users at
low voltages. At the distribution level, security of islanded micro-
grids has been well studied in the literature (Li, Shahidehpour,
& Aminifar, 2017). Islanded micro-grids are self-contained power
systems that can operate independently of the larger power grid
and operate as a separate power distribution system. (iii) Market
level: This is the stage of the electricity supply chain where energy
is traded and prices are determined. An example of security issues
in this level is false data injection in electricity markets (Xie,
Mo, & Sinopoli, 2011). Further discussion on the cyber-security
of power systems, including some surveys on the topic, can be
found in Ericsson (2010), Liang, Zhao, Luo, Weller, and Yang Dong
(2017), Musleh, Chen, and Yang Dong (2020) and Ten, Liu, and
Manimaran (2008).

Blockchain

A blockchain is a growing list of records, called blocks, that
are linked together using cryptography. Each block contains a
cryptographic hash of the previous block in a tree structure, called
a Merkle tree. As each block contains information about the block
previous to it, they form a chain, with each additional block
reinforcing the ones before it. Blockchains are considered secure
by design, because they utilize several key cryptographic and
decentralized mechanisms to ensure the integrity and security of
the data stored on the chain. Hence, they exemplify a distributed
computing system with high attack tolerance (Lin & Liao, 2017).
One of the most recognized applications of blockchains is in
cryptocurrency, e.g., bitcoins.
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Other applications

There are several other applications for which the security of
large-scale distributed systems plays a crucial role. Examples in-
clude (1) cloud computing (as a popular application of distributed
systems) which enables users to access computing resources such
as servers, storage, and applications over the internet; (2) online
social networks such as Facebook, Twitter, and LinkedIn which
allow users to connect with each other and share information
across the network; (3) swarm robotics (with applications rang-
ing from search and rescue missions to mining and agricultural
systems); and (4) water and waste-water networks. Further dis-
cussion of these applications can be found in Abdelrazek, Grundy,
and Miiller (2010), Dibaji et al. (2019), Falliere, Murchu, and Chien
(2013), Hamann (2018), Jackson (2010), Kushleyev, Mellinger,
Powers, and Kumar (2013), Marsden and Friedkin (1993), Slay and
Miller (2007) and Zhang, Sun, Zhu, and Fang (2010). Yet another
instance of a distributed system where security plays a key role
is the emerging paradigm of federated learning (FL). The general
principle of FL is to train local models (e.g., the weights of a deep
neural network) on raw local data samples. These local models
are then intermittently uploaded to a central aggregator for the
generation of a global model (Jiang, Balu, Hegde, & Sarkar, 2017;
Konec¢ny, McMahan, Ramage, & Richtarik, 2016). Importantly, in
FL, only model/parameter vectors are exchanged; to guarantee
privacy, these models are often encrypted before being uploaded.
For the cases where these parameters may still leak information
about the underlying data samples, e.g., by making multiple spe-
cific queries on specific datasets, secure aggregation techniques
have been developed (Ghosh, Hong, Yin, & Ramchandran, 2019;
Muifioz-Gonzalez, Co, & Lupu, 2019; Pillutla, Kakade, & Harchaoui,
2022; Yang, Liu, Chen, & Tong, 2019).

1.3. Early works on the resilience of distributed control systems

We provide a brief literature review on the security of control
systems; starting from centralized approaches and then followed
up by distributed methods.

1.3.1. Centralized resilient control techniques

Centralized fault-tolerant techniques have a long history in the
systems and control community (Darouach, Zasadzinski, & Xu,
1994; De Persis & Isidori, 2001; Guan & Saif, 1991; Massoum-
nia, Verghese, & Willsky, 1989). These early works focused on
detecting and mitigating faults in control systems. Later efforts
focused on the goal of providing defense mechanisms for control
systems against specific types of attacks via three layers of attack
prevention, attack detection, and attack resilience. We provide a
brief overview of these defense layers below. Detailed discussions
can be found in Dibaji et al. (2019) and Teixeira, Sou, Sandberg,
and Johansson (2015).

The first layer of defense is to prevent the attack from happen-
ing. Cryptography, network coding, model randomization, differ-
ential privacy, and moving target defense are among well-known
attack prevention mechanisms used for control systems (Dwork,
2008; Farokhi, Shames, & Batterham, 2017; Koetter & Médard,
2003; Motwani & Raghavan, 1996; Ny & Pappas, 2014; Weer-
akkody & Sinopoli, 2015). In many cases, however, it is not
possible to prevent all attacks (e.g., if attackers exploit subtle
“zero-day” vulnerabilities Bilge & Dumitras, 2012, or rely on
insider threats Salem, Hershkop, & Stolfo, 2008). In those cases,
the second layer comes into play which aims to detect and isolate
the attack. Observer-based techniques have been proposed to de-
tect the attacks by leveraging appropriate notions of redundancy
between sensors; these approaches compare the state estimates
under the healthy and the attacked cases when models of pos-
sible attacks are considered (Hwang, Kim, Kim, & Seah, 2009;



M. Pirani, A. Mitra and S. Sundaram

Pasqualetti, Dorfler, & Bullo, 2013). When the control system
does not satisfy the required observability conditions, coding-
theory, e.g., parity check methods, can be used to detect the
attacks (Blahut, 2003). In some cases, an adversary delivers com-
promised sensor measurements to a system operator to conceal
its effect on the plant. Certain types of such attacks, referred to
as “replay attacks”, have been addressed by introducing physical
watermarking (e.g., by adding a Gaussian signal to the control
input) to bait the attacker to reveal itself (Mo, Weerakkody,
& Sinopoli, 2015). The sub-optimality of the resulting control
action is the cost paid to detect the attacks in those cases. In
addition to the above model-based techniques, anomaly detec-
tion methods have been proposed based on machine learning
techniques. For example, Neural Networks (NNs) and Bayesian
learning have been studied for anomaly detection in the context
of security (Garcia-Teodoro, Diaz-Verdejo, Macia-Fernandez, &
Vazquez, 2009; He, Mendis, & Wei, 2016; Tsai, Hsu, Lin, & Lin,
2009). When attack detection is not possible, the system must be
at least resilient enough to withstand the attacks or mitigate the
impact of the attack. Probabilistic methods for attack resilience
in DCSs for both estimation and control were studied in Fawzi,
Tabuada, and Diggavi (2014), Hadjicostis and Touri (2002), Hes-
panha, Naghshtabrizi, and Xu (2007) and Sinopoli et al. (2004).
Redundancy-based approaches are used to bypass the attacks by
using the healthy redundant parts (Abbas, Laszka, & Koutsoukos,
2017; Baras & Liu, 2019; Chow & Willsky, 1984; Momani & Challa,
2010; Sklaroff, 1976). Such redundancy in large-scale systems can
be in the form of adding capabilities to the network, e.g., ex-
tra sensors, or infrastructures enabling the connection between
the parts, i.e., network connectivity, typically at additional cost.
On the other hand, several control-theoretic methods have also
been proposed to mitigate the attack impact, including event-
triggered control for tackling denial of service attacks (De Persis &
Tesi, 2014; Heemels, Johansson, & Tabuada, 2012). Robust control
techniques have also been shown to be useful tools to mitigate
the attack impact (Zhu & Basar, 2015).

1.3.2. Resilient distributed techniques

The theory of distributed algorithms has a long history in
computer science with a variety of applications in telecommu-
nications, scientific computing, distributed information process-
ing, and real-time process control (Bertsekas & Tsitsiklis, 1989;
Tsitsiklis, 1984). The control systems community has studied dis-
tributed control algorithms for several decades (Borkar & Varaiya,
1982; Sandell, Varaiya, Athans, & Safonov, 1978; Teneketzis &
Varaiya, 1984; Tsitsiklis, 1984; Witsenhausen, 1968), with an
explosion of interest in recent decades due to their applica-
tions in distributed coordination of multi-agent systems, forma-
tion control of mobile robots, state estimation of power-grids,
smart cities, intelligent transportation systems, and distributed
energy systems (Jadbabaie, Lin, & Morse, 2003; Olfati-Saber, Fax,
& Murray, 2007; Ren & Beard, 2005; Tomlin, Pappas, & Sastry,
1998).

The earliest works on the security of distributed algorithms
can be found in the computer science literature (Fischer, Lynch,
& Paterson, 1985; Lynch, 1997; Pease, Shostak, & Lamport, 1980),
typically with the focus on simple network topologies (such as
complete graphs). One of the main approaches to address the
resilience and security of distributed systems is to leverage the
redundancy that the network topology provides (in the form
of multiple paths through the network between given pairs
of nodes). Hence, resilient distributed estimation and control
algorithms usually use (different types of) network connectiv-
ity measures to quantify the resilience against certain adver-
sarial actions (LeBlanc, Zhang, Koutsoukos, & Sundaram, 2013;
Pasqualetti, Bicchi, & Bullo, 2012; Sundaram & Hadjicostis, 2011).
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To do this, system-theoretic notions, such as controllability (or
observability) and detectability are reinterpreted in terms of
graph-theoretic quantities with the help of tools such as algebraic
graph theory or structured systems theory (Dion, Commault, &
van der Woude, 2003; Pasqualetti et al., 2013).

When a DCS becomes larger in scale, the notions of attack pre-
vention, detection, and resilience discussed above depend more
on the interconnections between components (sensors, actuators,
or controllers) in the network. With this in mind, the focus of this
survey paper is to present the theoretical works in the literature
on graph-theoretic interpretations of the security in DCSs.

Related Survey Papers. There are some recently published sur-
vey papers on related topics, including Giraldo, Sarkar, Cardenas,
Maniatakos, and Kantarcioglu (2017), which provide an overview
of security in a variety of cyber-physical systems (e.g., smart-
grids, manufacturing systems, healthcare units, industrial control
systems, etc.); Ishii, Wang, and Feng (2022), which focus on re-
silient consensus problems; Yang, Gang, and Bajwa (2020), which
focus on distributed statistical inference and machine learning
under attacks; and Prorok et al. (2021), which discuss the appli-
cations of resilient distributed algorithms to multi-robot systems.
The tutorial paper (Chong, Sandberg, & Teixeira, 2019) consid-
ers security and privacy methods in control systems and Lun,
D’'Innocenzo, Smarra, Malavolta, and Di Benedetto (2019) analyze
existing research on cyber-physical security from an automatic
control perspective. Compared to Giraldo et al. (2017) where
the exposition is essentially of a qualitative nature, our sur-
vey provides a mathematical treatment of security in distributed
systems, covering the necessary technical background in linear
algebra, graph theory, dynamical systems, and structured systems
theory. Our paper differs from Ishii et al. (2022), Prorok et al.
(2021), and Yang et al. (2020) in that it has a much broader scope:
we provide a detailed discussion of graph-theoretic measures for
the resilience of a variety of distributed algorithms, special cases
of which include consensus and distributed statistical inference.
Moreover, we provide a comprehensive view of the role of various
connectivity measures on the resilience levels for distributed
algorithms. We also discuss ways to maintain a desired level
of resilience when the network loses connectivity. Our paper
differs from Chong et al. (2019) and Lun et al. (2019) in that the
scope of those papers was on general methods in secure control
systems without focusing on the network aspects of control sys-
tems and the role that the network topology plays in the overall
system’s resilience. More recently, Ramos, Aguiar, and Pequito
(2022) presented an overview of structured systems theory, one
of the main tools that is used in analyzing the resilience of DCSs.
However, rather that the system’s resilience and security, the
focus of the work was more on deepening the understanding of
how some theoretical graph tools can be leveraged in analyzing
control-theoretic notions of large-scale systems.

2. Mathematical preliminaries
2.1. Graph theory

A weighted graph is a pair (G, w) where G = {V,£&} is a
directed graph in which V is the set of vertices (or agents),!
£ C YV xVis the set of edges and w : £ — R is a weight function.
In particular, (j, i) € £ if and only if there exists an edge from j
to i with some weight wj; # 0. Graph ¢ is undirected if (j, i) € £
implies (i, j) € £ and wj; = wj;. The in-neighbors of vertex i € V
are denoted M\" 2 {j € V | (j,i) € &,j # i}. Similarly, the out-
neighbors of i are N £ {j € V | (i,]) € &,j # i}. The in-degree

1 As mentioned in the introduction, we use the terms node, vertex, and agent
interchangeably.
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Fig. 2. (a) An example of a digraph g, (b) an induced subgraph of g, (c) a
spanning subgraph of g, (d) an example of a 1-vertex and 2-edge connected
graph with dp, = 2.

(or simply degree) of agent i is d; = ) _; wj;. The minimum degree
of a graph G is denoted by dnin(G) = min;ey, d;. If (i, i) € &, then i
is said to have a self-loop (but it is not counted in the degree of
i). A subgraph of G is a graph G = {V, £} with V C Vand € C €.
A subgraph is induced if it is obtained from G by deleting a set of
vertices (and all edges coming into and out of those vertices), but
leaving all other edges intact. The subgraph # is called spanning if
it contains all vertices of G, i.e.,, V = V. An example of a digraph ¢
together with an induced and a spanning subgraph of G is shown
in Fig. 2(a-c).

2.1.1. Paths and cycles in graphs

For subsets 7, B C V, a path from F to B is a sequence of
vertices vq, va, ..., v where vy € F, v; € B, and (v}, vj+1) € €
for 1 < j <t — 1. A cycle is a path where v; = vy. A simple
path contains no repeated vertices. A directed acyclic graph is a
digraph with no cycles. For a subset X C V, an X-rooted path
(respectively xX-topped path) is a path which starts from a vertex
v € X (respectively ends at some v € X). Two paths are disjoint
if they have no common vertices and two paths are internally
disjoint if they have no common vertices except for possibly
the starting and ending vertices. A set of paths Py, P,, ..., P, are
(internally) vertex disjoint if the paths are pairwise (internally)
vertex disjoint. For example, the two paths P; : 1,2, 3,6 and
P, : 1,4,5,6 in Fig. 2(a) are internally vertex disjoint paths
between agents 1 and 6. Given two subsets X7, X» C V, a setof r
vertex disjoint paths, each with start vertex in X; and end vertex
in Ay, is called an r-linking from A; to A5.2 The length of a path
is the summation of the edge weights in the path. The distance
between a pair of agents i and j is the length of the shortest path
between i and j. The effective resistance, ;;, between two vertices
iand j in a graph is the equivalent resistance between these two

vertices when we treat the resistance of each edge e as -, where

we’
we is the edge weight.?

2.1.2. Graph redundancy measures

A graph G is called strongly connected if there is a path between
each pair of vertices i,j € V. Throughout this paper, we use the
term ‘connected’ to refer to a strongly connected graph, unless
stated otherwise. A graph is said to be disconnected if there exists
at least one pair of vertices i,j € V such that there is no path
between the two agents. Other than the above binary measures of
connectivity, there are several other graph connectivity measures,
some of which are mentioned below.

o Vertex and Edge Connectivity: A vertex-cut in a graph G =
{v, &} is a subset S C V of vertices such that removing
the vertices in S (and any resulting associated edges) from
the graph causes the remaining graph to be disconnected.

2 There are various algorithms to find linkings, such as the Ford-Fulkerson
algorithm, which has run-time polynomial in the number of vertices (West,
2001a).

3 Some variations of effective resistance are introduced for directed
graphs (Young, Scardovi, & Leonard, 2016).
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A (j, i)-cut in a graph is a subset S; C V such that if the
vertices Sj are removed, the resulting graph contains no
path from vertex j to vertex i. Let «; denote the size of
the smallest (j, i)-cut between any two vertices j and i. The
graph G is said to have vertex connectivity «(G) (or to be
k-vertex connected) if x; > & for all i,j € V. Similarly,
the edge connectivity e(G) of a graph G is the minimum
number of edges whose deletion disconnects the graph. The
vertex connectivity, edge connectivity, and minimum degree
satisfy

K(g) = e(g) =< dmin(g)- (])

For instance, in the graph shown in Fig. 2(d), we have «(G) =
1, e(G) = 2, and dpjp = 2

e Graph Robustness (LeBlanc et al., 2013; Zhang & Sundaram,
2012): For a given r € N, a subset S of vertices in the graph
G = (V, &) is said to be r-reachable if there exists a vertex
i € S such that |/\/,.in \ S| > r. Graph G is said to be r-robust
if for every pair of nonempty, disjoint subsets &7, x> C V,
either x; or X, is r-reachable. If G is r-robust, then it is
at least r-vertex connected. An example of a 3-reachable
together with a 4-reachable set is shown in Fig. 3(a). Note
that by examining all pairs of disjoint subsets of vertices in
this graph, we can find that the graph is 3- robust.
For given r, s € N, a graph is said to be (r, s)-robust if for all
pairs of disjoint nonempty subsets Xy, X, C V, at least one
of the following conditions holds:

(i) All vertices in X7 have at least r neighbors outside ;.
(ii) All vertices in X, have at least r neighbors outside X,.
(iii) There are at least s vertices in &7 U X, that each have

at least r neighbors outside their respective sets.

Based on the above definitions, (r, 1)-robustness is equiva-
lent to r-robustness.

It is instructive to note the key difference between the prop-
erties of vertex connectivity and graph robustness defined above.
Specifically, if a graph is r-vertex connected, then for every pair
of nonempty disjoint subsets Xy, X, C V, at least one of the
subsets must satisfy the property that all vertices in that subset
collectively have at least r different neighbors outside that subset.
Otherwise, one could simply remove all those neighbors from
outside that subset, thereby disconnecting the graph and contra-
dicting the fact that the vertex connectivity is r. In contrast, the
graph robustness property is stronger: an r-robust graph implies
that for every pair of nonempty, disjoint subsets X7, A, C V, at
least one of the subsets has at least one vertex that by itself has
at least r neighbors outside that set. As we will see later, this
captures the ability of information to penetrate into sets (via the
edges) through individual vertices, as opposed to penetrating into
the set as a whole (as would be considered by the notion of vertex
connectivity).

Based on the definitions and the above discussion, one can see
that r-robustness is a stronger property than r-vertex connectiv-
ity. The Venn diagram in Fig. 3(c) shows the relationship between
various graph connectivity measures. In fact, the gap between
the robustness and vertex connectivity (and minimum degree)
parameters can be arbitrarily large, as illustrated by the graph G
in Fig. 3(b). While the minimum degree and vertex connectivity
of the graph G is n/2, it is only 1-robust (consider subsets V; and
V).

2.2. Matrix terminology

For a real-valued matrix M € R™" with n < m, the singular
values are ordered as o;(M) < 03(M) < --- < 0,(M). When M
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Fig. 3. (a) A 3-robust network and two of its vertex subsets, a 3-reachable set
(top) and a 4-reachable set (bottom). (b) Graph ¢ = (v, &) with v = v; UV,
and |Vq| = | = g V1 and v, are complete graphs. There is a one to one
connection between vertices in V; and agents in V,. (b) Relationships between
different graph connectivity measures.

is a square matrix, the real parts of the eigenvalues are ordered
as N (A(M)) <R (A (M)) < -+ <R (A,(M)). Matrix M is called
nonnegative if its elements are nonnegative, and it is a Metzler
matrix if its off-diagonal elements are nonnegative. We use e; to
indicate the ith vector of the canonical basis and A’ to indicate
the transpose of matrix A.

2.3. Spectral graph theory and linear systems

The adjacency matrix of a graph of n agents is denoted by
A e R™" where Aj = wjy if (j,i) € £ with the edge weight
w;j and A; = 0 otherwise. The Laplacian matrix of the graph is
L 2 D — A, where D = diag(d;, d,, ..., dy,). The real parts of
the Laplacian eigenvalues are nonnegative and are denoted by
0 = ROL) < ROL) < ... < R(Aa(L).* The second
smallest eigenvalue of the Laplacian matrix, A,(L), is called the
algebraic connectivity of the graph and is greater than zero if and
only if G is a connected graph. Moreover, we always have (Godsil
& Royle, 2001)

Aa(L) < k(G). (2)

Given a connected graph G = {V, £}, an orientation of the graph G
is defined by assigning a direction (arbitrarily) to each edge in &.
For graph G with m edges, labeled as ey, e, . .., e, its agent-edge
incidence matrix B(G) € R™™ is defined as

1 if agent k is the head of edge I,
[B(G)lu = {—1 ifagent k is the tail of edge I,
0 otherwise.

The graph Laplacian satisfies L = B(G)B(G).
A discrete-time linear time-invariant system is represented in
the state-space form as follows:

X[t + 1] = Wx[t] + Bu][t],

y[t] = Cx[t] + Du(t],
where x € R" is the state vector, u € R™ is the vector of m inputs,
y € RYis the vector of q outputs, and W € R™", B € R™™,
C € R?" and D € RY™, are called state, input, output, and feed-

forward matrices, respectively. Similarly, the state-space model
of a continuous-time linear system is given by

x = Wx -+ Bu,

A state space form of a linear system is compactly represented
as (W,B,C,D) or (W,B,C) for cases where there is no feed-
forward term. A linear system is called (internally) positive if its

4 From now, we consider Laplacian matrices for undirected graphs with
positive edge weights. Graph spectra for negative edge weights have been
studied in Chen et al. (2016) and Hou, Li, and Pan (2003).
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state and output are non-negative for every non-negative input
and every non-negative initial state. A continuous-time linear
system (W, B, C) is positive if and only if W is a Metzler matrix
and B and C are non-negative element-wise (Farina & Rinaldi,
2000). Moreover, for such a positive system with transfer function
G(s) = C(sI, — W)~ !B, the system H,, norm is obtained from the
DC gain of the system, ie., [|Gllc = 0,(G(0)), where o, is the
maximum singular value of matrix G(0) (Farina & Rinaldi, 2000).

2.4. Structured systems theory

In this subsection, we provide an introduction to structured
systems theory, which provides a bridge between system-
theoretic properties and graph-theoretic concepts. For compre-
hensive surveys of this topic, see Dion et al. (2003) and Ramos
et al. (2022) and the references therein. Consider the linear time-
invariant system (3). With this system, associate the matrices
w, e {0, )\}nxn‘ B, € {0, )\.}nxm, G € {O,)x}qxn, and D, €
{0, A}9*™_ Specifically, an entry in these matrices is zero if the
corresponding entry in the system matrices is equal to zero,
and the matrix entry is a free parameter (denoted by A) oth-
erwise. This type of representation of (3) shows the structure
of the linear system regardless of the specific values of the
elements in the matrices. Thus, it is called a structured system
and can be equivalently represented by a directed graph ¢ =
(X, U, Y, Exx, Exys Eux, Euy), Where

o X 2 {Xx{,X,..., X} is the set of states;

e V2 {y1,¥2,...,Yq} is the set of measurements;

o U 2 {uy,uy, ..., uy} is the set of inputs;

e Exx = {(xj,x;)|]W; # 0} is the set of edges corresponding
to interconnections between the state vertices;

o &ux = {(uj, x;)|B; # 0} is the set of edges corresponding
to connections between the input vertices and the state
vertices;

e Exy = {(x;,¥:)|C;j # 0} is the set of edges corresponding
to connections between the state vertices and the output
vertices;

o &y = {(uj,y:)ID; # 0} is the set of edges corresponding
to connections between the input vertices and the output
vertices.

A structured system is said to have a certain property, e.g.,
controllability or invertibility, if that property holds for at least
one numerical choice of free parameters A in the system. The
following theorem introduces graphical conditions for structural
controllability and observability of linear systems.

Theorem 1 (Dion et al, 2003). The pair (W, B) (resp. (W, C)) is
structurally controllable (resp. observable) if and only if the graph
G ={X,U, Ex ~, Eu x} satisfies both of the following properties:

(i) Every state vertex x; € X can be reached by a path from (resp.
has a path to) some input vertex (resp. some output vertex).

(ii) G contains a subgraph that is a disjoint union of cycles and
U-rooted paths (resp. Y-topped paths), which covers all of the
state vertices.

In Section 8, we will revisit structured systems by discussing
structural conditions for the system to be invertible.

Example 2. The graph shown in Fig. 4(a) is structurally control-
lable as it satisfies both conditions in Theorem 1. However, it is
not structurally observable: condition (ii) does not hold since the
cycle and Y-topped paths are not disjoint. The graph in Fig. 4(b)
is structurally controllable and observable. The set of disjoint 2/-
rooted paths (respectively )-topped paths) and cycles is P =
{{u, x1, x4, x5}, {x2}, {x3}} (respectively ¢ ={ {x1, x4, X5, ¥}, {x2},

{x3} }).
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Fig. 4. (a) A structurally controllable but not observable graph, (b) A structurally
controllable and observable graph.

3. Notions of resilience

In this section, we discuss notions of resilience in DCSs which
are sought in various distributed algorithms. To classify the re-
silience against each type of adversary, the first step is to distin-
guish a regular agent from an adversarial one in DCSs.

In distributed algorithms, each agent is given a communication
rule (indicating what information to transmit to neighbors) and
an updating rule (a computation task) which is a function of its
own states (and local information) and the states and information
obtained from its neighbors. However, the knowledge available
to each agent about the rest of the network may vary between
algorithms. For example, as we will see later in Sections 4-7,
some algorithms rely on each agent knowing the entire network
topology, while others rely only on each agent knowing its own
neighbors in the network. Regular nodes (agents) in a DCS are
those who obey the prescribed updating and communication
rules. The objective of the regular agents can be either to calculate
an exact desired value (e.g., a function of the state of other
agents), an approximation of that value, or simply to arrive at an
agreement on some value. The required precision of calculation
depends on many factors including the cost of computing the
exact value. Deviations from normal behavior can be consid-
ered as either a fault or an adversarial action (attack). Faults
are those which happen unintentionally and (often) randomly
with a given distribution. On the other hand, as discussed in
Section 1.1, attacks can be viewed as targeted actions that are
deliberately chosen by some adversarial nodes to prevent the
other nodes from achieving their desired objectives. From the
network’s perspective, the attacker (or an adversarial agent) is
one who intentionally disregards the prescribed updating rule:
the attacker updates its state and sends it to its neighbors in
an arbitrary (and potentially in a worst case) manner. Since this
type of deliberate adversarial behavior is the focus of the current
paper, we further classify them in the following definition.

Definition 1 (Malicious vs. Byzantine). An adversarial agent is
called malicious if it updates its state in an arbitrary manner.
Thus, it sends incorrect but consistent values to all of its out-
neighbors at each time-step. An adversarial agent is Byzantine
if it can update its state arbitrarily and is capable of sending
inconsistent values to different neighbors at each time-step.

Both malicious and Byzantine agents are allowed to know
the entire network topology, the local information of all agents,
and the algorithms executed by all agents. Furthermore, both
malicious and Byzantine agents are allowed to collude amongst
themselves to select their actions. An example of malicious and
Byzantine agents was discussed in Section 1.1 (agents with values
a and b in Fig. 1). Based on Definition 1, note that Byzantine
agents can choose to behave like malicious agents by simply
transmitting the same value to all neighbors (even though Byzan-
tine agents have the power to transmit inconsistent values to
different neighbors). Thus, malicious behavior is a special case
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of Byzantine behavior. Malicious attacks may happen in wireless
broadcast models of communication or when the state of an agent
is directly sensed by its neighbors (e.g., via cameras), whereas
Byzantine attacks follow the wired (point-to-point) model of
communication.

In return for providing so much power to the adversarial
agents, it is typical to assume a bound on the number of such
agents. The following definitions quantify the maximum number
of tolerable attacks in a given network.

Definition 2 (f-total and f-local Sets). For f € N,asetC C V is
said to be f-total if it contains at most f agents in the network,
ie,|C| <f.AsetC C Visf-local if it contains at most f agents in
the neighborhood of each agent outside that set, i.e., ]JN{" NC| < f
forallie v \C.

Definition 3 (f-local Adversarial Model). For f € N, a set F of
adversarial agents is f-locally bounded if F is an f-local set.

The set of adversarial agents {a, b} in Fig. 1 is a 2-total and
1-local set. Thus, it is 1-locally bounded. Note that every f-total
set is also an f-local set but not vice versa. The f-total adversarial
model is predominant in the literature on resilient distributed
algorithms (Bouzid, Potop-Butucaru, & Tixeuil, 2010; Lamport,
Shostak, & Pease, 1982; Lynch, 1997). However, in order to allow
the number of adversarial agents to potentially scale with the
network, several of the algorithms discussed in this survey allow
the adversarial set to be f-local.

Based on the above discussions, the notion of resilience can be
stated as follows.

Resilient Distributed Algorithm: Under a given adver-
sarial model (e.g., f-locally bounded or f-total, malicious
or Byzantine), a distributed algorithm operating on net-
work G is called resilient if each regular agent in G can
compute its desired value (within some specified tol-
erance) despite the actions of the adversarial agents in
G.

Thus, various specific notions of resilience can be considered
based on the above definition, depending on the type and number
of adversaries and the desired value computed by the regular
agents.

4. Connectivity: The earliest measure of resilience

In this section, we first discuss the role of network con-
nectivity in reliable information dissemination over networks.
Then, with the help of structured systems theory (Dion et al.,
2003), we tie together the traditional graph property of connec-
tivity with system-theoretic notions to find conditions for reliable
calculation of agent values in a network.

4.1. Connectivity as a measure of resilience

In the following example, we see how the existence of re-
dundant paths between a pair of agents can facilitate reliable
transmission of information between those agents.

Example 3. For the graph shown in Fig. 5(a), suppose that each
agent v; has an initial value denoted by 1;[0]. Agent v tries to
obtain the true value of vy, i.e., ¥4[0] = 2. This value can be
transmitted to v through v, and v3.” Suppose that v, is malicious

5 This can be done using a flooding algorithm, i.e., each agent reads and
stores their neighbors’ values and broadcasts them to their out-neighbors in the
next time step.
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Fig. 5. (a) A graph with (a) two disjoint paths between agents v; and vy, and (b)
three disjoint paths between agents v, and vs. (¢) Schematics of interconnections
between system and graph properties.

and pretends that 14[0] has a value other than its true value. In
this case, as vy receives inconsistent information from v, and vs,
it cannot conclude which value is the true one. In this case, a
redundant path can serve as a tie breaker and help v; to obtain
the true value, Fig. 5(b).

One can generalize the observation given in Example 3 by
saying that if there are f adversarial agents in the network, there
should be 2f + 1 disjoint paths between any given pair of agents
in order to make sure that information can be transmitted reliably
between those agents. The number of disjoint paths between
agent pairs is related to the vertex connectivity via Menger's
theorem (West, 2001b).

Theorem 2 (Menger’s Theorem). Graph G has vertex connectivity r if
and only if there are r internally vertex disjoint paths between each
pair of agents in G.

This fundamental observation that 2f 4+ 1 connectivity is re-
quired to overcome f adversarial agents is classical in the com-
puter science literature (Lynch, 1997). In the following subsection,
we describe how the same result (namely that a connectivity
of 2f + 1 is required to reliably exchange information in net-
works despite malicious agents) arises in the context of linear
iterative dynamics for information dissemination in networks. In
the process, this will introduce the use of zero-dynamics (and
strong observability) together with structured systems theory as
a means to analyze the resilience of linear dynamics on graphs.

4.2. A system-theoretic perspective on resilient exchange of informa-
tion

In this subsection, we discuss reliable calculation of agent
values in a network in the presence of adversaries. In this setting,
each agent i € V tries to gather the values (measurements,
positions, votes, or other data) of all other agents, despite the
actions of adversarial agents in the network. These values can
be later used to calculate any arbitrary function of the agents’
values. Here, we consider a broadcast model of communication
where each agent transmits the same value to all its neighbors.
Hence, the adversarial agents are malicious, but do not exhibit full
Byzantine behavior. Our goal is to show that the topology of the
network (specifically, its connectivity) completely characterizes
the resilience of linear iterative strategies to malicious behavior.
To this end, we first formally introduce the model of a distributed
system under attack.

Distributed System Model Under Attack: Consider a network of
n agents (or processors) whose communication is represented by
a time-invariant graph G = {V, &}. Suppose that each agenti € V
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begins with some initial value© ¥;[0] € R and updates its value
over time according to a prescribed rule, i.e.,

Yilt + 11 = g({Y[tljens. 1), € € Zo, (4)

where wj"[t] is the state of agent j sent to agent i at time step t and
w,-"[t] = ;[t]. The update rule, g;, which is designed a priori, can
be an arbitrary function and may be different for each agent. For
example, for the standard linear consensus protocol (Jadbabaie
et al., 2003), this function is simply some linear combination of
the values of agent i’s neighbors:

ilt + 11 =Y wyyIt], 5)

JeN;

where wj is the weight assigned to agent j's value by agent i’ In
the absence of any attack, each agent j sends the same consistent
information to every neighbor, and hence, w]?[t] = ;[t], and we
can represent the above dynamics in the following compact form:

Yt + 1] = Wylt], (6)

where the matrix W captures the communication pattern be-
tween agents. Moreover, the observation model for each agent
i can be described as follows:

yilt] = Gy t], (7)

where G is a (d; + 1) x n matrix with a single 1 in each row that
denotes the states available to agent i (these positions correspond
to the neighbors of agent i, including agent i).

Recall that agent i is a regular agent if it does not deviate
from its prescribed update rule g;(-). The set of regular agents
is denoted by R. A deviation can stem from a failure, e.g., dis-
turbance or noise with a known model, a time delay or signal
dropout, or an adversarial action (attack) in the form of arbi-
trary state updates. Some fundamental differences between faults
and attacks were discussed in Section 1.1. Consider a set F =
{i1, 12, ...,ir} C V of malicious agents. One way to represent an
adversarial action at time step ¢ is to use an additive attack signal
Zi[t] in the updating rule (5) (Pasqualetti et al., 2012; Sundaram
& Hadjicostis, 2011). In particular, instead of applying the update
Eq. (5), each agent i € F updates its state as

Gilt +11= Y wyltly)Te] + &lel. )

JeNilt]

Here, an agent is malicious in T time steps if ¢;[t] # O for at least
one time step 0 < t < T — 1. Noting that the additive input
Zi[t] can be completely arbitrary, this model allows the malicious
agent to update its value (via (8)) however it wishes. Writing (8)
in vector form yields

Ylt + 1] = Wylt] + [e;, e, e 1 x[t],
—_—
Br
yltl = Cylel, (9)

where ¢x[t] = [&), &y, ...,{,-f] models an unknown additive
error (attack) vector, C = [C] €, ... C;]', and C; is as in (7).
Since the set of malicious agents F is unknown to the regular
agents, the specific value of matrix B is also not known to those
agents (although those agents do know that B will contain at

6 This value represents the initial information available to agent i. For
example, it could represent a sensor measurement (if the agent is a sensor),
a vote (if the agents are trying to determine a course of action), or an opinion
(if the agents represent individuals).

7 Throughout this survey, we will primarily discuss linear updating rules as
they cover a broad class of distributed protocols studied in the literature.
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most f columns under the f-total adversary model, with a single
1 in each column). It is easy to see that in the absence of attacks,
the model in (9) boils down to the one in (6) and (7).

Observability and Connectivity: Recall that the goal of each
agent in this section is to gather the initial values of the other
agents (since those represent the pieces of information inherently
held by each agent), and use them for calculating some function
of the agents’ values. Moreover, throughout this section, we will
assume that each agent knows the structure of the network,
i.e, W is known to every agent. As such, in the absence of
attacks, based on (6), it is easy to see recovering the initial value
vector ¥[0] = [¥1[0] ¥,[0], ..., ¥,[0]]" simply boils down to
solving an initial-state observability problem for the system (6)-
(7). In particular, from basic linear systems theory, it then follows
that ¥[0] can be recovered by agent i if the pair (W, C;) is ob-
servable. To connect the underlying network (which is captured
by the sparsity pattern in W) to the observability of the pair
(W, C;), Sundaram and Hadjicostis (2008) leveraged structured
system theory (Section 2.4) to show that if the underlying net-
work is connected, then the weights in the update Eq. (5) for each
agent (which form the nonzero elements in W) can be designed
in a way that ensures observability of (W, C;).

The above discussion reveals how concepts from systems the-
ory such as observability can be combined with basic graph-
theoretic notions such as connectivity to study the process of
information diffusion over networks. It is natural to thus wonder
whether a marriage of ideas between systems theory and graph
theory will continue to be fruitful while analyzing the adversar-
ial setting. The results from Sundaram and Hadjicostis (2011),
summarized below, establish that this is indeed the case.

Suppose that a subset F of agents is malicious and deviates
from the update rule (5). Thus, the new goal is to recover ¥[0]
for the model in (9). As in the non-adversarial case, we start by
examining the observation model at agent i. We note that the set
of all values seen by agent i during the first L 4+ 1 time-steps of
the linear iteration (for any non-negative integer L) is given by

il0 : L] = 01 9[0] + M £ £[0: L — 1], (10)

where y;[0 : L] = [y/[0] y[1] --- yiL]] and £x[0:L—1] =
[¢[01 ¢5I1] ¢x[L — 11]". Matrices ©;; and M7, are the
observability and invertibility matrices, respectively (from the
perspective of agent i), and can be expressed recursively as

o G F_ 0 0
OiL = I:Oi,LIW] M= |:Oi,L—lB}‘ M| (1)

where 0;jp = € and Mfo is the empty matrix (with zero
columns). The question of interest is the following: Under what
conditions can agent i recover ¥[0] based on a sufficiently large
sequence of observations, despite the presence of the unknown inputs
£x?

As it turns out, the answer to the above question is intimately
tied to the system-theoretic concept of strong observability. In
particular, the linear system (9) is said to be strongly observable
w.r.t. agent i if y;[t] = O for all t implies ¥[0] = O (regardless
of the values of the unknown inputs ¢ -[t]). Moreover, if such
a strong observability condition holds, then this is equivalent to
saying that agent i will be able to uniquely determine the initial
condition ¥[0] based on the knowledge of its output sequence,
regardless of the unknown inputs.

Strong Observability and Connectivity: For the non-adversarial
setting, having a connected graph is enough to ensure observ-
ability of the pair (W, C;),Vi € V. In a similar vein, we need
to now discern how the structure of the underlying network
impacts strong observability. To this end, we present a simple
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argument to demonstrate that if the network is not adequately
connected, then system (9) will not be strongly observable w.r.t.
certain agents in the graph. For simplicity, let G be undirected.
Now suppose the connectivity « of G is such that ¥ < |F|. This
implies the existence of a vertex cut S, of size at most |F| that
separates the graph into two disjoint parts. Let the vertex sets for
these disjoint parts be denoted by S; and Ss. After reordering the
agents such that the agents in S; come first, followed by those in
S, and then Ss, the weight matrix takes the following form:

Wy Wp 0
W= |Wy Wy Wsy|.
0 Wi Wss

The structure of the above matrix follows immediately from
the fact that the agents in S; can interact with those in S3 only via
the agents in S,. Now suppose all the agents in S, are adversarial;
this is indeed feasible since |S;| < |F|. Moreover, let the initial
condition ¥[0] be of the form

¥[0] = [¥5,[0] ¥5,[00 ¥s[0]=[0 0 o],

where v is a non-zero vector in R!3!. If the adversarial inputs are
of the form ¢ .[t] = —W2311133[t], then it is easy to see that the
states of the agents in S; and S, remain at zero, i.e., according to
(9) we have

0 0
Y[1] = Wy[0] + ¢ -[0] = |:W231Ji| - |:Wz3vi| .
W33l) 0

Thus, an agent i in S; observes a sequence of zeros. It follows
that there is no way for agent i to distinguish the zero initial
condition from the non-zero initial condition we considered in
this example. Thus, system (9) is not strongly observable w.r.t.
agent i.

The above argument serves to once again highlight the in-
terplay between control- and graph-theory in the context of
information diffusion over networks. Moreover, it suggests that in
order for every agent to uniquely determine the initial condition,
the connectivity of the network has to somehow scale with the num-
ber of adversaries. Using a more refined argument than the one we
presented above, it is possible to show that a connectivity of 2f +1
is necessary for the problem under consideration (Pasqualetti
et al,, 2012; Sundaram & Hadjicostis, 2011), where f is the maxi-
mum number of malicious agents in the network. In Sundaram
and Hadjicostis (2011), it is established that a connectivity of
2f 4+ 1 is also sufficient for the linear iterative strategy to reliably
disseminate information between regular agents in the network
despite the actions of up to f malicious adversaries.

Theorem 3 (Sundaram & Hadjicostis, 2011). Given a fixed network
with n agents described by a graph G = {V, &}, let f denote the
maximum number of malicious agents that are to be tolerated in
the network, and let «j; denote the size of the smallest (i, j)-cut
between any two vertices j and i. Then, regardless of the actions of
the malicious agents, agent i can uniquely determine all of the initial
values in the network via a linear iterative strategy if and only if
min; ki > 2f + 1. Furthermore, if this condition is satisfied, i will
be able to recover the initial values after the agents run the linear
iterative strategy with almost any choice of weights for at most n
time-steps.

A key ingredient in the proof of Theorem 3 is establishing that
if G is (2f + 1)-connected, then the tuple (W, Bz, C;) is strongly
observable (i.e., does not possess any zero dynamics) Vi € V, for
almost all choices of the weight matrix W, and under any f-total
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adversarial set .3 This interdependence between system and
graph-theoretic properties is schematically illustrated in Fig. 5(c).

One important point to note is that the approaches developed
in Pasqualetti et al. (2012) and Sundaram and Hadjicostis (2011)
to combat adversaries require each regular agent to possess com-
plete knowledge of the network structure, and to perform a large
amount of computation to identify the malicious sets. For large-
scale networks, this may be infeasible. One may thus ask whether
it is possible to resiliently diffuse information across a network
when each regular agent only has local knowledge of its own
neighborhood, and can run only simple computations. In the
subsequent sections, we provide an overview of work showing
that this is indeed possible. However, as we shall see, the lack of
global information will dictate the need for stronger requirements
on the network topology (relative to (2f + 1)-connectivity).

Example 4. Consider the graph shown in Fig. 6(a). The objective
is for agent v; to calculate the function Z?:] 1/;?[0] despite the
presence of a malicious agent in the network, i.e. f = 1. In this
graph, agents v,, v3, and v4 are neighbors of vq, and vs and vg
have three internally vertex-disjoint paths to v;. Thus, xj; > 3 for
all j and, based on Theorem 3, v; is able to calculate the desired
function after running the linear iteration (with almost any choice
of weights) for at most n = 6 time-steps. We take each of the
edge and self loop weights to be i.i.d. random variables from the
set {—5,—-4,-3,-2,-1,1,2,3,4,5} with equal probabilities.
These weights produce the matrix shown in Fig. 6.

Since agent 1 has access to its own state and the states of its
neighbors, we have C; = [I; 0]. Based on these values, matrices
01, and M{T , are obtained and v; can calculate the initial state
vector ¥[0] using (10).

Suppose that the initial values of the agents are ¢[0] = [3 —
14 —4 7 117 and vy is a malicious agent. At time steps 1 and

2, v4 adds an additive error of {4[1] = —8 and {[1] = —12
to its updating rule. The values of all agents over the first three
time-steps of the linear iteration are given by ¢[0] = [3 —

14 —47 117, ¢[1] =[—26 0 26 49 46 — 801, and ¥[2] =
[199 43 —134 —222 —446 309]. The values seen by v; at time-
step t are given by y;[t] = C;¥[t]; agent v; can now use yq[t]
to calculate the vector of initial values, despite the efforts of the
malicious agent. Agent v, has to find a set 7; for which y4[0 : 2]
falls into the column space of 07, and Mfz. In this example, v4

can figure out that this holds for j = 4. Then, it finds vectors ¥
and £,[0 : 1] such that y[0 : 2] = O1,¥ + M]4¢5,[0 : 1] as
¢=1I[3-14 -47 11 and {£,[0: 1] =[-8 —12]. Agent v,
now has access to ¥[0] = ¥ and can calculate Z?zl 1//3[0] =212.
It is worth noting that for the network in Fig. 6(a), we have
K26 = 2, since the set ¥ = {v4, vs} forms a (2, 6)- cut (i.e., re-
moving agents v4 and vs removes all paths from v, to vg). Thus,
agent vg is not guaranteed to be able to calculate any function
of agent v,’s value when there is a faulty agent in the system. In
particular, one can verify that in the example above, where agent
vy is malicious and updates its values with the errors ¢4[1] = —8
and ¢4[1] = —12, the values seen by vg during the first three time
steps of the linear iteration are the same as the values seen by
agent vg when v1[0] = 4 or ¥1[0] = —3 and agent 5 is malicious
with ¥5[0] = 4 or ¥5[0] = 6. In other words, agent ve cannot
distinguish the case when agent v, is faulty from the case where
agent vs is faulty (with different initial values in the network).

Extra Conditions for Byzantine Attacks: For point-to-point com-
munications, which are prone to Byzantine attacks, in addition

8 Note that when F =0 (i.e, in the absence of adversaries), we immediately
recover that connectivity of g implies observability of (W, C;), Vi € v, for almost
all choices of the weight matrix W.
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Fig. 6. (a) Graph discussed in Example 4 and its weight matrix. (b) Schematics
showing the necessity of having sufficiently large number of non-Byzantine
agents in a network.

to the network connectivity, which has to be at least 2f + 1,
the total number of agents must satisfy n > 3f + 1. This is
because of the fact that if i receives j’s value reliably, it still
does not know what j told other agents in the network. Thus,
there must be a sufficient number of non-Byzantine agents in
the network in order for i to ascertain what j told ‘most’ of
the agents (Dolev, 1982; Dolev, Dwork, Waarts, & Yung, 1993).
This is schematically shown in Fig. 6(b). Suppose that a decision
must be made between two values 0 and 1. Since there are f
Byzantine agents, agent i must receive at least f + 1 consistent
messages so that it makes sure that the majority of the votes it
receives are from non-Byzantine agents. Clearly, at least half of
the messages sent from regular agents to agent i are consistent.
These % messages must outnumber the f messages sent from
the Byzantine set to agent i. Thus, we must have % > f or
n > 3f.

5. Resilient distributed consensus

Distributed consensus is a well studied application of infor-
mation diffusion in networks. In distributed consensus, every
agent in the network has some information to share with the
others, and the entire network must come to an agreement on an
appropriate function of that information (Jadbabaie et al., 2003;
Olfati-Saber et al., 2007; Olfati-Saber & Murray, 2004; Sundaram
& Hadjicostis, 2008). In the resilient version of distributed con-
sensus, the algorithm has to be modified in such a way that it
maintains the consensus value in a desired region despite the
actions of adversarial agents who attempt to steer the states
outside that region (or disrupt agreement entirely). The desired
steady state value can vary according to the application of in-
terest (Ghaderi & Srikant, 2014; Pirani, Shahrivar, & Sundaram,
2015).

Remark 1 (A Fundamental Limitation). In the standard linear con-
sensus dynamics, a single malicious agent (shown in black in
Fig. 7) can drive the consensus value towards its own state simply
by keeping its value constant, as shown in Fig. 7, left. More
generally, since the initial values of the agents are assumed to be
known only to the agents themselves, an adversarial agent can
simply change its own initial value and participate in the rest
of the algorithm as normal. This would allow the adversary to
affect the final consensus value (through its modified local value),
but never be detected. Thus, perfect calculation of any function of
initial values is generally impossible under adversarial behavior.
This is a fundamental limitation of all distributed algorithms for
any problem where each agent holds data that is required by
others to compute their functions (e.g., as in consensus, function
calculation, or distributed optimization), as will be discussed
later.
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Fig. 7. State trajectories of agents in the presence of a stubborn agent.

Stubborn Agents. In the context of opinion dynamics that capture
the spread of ideas and behaviors over a social network, agents
that never update their opinions (as mentioned in Remark 1)
are typically referred to as stubborn agents or zealots (Ghaderi &
Srikant, 2014; Pirani & Sundaram, 2014; Waagen, Verma, Chan,
Swami, & D’Souza, 2015; Yildiz, Acemoglu, Ozdaglar, Saberi, &
Scaglione, 2011). Such stubborn agents can be viewed as adver-
sarial agents who act in a specific structured manner (Gentz, Wu,
Wai, Scaglione, & Leshem, 2016). The authors in Ghaderi and
Srikant (2014) examine how the location of stubborn agents, and
their extent of stubbornness, affect consensus dynamics in a vari-
ety of networks. In particular, they show that for a certain class of
linear update protocols, the values of the other agents converge
asymptotically to a convex combination of the values held by
the stubborn agents. For continuous-time opinion dynamics, it
turns out that the rate of such convergence is characterized by
spectral properties of a matrix known as the grounded Laplacian
matrix (Barooah & Hespanha, 2006).2 In Pirani and Sundaram
(2014), the authors derive new bounds on the smallest eigen-
value of such grounded Laplacian matrices; these bounds have
immediate implications for the rate of convergence of consensus
dynamics with stubborn agents.

5.1. Classical approaches

Classical results on distributed consensus in the presence
of Byzantine agents date back to the computer science litera-
ture (Dolev, Lynch, Pinter, Stark, & Weihl, 1986) showing that the
regular agents can always reach a consensus if and only if (1) the
number of Byzantine agents is less than % of the network con-
nectivity, and (2) less than % of the total number of agents. This
aligns with the results obtained via control- and graph-theoretic
analysis of the linear iterative dynamics with malicious agents as
discussed in the previous section (Pasqualetti et al., 2012; Sun-
daram & Hadjicostis, 2011). However, these works require each
regular agent to have full knowledge of the network topology,
and for each regular agent to perform a substantial amount of
computations. The following subsection describes an alternative
scalable and “purely local” method for resilient consensus.

5.2. Purely local approaches

By imposing stronger conditions on the network topology
(beyond being just (2f + 1)-connected), one can formulate algo-
rithms that can handle worst case f-local Byzantine attacks with

9 Given a graph Laplacian matrix L, the grounded Laplacian is a sub-matrix
of L obtained by removing the rows and columns corresponding to the stubborn
agents from L.
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much less computational cost. In this class of algorithms, which
were first named approximate agreement (Dolev et al., 1986),
each regular agent disregards the largest and smallest f values
received from its neighbors at each iteration and updates its state
to be the average of a carefully chosen subset of the remaining
values (such quantities are known as trimmed means in the robust
statistics literature Huber, 1972). These methods were extended
to a class of algorithms named Mean-Subsequence-Reduced (MSR)
algorithms (Kieckhafer & Azadmanesh, 1994). In LeBlanc and
Koutsoukos (2011) a continuous-time variation of the MSR algo-
rithms, named the Adversarial Robust Consensus Protocol (ARC-P)
was proposed.

In what follows, we discuss an extension of MSR algorithms,
called Weighted-Mean-Subsequence Reduced (W-MSR) in LeBlanc
et al. (2013), which can handle f-local adversarial agents. The
algorithm is as follows.

(1) Let v[t] € R be the value maintained at each time step by
each regular agent i. At each time-step t, each regular agent
i receives neighbor values v;[t], j € A, and ranks them from
largest to smallest.

(2) If there are f or more values larger than v;[t], regular agent i
removes the f largest values. If there are fewer than f values
larger than v;[t], regular agent i removes all of these larger
values. This same logic is applied to the smallest values in
regular agent i’s neighborhood. Let R;[t] denote the set of
agents whose values were removed by i at time step t.

(3) Each regular agent i updates its value as

wilt + 11 = waltlpalel + Y wylelylel,

JENI\R;t]

(12)

where w;i[t] and wy[t] satisfy the following conditions:

. ;1:1 wiltl =1, Vt € Zso;

o wj[t] = 0 whenever j ¢ N; \ Ri[t], t € Zxo;

e there exists @ > 0 such that wy[t] > « for all j € A\
Ri[t], t e ZEO-

We call the largest number of values that each agent could
throw away the parameter of the algorithm (it is equal to 2f
in the above algorithm). Note that the above steps are only
followed by the regular agents; the adversarial agents can update
their states however they wish. Before presenting conditions for
resilient consensus, in the following example, we show that even
for networks that have a high connectivity (i.e., networks with
several disjoint paths between every pair of agents), the W-MSR
algorithm can fail to guarantee consensus in the presence of
adversaries.

Example 5. In the graph shown in Fig. 3(b), suppose that the
initial value of agents in set V; and set V; is zero and 1, respec-
tively. For f = 1, if each agent disregards the largest and smallest
values in its neighborhood, then the value of agents in sets V;
and V, remains the same as their initial value for all t > 0. As a
result, consensus will not be achieved even though there are no
malicious agents. This lack of consensus is despite the fact that
the connectivity of the graph is 3, and arises due to the fact that
the local state-dependent filtering in W-MSR causes the sets V;
and V;, to be disconnected at each iteration.

Although the network connectivity is no longer an appropri-
ate metric for analyzing the resilience of W-MSR dynamics, the
notion of graph robustness from LeBlanc et al. (2013) and Zhang
and Sundaram (2012) (see Section 2.1.2) turns out to be the key
concept. We first start with the following concept. Denote the
maximum and minimum values of the normal agents at time-step
t as M[t] and m[t].
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Definition 4 (f-local Safe). Under the f-local adversarial model,
the W-MSR algorithm is said to be f-local safe if both of the
following conditions are satisfied: (i) all regular agents reach
consensus for any choice of initial values, and (ii) the regular
agents’ values (including the final consensus value) are always in
the range [m[0], M[0]].

The following result provides conditions under which the
W-MSR algorithm guarantees (or fails) to be f-local safe.

Theorem 4 (LeBlanc et al, 2013). Under the f-local Byzantine
adversary model, the W-MSR algorithm with parameter 2f is f-local
safe if the network G is (2f + 1)-robust. Furthermore, for any f > 0,
there exists a 2f -robust network which fails to reach consensus based
on the W-MSR algorithm with parameter 2f.

As discussed in Section 2.1.2, the robustness condition used
in Theorem 4 is much stronger than the network connectivity
condition which was required in classical distributed consensus
algorithms. However, this stronger condition can be considered as
the price to be paid for a computationally tractable resilient con-
sensus algorithm which is able to tolerate worst-case Byzantine
attacks. Furthermore, under this condition, one gains the ability
to tolerate f-local adversaries (rather than f-total adversaries).

Several other variations of the above approach, including ex-
tensions to second order consensus with asynchronous time delay
and applications to formation control of mobile robots, are dis-
cussed in Dibaji and Ishii (2017), Dibaji, Ishii, and Tempo (2018)
and Saulnier, Saldana, Prorok, Pappas, and Kumar (2017). Appli-
cations of resilient consensus in multi-robot systems using Wi-Fi
communication are studied in Yemini, Nedi¢, Goldsmith, and Gil
(2021). Resilient flocking in multi-robot systems requires the ex-
tension of the above techniques to time varying networks, which
is studied in Saldana, Prorok, Sundaram, Campos, and Kumar
(2017). There, it is shown that if the required network robustness
condition is not satisfied at all times, the network can still reach
resilient consensus if the union of communication graphs over a
bounded period of time satisfies (2f + 1)-robustness. Moreover,
a control policy to attain such resilient behavior in the context of
perimeter surveillance with a team of robots was proposed.

5.3. Resilient vector consensus

The W-MSR algorithm described in the previous section con-
sidered the case where agents maintain and exchange scalar
quantities and remove “extreme” values at each iteration. How-
ever, the extension to multi-dimensional vectors requires further
considerations since there may not be a total ordering among
vectors. One option is to simply run W-MSR on each component
of the vector separately. If the graph is (2f + 1)-robust, this
would guarantee that all regular agents reach a consensus in a
hypercube formed by the initial vectors of the regular agents (de-
spite the actions of any f local set of Byzantine agents). Keeping
the agents’ states within the convex hull of the initial vectors
(as opposed to simply a hypercube), however, requires further
considerations, as we will discuss in this section. In particular,
the convex hull of a set of vectors is a subset of the region
(the hypercube) formed by the convex hull of their components
separately. This is shown in Fig. 8(a) in which the triangle is the
convex hull of the three points in R? and the gray rectangle is the
box formed by calculating the convex hull of each component of
the three vectors separately. Thus, the component-wise convex
hull gives an overestimate of the actual convex hull of the vectors.

First attempts to address Byzantine resilient vector consensus
to the convex hull of the initial values of the regular agents
were provided in Vaidya (2014) and Xiang and Vaidya (2016),
and were further developed in the context of rendezvous multi
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Fig. 8. (a) The box over-estimating the convex-hull of agents in R?. (b),(c) show
non-intersecting convex hull of the regular agents. (d) the dark region is the
centerpoint region of all six agents. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

robot systems by Park and Hutchinson (2017). To describe these
approaches, the following notion of safe points in a d-dimensional
space is useful.

Definition 5 (Park & Hutchinson, 2017). Given a set of n agents in
RY of which at most f are adversarial, a point p that is guaranteed
to lie in the interior of the convex hull of (n — f) regular points
(i.e., non-adversarial) is called an f-safe point.

Based on the above definition, the resilient vector consensus
algorithm relies on the computation of f-safe points by each
agent as follows:

(1) Let ¢,;[t] € RY be the value maintained at each time step
by each regular agent i. At iteration t, each regular agent i
gathers the state values of its neighbors N;.

(2) Each regular agent i computes an f-safe point, denoted by
si[t], of points corresponding to its neighbors’ states.

(3) Each regular agent i then updates its state by moving toward
the safe point s;[t], i.e.,

Yilt + 11 = ayltsilt] + (1 — eilt]) Pilt],

where o;[t] € (0,1) is a dynamically chosen parameter
whose value depends on the application.

(13)

It was shown in Park and Hutchinson (2017) that if all regular
agents follow the above routine, they are guaranteed to converge
to some point in the convex hull of their initial states. The
following proposition shows conditions for the existence of f-safe
points.

Proposition 1 (Park & Hutchinson, 2017). Given n points in RY,
whered € {1, 2, ..., 8}, and at most f points belong to adversaries,
then there exists an f-safe point if n > (f + 1)(d 4 1). The claim also
holds for d > 8 if Reay’s conjecture is true (Reay, 1968).

In Abbas, Shabbir, Li et al. (2020), it is shown that n >
(f + 1)(d + 1) is also a necessary condition for the existence of
an f-safe point. An example is shown in Fig. 8(b) and (c). The
malicious agents are shown with darker colors. Here, for f = 2
malicious agents, there is no 2-safe point (an interior point in the
intersection of convex hull of four regular agents).

The main question is how to find these f-safe points from
a given set of points in RY. In Park and Hutchinson (2017) and
Vaidya (2014), this is done via the Tverberg partitioning algo-
rithm, which partitions points into subsets such that the convex
hull of the partitions has a non-empty intersection, provided
that the number of agents is sufficiently large; see Barany and
Soberén (1966) for more details. A similar approach is recently
adopted in Yan et al. (2020). However, finding Tverberg partitions
is computationally hard in practice (although it is not proved that
the problem is NP hard). To achieve fast algorithms, one has to
pay the price of reducing the number of parts in the partition,
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Table 1
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Summary of references on resilient consensus. We classify references based on (i) the attack model; (ii) the dimension of the consensus variable y;[-] at each agent
i; (iii) the graph-structure, i.e., whether the underlying graph is fully-connected (complete) or a general network; and (iv) the information content available to each
agent: we use the term ‘local’ for update rules that require each regular node to only their own neighbors (and not the global network topology), and ‘non-local’

otherwise.

Attack model

Dimension of variable

Graph topology

Information content

Scalar Vector Complete General Local Non-Local

f-total malicious LeBlanc and - LeBlanc and Pasqualetti et al. - LeBlanc and
Koutsoukos Koutsoukos (2011) (2012) and Koutsoukos
(2011), Pasqualetti Sundaram and (2011), Pasqualetti
et al. (2012) and Hadjicostis (2011) et al. (2012) and
Sundaram and Sundaram and
Hadjicostis (2011) Hadjicostis (2011)

f-total Byzantine Dolev et al. Park and Dolev et al. (1986) LeBlanc et al. LeBlanc et al. Dolev et al. (1986)

(1986), LeBlanc
et al. (2013) and
Vaidya, Tseng, and

Hutchinson (2017),
Vaidya (2014) and
Vaidya and Garg

and Vaidya and
Garg (2013)

(2013), Park and
Hutchinson (2017),
Vaidya (2014) and

(2013), Park and

Hutchinson (2017),

Vaidya (2014) and

and Vaidya and
Garg (2013)

Liang (2012) (2013) Vaidya et al. Vaidya et al.
(2012) (2012)
f-local Byzantine LeBlanc et al. Abbas, Shabbir, Li - Abbas, Shabbir, Li Abbas, Shabbir, Li -
(2013) and Koutsoukos et al. (2020), et al. (2020),
(2020), Shabbir, Li, LeBlanc et al. LeBlanc et al.
Abbas, and (2013), Shabbir (2013), Shabbir
Koutsoukos et al. (2020a) and et al. (2020a) and
(2020a) and Yan, Yan et al. (2020) Yan et al. (2020)
Mo, Li, and Wen
(2020)
Stubborn Agents Ghaderi and - - Ghaderi and Ghaderi and -
Srikant (2014), Srikant (2014), Srikant (2014),
Pirani and Pirani and Pirani and

Sundaram (2014)
and Yildiz et al.
(2011)

Sundaram (2014)
and Yildiz et al.
(2011)

Sundaram (2014)
and Yildiz et al.
(2011)

i.e.,, the number of malicious agents. Linear time approxima-
tion algorithms to find Tverberg points, i.e., f-safe agents, have
been proposed in Mulzer and Werner (2013), provided that f <
(2%] —1. On the other hand, Tverberg partitioning provides strong
conditions for f-safe points, i.e., the outcome of the Tverberg
partitioning algorithm are f-safe points, but the reverse is not
true. A less conservative approach to find f-safe points via the
notion of a centerpoint was developed in Shabbir, Li, Abbas, and
Koutsoukos (2020b), as explained below.

Definition 6. Given a set X of n points in R?, a centerpoint p is
a point, not necessarily from X, such that any closed half-space!°
of RY containing p also contains at least {HLJ points from X.

By the centerpoint theorem, every finite set of points in R?
has a centerpoint (Matousek, 2002). It is shown that for a set of
n points in R? and f < [#1 — 1, the region of f-safe points
is equivalent to the centerpoint region (Shabbir et al., 2020b). The
centerpoint of six points is shown in Fig. 8(d). The following result
provides conditions for finding f-safe points.

Proposition 2 (Shabbir et al., 2020b). Given n points in R? for which
at most f points belong to adversaries, then an f-safe point can be
computed (using centerpoint) if

n
<[——=1-1 d=2,3,
f_l-d—|—11

fif%W-l d> 3. (14)

For a summary of the references surveyed in this section,
please see Table 1.

10 A closed half-space in R? is a set of the form {x € R? : a'x > b} for some
a e R\ {0}.
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6. Resilient distributed optimization

While the consensus problem discussed in the previous sec-
tion considered the scenario where each agent has a static initial
value, a more general setting is that of distributed optimization.
In this setting, each agent i € V has a convex function g; : R — R
(with bounded subgradients) which is only available to agent
i.'1 The objective is for the agents to solve the following global
optimization problem in a distributed manner:

1 n

min g(y) = ;gl(w). (15)
A common approach to solve this problem is to use a syn-
chronous iterative consensus-based protocol in which agents use
a combination of consensus dynamics and gradient flow to find a
minimizer of g(y) (Nedic & Ozdaglar, 2009). More specifically,
at every time-step t € N, each agent i maintains an estimate
Yi(t) € R of the solution to (15), and updates it based on the
information received from its neighbors, as follows

ilt + 11 = waltlyale] + Y wyltlyle] — endift].

JENlt]

(16)

In the above update rule, d;[t] is a subgradient of g; evaluated
at wi[t]yilt] + ZjeNi[t] wii[t]y;lt], and o; is the step size se-
quence corresponding to the influence of the subgradient on the
update rule at each time-step. As before, weights w;[t], w;[t], ] €
Nij[t] specify a convex combination at each time-step t, and are
bounded away from zero (whenever they are positive). Dynamics
(16) can be represented in the following vector form as

Ylt + 1] = W[ty [t] — eed[t], (17)

where W(t] is a doubly-stochastic matrix. The following result
shows that the update rule (16) allows the agents in the network
to distributively solve the global optimization problem (15).

11 e discuss the case of multi-dimensional functions later in this section.
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Proposition 3 (Nedic & Ozdaglar, 2009). Suppose that G is strongly
connected at each time step and that the subgradients of each of the
local functions g; are bounded. For the update rule (16) with step
sizes satisfying >, o = 0o and Y, af < oo, we have

lim [yl = v =0,

for all i € v, where ¢* is the global minimizer of g(v).

(18)

Our objective here is to summarize the vulnerabilities of such
protocols to adversarial agents, and to provide an overview of
secure distributed optimization algorithms that have provable
safety guarantees despite the presence of such agents. Recent
works have focused on some gradient-based metrics to detect
and identify malicious agents in a distributed optimization al-
gorithm (Ravi, Scaglione, & Nedic, 2019). However, similar to
previous sections, our focus is on graph-theoretic methods. As
before, we assume that adversarial agents can update their states
in a completely arbitrary manner.

Remark 2 (Fundamental Limitation Revisited). Following the fun-
damental limitation discussed in Remark 1, one can easily argue
that it is generally impossible to compute i* when there are
adversarial agents in the network, since one can never infer their
local functions accurately. As an example, suppose that agent n is
adversarial and wishes the states to converge to ¥ € R. It simply
chooses a function g(v) such that the minimizer of Z?;l g()+
&n() is . For a vanishing step size, i.e, lim;a; = 0, all
regular agents will asymptotically converge to ¥ when following
the distributed optimization dynamics (16). Since the functions
g; are arbitrary and known only to the agents themselves, such
deceptions cannot be detected.

The above fact is formally stated as follows.

Theorem 5 (Su & Vaidya, 2021; Sundaram & Gharesifard, 2018).
Suppose I' is a distributed algorithm that guarantees that all agents
calculate the global optimizer of (15). Then a single adversary can
cause all agents to converge to any arbitrary value when they run
algorithm I, and furthermore, will remain undetected.

Theorem 5 indicates that it is generally impossible to de-
velop an algorithm that always finds optimal solutions and is
also resilient to carefully crafted attacks. Thus, the price that
is paid for resilient distributed optimization is a loss in opti-
mality. It should be noted, however, that the discussion above
pertains to scenarios where no further assumption is made on
the availability of side information, or on additional structure of
the nature of the problem. In turns out that under additional
information/problem-structure, one can compute the exact op-
timal solution in the presence of adversaries. For more on this
topic, we refer the reader to the discussion under “Exact Fault
Tolerance” in Section 6.2.

In what follows, we describe resilient consensus-based dis-
tributed optimization protocols.

Suppose the adversarial agents form an f-local set. At each
time step, every regular agent gathers and sorts the states of all
of its neighbors and, similar to the W-MSR algorithm in Section 5,
each agent disregards the highest f and lowest f states from the
gathered states, denoted by set R;[t], and updates its state as

Gilt + 1= waltlyltl + Y wyltlylt] — eudile],  (19)

JENIEI\R[t]

where d;[t], a; are the same as (16).

In Sundaram and Gharesifard (2018), graph-theoretic condi-
tions for agents to reach consensus in the presence of f-total
malicious agents under the linear filtering rule in (19) are dis-
cussed. The arguments rely on the fact that in (2f + 1)-robust
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networks, the weight matrix W[t] corresponding to the regular
agents is rooted at each time-step, i.e., there is a agent with a
directed path to every other agent in the graph induced by the
regular agents. Other sufficient conditions (similarly assuming the
existence of rooted agents in the set of regular agents R) are
presented in Su and Vaidya (2021).

The following result shows that (19) provides a safety guar-
antee for distributed optimization, i.e., convergence to the inter-
val containing the local minimizers of the regular agents, under
certain conditions on the network and the step size «;.

Theorem 6 (Sundaram & Gharesifard, 2018). Suppose that one of
the following conditions holds:

(i) The adversarial agents are f-total malicious and the network
is (f + 1, f + 1)-robust; or

(ii) The adversarial agents are f-local Byzantine and the network
is (2f + 1)-robust.

Furthermore, for each agent i € R, let the local function gi(-) have
minimizer m;. Define M = max{m;|i € R} and M = min{m|i €
R}. If stepsizes «; satisfy Y o oo and lim;_,.c @ = 0, then
limsup,_, o, ¥ilt] < M and liminf;_  ¥i[t] > M for alli € R,
regardless of the actions of the adversarial agents and the initial
values.

Remark 3 (Lack of Convergence). Despite the fact that the resilient
distributed optimization technique in Theorem 6 guarantees that
the states maintained by all regular agents eventually converge
to the interval specified by the local minimizers of the regular
agents, it does not guarantee convergence to a constant value
within that interval under certain type of adversarial actions and
specific classes of step sizes; see examples in Sundaram and
Gharesifard (2018).

6.1. Factors that affect the performance of resilient distributed opti-
mization algorithms

The following example from Sundaram and Gharesifard (2018)
shows that under the dynamics (19), the nature of the individual
optimization functions together with the network topology deter-
mine how far away the convergence point is from the minimizer
of the average of the regular agents’ functions.

Example 6. Consider network G = {V, £} which is 2f + 1 robust
and let 7 C V be an f-local set. Suppose all agents are regular.
Pick an a € R and let agents in 7 have local functions g,(v)
(¢ —a)? and the agents in V\ 7 have local functions g,(y) = ¥2
(both functions can be modified to have their gradients capped at
sufficiently large values, so as to not affect the minimizer of any
convex combination of the functions). Let g(y) be the average
of all of the functions, with minimizer v * %a. Then, under
the local filtering dynamics (19) with parameter f, all agents
converge to the value ¥ = 0 and thus ¢ — y* = Zlg and

g() —g(y*) = ZL

n2

The above result shows that if the network contains a large
f-local set (in relation to the total number of agents) or the local
functions have minimizers that are very different (corresponding
to a large |a| in the above result), then the value computed by (19)
will have a greater divergence from the globally optimal solution.
Note that an f-local set in a graph will have size at least equal to
f (since any set of size f is f-local).

al.
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Table 2
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Summary of references on resilient distributed optimization. We classify references based on (i) the dimension of the variable ¥ in (15), i.e., based on whether
Y is a scalar or a vector; (ii) the graph-structure, i.e., whether the underlying graph is fully-connected (complete) or a general network; and (iii) the nature of the
guarantee: here, by exact (resp., approximate), we imply convergence (in a suitable sense) to the desired optimal point (resp., to a neighborhood of the desired
optimal point). Exact convergence usually comes at a price: Gupta and Vaidya (2020) and Gupta, Doan, and Vaidya (2021) make certain redundancy assumptions on
the functions, Yang and Bajwa (2019) impose an i.i.d. statistical assumption on the agents’ data distributions, and Yemini, Nedi¢, Gil, and Goldsmith (2022) assume

the existence of certain indicators of trust.

Attack model Dimension of variable

Graph topology

Type of guarantee

Scalar Vector Complete General Exact Approximate
f-total malicious Sundaram and - - Sundaram and - Sundaram and

Gharesifard (2018) Gharesifard (2018) Gharesifard (2018)
f-total Byzantine Su and Vaidya Gupta et al. Gupta and Vaidya Su and Vaidya Gupta et al. Su and Vaidya

(2021)

(2021), Gupta and
Vaidya (2020),

(2020) and Gupta
et al. (2021)

(2021), Yang and

(2021), Gupta and

(2021)

Yang and Bajwa

(2019) and Yemini

et al. (2022)

Kuwaranan- N
charoen, Xin, and
Sundaram (2020)

Sundaram and
Gharesifard (2018)

f-local Byzantine

Bajwa (2019) and Vaidya (2020),
Yemini et al. Yang and Bajwa
(2022) (2019) and Yemini

et al. (2022)
Kuwaranancharoen -
et al. (2020) and
Sundaram and
Gharesifard (2018)

Kuwaranancharoen
et al. (2020) and
Sundaram and
Gharesifard (2018)

6.2. Extension to multi-dimensional functions

In this subsection, we consider the case where the value for
each agent is a d-dimensional vector. Thus, the local cost function
for agent i becomes g; RY — R, and the objective is to
collaboratively solve (15) over ¥ € RY.

The extension to general multi-dimensional functions is a
challenging problem as even the region containing the true min-
imizer of the functions is not easy to characterize. In partic-
ular, unlike the scalar case for which the minimizer of g(v)
lies within the convex hull of the minimizers of the individ-
ual functions, for the multi-dimensional case, the true mini-
mizer vector may lie outside the convex hull of the individ-
ual minimizer vectors (Kuwaranancharoen & Sundaram, 2018).
However, there have been some recent attempts to address the
resilient distributed multi-dimensional optimization problem, as
we now briefly summarize. Assuming the malicious agents be-
have in a prescribed manner, Ravi et al. (2019) proposed an attack
detection and isolation technique before the execution of the
distributed optimization algorithm. In Yang and Bajwa (2019),
the authors consider a resilient decentralized machine learning
problem, and show that by utilizing a block coordinate descent
method, the states of the regular agents will converge to the
statistical minimizer with high probability. However, the analysis
in Yang and Bajwa (2019) is restricted to i.i.d. training data across
the network.

In contrast to Yang and Bajwa (2019), the authors in
Kuwaranancharoen et al. (2020) develop a two-step filtering
technique and provide convergence guarantees that do not make
any statistical assumptions on the agents’ objective functions. For
an f-local Byzantine attack model, under the assumption that G
is ((2d + 1)f + 1)-robust, the approach in Kuwaranancharoen
et al. (2020) guarantees asymptotic consensus of the states of
all regular agents within a bounded region containing the global
minimizer.'> Simply applying the W-MSR algorithm to each
coordinate of the parameter vector does not immediately lead
to the above result. Instead, the approach in Kuwaranancharoen
et al. (2020) relies on a carefully designed second filtering step.

Exact Fault Tolerance: Instead of settling for convergence to a
proximity of the global minimizer (as in Kuwaranancharoen et al.,
2020; Sundaram & Gharesifard, 2018), one may ask whether it

12 Note that the requirement on the network topology scales with the
dimension d of the parameter, as was the case for the resilient vector consensus
schemes described in Section 5.3.
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is possible to converge exactly to the minimizer of the sum of
the objective functions of the regular agents, despite Byzantine
attacks. As argued in Sundaram and Gharesifard (2018), this is
impossible unless additional assumptions are made on the agents’
functions. In this context, the authors in Gupta et al. (2021)
show that under a 2f-redundancy assumption on the agents’
objective functions, one can indeed achieve exact convergence
even in the multi-dimensional case based on a norm filter. In fact,
such an assumption turns out to be necessary for guaranteeing
exact convergence, as established in Gupta and Vaidya (2020). Yet
another avenue for achieving exact fault tolerance is to assume
the existence of some source of trusted side information; this is
the approach pursued in Yemini et al. (2022). The main message
here is that in the presence of adversarial agents, one can still
retain exact optimality guarantees; however, this comes at the
expense of additional side-information or assumptions on the
problem-structure.

The analysis in Gupta et al. (2021) is carried out for a complete
peer-to-peer network under an f-total Byzantine attack model.
Extending the results in Gupta et al. (2021) to general networks
remains an open direction of research. Moreover, investigating
whether the graph-theoretic conditions in Kuwaranancharoen
et al. (2020) can be relaxed is also an interesting open problem.

For a summary of the references surveyed in this section,
please see Table 2.

7. Resilient distributed estimation and inference

Another canonical distributed problem involves estimating/
tracking an unknown state of interest based on measurements
that are collected by a network of sensors. Within this broad
setting, there can be several variations: the unknown state may
be static or may evolve based on a dynamical model; the mea-
surements may be noise-free or may be corrupted by stochastic
noise; and the goal could be to estimate the state asymptotically,
or to derive finite-time guarantees.

All of the above variations share a common unifying feature:
new information flows into the network at every time-step. This
distinguishes the distributed estimation setup from the consensus
and optimization problems that we discussed earlier, where each
node started with a single piece of information (i.e., their initial
values or functions), and no additional information subsequently
entered into the network from outside. Another important differ-
ence stems from the fact that agents typically have heterogeneous
measurement/observation models in an estimation problem. As
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a consequence, some agents may be more “informative” than
others. This disparity in information content across the network
is another key feature that is absent in the standard consensus
or distributed optimization formulations. As such, the algorithmic
techniques and graph-theoretic conditions that we will cover in
this section will differ significantly from those in Sections 5 and 6.
Furthermore, the computational complexity involved in assessing
the required properties will be different, as we will discuss later
in Remark 4.

Before formally discussing resilient estimation algorithms, we
outline two important considerations: the nature of the unknown
quantity to be estimated, and the nature of the threat model.

Static Parameter Estimation vs. Dynamic State Estimation: As
the name suggests, in static parameter estimation, the goal is to
estimate a static parameter 6* based on noisy sensor observa-
tions acquired by the agents. In contrast, the task in (dynamic)
state estimation is to track a state x[t] that evolves based on
a dynamical system model such as a linear time-invariant (LTI)
model. Even in the absence of adversaries, tracking the state
of an unstable system based on dispersed measurements is a
significantly challenging task. Thus, we will discuss the relatively
simpler resilient distributed parameter estimation problem first,
and then move on to the dynamic state estimation setting.

Sensor Attacks vs. Byzantine Attacks: The works that we will
review can also be broadly classified in terms of the threat model.
In particular, there are two predominant attack models that are
studied in the resilient distributed estimation literature: sensor
attacks and Byzantine attacks. In the former case, measurement
streams of certain agents are corrupted by an additive attack
signal; these signals may or may not be bounded. However, all
agents behave normally, i.e., they follow the prescribed protocol
at all times.'? In contrast, recall that a Byzantine agent can act
arbitrarily (i.e., it may not process the sensor information as it
supposed to). As we shall see, the nature of the threat model has
significant implications for the graph-theoretic properties needed
to combat attacks.

7.1. Parameter estimation

In the distributed parameter estimation problem, each agent
i € V receives measurements as follows:

yilt] = Hi6™ + ny[t]. (20)

Here, 6* e RY is the true unknown parameter, y;[t] € R
is the measurement vector for agent i, H; € R'i*? is the local
observation matrix for agent i, and n;[t] is the measurement noise
that is typically assumed to independent and identically (i.i.d.)
distributed over time, with zero mean and finite variance. More-
over, the noise sequences across different agents are assumed to
be independent.

Objective: In the non-adversarial setting, the goal is to design
a consistent distributed estimator, i.e., an estimator that ensures
that the estimates of all agents converge to 6* asymptotically
almost surely. This is typically achieved by designing “consensus
+ innovations”-type estimators (Kar & Moura, 2011, 2013; Kar,
Moura, & Ramanan, 2012; Xie, Choi, Kar, & Poor, 2012) that work

13 It should be noted that sensor attacks are neither malicious nor Byzantine.

Whereas malicious and Byzantine agents (in the sense of Definition 1) can
be defined for any distributed problem over a network, the notion of sensor
attacks only makes sense for state estimation/inference problems due to the
injection of new information into the network via those sensors. Moreover,
unlike malicious/Byzantine agents, when an agent is under a sensor attack, it
still continues to transmit whatever it is required to transmit (under a given
protocol) accurately.
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under two standard assumptions: (i) the joint observation model
is globally observable, ie., ) ,.,, HH; is invertible, and (ii) the
graph g is connected.

In the resilient version of the above problem, a certain subset
A C V of the agents is corrupted either due to sensor attacks
or due to Byzantine attacks. We now discuss the key algorithmic
approaches to tackle such attacks. For each approach, we will
focus on highlighting (i) the threat model; (ii) the main tech-
nique; (iii) the guarantees provided by the approach; and (iv) the
assumptions on the observation model and the underlying graph
needed to provide such guarantees.

(1) Methods based on adversary detection: In Chen, Kar, and
Moura (2018b), the authors consider a Byzantine attack model,
and propose the Flag Raising Distributed Estimation (FRDE) algo-
rithm where agents simultaneously perform parameter estima-
tion and adversary detection. Specifically, for parameter estima-
tion, the regular agents employ a consensus+innovations update
rule, similar to those in Kar and Moura (2011, 2013), Kar et al.
(2012) and Xie et al. (2012). The consensus part of the update
rule is based on a weighted average of neighbors’ parameter esti-
mates, while the innovation part processes the agent’s own local
measurements. For adversary detection, an agent computes the
Euclidean distance between its own estimate and the estimates
of its neighbors. If this distance exceeds a time-varying threshold,
then an attack flag is raised. The design of this adaptive threshold
constitutes the key part of the FRDE algorithm.

The FRDE algorithm is analyzed under two main assumptions:
(i) the joint observation model of the regular agents is globally
observable, i.e., ), H{H; is invertible, where R = vV \ A4; and
(ii) the induced sub-graph Gr of the regular agents is connected.
Under these assumptions, it is shown in Chen et al. (2018b)
that either all regular agents detect the presence of adversaries,
or their local estimates converge to 6* asymptotically almost
surely. In other words, “strong” attacks get detected while “weak”
attacks fail to disrupt the process of estimation.

Discussion: The assumption that the parameter is globally ob-
servable w.r.t. the joint measurements of the regular agents is
quite intuitive, and in fact necessary (under the Byzantine at-
tack model). The necessity of the graph condition in Chen et al.
(2018b) is, however, an open question. Based on the FRDE algo-
rithm, if the presence of adversaries is detected, the system needs
to go through an external “repair” phase; multiple such repair
phases could potentially be quite expensive. An alternative is to
thus design algorithms that always allow the regular agents to
estimate the true parameter, despite the presence of adversaries.
We now discuss such methods.

(2) Saturating adaptive gain methods: We will discuss this
technique in some detail since it has recently been used in the
context of resilient distributed state estimation as well (He, Ren,
Sandberg and Johansson, 2021). To convey the core idea, we will
review the simplest version of this method introduced in Chen,
Kar, and Moura (2018a) to tackle sensor attacks. For an agent
i € A under attack, its measurement model is as follows:

yilt] = 0" + ailt], (21)

where @;[t] is the attack signal injected in the measurements of
agent i. For agents whose measurements have not been corrupted,
the attack signal is identically zero at all times. It is important to
note that the measurement model here is homogeneous and noise-
free, and that all uncompromised agents can directly measure
6*. For this model, the authors in Chen et al. (2018a) propose
the Saturated Innovation Update (SIU) algorithm where all agents
employ a consensus+innovations estimator with a time-varying
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gain applied to the local innovation term. Specifically, agent i's
estimate x;(t) of 6* is iteratively updated as

xilt + 11 = xlt] — B Y (xilt] = x[t])
JeN;
+ o K[t] ilt] — xi[tD)

where «;, B¢, and K;[t] are strictly positive, scalar-valued design
parameters. The time-varying gain K;[t] is defined as

1,
Ki[t] = e
Iy lE=TeTT

where y; is an adaptive threshold. For a detailed description of
how the parameter sequences {«:}, {8:}, and {y;} are designed,
we refer the reader to Chen et al. (2018a). In what follows, we
briefly explain why the design of y; is a delicate matter. Indeed,
if y; is chosen to be too small, then the innovation gain K;[t] will
limit the impact of adversaries; however, a very small innovation
again may also prevent correct identification of 6*. On the other
hand, if y; is too large, then it may provide the adversaries with
enough flexibility to direct the agents’ estimates away from 6*.
Thus, striking the right balance in the design of y; is critical.
The following theorem from Chen et al. (2018a) characterizes the
performance of the SIU algorithm.

(22)

llyilt] — xiltll2 < ve

otherwise, (23)

Theorem 7 (Chen et al, 2018a). Suppose the following conditions
hold. (i) The graph G is connected. (ii) The true parameter 6* is
bounded, i.e., ||6*|, < n, for some finite n that is known a priori to
all agents. (iii) Less than half of the agents are under sensor attack,
ie, |A|/|[V| < 1/2. Then, the parameters «, B;, and y; can be
designed such that the update rule in (22) ensures

lim (¢t + 1)°||x;[t] — 0*||, =0,Vie V, (24)
t—o00

for all ty such that 0 < t©9 < 11 — T3, Where tq, 7, are design
parameters satisfying 0 < 7, < 7y < 1.14

The above theorem tells us that SIU is a consistent estimator,
and that the rate of convergence is of the order of 1/t™, for any
1o satisfying 0 < 19 < t; — 1. Building on the main idea of
using an adaptive threshold to design the innovation gain, the
authors in Chen et al. (2018a) later generalized their results to
account for heterogeneous measurement models corrupted by
noise; see Chen, Kar, and Moura (2018c, 2019). In Chen, Kar, and
Moura (2020), it was shown that the saturating adaptive gain
idea is also effective in the context of resilient distributed field
estimation under measurement attacks.

Discussion: We now highlight two subtle implications of the
choice of threat model. First, note that the guarantee in The-
orem 7 holds for all agents, as opposed to just the regular
agents. This is the typical guarantee one provides for measure-
ment/sensor attack models. It is instructive to compare such a
result with those for the Byzantine setting (see, for instance,
Theorem 8) where the goal is to enable only the regular agents
to estimate the unknown quantity of interest.

The second key observation pertains to the graph condition in
Theorem 7. All that is needed is connectivity of the underlying
network — the exact same condition even in the absence of
adversaries. Thus, the main takeaway here is that the graph-
theoretic conditions for solving the distributed parameter estimation
problem are the same with and without sensor attacks. The main
reason for this can be attributed to the fact that even if an agent’s
measurements are compromised, it does not try to actively dis-
rupt the flow of information between regular agents; however,

14 1 Chen et al. (2018a), the adversarial set A is allowed to change over time.
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a Byzantine agent might. This necessitates much stronger graph-
theoretic conditions to tackle Byzantine attacks, as we shall see
in Section 7.2.

(3) Methods based on online optimization: Yet another way
to approach the distributed parameter estimation problem is to
view it from the lens of online optimization. This is precisely the
method adopted in Su and Shahrampour (2020), where the au-
thors consider a Byzantine attack model. To explain this method,
for each agent i € V, define its local asymptotic loss function
g R > Ras

1
800 = SE [IHix — yill3],

where y; is as in (20), and the expectation is taken w.r.t. the mea-
surement noise w;[t]. Since the distribution of the noise sequence
is unknown to agent i, it cannot access the above loss function.
Nonetheless, agent i can use all the measurements it has acquired
up to each time-step t to compute an empirical approximation of

gi(x):

(25)

1 t
giex) = 5o IHx = yils] 3. (26)
s=1

The algorithm in Su and Shahrampour (2020) essentially com-
bines local gradient descent on the above empirical loss functions,
followed by coordinate-wise trimming to aggregate neighboring
information; trimmed means are used to account for the presence
of adversaries. This algorithm enables each regular agent to esti-
mate the true parameter asymptotically almost surely. Moreover,
as a departure from existing results on this problem, the authors
provide finite-time concentration bounds that hold with high prob-
ability. To arrive at the above results, the conditions imposed on
the graph topology are the same as those for Byzantine-resilient
scalar consensus (Vaidya et al., 2012). In Su and Shahrampour
(2020), certain additional graph-theoretic assumptions are made
on the observation model that may not be necessary.

Additional Results: Before moving on to the dynamic state es-
timation setting, we briefly comment on a couple of related
works. For a somewhat different observation model than in (20),
the authors in LeBlanc and Hassan (2014) provide guarantees
against Byzantine attacks by drawing on the techniques and
graph-conditions in LeBlanc et al. (2013). To the best of our
knowledge, this is the earliest work on resilient distributed pa-
rameter estimation.

Recently, the authors in An and Yang (2021) proposed a min-
switching technique to account for the presence of Byzantine
agents in the context of least-squares static estimation. The main
idea behind the approach in An and Yang (2021) is to first
construct an appropriate local Lyapunov function at each regular
agent. The filtering technique then comprises of using only those
neighboring estimates that lead to maximum decrease of the
Lyapunov function. It is shown that this method can help relax
the graph-theoretic conditions in both (Mitra & Sundaram, 2019;
Su & Shahrampour, 2020).

7.2. Dynamic state estimation and inference

In a typical distributed state estimation problem, the goal is to
track the state of a linear time-invariant system of the following
form:

X[t + 1] = Ax[t], (27)

where x[t] € RV is the state vector and A is the state transition
matrix. The system is monitored by a network G {v, &}
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consisting of n agents. The measurement model of the ith agent
is given by

yilt] = Gxl[t], (28)

where y;[t] € R" and C; € R*N. Note that r; is typically assumed
to be smaller than N, and thus each agent only receives a partial
measurement of the entire state. We use C = [C;, C}, ..., (] to
collect all the individual agent observation matrices and y[t] =
ile], y5ltl, ..., yyle]] to aggregate all the individual measure-
ment vectors; accordingly, y[t] = Cx[t]. Each agent i maintains
an estimate ¥;[t] of the state x[t], and the goal is to ensure that
these estimates converge to X[t] asymptotically.

Even in the absence of adversaries, the distributed state esti-
mation problem is quite challenging, and only recently were nec-
essary and sufficient conditions discovered for this problem (del
Nozal, Millan, Orihuela, Seuret, & Zaccarian, 2019; Han, Trentel-
man, Wang, & Shen, 2019; Kim, Lee, & Shim, 2019; Mitra &
Sundaram, 2018; Park & Martins, 2017; Rego, Aguiar, Pascoal, &
Jones, 2017; Rego, Pascoal, Aguiar, & Jones, 2019; Wang & Morse,
2018). The key technical challenge arises from the fact that (A, C;)
may not be detectable w.r.t. the measurements of any individual
agent i. This is precisely what necessitates communication be-
tween agents in the graph. The difficulty of tracking an unstable
dynamical process based on dispersed measurements only gets
exacerbated in the presence of adversaries. Following the same
style of exposition as in Section 7.1, we now discuss the main
techniques for resilient distributed state estimation.

(1) Methods Based on Observable Decompositions and Local
Filtering: We start by reviewing the approach developed in Mitra
and Sundaram (2019) for solving the resilient distributed state
estimation problem subject to an f-local Byzantine adversary
model. In order to focus on the core ideas behind this approach,
we assume that the system matrix A has real and simple eigen-
values; extensions to general spectra can be found in Mitra and
Sundaram (2019). As a first step, we diagonalize A using a co-
ordinate transformation matrix V = [v!,v?, ..., v"] formed by
N linearly independent eigenvectors of A. In the new coordinate
system where z[t] = V~!x[t] is the state, the dynamics (27) and
(28) take the following form:

z[t + 1] = Mz[t],
yilt] = Gz[t].

Here, M = V~'AV is a diagonal matrix with diagonal entries
comprising of the distinct eigenvalues A4, A5, ..., Ay of A, and
C; = GV. We note that the above transformation is completely
independent of the network topology and can be done individ-
ually by each agent; it is purely a coordinate transformation
on the external system and the local measurement matrix. The
only requirement is that all agents use the same coordinate
transformation matrix V, which can be ensured if they are all
programmed with the same algorithm to compute that matrix
based on the given matrix A.

Based on the above decomposition, each agent i can imme-
diately identify (locally) the set of eigenvalues ©; that are de-
tectable w.r.t. its own measurements. The key observation made
in Mitra and Sundaram (2019) is the following. Each agent i can
estimate the components of the state vector z[t] corresponding
to its detectable eigenvalues O; without interacting with any
neighbor. It needs to employ consensus only for estimating those
components that correspond to its undetectable eigenvalues 2/ O;.
Specifically, every regular agent i employs the following scheme.

(29)

(i) For each A; € ©;, agent i uses a standard Luenberger
observer to estimate z0)[t] — the component of z[t] corre-
sponding to A;.
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(i) For each A; € UO;, agent i uses a “local filtering” technique
to estimate z[t].

We now elaborate on item (ii). Let Ay(M) represent the set
of all unstable and marginally stable eigenvalues of M. Moreover,
for each A; € Ay(M), let S; be the set of agents that can detect
Aj; we will refer to S; as the set of source agents for mode ;. To
enable the agents in V' \ S; to estimate zU)[¢], the following two
requirements (stated loosely here, and more formally later) turn
out to be critical.

¢ Information redundancy: The set S; needs to be sufficiently
large. Otherwise, if the sources of information for the mode
Aj are corrupted by too many adversaries, then the other
agents cannot hope to recover the correct information about
that mode.

o Network-structure redundancy: There must exist sufficient
disjoint paths in G that link the agents in S; to those in
V\ ;. Otherwise, the adversaries can form a bottleneck and
disrupt the flow of information from &;j to V'\ S;.

In Mitra and Sundaram (2019), the authors introduce a graph-
theoretic construct called the Mode Estimation Directed Acyclic
Graph (MEDAG) to capture the above requirements. Essentially, a
MEDAG ¢; for mode A; is a subgraph of G that provides a secure
uni-directional medium of information-flow from S; to V \ ;.1
The uni-directional aspect is important to ensure stability of the
estimation error dynamics; it has nothing to do with adversaries.
Once a MEDAG ¢; has been constructed for each A; € Ay(M), an
agent i € V \ §; uses the estimates of only its neighbors N}” in
the MEDAG g; to update its estimate ii(’)[t] of z0[t] as follows:

le+1=x5 > wtE.
temPpe)

(30)

In the above update rule, M?)[t] C Ni(” C M is the set of those
neighbors from whom agent i accepts estimates of zU)[t] at time-
step t, after removing the f largest and f smallest estimates of
20[t] from A'¥; the properties of a MEDAG g ensure that MY[t]
is always non-empty. The weights in (30) are non-negative and
chosen to satisfy ZeeM,@”[t] wi(?[t] 1. The overall approach

we described above is called the Local-Filtering based Resilient
Estimation (LFRE) algorithm in Mitra and Sundaram (2019).

To analyze the performance of the LFRE algorithm, we need
to first understand when a given network G contains a MEDAG.
The following graph-theoretic property is what we need in this
context.

Definition 7 (Strongly r-robust Graph w.r.t. S). Given a graph G =
(v, €), a positive integer r € N, and a non-empty set S C V, G
is strongly r-robust w.r.t. the set of agents S if for any non-empty
subset C C V \ S, C is r-reachable.

For an illustration of the above definition, consider the setup
in Fig. 9 where a scalar unstable plant is monitored by a network
of agents. Agents 1, 2, and 3 are the source agents for this system,
i.e., S = {1, 2, 3}. The graph on the left in Fig. 9 is an example of
a network that is strongly 3-robust w.r.t. the set of source agents
S. Specifically, all subsets of {4, 5, 6, 7} are 3-reachable (i.e., each
such subset has an agent that has at least 3 neighbors outside
that subset). The graph on the right is an example of a MEDAG.
The next result exemplifies the role played by strong-robustness
in resilient distributed state estimation.

15 For a precise description of the properties of a MEDAG, see Mitra and
Sundaram (2019), where a distributed algorithm is provided to construct such
subgraphs.
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Fig. 9. (Left) A scalar unstable plant is monitored by a network of 7 agents.
The network is strongly 3-robust w.r.t. the set of source agents s = {1, 2, 3}.
(Right) A subgraph of the original graph satisfying the properties of a MEDAG.

Theorem 8 (Mitra & Sundaram, 2019). Suppose G is strongly
(2f + 1)-robust w.r.t. S;,VA; € Ay(A). Then, the LFRE algorithm
guarantees lim,_ o ||Xi[t] — X[t]|| = O for every regular agent
i, despite the presence of any f-locally bounded set of Byzantine
adversaries.

Discussion: While the above result provides a sufficient condition
for tolerating Byzantine adversaries in the context of distributed
state estimation, separate necessary conditions are also identified
in Mitra and Sundaram (2019). These necessary conditions are
based on two key ingredients: (i) critical information sets: sets of
agents whose measurements have to be utilized for observing the
state, i.e., if such agents were to be removed from the network,
the system would lose observability; and (ii) cuts in the network
that separate such critical informative agents from the rest of the
network. For a precise definition of the above concepts, we refer
the reader to Mitra and Sundaram (2019, Section 3). Thus, the
necessary conditions in Mitra and Sundaram (2019) turn out to be
a blend of requirements on both the observation model and the
network structure, and generalize the conditions for centralized
state estimation subject to attacks (Chong, Wakaiki, & Hespanha,
2015; Fawzi et al., 2014).

The techniques in Mitra and Sundaram (2019) were later gen-
eralized to account for time-varying networks in Mitra, Richards,
Bagchi and Sundaram (2019, 2021). Moreover, in Mitra, Ghawash,
Sundaram and Abbas (2021), the authors formally showed how
one can incorporate the ideas of trust (i.e., making a small subset
of the agents immune to attacks) and diversity (in hardware
and software implementations) to relax some of the stringent
redundancy requirements and make sparse DCSs as resilient to
adversarial attacks as dense networks (Mitra & Sundaram, 2019).

One important takeaway is that the ideas of information re-
dundancy and network-structure redundancy are quite general,
and as such, applicable beyond the specific estimation problem
we considered here. Indeed, we will later briefly comment on the
fact that these ideas also turn out to be crucial in the context of
resilient distributed hypothesis testing/statistical inference.

Remark 4. It is worth noting the difference between the
strong r-robustness property in Definition 7 and the r-robustness
property in Section 2.1.2 that was used for resilient consensus
and optimization. In the former, one has to account for the fact
that some nodes in the network are more informative than the
others, vis-a-vis the quantity that all agents are trying to estimate.
Thus, one has to ensure that information can flow reliably from
that subset of nodes to the others in the network (capturing the
information and structural redundancy requirements discussed
earlier). This is precisely the reason why the strong r-robustness
property is defined with respect to a source set S. On the other
hand, for problems like distributed consensus and optimization
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where every node has information that is pertinent to the final
quantity, there is no designated set of source nodes. Thus, the
r-robustness condition is defined with respect to the graph as a
whole.

It turns out that this subtle difference has a significant im-
plication for the computational complexity of checking whether
a given graph has those properties. In particular, it was shown
in Zhang, Fata, and Sundaram (2015) that checking whether a
given graph is r-robust is coNP-complete. However, the strong
r-robustness property in Definition 7 can be checked in polynomial-
time (Mitra & Sundaram, 2019).

(2) Methods Based on Robust Control Theory: In some pa-
pers, distributed state estimation of a continuous-time LTI system
has been considered where both the state and measurement
dynamics are subject to L,-integrable disturbances (Deghat, Ugri-
novskii, Shames, & Langbort, 2019). Given the nature of the dis-
turbances, the authors build on the theory of distributed H,
filters developed in Ugrinovskii (2011) and Ugrinovskii and Lang-
bort (2011). The threat model is that of a biasing attack where
an attacker injects an additive attack signal directly to the state
estimator/observer dynamics of certain agents.

To tackle such biasing attacks, the authors in Deghat et al.
(2019) develop certain attack detection filters. Specifically, the
attack detection filter at each agent i takes as input two dif-
ferent innovation signals. The first innovation signal is the gap
between the actual measurement y;[t] and the predicted sensor
measurement Cix;[t]. Intuitively, if agent i’s observer dynamics
is compromised, then one should expect Cix;[t] to be biased,
leading to a significant deviation from y;[t].'° With a similar
motivation, a second innovation signal is computed based on the
deviations of agent i’s state estimate from those of its neighbors.
It is shown that the problem of designing the parameters of
the above detector can be recast as the problem of stabilizing
a distributed dynamical system via output injection. The latter
problem is addressed by drawing on ideas from vector dissipa-
tivity theory (Ugrinovskii, 2011; Ugrinovskii & Langbort, 2011).
Since the overall design procedure is quite intricate, we refer the
reader to Deghat et al. (2019) for details.

As their main result, the authors in Deghat et al. (2019) show
that if certain LMI's are feasible, then their approach ensures
attack-detection and guarantees a desired level of H, distur-
bance attenuation. The requirements on the network structure
are implicitly captured by the LMI’s.

Discussion: It is instructive to compare the results in Mitra and
Sundaram (2019) with those in Deghat et al. (2019). In Mitra and
Sundaram (2019), accounting for a worst-case Byzantine attack
model necessitates the requirement of sufficient redundancy in
the underlying network, as captured by the “strong robustness”
condition in Definition 7. Moreover, for the problem to be mean-
ingful in Mitra and Sundaram (2019), only a subset of the agents
can be adversarial. In contrast, since a specific class of biasing
attacks is considered in Deghat et al. (2019), the network require-
ments are relatively less stringent, and it is plausible for the entire
network to be under attack.

Following up on Deghat et al. (2019), more general biasing
attacks are considered in Ugrinovskii (2019) where an attacker is
allowed to bias both the state observer and the attack detector at
an agent. Moreover, unlike Deghat et al. (2019) where the design
of the filter gains involves solving LMI's that are coupled across

16 Asin Deghat et al. (2019), the innovation signal (y;[t] — H;X;[t]) plays a key
role in the saturating adaptive gain method of Chen et al. (2018a). However,
while y;[t] is accurate and C;;[t] is biased in Deghat et al. (2019), the situation
is exactly the opposite in Chen et al. (2018a), where the measurements are
biased but the agents’ estimators are not.
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agents, the design procedure is carried out locally at every agent
in Ugrinovskii (2019).

(3) Methods Based on Saturating Gains and Attack Detection:
Recently, in He, Ren et al. (2021), the authors developed secure
distributed filters for tackling measurement attacks. Their main
approach relies on a saturating adaptive gain technique, similar
to Chen et al. (2018a). There are, however, considerable differ-
ences with Chen et al. (2018a) that stem from the fact that He,
Ren et al. (2021) consider dynamical state estimation while Chen
et al. (2018a) study static parameter estimation. One such dif-
ference is that He, Ren et al. (2021) employ a two-time-scale
estimation technique: between two consecutive time-steps of the
dynamics, the agents are allowed to perform multiple consensus
steps to bridge the gap between their estimates. Under reasonable
assumptions on observability, and connectivity of the graph, the
estimation error is shown to be uniformly bounded.

Discussion: Notably, the analysis in He, Ren et al. (2021) applies
to time-varying adversarial sets. When the adversarial set is fixed,
an attack detection algorithm is further developed in He, Ren
et al. (2021) that leads to tighter error bounds. It should be
noted, however, that the two-time-scale approach is crucial to the
stability of the distributed filter in He, Ren et al. (2021).

Remark 5. In some very recent work, the resilient distributed
state estimation problem from a dynamic average consensus
perspective has been studied (Mao & Tabuada, 2021). In Mao,
Diggavi, Fragouli, and Tabuada (2020), the setting where some
of the communication links can also be corrupted (in addition to
agent attacks) has been explored.

A practical problem in Resilient Distributed Estimation: One
important open question pertaining to graph theoretic methods
in distributed estimation is how to jointly control the graph
and the dynamics in order to maintain the desired resilience
properties. For instance, in a multi robot system, the communi-
cation graph may be determined by proximity of the robots. This
necessitates that the agents stay sufficiently close together (over
time) in order to ensure that the resulting communication graph
has the required robustness property. However, the estimation
task may also require the agents to visit different locations in
the environment in order to obtain sensor measurements of the
dynamical process that they are monitoring. These two require-
ments (maintaining network properties while gathering enough
information from the environment) may be at odds with one
another, and thus finding principled approaches to solving such
problems is a rich avenue for future research.

7.3. Hypothesis testing and statistical inference

In this subsection, we will briefly discuss an approach for
tackling Byzantine attacks in the context of distributed hypoth-
esis testing (Jadbabaie, Molavi, Sandroni, & Tahbaz-Salehi, 2012;
Jadbabaie, Molavi, & Tahbaz-Salehi, 2013; Lalitha, Javidi, & Sar-
wate, 2018; Liu, Fang, Wang, & Wang, 2014; Mitra, Richards
and Sundaram, 2019; Mitra, Richards, & Sundaram, 2020; Nedi¢,
Olshevsky, & Uribe, 2017; Shahrampour, Rakhlin, & Jadbabaie,
2016; Su & Vaidya, 2016; Uribe, Hare, Kaplan, & Jadbabaie, 2019)
— a problem similar in flavor to the static parameter estimation
setting we considered in Section 7.1. In this problem, each agent
in a network receives a sequence of stochastic measurements
generated by a common underlying distribution that is param-
eterized by an unknown, static state 0*. Each agent is equipped
with a local likelihood model, and is aware that 6* belongs to a
finite set ® = {61, ..., O} of m candidate hypotheses. The goal is
for the agents to collaboratively identify 6* from ©. The challenge
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arises from the fact that 6* may not be locally identifiable w.r.t.
the likelihood model of any specific agent. In other words, no one
agent can, in general, eliminate every false hypothesis on its own.
Instead, we assume global identifiability of the joint observation
model, i.e., #* can be uniquely identified based on the collective
observations of the agents.!”

In a typical approach to solving the above problem, each agent
maintains a belief vector u;, which is a distribution over &.
Formally, the objective is to design belief-update and propaga-
tion rules that ensure p;(0*) — 1,Vi € V, almost surely.
The predominant approach is to employ some form of “belief-
averaging” protocol to update the belief vectors (Jadbabaie et al.,
2012, 2013; Lalitha et al., 2018; Liu et al., 2014; Nedi¢ et al., 2017;
Shahrampour et al., 2016; Su & Vaidya, 2016; Uribe et al., 2019).
In a departure from these algorithms, a min-rule was recently
developed in Mitra et al. (2020); the asymptotic learning rate of
this rule is strictly better than those based on averaging. However,
all of the above approaches are vulnerable in the face of attacks:
a single malicious agent can essentially cause all good agents to
eliminate the true hypothesis.

The Min-Rule: A desirable feature of the min-rule in Mitra et al.
(2020) is that it admits a simple, computationally-efficient ex-
tension that is robust to worst-case attacks. We first describe
the basic min-rule, and then its adversarial extension. Each agent
i € VY maintains an auxiliary local belief vector r; ; that is updated
in a Bayesian manner based on just the observations of agent i.
For every false hypothesis 6 € ® \ {#*} that agent i can eliminate
on its own, we will have 7;+(6) — 0 almost surely. Thus, agent i
only needs to interact with neighbors for eliminating those false
hypotheses that it cannot rule out on its own. Let S(6*, 0) be
those agents that can distinguish between 6* and 6, i.e., these
agents can eliminate 6 individually. The main idea is to transmit
low beliefs on 6 from agents in S(6*, 0) to the rest of the network.
This is achieved via the following rule at each agent i:

Wi e+1(0) oc min{{w; ((0)}jensugiy> 7ic+1(6)} (31)

The above beliefs are normalized to ensure that p;, is a valid
distribution at every time-step. For the adversarial setting, the
approach is very similar, except that the min-rule is applied to
a set of moderate beliefs. Specifically, each regular agent i updates
its belief on a state 6 by first rejecting the highest f and lowest f
beliefs on 6 received from A}, and then employing:

ie41(0) o min{{pt (0N} up0 i 1(0)), (32)
where M?t are those agents that do not get rejected in the above
filtering step. This is known as the Local-filtering based Resilient
Hypothesis Elimination (LFRHE) algorithm. The correctness of the
LFRHE algorithm once again rests on the two key ingredients
we identified in Section 7.1, namely, information-redundancy and
network-structure redundancy. In particular, for every pair 6, 6;,
we need S(6,, 6,) to be large enough, and we also need a suffi-
cient number of disjoint paths from S(6,, 6;) to V\S(6,, 64). These
requirements are succinctly captured in the following theorem.

Theorem 9 (Mitra et al, 2020). Suppose that for every pair of
hypotheses 6,, 6, € ©, the graph G is strongly (2f + 1)-robust w.r.t.
the source set S(6,, 65). Moreover, suppose each regular agent i has
a non-zero prior belief on every hypothesis, ie., m;o(6) > 0 and
Hio(@) > 0, VO € ©O. Then, the LFRHE algorithm guarantees that
wir(0*) — 1 almost surely for every regular agent i, despite the
actions of any f-local set of Byzantine adversaries.

17 Global identifiability for distributed hypothesis testing is the exact analogue
of global observability for distributed state estimation.
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Table 3
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Summary of references on resilient distributed estimation and inference. We have classified these references based on three aspects. First, we consider the specific
nature of the problem being studied: parameter estimation, state estimation, and hypothesis testing/statistical inference. Second, we consider the nature of the attack
model: sensor attacks (resp., biasing attacks) are ones where the measurements (resp., estimator/observer update equations) are corrupted by additive attack inputs,
and Byzantine attacks are as in Definition 1. Third, the references can be broadly classified in terms of the main algorithmic approaches: saturating adaptive gain and
attack-detection techniques (in bold), local filtering-based approaches (with underline), and robust control techniques (references Deghat et al., 2019; Ugrinovskii,

2019 in gray). A finer description of these approaches is provided in Section 7.

Distributed Attack model
problem

Sensor attacks

Biasing attacks

Byzantine attacks

Static parameter
estimation

Chen et al. (2018a, -
2018c, 2019)

An and Yang (2021), Chen et al. (2018b),
LeBlanc and Hassan (2014), Su and Shahrampour (2020)

Dynamic state He, Ren et al. (2021)

Deghat et al. (2019),

Mitra and Sundaram (2019)

estimation Ugrinovskii (2019)

Hypothesis - - Mitra et al. (2020), Su and Vaidya (2016) ,
testing/Statistical Wu, Carr, Bharadwaj, Xu, and Topcu (2020)
inference

Discussion: One of the main takeaways from the above result
is that just like the resilient distributed estimation problem, the
strong-robustness property in Definition 7 ends up playing a
crucial role when it comes to tolerating Byzantine attacks for
distributed hypothesis-testing as well. We conjecture that this
graph-theoretic property will prove to be useful for other dis-
tributed learning problems where information is diffused across
the network. A recent work that studies resilient distributed best-
arm identification for stochastic multi-armed bandits supports
this conjecture (Mitra, Hassani and Pappas, 2021).

Additional Results: The algorithm in Mitra et al. (2020) was later
extended in Wu et al. (2020) to account for time-varying net-
works. In Su and Vaidya (2016), the authors proposed an alternate
approach to tackling adversaries by building on the log-linear
belief-update rule in Lalitha et al. (2018), Nedi¢ et al. (2017) and
Shahrampour et al. (2016). Their approach requires the agents
to compute Tverberg partitions (see Section 5.3); however, as
discussed in that section, there is no known algorithm that can
compute an exact Tverberg partition in polynomial time for a
general d-dimensional finite point set (Mulzer & Werner, 2013).

For a summary of the references we discussed in this section,
we refer the readers to Table 3.

8. Attack detection and identification over networks

In the preceding sections, we covered several techniques for
solving a variety of distributed information-processing problems
subject to attacks (e.g., consensus, optimization, and estimation).
As discussed in those sections, depending on the attack model
and nature of the information available to the agents, detection
and identification of (worst-case) adversarial behavior may be
impossible in general. In particular, the “local-filtering” algo-
rithms discussed in those sections did not explicitly rely on de-
tection/identification of adversarial behavior. However, in other
settings, detection and identification of adversarial behavior may
indeed be possible. The purpose of this section is to briefly sum-
marize algorithms for such settings.

Since the precise nature of the attack detection algorithm is
usually dictated by the specific distributed task at hand, we will
not be able to cover all such detection mechanisms here. Instead,
we will primarily restrict our attention to the attack model in (9)
of Section 4.2 that we studied in the context of distributed func-
tion calculation. Using this model, we will discuss graph-theoretic
requirements for detecting and identifying attacks in a network.
In particular, we will demonstrate how structured systems theory
plays a key role in this context. Before delving into the technical
details, we remind the reader that the f-total attack model under
consideration involves a set of malicious agents 7, where |F| < f
for a known f > 0.

21

8.1. Attack detection

Centralized and distributed detection techniques can be used
to detect attacks, see Pasqualetti et al. (2013). Here, we charac-
terize graph-theoretic conditions for detecting attacks. We start
by considering that the initial states, ¥[0], are known. An at-
tack vector ¢ is called undetectable or perfect if y(¢[0], ¢, t) =
y(¥[0],0, t) forall t > 0, i.e., the measurement is the same as the
case of no attack. The notion of a perfect attack has an equivalent
algebraic condition, which is based on the following definition.

Definition 8. The generic normal rank (gnr) of the matrix pencil
of dynamics (9)

_[w-z1, Br
= c 0|

is the maximum rank of the matrix over all choices of free
parameters in (W, Bx, C) and z € C.18

P(z)

It is shown in Dion et al. (2003) that having a perfect attack
and the generic normal rank of P(z) being less than n + |F| are
equivalent. Recalling the input set ¢/ and measurement set ) for a
structured system from Section 2.4, the following result interprets
the generic normal rank of P(z) in terms of the disjoint paths in
the graph of structured system G.

Lemma 1 (Dion, Commault, & van der Woude, 1999). The generic
normal rank of the matrix pencil P(z) is equal to n + r, where r is
the size of the largest linking in G from the input vertices, U, to the
output vertices, V.

Note that the generic normal rank of the matrix pencil is at
least n, since the matrix W — zI, will have generic rank n for any
choice of parameters in W and any z that is not an eigenvalue
of W. From Dion et al. (2003) and Lemma 1 it follows that
to prevent perfect attacks, parameter r has to be equal to the
number of attacks, i.e.,, r = |F|. This implicitly indicates that
the number of sensors must be at least |F|. Lemma 1 along with
Menger’s theorem and the Expansion lemma, cf. West (2001b),
yields the following graph-theoretic result on attack detectability.

Theorem 10. Suppose that dynamics (9) with measurement (7) is
subject to a set of f attacked agents and that the initial states, ¥[0],
are known. To prevent a perfect attack, it is sufficient for graph G to
be (f + 1)-connected.

18 By a generic property of a structured system, we mean a property that
holds for almost all values of the free (nonzero) parameters of the system,
i.e., all values except those that belong to a proper algebraic variety of Lebesgue
measure zero in the parameter space.
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Remark 6. As the number of sensors is often limited and the
underlying network may be sparse, detecting all attacked agents
may not be always possible. An alternative approach is to place
the available sensors on key agents in the network in order to
maximize r in Lemma 1, i.e., detecting maximum number of at-
tacks. The sensor placement problem for optimal attack detection
is discussed in Section 10.2.

For the cases where the initial condition of the system is
unknown, an undetectable attack ¢ is characterized by the ex-
istence of a pair of initial states ¥,[0] and ¥,[0] such that
y(¥4[0],0,t) = y(¢,[0], ¢, ¢t) for all t > 0. In such cases, one
needs to first recover the initial conditions of the system in order
to detect the attack. This demands the system to be strongly
observable. Recall from Section 4 and Theorem 3 that system (9)
is strongly observable if the graph is (2f + 1)-connected.

Theorem 11. Suppose that dynamics (9) with measurement (7) is
subject to a set of f attacked agents and unknown initial conditions.
To prevent a perfect attack, it is sufficient for graph G to be (2f +
1)-connected.

The extra level of graph connectivity stated in Theorem 11,
compared to Theorem 10, is a price paid for the lack of the
knowledge of the initial states.

8.2. Attack identification procedure

In order to identify the attacked agents, first, agent i must find
the true initial value of all other agents (e.g., via the procedure
described in Section 4.2 and under the conditions in Theorem 3).
After obtaining the vector of initial states, ¥[0], and assuming
that the interaction matrix, W, is known to i, it can apply dy-
namics (9) to obtain ¥[1] — Wy[0] = Bx¢[0]. Every nonzero
component in the vector on the left hand side of this equation
indicates an additive error injected by the corresponding agent.
Thus, every agent that is malicious during time-step O can be
identified by this method. The same process can be repeated to
find all agents that were malicious during the first L time steps
from the transmitted values y;[0 : L] in (10). Note that using
iteration policy (9) to identify the attacks requires the system
to be free of noise or external disturbances. Further details on
centralized and distributed attack detection and identification
techniques can be found in Pasqualetti et al. (2013).

8.3. Other attack detection and identification approaches

Our discussion in this section has thus far focused on the
attack model in (9) for distributed function calculation. Before
closing this section, we briefly summarize certain other attack
detection mechanisms that are relevant in other contexts. For
resilient distributed parameter estimation, attack detection con-
stitutes a key component of the FRDE algorithm in Chen et al.
(2018b) that we discussed in Section 7.1. For state estimation,
agents under attack are identified based on robust control tech-
niques in Deghat et al. (2019), and a saturating adaptive gain
method in He, Ren et al. (2021); see Section 7.2. At a high-
level, the approaches in Chen et al. (2018b), Deghat et al. (2019),
and He, Ren et al. (2021) share a common principle for detecting
whether an agent i is under attack: they involve computing an ap-
propriate innovation signal that captures the extent to which the
estimates/measurements of agent i differ from those of its neigh-
bors. For distributed optimization, Ravi et al. (2019) proposed
a heuristic gradient based method to detect the misbehaving
agents. The insight is that the attackers’ biasing actions can result
in a large gradient value. Hence, a regular agent can attempt to
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detect such attacks by approximating the gradient of each neigh-
bor and tracking it over time relative to the mean of the gradients
of the remaining neighbors. Finally, we note that in the context of
multi-robot coordination, the authors in Gil, Kumar, Mazumder,
Katabi, and Rus (2017) and Renganathan and Summers (2017)
propose methods to tackle the so called “Sybil attack”, where an
attacker spoofs or impersonates the identities of existing agents
to gain a disproportionate advantage in the network. The key idea
in these works is to detect such spoofing attacks by exploiting the
physics of wireless signals. For specific details, we refer the reader
to the respective papers.

9. Graph-theoretic interpretations of the attack impact

In the previous sections, we primarily focused on the topic of
attack mitigation for different classes of problems, and noted that
the connectivity of the graph plays a key role in this regard. In
this section, we will instead turn our attention to the attacker,
and quantify the attacker’s impact on distributed control systems
in terms of the topology of the underlying network.

9.1. Controllability of networks under attack

One way to define the attacker’s impact is via the largest
subset of agents which can be controlled (or reached) by the set of
the attacked agents. There is a vast literature that studies the con-
trollability of networks with a limited number of actuators (Dion
et al., 2003; Olshevsky, 2014; Pequito, Kar, & Aguiar, 2016; Rah-
mani, Ji, Mesbahi, & Egerstedt, 2009; Sundaram & Hadjicostis,
2013). In this section, our focus is on structural controllability
as a qualitative measure of controllability and Gramian-based
methods as quantitative measures.

9.1.1. Structural and strong structural controllability

As mentioned in Section 2.4, a structured system is said to
be controllable if this property holds for at least one numerical
choice of free parameters in the system. Theorem 1 provided
graph-theoretic conditions for structural controllability. Condi-
tion (i) in Theorem 1 is called the reachability condition. The
reachability, by itself, can be a measure of the attack impact.
In particular, when the attacker’s goal is to disseminate a signal
throughout the network and infect as many agents as possible,
maximizing reachability is beneficial to the attacker. On the other
hand, when the attacker’s objective is to steer the states towards
its desired direction, controllability is the appropriate measure.
We present the following definition.

Definition 9. The reachable set, S} (respectively controllable set,
Sfc), is the largest subset of agents in a graph G = {V, £} which can
be reached (controlled) by any configuration of f attacked agents
in the network.

Based on Theorem 1, it is clear that |$jf| < |Sfr|. Fig. 10(a)
shows a graph whose largest reachable set, for f = 1, is larger
than the largest controllable set. Based on the definition of
structural controllability, if we add a self-loop to agent 3 or 4 in
this graph, then all agents become controllable. In graph (b) the
largest reachable and controllable sets are identical. Note that Sf
is not necessarily a subset of S7, as shown in graphs (c) and (d).

The source agents are shown with a darker color. Due to
resource constraints, the attacker naturally tries to solve either
of the following problems:

(i) Controlling (or reaching) the largest possible subset of
agents in the network with a given number of attacked
agents, or
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Fig. 10. Graphs and their largest reachable subsets, S™, and controllable subsets,
S¢. Dark colors represent attack agents.

(ii) Controlling (or reaching) the whole network with the mini-
mum number of attacked agents.

The latter has been investigated under the context of minimal
structural controllability problems (Pequito, Kar, & Aguiar, 2015).
It is shown that the problem of finding the minimum number of
control input (attacked) agents is in general NP-hard, but in spe-
cific cases (such as dedicated inputs) can be solved in polynomial
time. When reachability is the objective, the problem is related
to estimating the reachable set of agents which can be solved in
polynomial time (Aji, 2014).

A system is called strong structurally controllable if rank
(W, B) = n for all (nonzero) choice of free parameters in W and
B. The dimension of the strong structurally controllable subspace
is the minimum rank of the controllability matrix, ¢ (W, B).
There are graph-theoretic bounds on this quantity for consensus
dynamics as stated below.

Theorem 12 (Yazicioglu, Abbas, & Egerstedt, 2016). For set F chosen
by the attacker, the dimension of the strong structurally controllable
subspace is lower bounded by

rank ¢ (W, B) > max dist(i, j) + 1,

i€V, jeF

(33)

where dist(i, j) is the shortest distance between agents i and
j. Tighter lower bounds for the dimension of the strong struc-
turally controllable subspace can be found in Mousavi, Haeri,
and Mesbahi (2018) and Yazicioglu et al. (2016). According to
Theorem 12, from the attacker’s perspective, the optimal decision
is to select an agent with maximum distance from the rest of
the agents in the graph. Another interpretation from the above
result, which had been discussed before in Rahmani et al. (2009),
is the reverse effect of network connectivity on the controllability.
Specifically, sparse networks may contain pairs of agents that
are far apart, and consequently may have large controllability
subspaces, while well-connected networks may have smaller con-
trollability subspaces. More recently, graph-theoretic conditions
for strong structural controllability have been proposed in Jia, van
Waarde, Trentelman, and Camlibel (2021). In particular, necessary
and sufficient conditions for strong structural controllability in
terms of full rank tests of certain pattern matrices have been
presented.

9.1.2. Gramian-based controllability

Unlike the (discrete) structural or rank-based controllability
measures of dynamical systems (Kalman, Ho, & Narendra, 1963),
the controllability Gramian provides a qualitative measure for
this property, in the form of the energy required to drive the
dynamical system towards specific directions in the state space.
The T-step controllability Gramian is defined as

T-1

Wrr 2 Y W'BzB (W',
=0

(34)
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where Bx corresponds to the set of attacked agents and defined
in (9). The controllability Gramian Wx r is positive definite if
and only if the system is controllable in T steps (Kailath, 1980).
However, even if a system is controllable, certain directions of
the state space may be hard to reach (Sun & Motter, 2013). The
smallest eigenvalue of the Gramian, A;(Wz 1), is inversely related
to the amount of energy required to move the system in the
direction that is the most difficult to control, i.e., the eigenvector
corresponding to A;(Wzr). Other controllability metrics, such
as trace(Wx ) and trace(W;}T), quantify the energy needed on
average to move the system around on the state space. From the
attacker’s perspective, the system should be easily controllable.
Thus, it targets agents for which one of the above mentioned
spectra is optimized. In particular, the attacker attempts to min-
imize its effort to steer the system by maximizing A1(Wz 1) and
trace(Ws r) or minimizing trace(Wx, T)

The selection of control agents to optimize the spectrum of
the Gramian does not generally admit a closed-form solution.
Hence, finding graph-theoretic interpretation for most of these
metrics is challenging and requires further research, see Bag-
gio and Zampieri (2018) and Pasqualetti, Favaretto, Zhao, and
Zampieri (2018) for further reading. The exception is trace(Wxz 1)
for which (Pasqualetti, Zampieri, & Bullo, 2014)

trace Wz 1) = Z (Z WZT)

ieF

When W is Schur stable, then ) >2 ) W?* = (I — W?)~. For con-
tinuous time systems, if W is Hurwitz, this closed form solution
becomes trace(Wz) = Y ;- (W~ ) For other metrics, selecting
optimal agents, from the attacker’s perspectlve is a combinatorial
problem and (in general) hard to solve. However, recent studies
on submodularity and monotonicity of some of those metrics
indicate that greedy algorithms for selecting the control agents
result in a sub-optimal solution with a guaranteed performance
bound (Clark, Alomair, Bushnell, & Poovendran, 2016; Olshevsky,
2017; Summers, Cortesi and Lygeros, 2015; Summers, Shames,
Lygeros and Dérfler, 2015).

In the following subsection, we outline a graph-theoretic in-
terpretation of the attacker’s strategy to optimize trace(Wx r) in
consensus dynamics.

9.1.3. Case study: Consensus dynamics

We consider Gramian-based controllability on two types of
consensus dynamics on undirected graphs, namely average con-
sensus and leader-following consensus.

1. Edge Attack in Average Consensus: Assume that the attack
happens in the form of a flow which enters one agent and exists
from another agent. In particular, we say that ik € F if the pair
i, k is chosen by the attacker and their dynamics are

Yi= Y (= ¥) + G
j€-/\/iin

V=) (Y5 — i) — G

je/\/’,in

(35)

where ¢ is the attack flow. This type of input signal, as schemat-
ically shown in Fig. 11(a), happens in power systems (DC input
links) and distribution networks (Pirani & Taylor, 2020; Wei &
van der Schaft, 2013). If we write the dynamics in vector form, it
becomes

¥ =Ly +Be, (36)
where B is the incidence matrix of the graph induced by the
attacked edges. The controllability Gramian is

o0
We = / e "BBe ' dr. (37)
0
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Fig. 11. (a) Attacker’s optimal decisions based on (39), (b) attacker’s optimal
decision based on (41).

Vp

Since L is marginally stable, the infinite integral does not exist.
However, the eigenvector of the marginally stable eigenvalue
belongs to the subspace corresponding to the consensus value,
which is of little interest to the attacker (as otherwise no attack
would be needed). We remove this subspace by grounding one
agent (removing a row and column corresponding to that agent)
which makes the Laplacian non-singular. The grounded Laplacian
matrix induced by the grounded agent v is denoted by L, (or
simply Ly). Then, we have

0]
1
tr(We) = tr (B’ / e‘”f’drB) = Str (BL'B).
0

It was shown in Ghosh, Boyd, and Saberi (2008) that the above
value is independent of the choice of the grounded agent, i.e., we
have

tr (BL'B) = tr (BL'B) = ) 9y,

(38)

(39)

where LT is the Moore-Penrose inverse of L and 9;; is the effective
resistance between agents i and j. Eq. (39) indicates that the
trace of the controllability Gramian is the summation of effective
resistances between agent pairs chosen by the attacker. Thus,
if the attacker seeks to maximize (39), i.e., minimize the attack
energy, by choosing m agent pairs, it should choose m pairs with
the largest effective resistance in the graph. Fig. 11(b) is an example
of an optimal attack.

2. Agent Attack in Leader-Follower Consensus: We consider a
leader-follower dynamical system on undirected graphs which is
widely studied in formation control problems (Hao & Barooah,
2013; Pirani, Shahrivar, Fidan, & Sundaram, 2018; Rahmani et al.,
2009). Based on this model, there is a leader, which has access
to the control input or determines the set-point, and a set of
followers, which follow the state of the leader. The dynamics of
leader and followers are given by

W] _ [y L|[9o], [B
|:'/.’fz(t)i| |:Lfe L4i| |:1//£(t):| + |: 0 ]Cf(t),

L

where ¥¢(t), ¥,(t) and £x(t) are the state of followers, the state
of the leader, and the attack vector, respectively. The leader is
not affected by communication attacks. It also keeps its state
constant and does not incorporate the states of the followers,
ie, ¥, (t) = 0. Thus, we have Ly, = L, 0. Matrix Br,
formed from indicator vectors as in (9), determines the agents
that are under attack and L, determines the connection of the
leader to the followers. Matrix Ly is the grounded Laplacian matrix
discussed earlier. One of the key properties of this matrix, which
is used in this analysis, is that [L;']; = 9%, where 9% is the
effective resistance between agent i and the leader. Similar to the
case of edge attack, the objective of the attacker is to maximize
the trace of the controllability Gramian. Calculating the Gramian

(40)
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integral yields

trace(Wz) = Z(Lf’])“ = ZERM.

ieF ieF

(41)

Based on (41), if the attacker wants to minimize the average
energy by attacking m agents, it must select m agents with the
largest effective resistance from ¢. Fig. 11(b) is an example of an
optimal attack.

9.2. System norm approaches

Another way to quantify the attacker’s impact is through the
use of system norms from the attack signal to the output of
interest, e.g., the state of the agents. Two widely used system
norms in robust control are H, and H, norms. Since these
methods were initially developed on continuous time systems,
we focus on such systems in this section.

Suppose that the evolution of a network of agents is described
by (3) where D = 0 and B = B+ which corresponds to the set of
attacked agents defined in (9). The transfer function of the error
dynamics from attack input ¢ -(t) to output y(t) in the Laplace
domain is G(s) £ C(sI — W)~ 'B. The system %, and #, norms
are defined as

1 o0
IGll, 2 (—trace [ G*(jw)G(jw)dw) ,
2 0

IGlloo £ SUP Omax(G(jw)),

weR

(42)

where omax(.) is the maximum singular value of a matrix. The
system H, norm can also be calculated based on the observability
Gramian W,, which is the solution of the following Lyapunov
equation

ww, + W,W = —C'C,

Gl = trace(B=W,Bx). (43)

Unlike the approach of the structured system theory to resilient
DCSs, which was based on nonzero patterns of system matrices
and not the magnitude of the elements, the system norm ap-
proach depends on the exact value of the matrix elements. Thus,
having knowledge about the nonzero patterns of dynamic matri-
ces is not sufficient and one has to specify the type of matrices
which describe the interactions between agents. We revisit the
leader—follower consensus dynamics discussed in Section 9.2.1 to
further explain this fact.

Remark 7 (#;, vs. H., Norm). From a security perspective, either
the system H, or Ho, norm can be used to quantify the attack
impact. If the frequency content of the attack signal is unknown,
using a H; norm is a more reasonable choice as it is calculated
over all frequencies. However, if the objective is to find the worst-
case attack impact over all frequencies, the system #., norm is
an appropriate choice.

9.2.1. Case study: Consensus dynamics revisited

1. Edge Attack in Average Consensus: Consider the consensus
dynamics under an attack flow as in (36). Suppose that the
attacker measures the difference between agent values under
attack, i.e., y = B'y. Dynamics (36) together with this measure-
ment form a symmetric system, i.e., L is symmetric and B = C'.
Thus, the H,, norm is equal to the DC gain of the system (Tan &
Grigoriadis, 2001), i.e., for the transfer function from ¢ to y we
have

IGllee = Umax(B/LTB)- (44)
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Unlike the trace of B'L'5, in (39), interpreting its largest singular
value is hard. We consider the simple case where only one agent
pair, i and j, is under attack, i.e., B = e;;. In this case, (44) becomes
scalar and we have [|Gllec = omax(€jL'e;) = %;. Thus, in order
to have a large impact, the attacker must choose agent pairs with
the largest effective resistance in the network.

2. Agent Attack in Leader-Follower Consensus: Here, a single
attacker i targets a set of agents and B = C'. As before, the
Hoo norm is equal to the DC gain of the system (Farina & Rinaldi,
2000) and we have [|Gllc = Omax(BL; 'Br). For the case of
a single agent under attack, we have Br = e; and ||G|lc =
e}Lf’lei = Ry Hence, to have a large impact on a target agent,
the attacker must choose an agent in the network with the largest
effective resistance from the leader.

10. Related problems in resilient distributed control systems

In this section, we briefly discuss other problems on the re-
silience of distributed control systems which use graph theory as
a tool in the analysis.

10.1. Resilience to actuator/sensor and link removals

So far, we discussed the case where the agents or the commu-
nications between the agents are under attack. In that context, we
assume that the control inputs are not affected by the attacker.
In some situations, however, the attacker may choose to remove
certain sensors, actuators, or communication links entirely; for
instance, removal of communication links can be captured within
the setup of denial of service attacks (Biron et al, 2018; De
Persis & Tesi, 2014) or jamming attacks (Mokdad et al., 2015).
In those cases, the main concern is to retain the controllability
of the system. This can be written in terms of a robust structural
controllability problem. In particular, the objective is to maintain
a system’s controllability despite the removal of a subset of
actuators.

Consider the linear time invariant system (3) where a subset
of control inputs are removed (potentially due to adversarial
actions). In this case, the minimum number of actuators which
retain the controllability of the system is determined by the
following problem

arg min [|B]lo
BERHXH’(
such that (W, By, ) is structurally controllable (45)

VF C U with|F| <m,

where By » corresponds to the structure of the input matrix B
whose columns corresponding to set F are removed (i.e., actua-
tors are failed). The number of actuator faults are upper bounded
by m. It is shown that the above problems are NP-hard and
polynomial time algorithms to approximate the solution of those
problems have been proposed (Liu et al., 2013; Pequito, Ramos,
Kar, Aguiar, & Ramos, 2017).

In other set of problems, the attacker targets a set of links in
the network to remove. Several performance measures may be af-
fected by such an action. When robust controllability (or observ-
ability) is of interest, the problem can be written as follows (Liu
et al, 2013)

arg min [IB]lo
BERHXI’H
such that (Wg, ,\e-, B) is structurally controllable (46)

VS]: C gX,X with |5_7:| < ﬁ1,

where £7 is the set of edges affected by the attacker, upper
bounded by m. Similar to (45), the above problem is NP-hard
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in general. The main approach adopted to the above problems
is through showing the relation between robust structural ob-
servability (or controllability) and the set cover problem. Upper
and lower bounds on the feasible dedicated sensor or actuator
configurations have been proposed in terms of the spanning trees
of the system graph. More recently, the problem of resilient strong
structural controllability has been studied considering uncertain
zero and non-zero parameters for cases where there are sensor,
actuator, or communication failures (Mousavi, Haeri, & Mesbahi,
2017; Popli, Pequito, Kar, Pedro, & Ili¢, 2019).

10.2. Strategic sensor and actuator placement on graphs

Our focus in the previous sections was to find graph condi-
tions which ensure resiliency to attacks for certain distributed
algorithms. However, in many situations, the underlying network
topology is sparse and cannot be changed. Furthermore, the num-
ber of sensors/actuators is limited. In these cases, an alternative
approach is to place those limited number of sensors (or actu-
ators) on specific agents in the network in order to optimally
detect the attack or mitigate its impact.

There is a vast literature on sensor (or actuator) placement to
enhance the observability (or controllability) in terms of the rank
of the observability (or controllability) matrix, Gramian-based
metrics (as discussed previously), or the error variance of the
Kalman filters (Ye, Woodford, Roy and Sundaram, 2020; Zhang,
Ayoub, & Sundaram, 2017). In all these problems, there is a single
decision maker which deploys sensors (or place actuators) on a
set of agents. However, in security problems, the adversary plays
the role of a different decision maker which tries to optimize its
own cost function, e.g., maximize impact or minimize visibility.
This introduces a strategic sensor (or actuator) placement prob-
lem, taking the attacker’s actions into account. In this direction,
game theory can be used as a powerful tool to address this set of
problems; see Alpcan and Buchegger (2011), Han, Niyato, Saad,
Basar, and Hjorungnes (2012), Manshaei, Zhu, Alpcan, Basar, and
Hubaux (2013), Ye, Roy and Sundaram (2020) and Zhu and Basar
(2015) and references therein.

Strategic sensor placement in the network to detect cyber-
attacks has been recently studied (Dahan, Sela, & Amin, 2022;
MiloSevi¢, Dahan, Amin, & Sandberg, 2019; Pirani, Nekouie, Sand-
berg, & Johansson, 2021a). In this setting, the attacker seeks to
apply attack inputs while being stealthy and the detector tries to
detect the attack. Several approaches have been adopted to char-
acterize the equilibria of the security games. Nash equilibrium
is used to model simultaneous decision making and Stackelberg
game model is used for the case where the defender must act
before the attacker. In design problems, the Stackelberg game is
a popular approach to defend against cyber-attacks. In particular,
the detector acts as the game leader and places sensors on agents
considering the worst case attack strategies. The applicability of
each method, based on the nature of the attack and the structure
of the cyber-physical system, is discussed in Manshaei et al.
(2013).

In addition to the strategic attack detection, a defense mecha-
nism can help mitigate the impact of the attack via certain control
actions (Gueye & Marbukh, 2012; He et al., 2021; Pirani, Nekouie,
Sandberg, & Johansson, 2021b; Zhu & Basar, 2015). The attacker’s
impact can be quantified by either of the methods discussed
in Section 9. A comprehensive defense strategy must include
both strategic detection and mitigation mechanisms. From the
defender’s perspective, the game equilibrium determines the op-
timal placement of sensors and actuators to detect the attack and
mitigate its impact. Recently, it is shown that for certain classes
of game, optimal defender’s decisions are explainable via certain
network centrality measures (Pirani et al., 2021b).
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10.3. Network coherence as a measure of resiliency

In the DCSs literature, the notion of network coherence is
used to quantify the ability of a network to reject communication
disturbances while performing a formation control or a consen-
sus algorithm in large scale systems (Bamieh, Jovanovic, Mitra,
& Patterson, 2012; Patterson & Bamieh, 2010; Tegling, Mitra,
Sandberg, & Bamieh, 2019). It is usually described in terms of
system H; or H, norms from the disturbance signal to the output
of interest, e.g., position (phase) or velocity (frequency) (Pirani,
Simpson-Porco, & Fidan, 2017; Poolla, Bolognani, & Dorfler, 2015;
Tegling, Bamieh, & Gayme, 2015). Interpreting the disturbances
as attack inputs, some of the approaches and the results in this
line of research, e.g., scalability of algorithms and leader selection
schemes, can be readily used in resilient distributed algorithms,
as we will briefly discuss in the following paragraphs.

10.3.1. Leader selection

The objective is to choose the optimal agents in the network
as leaders, i.e., agents which receive the control signal, such that
the network coherence is maximized, i.e., system H; or Heo
norms from the disturbance input to the output of interest are
minimized. It is shown in Fitch and Leonard (2015) that the
optimal leader to minimize the #, norm in consensus dynamics
is the information central agent in the network: a agent in which
the summation of effective resistances to the rest of the agents in
the network is minimized. It is also shown that the leader which
optimizes the H,, norm is not necessarily the graph’s information
center (Pirani et al., 2018). Moreover, a graph-theoretic condition
for the leader to co-optimize both metrics is discussed in Pirani
et al. (2018).

10.3.2. Scalability

Another problem of interest is the scalability of the network
coherence in graphs with various structures. In Bamieh et al.
(2012), it is discussed that how the network coherence scales
with the network size for regular lattices in 1, 2 and higher
dimensions. The scalability of these metrics is also discussed for
random graphs. In particular, for Erdés-Rényi random graphs and
random regular graphs, tight characterizations of the network
coherence are discussed in Pirani and Sundaram (2016) and Pirani
et al. (2018).

11. Resilience in certain classes of graphs

In this section, we summarize some pertinent topological
properties of certain classes of graphs. We focus on the prop-
erties of graph connectivity and graph robustness provided in
Section 2.1.2, since they are particularly relevant to the resilience
of distributed algorithms against adversarial actions. Our focus
is on undirected networks, unless otherwise indicated. We start
from simple graph structures.

11.1. Paths, cycles, trees, and complete graphs

An undirected path of length n is the simplest connected graph
with connectivity x = 1 and robustness r = 1. A cycle is a path
of length n whose start and end agents are connected. For a cycle
graph, the connectivity is k = 2 and the robustness is r = 1.
Trees are connected acyclic graphs with connectivity k = 1 and
robustness r = 1. A complete graph is (n — 1)-connected and
[51-robust.
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Fig. 12. (a) A 2-nearest neighbor path (b,c) an undirected and a directed
circulant graph, (d) A connected formation on a 2-dimensional lattice.

11.2. Circulant networks, k-nearest neighbor paths, and 1-D random
geometric graphs

Definition 10 (k-Nearest Neighbor Paths). A k-nearest neighbor
path, P(n, k), is a network comprised of n agents in a path, where
the agents are labeled as 1, 2, ..., n from one end of the path to
the other, and each agent i can communicate with its k nearest
neighbors behind it and k nearest neighbors ahead of it (when-
ever possible), ie, i—k,i—k+1,...,i—1,i+1,i4+2,...,
i+ k, for some k € N. An example of P(n, k) is shown in Fig. 12(a).

Such k-nearest neighbor paths are relevant for modeling ve-
hicle platoons, due to the limited sensing and communication
range for each vehicle. It is shown in Pirani et al. (2019) that a
k-nearest neighbor path, P(n, k), is a k-connected graph. We will
discuss the robustness of P(n, k) later in this section. A similar
structure to P(n, k) is a 1-dimensional geometric random graph
which captures edges between agents that are in close (spatial)
proximity to each other.

Definition 11 (Geometric Random Graphs). A geometric random
graph g" {v, &} is an undirected graph generated by
first placmg n agents (according to some mechanism) in a
d-dimensional region 24 = [0, []¢, where d € Z>1. We denote
the position of agent i € V by x; € £24. Agents i,j € V are
connected by an edge if and only if [|x; — x| < p for some
threshold p, where ||.|| is some appropriate norm (often taken to
be the standard Euclidean norm). When the agent positions are
generated randomly (e.g., uniformly and independently) in the
region, one obtains a geometric random graph.

In the more general models of gg’p’,, the length [ is also
allowed to increase and the density 1% can converge to some
constant, making it suitable for capturing both dense and sparse
random networks. The following result holds for 1-dimensional
geometric random graphs.

Proposition 4 (Zhang et al, 2015). In £2; = [0, [] with fixed |, if
g,},pyl is k-connected, then it is at least L%J-robust.

Based on Definition 11, the k-nearest neighbor path can be
seen as a geometric graph g ol with p % and placing
the agents as follows: the fll‘St agent, 1, is placed on one end
of the line and the ith agent is placed at distance (’n%) from
1. Thus, based on Proposition 4 and the fact that the k-nearest
neighbor path P(n, k) is k-connected, we conclude that it is at
least L |-robust.

Definition 12 (Circulant Graphs). An undirected graph of n agents
is called circulant if the n vertices of the graph can be numbered
from 0 to n—1 in such a way that if some two vertices numbered x
and (x+d) mod n are adjacent, then every two vertices numbered
z and (z £ d) mod n are adjacent. A directed graph is circulant
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(with the above labeling) if some two vertices numbered x and
(x + d) mod n are adjacent, then every two vertices numbered z
and (z 4+ d) mod n are adjacent.

Informally speaking, an undirected k-circulant graph is a
k-nearest neighbor cycle graph. Thus, with the same reasoning,
an undirected k-circulant graph is 2k-connected and at least
L’z—‘J—robust. The result is extended to directed circulant graphs
where it is shown that it is at least Lk%zj—robust (Usevitch &
Panagou, 2017). An example of an undirected and a directed
circulant graph is shown in Fig. 12(b,c).

11.3. Formation graphs on 2-Dimensional lattice

A specific type of geometric graph is the two dimensional
lattice which has been widely used in formation control of au-
tonomous robots (Guerrero-Bonilla, Saldana, & Kumar, 2018;
Saulnier et al., 2017). A lattice is a set of linear combinations
with integer coefficients of the elements of a basis of R2. The
elements of the set are lattice points. Let v; and v, be bases of
a 2-dimensional lattice with ||vq|| = ||vz]| = ¢ where £ is the
lattice length. Every point x on the lattice can be described by
X = a;vq + bjv, where a;, b; € Z. In a lattice, two agents i and j
are connected if ||x; — ;|| < ¢ where |.|| is the Euclidean norm.
Given a set of agents V and a distance ¢, the graph G, = {V, &}
with edge set & = {(i, j)lllxi — x;l| < £} is called the proximity
graph of the set V. We describe the communication range by a
function R : Z>1; — R that maps the number of robots m to a
distance where m robots are ensured to be reached. A formation
of n robots is said to be connected if its associated proximity
graph G, is connected. An example of a lattice and a connected
formation is shown in Fig. 12(d). It was shown in Guerrero-
Bonilla et al. (2018) that in a connected formation of n robots,
every robot has at least 1 < m < n — 1 robots within a distance
m{. Based on this, one can compute a minimum communication
range for the robots in a formation to guarantee resilience in the
communication network.

Proposition 5 (Guerrero-Bonilla et al., 2018). Given a set V of 4f +1
agents in a connected formation, if the communication range of every
agent satisfies R > 3f¢, then the associated graph of the formation
is (2f + 1)-robust.

11.4. Random graphs

A common approach to modeling complex networks is via
the framework of random graphs, i.e., by drawing a graph from
a certain probability distribution over the set of all possible
graphs on a given set of agents. Such random graph models
have diverse applications (Bollobas, 2001; Newman, Strogatz, &
Watts, 2001), including in modeling cascading failures in large
scale systems (Crucitti, Latora, & Marchiori, 2004; Yagan, Qian,
Zhang, & Cochran, 1998). Here, we summarize the connectivity
and robustness properties of certain commonly studied random
graph models.

11.4.1. Erdés-Rényi random graphs

An Erddés-Rényi (ER) random graph G(n, p) is a graph on n
agents, where each edge between two distinct agents is presented
independently with probability p (which could be a function of n).
We say that a graph property holds asymptotically almost surely if
the probability of drawing a graph with that property goes to 1 as
n — oo. The following theorem shows the probability threshold
for which a graph G € G(n, p) is r-connected and r-robust.
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Theorem 13 (Zhang et al., 2015). For any constant r € Zx1,

Inn+(r—1)Inlnn
t(n) = .

is a threshold function for the ER random graph G to have minimum
degree 1, to be r-connected, and to be r-robust.

According to the example graph in Fig. 3(b), graph robustness
is a much stronger property than the graph connectivity and the
minimum degree. However, Theorem 13 indicates that the above
threshold function for r-connectivity (and minimum degree r) is
also a threshold function for the stronger property of r-robustness
in ER random graphs.

11.4.2. Random regular graphs

Let £2, 4 be the set of all undirected graphs on n agents where
every agent has degree d (note that this assumes that nd is even).
A random d-regular graph (d-RRG), denoted G, 4 is a graph drawn
uniformly at random from 2, 4. For d > 3, it is shown that G, 4 is
asymptotically almost surely d-connected (Bollobas, 2001). Based
on Friedman (2003), for any € > 0, the algebraic connectivity of
a random d-regular graph satisfies

M(l)>d—2V/d—1—e,

asymptotically almost surely. As discussed in Saulnier et al.
(2017), if the algebraic connectivity of a graph is bigger than
r — 1, then the network is at least L%J -robust. Hence, according to

(47),an d-RRG is at least | =2¥%=" |-robust asymptotically almost
surely.

(47)

11.4.3. Random interdependent networks

An interdependent network G is denoted by a tuple G =
(G1,G2, ..., Gk, Gp) Where G = (V, &) for I = 1,2,...,k are
called the subnetworks of the network G, and G, = (V; UV, U
-+ U, &) is a k-partite network with £, € UV, x V; specifying
the interconnection (or inter-network) topology. Applications of
interdependent networks in modeling communication networks
and power grid are discussed in Parandehgheibi and Modiano
(2013). Define the sample space £2,, to consist of all possible
interdependent networks (G1, Ga, . .., Gk, Gp) and the indexn e N
denotes the number of agents in each subnetwork. A random
interdependent network is a network ¢ = (G1, G2, ..., Gk, Gp)
drawn from £2,, according to a given probability distribution.

We assume that |V| = [V,| = --- = |V, = n and that the
number of subnetworks k is at least 2. Similar to Theorem 13 for
ER random graphs, there exists a sharp threshold for connectivity
and robustness of random interdependent networks.

Theorem 14 (Shahrivar, Pirani, & Sundaram, 2017). Consider a
random interdependent network G = (G1, G, . . ., Gk, Gp)- Then, for
any positive integers r and k > 2,

Inn+(r —1)Inlnn
t(n) =
(k—1)n
is a threshold for r-connectivity and r-robustness of G.

11.4.4. Random intersection networks

Random intersection graphs belong to class of random graphs
for which every agent is assigned a set of objects selected by
some random mechanism. They have applications in wireless
sensor networks, frequency hopping spread spectrum, spread of
epidemics, and social networks (Singer-Cohen, 1995).

Given a agent set V = {1, 2, ..., n}, each agent i is assigned
an object set S; from an object pool P consisting of P, distinct
objects, where P, is a function of n. Each object S; is constructed
using the following two-step procedure: (i) The size of S;, |Si,
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is determined according to some probability distribution D
{1,2,...,P,} — [0,1] in which Y P(|S|=x = 1. (ii)
Conditioning on |S;| = s;, set S; is chosen uniformly among all s;-
size subsets of . Finally, an undirected edge is assigned between
two agents if and only if their corresponding object sets have at
least one object in common. There are variations of the general
random intersection graph such as binomial random intersection
graphs and uniform random intersection graphs, each of which
focuses on a certain probability distribution D. The following
theorem discusses the connectivity and robustness of random
intersection graphs.

Theorem 15 (Zhao, Yagan, & Gligor, 2014). Consider a general
random intersection graph G(n, P,, D). Let X be a random variable
following probability distribution D. With a sequence «, for all n

defined through ”E[lfi”z = hntr-Uinhntean e pix) = @(+Inn),

2
Var[X] = o(%) and o, = o(Inn), and lim,_, o, = 00, then

the graph is asymptotically almost surely r-connected and r-robust.

12. Future directions

This paper provided an overview of the existing graph-
theoretic tools which can be used to analyze the resilience of
distributed control systems. Compared to system-theoretic ap-
proaches to the robustness and fault tolerance of control systems,
graph-theoretic approaches are relatively new and demand more
development, primarily in the following three directions: (i) De-
veloping graph-theoretic methods to facilitate analyzing a wider
range of distributed algorithms and more complex adversarial
actions; (ii) Reinterpreting the known system-theoretic notions
of resilience and robustness of dynamical systems from a graph-
theoretic perspective; (iii) Investigating the resilience of a wider
range of distributed algorithms using available graph-theoretic
tools.

Here, we propose a few research avenues which are worth
investigating in the future.

o Spectral Approach to Network Structures: One of the nec-

essary steps towards reconciling system-theoretic
approaches and graph theory is to find algebraic inter-
pretations of certain network structures. Algebraic graph
theory is an active topic of research in mathematics (Godsil
& Royle, 2001). However, specific structural properties of
networks that are widely used in analyzing the resilience
of distributed control systems, e.g., network robustness, are
quite new notions defined within the field of systems and
control. Hence, their algebraic interpretations are still under
study.
An example is the relation of the algebraic connectivity and
the network robustness. Defining the edge-boundary of a set
of agents S C Visgiven by dS = {(i,j) e £ |i€S,j e V\S}.
The isoperimetric constant of G is defined as (Chung, 1997)

N
min  ——

i(g) = .
(©) scv,isi< S|

(48)
Based on the above definition and the definition of the
network robustness, we conclude that if i(G) > r — 1, then
the graph is at least r-robust. Moreover, we have A,(L) <
2i(G) (Chung, 1997). Based on this, if A5(L) > r — 1, then
the network is at least L%J—robust (Saulnier et al., 2017;
Shahrivar et al., 2017). However, L%J provides a loose lower
bound for the network robustness. An example is a star
graph which is 1-robust with A;(L) = 1. Further re-
search is needed to be done to find tighter relations between
algebraic connectivity and the network robustness.
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e Resilience with Minimum Communication: Due to the fact
that communications between agents can be costly in many
applications, the problem of reaching a certain level of re-
silience with minimum communication, i.e., edges between
agents, is worth investigating. In specific dynamical systems,
e.g., consensus dynamics, adding edges may also degrade the
controllability of the system. Few recent works have focused
on minimizing the number of edges while reaching a certain
level of security (Weerakkody, Liu, & Sinopoli, 2017) or max-
imizing the connectivity without violating the controllability
of the system (Abbas, Shabbir, Jaleel and Koutsoukos, 2020).
While reaching a certain level of connectivity or robustness
with the minimum number of edges being studied, many
questions remain, particularly in scenarios where edges can
be dynamically added or changed over time (as in networks
with mobile nodes).

e Graph-Theoretic Approach to Attack Energy and the Safe
Operating Set: In Section 9 some graph-theoretic interpre-
tations of the attack’s impact were discussed. Among those,
the attack energy has not been well studied. The objective
of the attacker, other than impact and detectability, can be
to access the system with minimum energy. One way to
quantify the attack energy is via using the spectra of the con-
trollability Gramian Wx. An interesting research avenue is
to design the network to maximize the attack energy using
an appropriate spectrum of the controllability Gramian. One
of applications of these quantitative (and continuous) met-
rics of controllability is to provide a measure for the distance
of the system to boundaries of the safe operating region.
The level of the controllability that the attacker has over the
network can be interpreted as its ability to push the system
to the boundaries of the safe operating region. From this
view, graph-theoretic interpretations of control techniques
to mitigate the attack impact or reduce its controllability,
such as event-triggered control methods or control barrier
function methods (Ames, Xu, Grizzle, & Tabuada, 2017), is
an interesting avenue for further research.

o Resilience of other Classes of Random Graphs: The study
of the connectivity and network robustness of random
graphs with the various probability distribution of edge
formation is another important future research line. As
discussed in Section 11.4, structural properties of several
classes of random networks (vis-a-vis their relevance to
resilience) have already been studied. However, extensions
to a broader class of networks (including geometric random
graphs in higher dimensions, as well as sparse random
networks with different degree distributions) would be of
significant interest.

e Resilience of Networks with Nonlinear Interactions:
Throughout this survey paper, the focus was on DCSs in
which the interactions between agents are linear. In some
cases of DCSs, the local interactions are nonlinear, e.g., syn-
chronization of Kuramoto oscillators with applications to
power systems (Dorfler & Bullo, 2014) and attraction
-repulsion functions in swarm robotics (Gazi & Passino,
2003). Extension of the methods discussed in this sur-
vey to those classes of nonlinear systems requires further
investigation.

o Resilience in Distributed Closed-Loop Settings, including
Multi-Agent Reinforcement Learning: Much of the work
that we described in this survey pertains to open-loop set-
tings, where the agents are attempting to compute a certain
quantity (e.g., consensus, optimization, estimation, infer-
ence), but are not closing the loop by applying control
inputs based on their computations. Closing the loop in
networks with adversaries poses several significant chal-
lenges that remain to be addressed. A specific emerging
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version of this problem pertains to enabling a team of agents
to cooperatively learn optimal policies for interacting with
their environment, particularly when the dynamics of the
environment are not initially known to the agents. Such
multi-agent reinforcement learning settings share some com-
mon features with the distributed consensus, optimization,
and estimation problems we described earlier in the paper,
in that adversarial agents can provide incorrect informa-
tion about their observations and costs to the other agents.
However, these problems also introduce additional lines of
complexity for resilience, in that adversarial agents can also
affect the underlying system with their inputs. There have
been recent initial explorations of resilient algorithms in
such settings (Figura, Kosaraju, & Gupta, 2021; Lin, Gade,
Sandhu, & Liu, 2020; Wu, Shen, Chen, & Ling, 2021; Xie, Mou,
& Sundaram, 2021), but much work remains to be done to
understand how to mitigate adversaries that can not only
send incorrect information but can also take destructive
actions on the shared system that all agents are observing.

o Resilience of Graph Neural Networks: A Graph Neural Net-
work (GNN) is a type of neural network designed to process
and analyze graph-structured data. GNNs operate on graphs
by performing computations on the agents and edges, using
information from the graph structure to guide the com-
putation. The main idea behind GNNs is to learn agent
embeddings, which are low-dimensional vectors that rep-
resent the agents in the graph. These embeddings capture
the structural information of the graph and can be used
for a variety of tasks, such as agent classification, link pre-
diction, and graph classification. The security of GNNs is a
relatively new and active research area. There is ongoing
research on different types of attacks on GNNs, as well
as the development of defenses against these attacks. One
important area of research is the vulnerability of GNNs to
adversarial attacks, where an attacker can modify the input
graph or the GNN model itself to manipulate the output.
Some recent papers in this area include (Sun et al.,, 2022;
Zugner & Gunnemann, 2019).

e Graceful Degradation of DCS: Much of the existing work
pertaining to resilience of DCS that we have surveyed in this
paper has a binary flavor: if the network satisfies certain
properties and the number of adversaries is less than a
certain value, then the guarantees hold in full, but if those
conditions are not satisfied, then there are no guarantees.
However, in practice it would be highly desirable for guaran-
tees to scale with the number (or behavior) of adversaries in
the network, as opposed to exhibiting the kind of binary be-
havior described above. In particular, graceful degradation of
performance as the number or sophistication of adversaries
increases is an area of research that is significantly under-
developed at this point of time, and deserves additional
research. Indeed, the notion of resilience in many research
communities has the connotation of adapting and “bouncing
back” (or “bouncing forward”) after disruptions (Manyena,
O’Brien, O’Keefe, & Rose, 2011; Smith et al., 2008). New
techniques to enable this kind of adaptation in networks
to recover and adapt to adversarial actions would be of
significant theoretical and practical interest.
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