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Prewhitening and normalization help detect a
strong cross-correlation between daily
wastewater SARS-CoV-2 RNA abundance and
COVID-19 cases in a community†

Min Ki Jeon, Bo Li, Doris Yoong Wen Di and Tao Yan *

Wastewater surveillance is a promising technology for real-time tracking and even early detection of

COVID-19 infections in a community. Although correlation analysis between wastewater surveillance data

and the daily clinical COVID-19 case numbers has been frequently conducted, the importance of

stationarity of the time series data has not been well addressed. In this study, we demonstrated that strong

yet spurious correlation could arise from non-stationary time series data in wastewater surveillance. Data

prewhitening to remove trends by the first differences of values between two consecutive times helped to

reveal distinct cross-correlation patterns between daily clinical case numbers and daily wastewater SARS-

CoV-2 RNA abundance during a lockdown period in 2020 in Honolulu, Hawaii. Normalization of

wastewater SARS-CoV-2 RNA concentration by the endogenous fecal viral markers in the same samples

significantly improved the cross-correlation, and the best correlation was detected at a two-day lag of the

daily clinical case numbers. The detection of a significant correlation between the daily wastewater SARS-

CoV-2 RNA abundance and the clinical case numbers also suggests that disease burden fluctuation in the

community should not be excluded as a contributor to the often observed weekly cyclic patterns of clinical

cases.

1. Introduction

Since the outbreak of COVID-19 pandemic in late 2019,1

wastewater surveillance has been explored as a new way to
monitor the spread of SARS-CoV-2 in human communities.
Many studies have shown the presence of SARS-CoV-2 viral
particles or genomic RNA in bodily wastes, including feces,2

urine,3 and respiratory fluids4,5 in both symptomatic and
asymptotic patients. In particular, asymptomatic infections
are now known to account for a large percentage of total
COVID-19 infections,6,7 and also shed SARS-CoV-2 virus in

feces.8,9 Since wastewater collects human wastes from all
individuals in the wastewater service area and hence can
provide comprehensive information on COVID-19 infection
in the community, this enables a unique advantage of
wastewater surveillance in that it can potentially capture the
“actual” infection rates, including the asymptomatic or
mildly symptomatic patients in the community who are less
likely to seek clinical testing.

Wastewater surveillance may also be able to provide real-
time tracking and even early detection of infectious in a
community. The sources of SARS-CoV-2 viral shedding to
wastewater include mainly feces and partially saliva and
sputum due to their high shedding probability and the
possibility of entering the sewers.10 It is known that COVID-
19 infected patients start to shed SARS-CoV-2 virus in feces
during the incubation period between the infection and the
symptom onset11 and the peak of SARS-CoV-2 viral
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concentration is reported generally at the beginning of the
symptom onset.12,13 In addition, model fitting results from a
meta-data analysis study using experimental findings from
various clinical studies have estimated the highest viral
concentration at 0.34 days after symptom onset.14

Since data collected from both clinically confirmed
COVID-19 cases and SARS-CoV-2 RNA abundance in
wastewater are time series data, their relationships could be
examined through time series data analyses including cross-
correlation. Removing the trend or seasonality of time-series
data sets to achieve stationarity is an important prerequisite
to avoid spurious cross-correlation.15 This transformation
process is called “prewhitening” and it transforms time series
data into stationary forms. One common prewhitening
method is the single differencing of the time series data
points by their first differences.16 However, many of the
wastewater surveillance studies that correlated SARS-CoV-2
RNA abundance in wastewater and COVID-19 cases in the
community did not prewhiten the time series data.17–20 As a
result, the strong correlation coefficients observed could be
attributed to trend or seasonality instead of the actual
correlation of variation between the two types of data sets.

In this study, we re-analyzed previously collected time-
series data on daily wastewater SARS-CoV-2 RNA abundance
and clinical COVID-19 cases in a large metropolitan area to
demonstrate the importance of prewhitening when
conducting cross-correlation analysis. Both SARS-CoV-2 RNA
concentration and its normalized abundance were subjected
to time series cross-correlation analysis to determine any
presence of lags between them and the corresponding daily
clinical case numbers observed in the community. Also,
normalization strategies of the wastewater data were
compared to identify the best improvement of correlation
with the daily clinical case numbers.

2. Materials and methods
2.1. Wastewater sampling, processing and molecular
quantification

Wastewater sampling, processing, and RT-qPCR quantification
of SARS-CoV-2 RNA and several fecal RNA viruses in wastewater
were previously described in detail in Li et al.,21 which are
briefly summarized in the following (Tables S1 and S2†). The
two largest wastewater treatment plants (WWTP), Sand Island
(SI) and Honouliuli (HO) in the City and County of Honolulu,
were selected to collect wastewater samples to represent the
wastewater of the community. Untreated primary influent
wastewater samples were collected by daily flow-adjusted
composite sampling from the SI and HO WWTPs from August
27th, 2020 to October 4th, 2020 (i.e., day 0 to 38, n = 39 for each
WWTP). All daily wastewater samples were thoroughly mixed
and aliquots were subsequently centrifuged to separate
suspended solids and supernatant, which were referred to as
solid and liquid fractions of the wastewater samples,
respectively. The exogenous process control bovine coronavirus
(BCoV) (Zoetis; Kalamazoo, MI, USA) was spiked into some solid

and liquid subsamples to detect inhibition and assess recovery
(four batches of samples, n = 46) (Table S2†). The liquid fraction
was first treated by the polyethylene glycol (PEG) precipitation
method22 to concentrate and pellet viral particles in the liquid
fraction. The precipitated pellets from the liquid fraction as well
as the solid fraction were subjected to viral RNA extraction. All
extracted viral RNA samples were reverse transcribed with
random hexamer N6, and the produced cDNA samples were
analyzed by qPCR assays targeting SARS-CoV-2 RNA (the N1 and
N2 assays23 and the E gene assay24) and fecal RNA viral
surrogates (F+ RNA coliphages Group II (G2) and Group III
(G3),25 and pepper mild mottle virus (PMMoV)26).

2.2. Data analysis

All data analyses used both log-transformed SARS-CoV-2 RNA
concentration data determined by the three qPCR assays (i.e.,
log N1, log N2, and log E) and their abundances normalized
by the three fecal viral indicators (i.e., log (N1/G2), log (N2/
G2), log (E/G2), log (N1/G3), log (N2/G3), log (E/G3), log (N1/
PMMoV), log (N2/PMMoV) and log (E/PMMoV)). Daily new
COVID-19 case counts for Honolulu were sourced from the
local COVID-19 dashboard of the Disease Outbreak Control
Division at the State of Hawaii Department of Health. The
study only used publicly available data at the population
level, and thus required no IRB review. Cross-correlation was
used to examine the time-lagged association between new
clinical COVID-19 cases in the community and wastewater
SARS-CoV-2 RNA abundance. A prewhitening process was
applied to all time series data, including COVID-19 clinical
case numbers and the wastewater SARS-CoV-2 RNA
abundance, to remove trends. The wastewater SARS-CoV-2
RNA abundance data were prewhitened by log transformation
followed by the first differences, and the clinical case data
were prewhitened by the first differences. The original and
the prewhitened data were tested for normality by using
Shapiro–Wilk test.27 Mann–Kendall test28,29 was used for the
assessment of trend significance before and after the
prewhitening to verify the successful removal of trends.

Cross-correlation of original and prewhitened SARS-CoV-2
RNA concentration and their normalized abundance in liquid
or solid fractions and the daily new clinical COVID-19 cases
were analyzed for the SI and HO WWTPs separately. The
cross-correlation functions (CCF) function in the R
environment was used with a maximum lag of six days. A
positive lag indicates that the SARS-CoV-2 RNA concentration
or normalized abundance was leading the clinical cases.
Positive coefficients indicate a positive relationship between
the SARS-CoV-2 RNA concentration or normalized abundance
and clinical cases.

Results of the cross-correlation analysis were visualized by
heatmaps and boxplots. Additionally, correlation coefficients
from the cross-correlation analyses were compared with
respect to different normalization strategies by using p-values
obtained from pairwise t-test and were adjusted by the
Benjamini and Hochberg correction30 to determine which
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normalization strategy showed the best improvement of
cross-correlation coefficients. All statistical analyses and data
visualization were conducted in R 4.2.131 by using the
packages tidyverse 1.3.1,32 ggpubr 0.4.0,33 scales 1.1.1,34 and
rstatix 0.7.0.35

3. Results
3.1. Importance of prewhitening on cross-correlation

Our previous study21 detected downward trends for both daily
clinical COVID-19 case numbers in the community and SARS-
CoV-2 RNA abundances (both with or without normalization
by fecal RNA viral markers) in the wastewater samples. The
observed downward trends were the result of a public health
lockdown implemented to counter the COVID-19 outbreak on
the Island of Oahu. Therefore, the time series data of raw
wastewater SARS-CoV-2 RNA concentration and its normalized
relative abundance, as well as the daily fluctuation of clinical
case numbers, all need to be prewhitened in order to be de-
trended before cross-correlation analysis. The Shapiro–Wilk
test showed that only 25 out of 49 of the original data (p =
0.083 ± 0.102) were normally distributed, but all of the
prewhitened data (p = 0.394 ± 0.244) were normally
distributed (Table S3†). The Mann–Kendall test results
confirmed the removal of trends from both SARS-CoV-2 RNA
abundance data in the wastewater samples and the daily
clinical case data by the prewhitening process (Table S3†).

The prewhitened SI and HO WWTPs time series SARS-
CoV-2 RNA concentration data were first compared with the
prewhitened daily clinical case numbers, which showed only

weak correlations (either positive or negative) (Fig. 1). The
only significant correlation was observed at a two-day lag of
the prewhitened daily clinical case numbers (xt+2) falling
behind the prewhitened daily wastewater SARS-CoV-2 RNA
concentrations of log N1 (r = 0.38, p = 0.019) in the liquid
fraction of HO WWTP (Fig. 1E). No significant correlations
were found from any other lags for the two WWTPs, as
indicated by the boxplots falling under the 95% confidence
level (Fig. 1B and F).

To compare, cross-correlation of the original non-
stationary time series SARS-CoV-2 data was also performed to
illustrate the potential for spurious correlation
(Fig. 1C, D, G and H). Both time series concentration data
(liquid and solid fractions) from SI (Fig. 1C and D) and HO
(Fig. 1G and H) WWTPs showed all positive correlation
coefficients and the majority of the cross-correlation analyses
showed statistically significant correlations with p-values less
than 0.05 (SI: 21 out of 42 analyses; HO: 27 out of 42
analyses) with the original daily clinical case numbers (xt+h, h
= lag number). Because the normality assumption of cross-
correlation analysis was not met, these high positive
correlation coefficients are considered spurious and false
positive.

3.2. Impact of normalized abundance on cross-correlation

The concentrations of SARS-CoV-2 RNA measured from the
samples of the two WWTPs are expected to be impacted by
various processes during wastewater sampling and sample
processing, including total fecal discharge in the area, sewer

Fig. 1 Cross-correlation between with and without prewhitening by the first differences of daily new clinical COVID-19 case numbers and
measured SARS-CoV-2 RNA concentration (log 10 transformed) in wastewater samples from Sand Island (prewhitened: A and B; non-prewhitened:
C and D) and Honouliuli (prewhitened: E and F; non-prewhitened: G and H). Red dashed lines represent a 95% level of significance and the p-value
of the correlation less than 0.05 are displayed as asterisks. The middle, upper, and lower lines in the box of the boxplot represent the median,
25th, and 75th percentiles, respectively, and the whiskers represent the largest and smallest values outside of the interquartile range.
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collection to the WWTPs, wastewater viral precipitation, and
molecular quantification steps. The resulting variations could
be potentially mitigated by normalizing data to various
endogenous fecal viral indicators (e.g., log N1/G2).21 The
normalized daily wastewater SARS-CoV-2 RNA data were also
prewhitened and then analyzed via cross-correlation with the
prewhitened daily clinical case numbers. For wastewater
samples from the SI WWTP, the normalization strategy
produced significantly different cross-correlation patterns
against different time lags (Fig. 2) than those without
normalization (Fig. 1).

The most obvious improvement in the cross-correlation
coefficients was observed at a two-day lag (xt+2,
Fig. 2B, D and F), with a range of r = −0.03-0.45 (0.23 ± 0.13).
The average cross-correlation coefficients were increased from
0.12 to 0.33, 0.19, and 0.16 when G2, G3, and PMMoV were
used for normalization, respectively, which showed an average
of 0.11 ± 0.09 increase than those without normalization
(Fig. 2B, D and F). Among all combinations, the best correlation
coefficient (r = 0.45, p = 0.004) was observed between the log (E/
G2) in the liquid fraction and the daily clinical case numbers.
The normalization strategy showed a higher improvement of
correlation coefficients in liquid fraction (Δr = 0.14) than in the
solid fraction (Δr = 0.07) when compared to the raw data.

At the two-day lag, statistically significant correlations
were observed more frequently with the normalized SARS-
CoV-2 RNA abundance data than with the raw data. For
example, at the SI WWTP, both log (N1/G2) and log (E/G2)
showed statistically significant correlation coefficients in the
liquid (r = 0.38 (p = 0.017) and r = 0.45 (p = 0.004),
respectively) and solid fractions (r = 0.32 (p = 0.048) and r =
0.38 (p = 0.018), respectively). In contrast, there was no
statistically significant correlation between clinical cases and
raw wastewater SARS-CoV-2 RNA concentration data (i.e.,
without normalization) at SI WWTP (Fig. 1A). G3
normalization showed two statistically significant
correlations from log (N1/G3) and log (E/G3) (r = 0.33 (p =
0.043) and r = 0.33 (p = 0.044), respectively) in the liquid
fractions. PMMoV normalization showed only one statistically
significant correlation coefficient from the log (E/PMMoV) in
the solid fraction (r = 0.33, p = 0.043).

For the HO WWTP, the largest correlation coefficients
from the cross-correlation between the normalized SARS-CoV-
2 RNA abundance and the daily clinical case numbers were
also observed at a two-day lag (xt+2, Fig. 3B and D), which is
similar to the results of SI WWTP. The average cross-
correlation coefficients were increased from 0.13 to 0.21 and

Fig. 2 Cross-correlation between the prewhitened COVID-19 new
case numbers and the prewhitened SARS-CoV-2 RNA normalized
abundance in wastewater samples from the SI WWTP. The normalized
abundance was calculated by dividing SARS-CoV-2 RNA abundance by
F+ RNA coliphage group II (A and B), group III (C and D), and PMMoV
(E and F). All normalized abundances were transformed into log forms.
Red dashed lines represent a 95% level of significance and the p-value
of the correlation less than 0.05 are displayed as asterisks. The middle,
upper, and lower lines in the box of the boxplot represent the median,
25th, and 75th percentiles, respectively, and the whiskers represent the
largest and smallest values outside of the interquartile range.

Fig. 3 Cross-correlation between the prewhitened COVID-19 new
case numbers and the prewhitened SARS-CoV-2 RNA normalized
abundance in wastewater samples from the HO WWTP. The
normalized abundance was calculated by dividing SARS-CoV-2 RNA
abundance by F+ RNA coliphage group II (A and B), group III (C and D),
and PMMoV (E and F). All normalized abundances were transformed
into log forms. Red dashed lines represent a 95% level of significance
and the p-value of the correlation less than 0.05 are displayed as
asterisks. The middle, upper, and lower lines in the box of the boxplot
represent the median, 25th, and 75th percentiles, respectively, and the
whiskers represent the largest and smallest values outside of the
interquartile range.
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0.24 for G2 and G3 normalizations, respectively, which
showed an average of 0.10 ± 0.02 increase than those without
normalization (Fig. 3B and D). The best correlation
coefficient among all three normalizations was observed
between the log (N1/G2) in the liquid fraction and the daily
clinical case numbers (r = 0.35, p = 0.029). Similar to the SI
WWTP, the normalization strategy showed a larger
improvement of correlation coefficients in liquid fractions
(Δr = 0.07) than in the solid fractions (Δr = 0.03) when
compared to the raw data.

At the two-day lag, all normalized forms of log N1 in the
liquid fractions (log (N1/G2): r = 0.35, p = 0.029; log (N1/G3): r
= 0.35, p = 0.030; log (N1/PMMoV): r = 0.33, p = 0.043) showed
statistically significant correlations between the daily clinical
cases and the normalized SARS-CoV-2 RNA abundance at the
HO WWTP (Fig. 3A, C and E). Although no statistically
significant correlation was observed from solid fractions from
all normalization strategies (r = −0.05-0.27, 0.16 ± 0.11), all
correlation coefficients observed from the solid fractions were
increased by normalization with G2 and G3.

The correlation coefficients of all SARS-CoV-2 marker
genes from both liquid and solid fractions of HO WWTP
decreased when they were normalized with PMMoV; average
correlation coefficients decreased from 0.13 to 0.09 at the
two-day lag (Fig. 3E). Interestingly, PMMoV normalized SARS-
CoV-2 RNA abundances (for all three gene markers) in the
liquid fraction showed large correlation coefficients (r = 0.32
± 0.06) at a five-day lag of daily clinical case numbers
(Fig. 3F), and a statistically significant correlation was
observed for log (E/PMMoV) (r = 0.39, p = 0.014).

3.3. Comparison of different normalization strategies for
cross-correlation analysis

The correlation coefficients between the daily clinical case
numbers and SARS-CoV-2 RNA abundance at a two-day lag of
clinical cases were compared with respect to the
normalization strategies by using a pairwise t-test (Fig. 4).
Among the three different endogenous fecal viral RNA
controls used, only normalizing the data with G2 (r = 0.33 ±
0.10, p = 0.002) showed a statistically significant improvement
of correlation coefficients in comparison to that using the raw
data (r = 0.12 ± 0.13). While G3 (r = 0.19 ± 0.14, p = 0.396) and
PMMoV (r = 0.16 ± 0.11, p = 0.198) mildly improved the
correlation (Fig. 4A), the improvement was not statistically
significant. Furthermore, the G2 normalization showed a
significantly larger average correlation coefficient than both
G3 (p = 0.040) and PMMoV (p = 0.014) normalizations.

For the HO WWTP, the G3 (r = 0.24 ± 0.08, p = 0.032)
normalization method was the only strategy that significantly
improved the correlation coefficients (Fig. 4B). G2 (r = 0.21 ±
0.08) also increased the mean values of correlation
coefficients from the raw data (r = 0.13 ± 0.14), although the
improvement was only marginally significant (p = 0.058).
Both G2 (p = 0.028) and G3 (p = 0.028) normalizations
resulted in better correlation than the PMMoV normalization

(r = 0.09 ± 0.13), which actually showed a lower average
correlation coefficient than the raw data.

The overall results indicate that the normalization of
SARS-CoV-2 RNA abundance improved the cross-correlations
with the daily clinical case numbers. G2 normalization
showed the largest improvement of cross-correlations in the
SI WWTP samples, while G3 normalization resulted in the
largest improvement of the cross-correlations in the HO
WWTP samples. When considering the liquid fractions
only, the G2 normalization of log N1 from SI (r = 0.38, p =
0.017) and HO (r = 0.35, p = 0.029) WWTPs showed both
significant correlations with the daily clinical case
numbers.

4. Discussion

In our previous study,21 we observed simultaneous downward
trends between SARS-CoV-2 RNA abundance (both with and
without normalization by fecal viral markers) in wastewater
samples from the SI and HO WWTPs and the daily clinical
COVID-19 case numbers during a COVID-19 public health
lockdown. This is congruent with previous observations
where increases in wastewater SARS-CoV-2 RNA concentration
corresponded with rapidly expanding COVID-19
outbreaks.17,36–39 The fine-scale temporal dynamics revealed
by the daily sampling also detected significant intra-day
fluctuation of the wastewater SARS-CoV-2 RNA abundance,
even within the same weeks. Many factors could have
contributed to the observed intra-day fluctuation, including
errors in wastewater sampling and sample analysis,
variations in viral shedding by infected individuals, and daily
fluctuations in disease burden in the community. Since
similar trends were detected in the two replicate WWTPs,

Fig. 4 Cross-correlation between both prewhitened daily new clinical
COVID-19 case numbers in Honolulu County and normalized SARS-
CoV-2 RNA concentration (log 10 transformed) by F+ RNA coliphage
group II, group III, and PMMoV in wastewater samples from Sand
Island (A) and Honouliuli (B) at a two-day lag of clinical cases. Red
dashed lines represent a 95% level of significance and the whiskers
represent the largest and the smallest values.
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over multiple weeks, and regardless of normalization
strategies, the former two (i.e., sampling and analysis errors
and variation in viral shedding) are unlikely to explain the
observations entirely.

Cross-correlation analysis of the time series data of
wastewater SARS-CoV-2 RNA abundance and clinical case
numbers could be used to infer potential association and
determine if daily fluctuations in disease burden in the
community contributed to the observed intra-day fluctuation.
Many wastewater surveillance studies have compared
wastewater SARS-CoV-2 RNA abundance with clinical case
data in the community through correlation analysis.17–20

However, few previous studies have conducted prewhitening
treatment to achieve stationarity of the time series data.
Stationarity in time series data indicates consistency of the
distribution (mean and variance) over time,40 and non-
stationary time series data can often lead to spurious
outcomes in correlation analysis. This was clearly
demonstrated when we observed significant spurious cross-
correlations with the original data that contained trends
(Fig. 1C, D, G and H). Similar phenomenon may explain
reports of wastewater surveillance showing strong
correlations to clinical cases, especially when the studies
were conducted during a period when COVID-19 clinical
cases were continuously increasing or decreasing.36,41,42

Therefore, prewhitening the data for wastewater surveillance
to meet the stationarity requirement of cross-correlation
analysis must be practiced in order to identify the actual
association between data sets.

After prewhitening the data, the cross-correlation
coefficients decreased significantly, and the overall patterns
with respect to the time lag also changed drastically (Fig. 1).
For example, at zero-time lag, cross-correlation using the
original data detected the best positive correlation, whereas
the prewhitened data actually detected some negative
correlations. The low levels of correlation detected are not
entirely unexpected, considering the extraordinary complexity
involved in collecting the wastewater SARS-CoV-2 RNA data
and associate variations. Many factors, including varying
fecal discharge by infected individuals, dilution and
fluctuation during transportation in sanitary sewers, and
wastewater sample collection and processing, could have
contributed to the variations in SARS-CoV-2 RNA abundance
in wastewater samples. The molecular quantification
processes could also introduce additional variation to the
results; for example, RNA recovery during sample extraction
could have different efficiencies, and subsequent reverse
transcription and qPCR quantification could introduce
additional biases.

The incorporation of normalization strategies and the
resulting relative abundance of SARS-CoV-2 RNA in the
wastewater samples led to the identification of a two-day lag
showing the best correlation (Fig. 2 and 3). Given the
complex and multi-step process required for quantifying
SARS-CoV-2 RNA in wastewater, the use of endogenous viral
RNA control for global normalization may be important to

reduce the variations during the analysis and enable
statistical comparison. Amongst the three fecal RNA viruses
tested as endogenous controls in this study, normalization by
G2 provided the most significant improvement in correlation
between wastewater SARS-CoV-2 RNA abundance and clinical
new cases. Cole et al. found that G2 had the highest
proportion among the total F+ RNA groups in WWTP
samples (51.9%) and G2 was found more in human-impacted
wastes than G3.43 This supports our results of G2
normalization of SARS-CoV-2 RNA abundance having higher
correlation coefficients compared to G3. On the other hand,
PMMoV only provided marginal improvement in correlation.
This difference could be attributed to their respective sources
in human feces where G2 and G3 are inherently linked with
fecal coliforms while PMMoV is subjected to dietary variation
in pepper consumption. Some previous wastewater
surveillance studies that used PMMoV for the SARS-CoV-2
abundance normalization also reported that the PMMoV did
not improve the correlation with the clinical cases.44–46 Other
biomarkers and chemical indicators for population
normalization are also recently considered, such as
paraxanthine,47 cross-assembly phage,48,49 human RNase P,50

total nitrogen and phosphate.51 Therefore, more studies
related to improving the normalization methods in the
wastewater surveillance field are required to more efficiently
reduce the variations.

The significant cross-correlation between the normalized
abundance of daily wastewater SARS-CoV-2 RNA and new
clinical cases in the community is highly intriguing. Since
the onset of COVID-19 pandemic, weekly intra-day
oscillations in new clinical case numbers have been widely
observed in communities across the globe.52 One school of
thought is that these weekly intra-day oscillations are
primarily a reflection of diagnostic and reporting biases,53,54

while a competing theory is that this could be caused by
actual disease transmission dynamics due to weekly behavior
patterns.55–57 The strong correlation observed in this study
between the intra-day fluctuation and weekly oscillation of
wastewater SARS-CoV-2 RNA abundance and clinical case
numbers suggests that the observed weekly oscillation of
clinical cases may be indeed a true reflection of the disease
burden dynamics in the community, in addition to
contributions from clinical sampling and reporting biases
and errors.

Since the average turnaround for clinical testing during
the study period was approximately one day, with the
assumption of one day lag between symptom onset and
specimen collection, the observed two-day lag in cross-
correlation analysis indicates that the wastewater SARS-CoV-2
RNA abundance may be synchronizing with symptom
development of new COVID-19 cases in the community.
Studies at the early stage of the pandemic, which likely
experienced clinical testing delays, have reported the
detection of the SARS-CoV-2 RNA in wastewater about one
week ahead of reported clinical cases in the communities.17,37

Another study reported wastewater sludge SARS-CoV-2 RNA
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concentration leading the cinical specimen collection by 0–2
days.23 The apparent synchronous correspondence supports the
possibility of using wastewater for early detection of viral
transmission in communities, as viral shedding can start 3–5
days before the peak of symptom onset.12

In this study, both the solid and liquid fractions of the
same wastewater samples were analyzed separately, and
normalized SARS-CoV-2 RNA abundance data in both
fractions showed similar cross-correlation patterns (Fig. 2
and 3). In the previous study,21 the solid fraction contained a
higher per mass concentration of SARS-CoV-2 RNA than the
liquid fraction, while the normalized abundances between
the two fractions were quite similar. The normalized
abundance of SARS-CoV-2 RNA in the liquid fraction
exhibited slightly stronger correlations with the clinical
COVID-19 case numbers in the community than the
normalized abundance of SARS-CoV-2 in the solid fraction.
This could be attributed to the more complex matrix effects
in the solid fraction than the liquid fraction, as indicated in
our previous study, where lower recovery and higher variation
of the spiked BCoV as exogenous control were observed in
the solid fraction than in the liquid fraction.21

It is important to note that all three quantification
assays showed similar cross-correlation patterns between
normalized SARS-CoV-2 RNA abundance in wastewater and
clinical case numbers in the community. While the SARS-
CoV-2 RNA genome contains a single copy of N and E
genes, our previously published study21 and many other
studies37,58 have shown that different assays usually
generate different abundance data, indicating that the
molecular quantification processes have variations.
Nevertheless, all three assays were able to reveal strong
correlations at a two-day lag between normalized SARS-CoV-
2 RNA abundance in the wastewater and community
disease burden, with the N1 gene assay providing the
highest correlation coefficients in both tested WWTPs
(Fig. 2 and 3). Even though the E gene showed strong
positive cross-correlation patterns at a two-day lag from
both SI and HO WWTPs, it is considered the least specific
PCR target for SARS-CoV-2 detection due to homologous
sequence similarities with other coronaviruses.59 Our
previous paper21 showed that the N2 gene assay had the
least sensitivity, consequently, more wastewater surveillance
studies for SARS-CoV-2 RNA detection are using the N1
assay and showed higher positivity rates compared to the E
gene assay.60,61 With the reasons above, we would recommend
the N1 gene assay for future wastewater surveillance for SARS-
CoV-2 RNA detection and G2 for wastewater normalization.

5. Conclusions

This study demonstrated the importance of prewhitening to
remove the trends of the daily fluctuation of wastewater
surveillance data and the clinical case numbers before cross-
correlation analysis of the time series data sets to avoid
spurious correlations. We also observed that normalization

strategies to account for variations in the process are helpful
in improving cross-correlation coefficients. Amongst the
various normalization strategies, SARS-CoV-2 RNA
abundances normalized with F+ RNA coliphage Group II
provided the best correlation coefficients in this study. We
observed that the N1 assay was showing the best correlation,
while N2 showed less sensitivity and the E gene has been
reported to be less specific. Although there were significant
inherent variations in the data due to the complexity of the
wastewater samples and the process, the daily clinical case
numbers appeared to lag two days behind the SARS-CoV-2
RNA detection in wastewater based on multiple gene markers
and multiple normalization strategies. This supports the
notion that wastewater surveillance has the potential to
provide earlier detection of SARS-CoV-2 in the community
than clinical diagnosis. Most interestingly, the strong cross-
correlation between the intra-day fluctuation and weekly
oscillation of wastewater SARS-CoV-2 RNA abundance and
clinical cases suggest that the observed weekly oscillation of
clinical cases may indeed be a true reflection (at least
partially) of the disease burden dynamics in the community,
in addition to contributions from clinical sampling and
reporting biases and errors, which requires further research
to delineate their respective contributions.
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