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Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value
decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius
norm (TNF) as a novel nonconvex surrogate of tensor's tubal rank. The rationale of the proposed
model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we
introduce a null space property (NSP) type condition, under which a low-rank tensor is a local mini-
mum for the proposed TN F recovery model. Numerically, we consider a low-rank tensor completion
problem as a specific application of tensor recovery and employ the alternating direction method of
multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under
mild conditions. Extensive experiments demonstrate the superiority of our proposed model over
state-of-the-art methods.
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1. Introduction. Nowadays, with the development of modern technology, data is often
collected in a multidimensional array, which is referred to as a tensor. Compared to vectors
and matrices, tensors can better preserve the inherent structures in data and hence have ap-
peared in a variety of applications including neuroscience [2, 32, 48], image science [28, 42, 49],
signal processing [31, 33], seismic imaging [9, 34], and deep learning [52]. During acquisition
and transmission, it is inevitable that the data is partially missing and/or affected by noise.
Recovering an underlying tensor from its partial and corrupted entries is an ill-posed inverse
problem, which requires reasonable assumptions posed as a regularization for guiding toward
the desired solution. This paper focuses on a low-rank structure for tensor recovery. Specifi-
cally, we consider the low-rank tensor completion (LRTC) as its application, which aims to fill in
the missing entries of a tensor by assuming it is low-rank. The LRTC problem has received
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considerable attention, such as health data analysis [14, 15], image inpainting [25, 27, 35],
background modeling [4], recommendation systems [12, 16], and video restoration [29].

Unlike matrices, there exist a humber of definitions for tensor ranks. Two classic tensor
ranks [22] are the CANDECOMP/PARAFAC (CP) rank and the Tucker rank. The CP rank,
stemming from the CP decomposition [19], equals the smallest number of rank-one tensors
that can be written as the outer product of vectors in appropriate dimensions. The Tucker
rank [13] based on the Tucker decomposition [41] is a vector with each element being the
rank of a matrix unfolded from a target tensor. Kilmer and Martin [21] proposed a tensor
factorization analogous to the matrix's singular value decomposition, referred to as tensor
singular value decomposition (t-SVD). Based on t-SVD, tensor multirank [13] and tubal rank
[20] were introduced. In particular, tensor multirank is a vector composed of the ranks of all the
frontal slices after the Fourier transforms along the tubal direction, while the tubal rank of a
tensor is the maximal value of its multirank.

It is computationally intractable to minimize any of these tensor ranks directly. A popular
approach for low rank approximation is to minimize a surrogate function (convex or noncon-
vex) to the rank. For example, Liu et al. [27] defined the sum of the nuclear norm (SNN)
based on the Tucker decomposition. Besides, tensor nuclear norm (TNN) was proposed as an
extension from a matrix nuclear norm in [30, 38, 53]. Unlike SNN that gives a lower bound of
the Tucker rank [37], TNN is shown to be the tightest convex relaxation of the | ;-norm of the
tensor multirank when confined within the unit ball of the tensor spectral norm [53].

A variety of nonconvex alternatives to TNN when approximating the rank were proposed
[17, 23, 51, 54, 55]. In particular, Jiang et al. [17] extended the partial sum of singular values in
the matrix case to the partial sum of the tubal nuclear norm (PSTNN), but its performance
largely depends on the number of singular values to be included. In addition, Xu et al. [50]
incorporated the Laplace function into TNN for LRTC. Yang et al. [51] proposed a
nonconvex log-determinant function applied to tensors to modify the equal weights of singular
values considered in TNN. Lu et al. [5] introduced a tensor logarithmic norm (TLN) as a
nonconvex surrogate for low rankness and proposed an algorithm named logarithmic norm
minimization and outlier projection (LNOP) for recovering low-rank tensors. Inspired by the
matrix's Schatten-p norm, Kong, Xie, and Lin et al. [23] introduced tensor t-Schatten-p norm.
Two special cases of p = 1/2 and p = 2/3 were discussed in [18] corresponding to tensor
double nuclear norm and tensor Frobenius/nuclear hybrid norm, respectively. Wanget al. [46]
presented a generalized nonconvex framework that can be solved by an iterative reweighted
t-TNN (IR-t-TNN) algorithm.

All the aforementioned nonconvex surrogates of tensor rank have internal parameters
subject to turning that largely affect the model performance. We propose a parameter-free
regularization that uses the ratio of the tensor nuclear norm and the tensor Frobenius norm
(TNF) to approximate the tensor tubal rank. The proposed TN F regularization is motivated by
the ratio of the | ;-norm and the |,-norm, as a scale-invariant surrogate to the | g-norm for
sparse signal recovery [36, 43, 44, 45]. In the sparse signal realm, the null space prop-erty
(NSP) offers an essential criterion for exact sparse recovery by minimizing the | ;-norm.
Inspired by some prior works on NSP for vectors [7, 10, 36], we introduce an NSP-type con-
dition tailored for tensors, under which we prove that a low-rank tensor is a local minimizer of
the proposed TNF model. Computationally we incorporate the TNF regularization in the
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LRTC model, design an eficient algorithm via the alternating direction method of multiplier
(ADMM) [3], and establish its subsequential convergence. We conduct extensive experiments
using synthetic and real data for image and video inpainting to demonstrate that our proposed
methods outperform state-of-the-art methods. Overall, the main contributions of our work
are threefold.
t We propose a novel nonconvex regularization TNF as a parameter-free and scale-
invariant surrogate to the tensor tubal rank for tensor recovery.
t We present theoretical properties of TNF, specifically showing that a low-rank tensor is
a local minimum of a TNF-regularized recovery model under the NSP-type condition.
t We consider the completion as an application of tensor recovery, adapt ADMM to
solve the TNF-based tensor completion model, and provide the convergence analysis.
The rest of the paper is organized as follows. Section 2 provides some notations and
preliminaries. Section 3 details our proposed TNF relaxation of the tensor tubal rank with
properties. The TNF-based low-rank tensor completion is discussed in section 4 with a numer-
ical scheme and its convergence analysis. Extensive experiments are conducted in section 5
using synthetic and real data. Lastly, section 6 concludes this paper.

2. Notations and preliminaries. This section provides an overview of fundamental nota-
tions and definitions that will be utilized throughout this paper. The field of natural numbers is
denoted as N, the field of real numbers is denoted as R, while the field of complex numbers is
denoted as C. Tensors are denoted by boldface Euler script letters, e.g., A. Matrices are
denoted by boldface capital letters, e.g., A ; specifically, we use | to denote the identity matrix.
Boldface lowercase letters, such as a, represent vectors, while lowercase letters, such as a, de-
note scalars. The ith entry of a vector a is represented as aj. For a matrix A, its ith row and jth
column are denoted by A ;. and A ., respectively, and its (i, j)th entry is denoted by aj; or A ;.
Similarly, the (i, ], |)th entry of a third-order tensor A is denoted by ajjj or Ajj;. For a third-
order tensor, we have column, row, and tube fibers, as A .jj, A, and Ajj., respectively, while
the horizontal, lateral, and frontal slides of a third-order tensor A, are denoted by A;.., A;j. and A
.1, respectively. We use A (D) and A .| interchangeably to denote the Ith frontal slice of A. We use
O to denote the zero tensor with all the entries' values being zero, and N (F ) to denote the null
space of a linear operator F. The notation [n] refers to a set of indexes ranging from 1 to n.
We use S| to denote the cardinality of a set S.

The inner product of matrices A and B is defined as eA,B e := Tr(A 'B), where At
represents the conjugate transpose %f A and Tr(t) denotes the matrix trace. The | ;-norm of a
vector vn C" is defined by |v |2 = : vi|2. The nuclear norm of a matrix A is defined as
[A | = : ai(A ), where aj(A ) is the ith singular value of A, while the matrix I ; norm of A is
defined as |A |2 = max;ai(A ). Regarding a third-order tensor, the inner product between two
tensors A and B in CM:S 25 N3 js defined as eA ,B e= " > eA(),B lle. The complex conjugate
of A, which takes the complex conjugate of each entry of A, is denoted as conj(A ). The tensor
| 1-norm of A is defined as |A |1 = i i1 [aiji| , the infinity norm as |A |y = max;j laj|, and
the Frobenius norm as |A | = ﬁmz We use A to denote the tensor after applying

the fast Fourier Transform (FFT) to the tensor A along the third (tubal) dimension, i.e., A =
fft(A,[],3) via the MATLAB command “fft"", and we can compute A back from A via A = ifft(A
,[1,3). Let A n CM"sSN2ns phe 3 block diagonal matrix of the tensor A, i.e.,
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[ ]
- B A—(Z)
(2.1) A := bdiag(A ) = ) ,
A—(»na)
where K(i) is the i-th frontal slice of A. Using the frontal slices of a tensor A, we define the

block circulant matrix of A as

[ A (1) A () ¢t A(Z)]

AR A e A
(2.2) bcirc(A ) := . n RNiNss N2na
A(ns)  Alns- 1) ¢ A (D)

We define two operators:

[ ]

A (1)
A (2)
(2.3) unfold(A ) = , fold (unfold(A )) = A,

A (n3)
where unfold(t) maps A to a matrix of size nyn3s n, and fold(t) is its inverse operator. As
shown in [11], one has €A ,B e= nl—geAi,Bieand |A [F = d—1n:3|A7|F )

Definition 2.1 (t-product [21]). Let A n R™S!sns gand B n R!s "5 Ns; then the t-product
A t B is defined by

(2.4) A t B = fold(bcirc(A ) tunfold(B )),

resulting in a tensor of size n1s Nas n3. Notethat AtB =27 ifandonlyif AB = Z.

Definition 2.2 (identity tensor [21]). The identity tensor | n R"S ™S "s is the tensor with its first
frontal slice being the ns n identity matrix and other frontal slices being all zeros. It is clear
that Atl = A and | t A = A given the appropriate dimensions.

Definition 2.3 (tensor conjugate transpose [21]). The conjugate transpose of a tensor
A n CMsM™sns jg 3 tensor A' obtained by conjugate transposing each of the frontal slices
and then reversing the order of transposed frontal slices 2 through ns.

Definition 2.4 (orthogonal tensor [21]). A tensor Q n R"S "S Ns js orthogonal if it satisfies
QttQ=QtQt=1.

Definition 2.5 (f-diagonal tensor [21]). A tensor is called f-diagonal if each of its frontal
slices is a diagonal matrix.

Definition 2.6 (t-SVD [21]). Let A n RM:5 N25 Ns- then the t-SVD of A is given by

(2.5) A=UtStVt
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where U n RMS NS Ns \y n RN25 M2S N3 gre orthogonal tensors, and S n R™MS N25 N3 jg gn f-
diagonal tensor.

It follows from Definition 2.1 that A= Ut St Vt ifand only if A = USV .

Definition 2.7 (tensor average rank and tubal rank [30]). For a tensor A n RMS N25 Ns ' jtg
tensor average rank, denoted as ranky(A ), is defined as
m3

rank (A ) = irank(bcirc(A )) = i rank(A_m).

n3 ns,_;

The tensor tubal rank, denoted as rank(A ), is defined as the number of nonzero singular
tubes of S, where S comes from the t-SVD of A, i.e., A= UtS t Vt. In other words, one has

rank¢(A ) = \#{i,S (i,i,:) = 0}.

Definition 2.8 (tensor nuclear norm and tensor spectral norm [30]). Let A = Ut St V! be the

t-SVD of A n R "25 N3 Define aj;(A ) as the jth singular value of Al
context is clear. The TNN of A is defined as

, or simply aj; if the

) 1 | | i 1 s m}i}m(m,nz)
(2.6) [A]+:= = |IK = — ajj.
n3 N3 .1 =1

The tensor spectral norm is defined as
(2.7) |A]:=max| A" = maxaj.
i ij

3. Rationales of the TNF model. Despite being widely used in various low-rank tensor
applications, TNN has a limitation of treating the singular values equally with the same
priority, which severely suppresses the large singular values. To mitigate this drawback, we
explore a nonconvex surrogate developed in sparse signal recovery by extending the |1/l ,
model [36, 45] in a vector form to deal with tensors. In particular, we propose the ratio of the
tensor nuclear norm and TNF, defined by

|A |t

(3.1) |A [y 2= Al

to approximate the tensor tubal rank. If we stack all the singular values {ajj} as a vector,
which is referred to as a singular vector, TNN is equivalent to the | ;1 norm of this vector up
to a constant n—13 following (2.6). On the other hand, the Frobenius norm of a tensor is the
scaled |, norm of its singular vector, i.e.,

rﬂg m}i}m(m,nz)
(3.2) Al2= Limp2= L a’.
n3 n3

ij
=1 j=1
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As a result, TNF is analogous to the | 1/l ; model [36, 45] applied on the singular vector to
promote its sparsity, which effectively enforces a low-rank structure of the underlying tensor.
Here we consider the tensor TNF formulation in a general tensor recovery problem given by

(3.3) rr;in [ X |T}N}F} s.t. F(X)=T,

where F(t) is a linear operator and T is the corresponding measurement. We further assume
that T = O to avoid the trivial solution X = O. In the following, we present some theoretical
properties of the proposed TNF regularization (3.1). The TNF regularization for tensors has
properties inherent from | /1 , for vectors. Here we discuss its invariance of scaling and unitary
transformation, its boundedness, as well as a local optimality under an NSP-type of condition.

Proposition 3.1 (scale invariance). Let A n RS N25 N3+ e have

[A Imnr = [AA [,

which holds for any nonzero scalar c.

Proof. Without loss of generality, we assume n1 g n, and denote

_ T nin
a = [allla 12,---,a 1n1;321;---ra ngnl] nR™ 31

where ajj is the jth singular value of A Based on (2.6) and (3.2), we obtain
a1
(3.4) |A [ = e— .
TINJF} n3| al,

For c= 0, singular values of cf(i) become cajj. Owing to the scale-invariant property of | 1/I 5,
we have

Ca d
(3.5) | A [y = © lcals _glals | [A Tringe-

nslal, nlal, [

Similarly, we obtain the unitary invariance by transforming the TNF into the ratio of
vector norms in terms of a; see Proposition 3.2.

Proposition 3.2 (unitary invariance). Let A n RMS M2S N5 the proposed TNF regularization
(3.1) satisfies

A lgug= [P tAnpg= At Q nng= [P tA Q" Ny

for any orthogonal tensors P ,Q n R"M2S N25 Ns,

} It follows from Definition 2.7 that ranka(A ) = |a |o/n3. Together with [x]|>q |x|14
|x ]ol x |2 for any vector x, we obtain Proposition 3.3.
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Proposition 3.3 (boundedness). For any nonzero tensor A n RS "5 N3 we have

1 y - o d__d
d—%q |A |nnrpa ranka(A ) g min{  ng,  na}.

Note that TNN can be expressed as the convex envelope of the tensor average rank within
the unit ball of the tensor spectral norm [30]. Proposition 3.3 implies that the square of TNF
is a nonconvex envelope of the tensor average rank for the whole domain (not limited to the
unit ball of the tensor spectral norm).

In the literature of sparse vector recovery, a matrix A n C™s " is said to satisfy an NSP
[7, 8, 10] of order r with a constant on (0, 1) if the inequality

(3.6) [vsl1a ofvse]|y,

holds for any vector v n N (A ) and any index set S t [n] with |S| g r. Tran and Webster [40]
extended NSP to analyze a family of nonconvex surrogate functions, while a robust tensor
NSP for tensors has been discussed in [46]. In this paper, we aim to extend the NSP analysis
from the | 1 minimization to the tensor TNF formulation in a general tensor recovery problem
(3.3).

Given a tensor X = Ut St Vtn RMS NS gnd an integer R g n with n:= min{ng, ny},
we define two related tensors,

(3.7) Xr:=UtSgtV!and Xge := Ut Sge t VE,

where SR is a zero tensor except Sg(i,i,:)= S(i,i,:) forig R and Sg. is a zero tensor except Sg-
(i,i,:)=S{(i,i,:) fori g R+ 1. After introducing a tensor version of NSP in Definition 3.4, we
present a theoretical property of the proposed TNF regularization in Theorem 3.5.

Definition 3.4. We say a linear operator F satisfies an NSP-type condition of order r with
a constant sn (0, 1) if the inequality

(3.8) |Wr|tq 5|Wr°|t

holds for any tensor W n N (F)s {O}.
Note that Definition 3.4 implies |[Wq|+ q s|Wq« |, for any integer Qq r.

Theorem 3.5. If the Jinear operator F satisfies the NSP-type condition of order r with a
positive constant s < dmgﬁ (Definition 3.4), then any tensor with tubal rank r and satisfying
F(X )= T is a local minimizer of (3.3). In other words, there exists a constant t; > 0 such

that

IX [mnera X+ W e
holds for every W n N (F)s {O} with [W | g t,.
d
It is straightforward to derive from the condition s < dmgﬁ that s < 1, which suggests
that our NSP condition (3.8) resembles the stable NSP (3.6) for vectors. The stable NSP
(3.6) guarantees a stable recovery of a sparse vector from the | ; minimization [10]. Here we
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show in Theorem 3.5 that any solution of F(X ) = T with tubal rank upper bounded by r is a
local minimizer for the TNF model (3.3) if F satisfies NSP in Definition 3.4. We point out that
our analysis on NSP extends beyond a trivial progression from |1/l [36] to TNF, as the tensor
nuclear norm is not separable through tensor addition. The proof of Theorem 3.5 is provided
in Appendix A.

Remark 3.6. Note that the NSP-type condition is usually hard to be satisfied. Pfetsch and
Tillmann [39] proved that it is NP-hard to verify the NSP in the matrix case [7]. Specifically for
a given matrix A and positive integer r, it is NP-hard to compute the optimal constant s such
that (3.8) holds for matrices.

4. TNF-based low-rank tensor completion. Tensor completion refers to the problem of
filling in missing entries of a tensor. Given the observed tensor M n RS "2 N3 on the index set a
with unknown entries taking the value of zero, the proposed LRT C model is formulated as

(4.1) n;in | X |T}N}F} st. P,(X - M)=0

where P, (t) is a projection operator in a way that P,(X - M ) = O forces the entries of X
agree with M on a and sets the other elements of X to zero. We define the indicator function

{
0 ifEni,
(4.2) i (E):= .
y otherwise,
wherei :={EnRMsMsn":s p_(E- M)= 0}. Then (4.1) can be expressed as
(4.3) n;inll))(( ||: + i (X).

We apply the ADMM [3] to minimize (4.3) by rewriting it into an equivalent form

X
| |t+li(X) st. X =H,

(4.4) min
x | Hf

with an auxiliary tensor H of the same dimension to X . The augmented Lagrangian for (4.4)
is given by

IX |t
| H ¢

. (X H LA ) = + 1 +E|X-H|2+eA,X—He,
(4.5) Lryey (X ,H ,A) i (X)) > F

where A is a Lagrange multiplier and u; is a positive parameter. The ADMM scheme of (4.5)
updates the tensors sequentially as follows:

{ ( )
X (k*1) = = argminlng X ,H k), A (k)

(4.6) H(k+1) = argmln LT}C}(X (k+1) H A(k))
Alk+l) = A(K) 4y, (X (k+1) _ H(k+1)).
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The X -subproblem in (4.6) is equivalent to

2
1
(4.7) min&.} (X )+ uilx TR A(k)|| )
" T 2 A

which is a TNN-regularized tensor completion problem. Hence we can apply ADMM by
introducing one more auxiliary variable Y such that the X -subproblem (4.7) becomes
1X)| u 1l
(4.8) min I 1)+ S - He ZARE se x o=y,
X |H( | ¢ 2 L1 F

The augmented Lagrangian for (4.8) is given by

2

1
+ X -Y+ —B
; L2

X §
P

7

L2
| F

k u1 1
Lyg®7 (X Y ,B) = el R Al
X

where B is a Lagrange multiplier and u, is a positive parameter. The ADMM framework
leads the following iterations:

{ k) )
Xjs1 = argm)‘lnLi}n}n}e}r}(X ,Yi,Bj,

(4.9) Yi+1
i)

ripdl
argmylnL'} Vi (X 41, Y B

Bj+1=Bj+ ua(Xj+1- Yjs1),
where the subscript j indicates the inner loop index, as opposed to the superscript k for the
outer iteration in (4.6).

The subproblem for updating Xj.1 can be written as

(4.10)

| I
) A Wyl
— X - U1H (k)+ quj + . I ,
2 U+ W up + U

. IX It
Xj+1 = argmin LS R
j*1 B U uy THE

which has a closed-form solution via the tensor singular value thresholding (t-SVT) [30]. To
make our paper self-contained, we present a theorem in [30], followed by the formula to update
XJ'+]_.

Theorem 4.1 (t-SVT [30]). Given a third-order tensor Z n R":S "25 N3 gand a positive scalar
u, a minimizer to the problem

1
(4.11) minu |Y | + E|Y- Z |2
Y
is given by Y = D(Z ) with the t-SVT operator D (t) defined by
Dy(Z):=UtS,tV,

where Z = Ut S t V! and Sy is an n1s nys ns3 tensor that satisfies S, = max{S - u,0}.
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Comparing (4.10) and (4.11), we have the formula

(4.12) Xj+1 = Dyl(Zj),
( ) _
where u = (_”T_Jr_“?_U_l- oo and Z; = -ul—_T“? ugH )+ uyy - 7Auih:uf’ .
The Y -subproblem in (4.9) is expressed by
{ . ( . ) |, !
(4.13) Yi+1=argmin 1; (Y )+ Z21Y - Xji1 + —B; | ,
Y 2 Uy |F

which amounts to projecting the tensor Xj+1 + u—lz B;j onto the set a C ie.,

{
Pa(Yj+1)= Pa(M()' )

PaC(Yj+1)=Pac Xj+1+_15j ’

Uz

(4.14)

where a ¢ denotes the complementary set of a. Note that (4.14) can be rewritten as

( L)
Yj+1 =P,(M )+ P, Xj+1+ U—Bj
2

Now, we turn to the H -subproblem in the outer loop (4.6), which can be written as

( A(k)) 2

H- x(+bp 2
uj

(k+1)
(4.15) H (k+1) = argminu+ ui
F IH |¢ 2

In order to solve (4.15), we consider the following optimization problem:

U ke 2}
(4.16) H(k+1) = argmin + Y H- KK
ro IHIE 2 F
with a scalar olk*1) = |X (k1| \ and a tensor K (k) = X (k*1)4 Ai—kl'. Following the work of

[36], we derive the closed-form solution to the problem (4.16) given by

k k . k
(4.17) iy o 3k ifk®=o,

Gk otherwise,
where G(¥) is a random tensor with its Frobenius norm being * °(kt+“ ,and dk) = L+ 1(ck+
€l) with
} h1
C ! E
k K k+1
() o 2 27EW+ 2+ (27E0+2)2- 4 olk+1) .
2 Uy K93

We summarize the ADMM scheme in Algorithm 4.1 for solving the TNF-based tensor
completion problem (4.1).
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Algorithm r.e. The TNF-based tensor completion via ADMM.

R equire: Observed data M on the index set a, parameters: uj,u 3, kMax,jMax, n.
1: Initialization: choose the TNN-regularized LRTC solution to get X °), set H (0)=x (0)

and k= 1.

2: while kg kMax or not converged do
3: whilejq jMa( do ) )
k) .
4: Xj+1= Dy u1—+1u-2 uiH (k) 4 UzYJ' - Au 1++UB2’
5: Yis1=PaM )+ Pac (X1 + u_lsz)
6: Bj+1=Bj+ ua(Xj+1- Yj+1)
7: j=j+1
8: end while
9:  return Xkt = X, YK =y
Kk Kk (k) . Kk (k) _
0. B+ a(k)()((+1)+ AT) |fx(+1)+m_o
G(k) ( oth?rwise
11: A(k+1)= A(k)+ uq X(k+1)_ H(k+1)
. (k+1) _ 1
12: u T (u1tu )| H(k+2) | ;
13: k=k+1

14: Theck the coanrgence Tonditions |
k k
X (k+1) X(k)| ,an Alk+1) A(k)| , an
15: end while
16: return X'= x (k)

4.1. Complexity. Here we discuss the computational complexity of Algorithm 4.1, where
the computations are dominated by updating X and H. For the X -update, there is an inner
loop in every iteration, in which the computation cost is mainly from t-SVT with complexity
of O(ninyns(logns + min{ ny, ny})). Therefore, the total computational cost of updating X
is O((jMaxt ninyn3(logns + min{ ny,ny})), where jMax is the iteration number of the inner
loop. To update H, it takes O (n1nyn3 min{ ny, ny}) for t-SVD. All together, the total cost per
outer iteration in Algorithm 4.1 is at most

O(jMax t ninynszlogns + (jMax+ 1)ninans min{ ny, ny}).

4.2. Convergence analysis. This section is devoted to the convergence analysis of
Algorithm 4.1 for LRTC. In particular, we show that the sequence generated by (4.6) hasa
subsequence convergent to a stationary point under the following two assumptions.

C1: The sequence {X “‘)} generated by (4.6) is bounded, and hence its nuclear norm is

also bounded, which is denoted as supk{ | X (k)l t} g M.
C2: The Frobenius norm of {H (k)} has a uniform lower bound, i.e., there exists a constant a
> 0 such that |H(k)| Fqalk.
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Lemma 4.2. Under assumptions C1--C2, the sequence {X ), H (k),A (k)} generated by (4.6)
satisfies

2
2
(4.18) ‘A(k”)— A‘k’||F asq

2 2
x (k+1) x(k)|| s M ‘H<k+1)_ H(k)||
F

2
66 F’

where n:= min{ ny,ny}, and M and a are the constants defined in C1 and C2, respectively.
Lemma 4.3 (suficient descent). Under assumptions C1--C2 and a suficiently large param-eter

ui > 0, the augmented Lagrangian function of the sequence {X (k),H (k),A (k)} generated
by (4.5) satisfies

Lty X (k+1),H (k+1),A (k+1) q Lng X (k),H (k),A (k)

(4.19) 2 |2
) Cl|X(k+1)_ x<k>|| ] CZ‘H(k”)— H(k)l| ,
F F

where c1, ¢y are two positive constants.

Lemma 4.4. Let {X (k),H (k),A (k)} be the sequence generated by (4.6); then there exists a
tensor W (k¥ n | L (X (k+1), H (k+1) A (k+1)) and two constants ai,a ;> O such that

¥ (k+1) -y (k)||2 + ay
F

2 2
(4.20) ‘W(k+1)| _aar H k1) g k) -

Theorem 4.5. Under assumptions C1--C2 and a suficiently large parameter u; > 0, the
sequence {X (k),H (k),A (k)} generated by (4.6) satisfies the following:

(i) The sequences {H (k)} and {A ()} are bounded.
(i) | X (k*2) x<k)| Fw 0, |Hk+1) . H(k)l Fw 0, |Alk+1) A(k)l FwO0 askwy .
(iii) {X (k), H (k),A (k)} has a subsequence convergent to a critical point {Xt,Ht,At}, namelyOn |
Lricy(X t,HE,At), where O is a zero tensor but indeed composed of three zero ten-sors, each
of dimension n1s Ny s ns.

Remark 4.6. Since the proposed TNF regularization (3.1) is not coercive, the boundedness
assumption (C1) is required for the convergence proof. In fact, it is possible that the optimal
solution could be unbounded if the sampling set a is not the entire domain. In addition, the
uniform lower bound a in the assumption C2 is important in (4.18) to guarantee the suficient
descent as in Lemma 4.3. Both assumptions (C1 and C2) seem strong from the theoretical
point of view, but they can be verified numerically.

Theorem 4.5 characterizes the subsequential convergence. We further show that the aug-
mented Lagrangian Lyjc; has the Kurdyka-\ ojasiewicz (KL) property so that the global conver-
gence can be established in Theorem 4.9. To make our paper self-contained, the KL property is
defined as follows.

Definition 4.7 (KL property [1]). We say a proper closed function h:R"w (- y ,+y ] sat-
isfies the K L property at a point ¥ dom | h if there exist a constantun (0,y 1, a neighborhood U of
X\, an¥l a continuous concave function i :[0,u)w [0,y ) with i (0) = O such that

(a) i is continuously differentiable on (O,u) with i > 0 on (O,u );

(b) for every x n U with h(3)< h(x ) < h(¥)+ u, it holds that

i (h(x)- h(¥))dist(o,! h(x)) q 1,
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where dist(x , C) denotes the distance from a point x to a closed set C measured in
| t]2 with a convention of dist(x ,t) :=+y .

To establish the global convergence of ADMM, we consider a modified augmented La-
grangian, denoted by L, , by incorporating the lower bound of |H |f, i.e.,

IX [t

(4.21) La (X ,H,A)=
? IH ¢

w1 (X )+ lLzl|x- HIZ + eA,X - Het Iy, qalH ).

Note that Ly = Lrjc; under the assumption C2. Now we further show that L, has the KL
property, which implies that Lrjc; satisfies the KL property under C2.

Lemma 4.8. L, defined in (4.5) satisfies the KL property.

Theorem 4.9 (global convergence). Under assumptions C1--C2 and a suficiently large
ui > 0, the sequence {X (k),H (k),A (k)} generated by (4.6) converges to a stationary point

of (4.5).

The proofs of Lemmas 4.2, 4.3, and 4.4 and Theorem 4.5 are provided in Appendix B. As
the proofs of Lemma 4.8 and Theorem 4.9 follow almost the same as [43, Lemma 3] and [24,
Theorem 4], respectively, we omit them here.

5. Experiments. In this section, we conduct extensive experiments to evaluate the perfor-
mance of the proposed TN F regularization using both synthetic and real-world data, showing its
superiority over state-of-the-art methods for the LRTC problem. All the experiments are
implemented using MATLAB (R2022b) on the Windows 10 platform with Intel Core i5-
1135G7 2.40GHz and 16 GB of RAM.

5.1. Synthetic data. We generate a ground-truth low rank tensor by t-product, i.e.,

Xegm= P tQ, where P n R™" " and Q n R" "™ " with r| n, and the tubal rank of the
s s

resulting tensor Xgm n R" "5 "s is at most r. The elements of tensors P and Q are drawn
from an i.i.d. Gaussian distribution N (0, "). We compare the proposed TNF regularization
with TNN [53], PSTNN [17], Laplace function based nonconvex surrogate [50] (labelled by
“Laplace""), LNOP [5], and IR-t-TNN [46]. For the TNF regularized model (4.1), we set nas
10" 4 for LRTC in Algorithm 4.1. In addition, we follow the work of [30] to gradually increase
the values of u; and uj, rather than fixing their values for acceleration. For the competing
methods, we use the MATLAB codes provided by respective authors with default parameter
settings.

We consider the success rates to evaluate the recovery performance, which is defined by
the ratio of successful trials over the total number of trials. Specifically, for every pair of a
preset tubal rank and a sampling ratio, we generate ten independent random trials.

For a trial to be considered successful, the relative square error between the recovered
tensor X and the ground-truth tensor X g, i-e., |X\"- Xeml 2/ Xaml 2, is less than 10" 3. The
success rate is then calculated by dividing the number of successful trials by 10.

We start by a discussion about the influence of jMax in Algorithm 4.1 on the performance
of low-rank tensor completion. For this purpose, we adopt a third-order tensor of dimension
40s 40s 20, tubal rank 9, and sampling rate 0.5. The maximum outer iterations are set
to 500, while we analyze the outcomes for jMax values of 1, 3, 5, and 10. In Figure 1, we
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Figure 1. The influence of the maximum number of the inner loops on the relative square error (left) between
the current tensor X and the ground truth X} and the difference (right) between X and its counterpart H with
respect to every iteration (counting both inner and outer loops).

Figure 2. Sensitivity analysis on the parameters u: and uz in Algorithm 4.1. The ground-truth tensor is of
tubal rank 9. We plot RSE in a logarithmic scale with sampling rates of 0.5 (left) and 0.6 (right), showing that our
algorithm is not sensitive to us,u 2 if chosen within a proper range.

plot the relative square error (RSE) of the current tensor X to the ground truth Xgm and
the difference to its auxiliary counterpart H across iterations (counting both inner and outer
loops). When jMax = 1, the relative square error does not decrease suficiently compared to
the other cases. For jMax q 3, all the curves coincide after 500 iterations. Since more inner
iterations require longer computational time, we set jMax as 3 for the rest of the experiments.

Subsequently, we examine the sensitivity of the parameters u; and u; in Algorithm 4.1.
In a similar vein, we utilize two third-order tensors, both of dimension 40s 40s 20 and tubal
rank of 9. We choose two sampling ratios of 0.5 and 0.6. For the parameter exploration, we
consider variations within the range (uy,u>) n (10, 10}), where i and j range from - 14 to -
2. The resulting RSE is shown in Figure 2. Notably, our observations indicate favorable
parameter performance when uq,u> g 10" 3 and uq q u,. In addition, the best performance
emerges when the values of u; and u; are in the similar range. Moreover, the sensitivity of our
algorithm on parameters reduces further as the sampling rate increases.
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Figure 3. The success rates for the tensor completion problem with varying tubal ranks and sampling rates.
Ten independent experiments are conducted, and the percentage of successful recoveries is indicated in each cell.
To facilitate comparison, white dashed lines have been added along the diagonal line.

We follow the experimental setup in [17] to test third-order tensors of size 40s 40s 20.The
tubal rank is from 1 to 19 with an increment of 2, and the sampling rate is from 0 to 0.9 with
an increment of 0.1. Based on the parameter sensitivity experiment, we initialize u; and u; with
the value of 10" 4, and gradually multiply them by a factor of 1.1 at each outer iteration. Both u
1 and u; are capped at a maximum value of 1010,

Figure 3 presents the success rates of tensor completion by various models. Generally, a
lower tubal rank or a higher sampling rate leads to a higher success rate. Our method achieves
the best recovery results over other competing models (TNN, PSTNN, Laplace, LNOP, and
IR-t-TNN), as demonstrated by the smallest black area in Figure 3. Notably, even when the
tubal rank is as high as 15, our approach can recover the solution under lower sampling rates
much better compared to others.

5.2. Real-world data--video and image inpainting. We conduct experiments on real-
world data including videos and color images. We use the peak signal-to-noise ratio (PSNR)
[30] and the structural similarity index (SSIM) [47] to quantitatively evaluate the recovery
performance.

We start with an inpainting application for videos and images, where we randomly sample
only 20\% entries (i.e., 80\% missing values). We consider one video data named “basketball"",?

WWW1.cs.columbia.edu ufti
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Table 1
Quantitative comparisons of inpainting results obtained by different methods.

Data Size Index Observed TNN PSTNN Laplace LNOP IR-t-TNN TNF

“basketball"" 144s 256s 40 PSNR 6.2375  21.3773 21.3085 20.5415 21.3804 20.7249 oe.rree
SSIM 0.0722 0.6124 0.6019 0.5630 0.6129 0.5408 oxene

“sailboat1"" 512s 768s 3 PSNR 6.1434  25.0217 24.6523 25.1105 25.0292 24.9662 oe.eont
SSIM 0.0692 0.8056  0.7917 0.8075 0.8049 0.8073 o.t oen

“castle"" 768s 512s 3 PSNR 7.3570  25.7897 25.8843 25.9954 25.8076 ox.exoe  25.9760
SSIM 0.0777 0.8412 0.8378 o.tree 0.8415 0.8398 0.8438
“window"" 512s 768s 3 PSNR 13.1233 24.6276 24.7283 22.7186 24.6741 23.7092 or.tree

SSIM 0.6333 0.8383 0.8408 0.8124 0.8390 0.8240 o.tree

“sailboat2"" 768s 512s 3 PSNR 12.5847 28.5425 128.1361 28.2890 28.5608 27.9419 ot xree
SSIM 0.6514 0.9195 0.9211 0.9160 0.9198 0.9069 o.eoer

for which we set the initial values asuy = 10" 3and u; = 10" . In two color images (sailboat1"" and
“castle""),? we set the initial values as u; = 103 and u, = 10" . We fill in the missing values by
the proposed TN F model with a comparison to TNN [53], PSTNN [17], Laplace [50], LNOP [5],
and IR-t-TNN [46]. The quantitative measures of PSNR and SSIM are reported in Table 1,
showcasing that our method achieves the best results. Image recovery results in Figure 4 shows
that all the methods yield similar performance visually.

In addition, we investigate two structural missing patterns of letters and grids, each of
which is more dificult than randomly missing. In a color image ("window""), we use letters to
block off intensities and set initial values as u; = 10" ® and u, = 10" *. While in image
(“sailboat2""), we use a grid mask and set initial values as u; = 10" 8 and u, = 10" °. Table 1 and
Figure 4 show that the proposed TN F method outperforms the other competing methods.

6. Conclusions. In this paper, we introduced a novel nonconvex approximation to the
tensor tubal rank, referred to as the tensor nuclear over the TNF, and studied low-rank tensor
completion problem using the proposed TNF regularization. Among a series of properties of
TNF, we studied the local minimum of TNF under a NSP-type condition for a general tensor
recovery problem. In addition, we proposed a TNF-based tensor completion model that can
be solved eficiently by ADMM with convergence guarantees. We conducted extensive
experiments to demonstrate the effectiveness of our model over the state-of-the-art. To ensure
computational eficiency, our numerical approach necessitates an inexact scheme for the inner
loop, while the current convergence analysis requires the optimal solution for the subproblem.
One future direction of this work would be refined to accommodate situations where inexact
solutions are employed. Our forthcoming endeavors are geared towards aligning with the
methodologies proposed in [6, 26] to establish an enhanced theoretical foundation in this
regard. Furthermore, we will analyze the sample size of exact recovery and error bound,
considering the challenges posed by the nonconvexity and nonseparability of our proposed
model. In addition, an extension of this work to encompass various noise distributions would be
an interesting future research direction.

“http://rOk.us/graphics/kodak
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Original Observed TNN PSTNN Laplace LNOP IR-t-TNN TNF

Figure 4. Comparison of video and image inpainting performance on five examples. From left to right:
original image, observed input, recovered images by TNN, PSTNN, Laplace, LNOP, IR-t-TNN, and our TNF.
From top to bottom: one frame of the video data (“basketball""), color images with random missing data ( sail-
boat1"" and “castle""), and color images with structural missing data (“window"" and “sailboat2"").

Appendix A. Proofs of Theorem 3.5. Given a nonzero low-rank tensor X n R":S N25 Nswijth
its tubal rank r g n that satisfiesF (X ) = T andatensor Wn N (F)s {O} with |W|[r = 1, we define a
function

[X + W |2

(A.1) g(t) = X+ Wiz

It is worth noting that g is well-defined as its denominator cannot be zero for any t n R.
Otherwise, it leads to X + W = O, subsequently resulting in F(X + tW ) = O. Since
F(W )= O, we would then arrive at F (X ) = O, which contradicts the setting that T = O. In what
follows, we examine the numerator of (A.1) and obtain Lemma A.1.

Lemma A.1. For a tensor X n R"MS N25 Ns with tubal rank r and a tensor W n R M5 N25 N3
with |W | = 1, it holds for tn R that

X + W [t g [X [t + ta W),

where a W ) :=sign(t)(| Wee [t - [We| )
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Proof. It is straightforward from the TN N definition (2.6) and the triangle inequality that

1 m: m
|X+ﬂN|t:— aij(X +ﬂN)
n3
i=1 j=1
1 me
q — laij (X ) - aj(twW )|
N3 i1 =1
(A.2) 1 M nf 1 M nf
= — laij (X ) - aj(tW )| + — laj(tW )|
ny . n3 . __.
i=1 j=1 i=1l j=r+1
1 Mz m 1 Mm: nf
q — @i(X ) - ajltw )+ — (ag(tw ))
ns3 ) n3 .
i=1j=1 i=1 j=r+1
= X le- HIWel e+ [ [Wre |t
= X | + ttsign(t)(| Weele - [Welt). =

It follows from Lemma A.1 that

(IX ¢+ tadw ))?
f(t):= t)ItnR.
(t) X+ |2 q gl(t)
Note that the function f has a nonzero denominator (same reason as g) and thus is
continuous in its domain and differentiable on the intervals (- y ,0) and (0,y ), individually.

By some calculations, we deduce the derivative of f for t> 0,

(A.3) ( )
Fe(t) = d (I X | + ta oW ))?
Todt [X |2 + 2teW, X e+ 2| W2 - )
2a W )(| X [t + taeW ) [X |2 + 2teW, X e+ 2| W2 - "2eW,X e+ 2tf] W |2 (| X |t + ta (W ))?

( (IX |2 + 2teW X e+ 22| W [2)° ) |
2(X [t + tadW ) adW ) [X |2+ 2teW,X e+ BIW |2 - "eW, X e+ t|/WI[Z (| X ]t + tadW))
(IX 13+ 2teW,X e+ 2| W [2)?
C2(IX [+ ta W ))[(a (W )| X |2 - eWw,XelX [t + adW )eW,X e- |X|t|W|%)t]
(1X ]2 + 2teW,X e+ 22| W |2)32 '
F F

The derivative of f(t) for t< 0 follows similarly.
Next, we extend the equivalence of the vector norms to tensors in Lemma A.2. The proof
is trivial, which is omitted.

Lemma A.2. If X n R™S N2 N3 jg 3 tensor of tubal rank r, then
1
—IXZa X |ZarX|2.
ns F t F

Lemma A.3. Suppose a tensor X n RMs "28 N3 with tubal rank r that satisfies F(X )= T.

We define }

|WnN(F)s{O},|W]e=1t=0 ,

a X |2 - eW , Xte|X
(A.4)  t:=inf 2 (WX I L
wt ladw )ew,Xe- [X] W21
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where a (W ) is defined injJlemma A.1. If the linear operator F satisfies NSP of order r with
a positive constant s< dWBT?' then t; > 0.

Proof. For any tensor W n N (E)s{O} and |W |¢ = 1, under the NSP condition (3.8), we
get |[W,|:q s| We|t with s< dWQT? by assumption. Therefore,

1- s (1- s)r (1- s)r
(A.5) o W ) = [Weelt- [Weleq IWeltag —  — [Wltqg _g
S shn sn ﬁ3‘

where the third inequality is from [W | q e |W | ¢ - For the numerator of (A.4), we get
ns

A dW )| X |2 - eW X e|X |t|q la W IX |2 - [eW,X el X |t
q WX TE- [WIe X [fIX |t
|

(1-gs)r d
(A.6) sua-h—|x|?- roX ¥
3

o]

d d __
a:—lxlg(d r-s( r+n n3))>0.
sn ns

As for the denominator of (A.4), we have

la W Jew X e- X [¢|WI[Zlq o W ) IW [ [X [+ WX |t
g Wl e+ IWee [ lIX e+ [X |

W e IX [ + IX ¢

a nlX e+ X ]¢.

(A.7)

Combining (A.6) and (A.7), we obtain a nonzero lower bound, i.e.,

d d
w12 - ewxelx 1l sn® i@ nix e+ 1x 10
i d g Y
o W JeW X e TX T TWIZ1¢ 4r¢ v s nemx |2

o

Hence Lemma A.3 holds. |
Now, we are ready to prove Theorem 3.5.

Proof. It follows from the NSP condition (3.8) that
( )
. 1
ta (W ) = tsign(t)(| Wee |t - [Welt)= (I Weele - [Welt)a lt] s 1 |W¢|t>0,

which implies |X |t + ta (W ) > 0l tn R. By Lemma A.3, there exists a positive number t;
defined in (A.4) such that

| | | |
a W )eW X e- [X[¢|W[Z Itg adW )X |%- eW,X e|X |

for all [tj g tt and W n N (F)s {O} with |W | = 1. Therefore, we have

signfa (W )| X |2 - eW X e|X |t + (a W )JeW X e- |X [¢|W]|2)t]

(A.8) :
= signfa W )[ X |2 - eW,X e|X [¢].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/24 to 152.2.105.154 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TENSOR NUCLEAR OVER FROBENIUS NORMS 775
From (A.6), la (W )| X |2 |- |eW,X e|X |¢|q O, thus leading to

(A.9) signfa (W )| X |f - eW,X e|X |¢]= sign(a {W )) = sign(t).

As a result, we have fé(t) g 0 if 0< t< t;. Then we further compute the subderivative of
f(t) att= 0:

( )
- 2| X X Z eW ,X e|X
(A.10) ¢ (0+) = lim t-f0 _ X |+ a W )|X] 4F S elX [ a0,
€ wo {)t- (0) X|1 F

where the inequality is from (A.8) and (A.9). Similarly, we can get fé(t) g 0if - tt < t< Oand
fe (0" ) g 0. Consequently, we have f(t) g f(0) for any |t| g t;. Together with g(t) g f(t), we
obtain that g(t) g f(0) = g(0), which implies

IX + W g [X]¢

XFwze xp et
F

Noticing that t; is a constant that does not depend on the choice of W, we complete the proof
of Theorem 3.5. |

Appendix B. Proofs of convergence. To make this paper self-contained, we include some
prerequisites from [44] in Lemmas B.1 to B.3.

Lemma B.1 (see [44]). A function f(x ) is called strongly convex with parameter u if and
only if one of the following conditions holds:

(a) g(x)=f(x)- %lxlg is convex;

(b) ea f(x)- af(y)x-yequlx-yl|3 Ixy;

(c) fly)a f(x)+ e f(x)y- xe+ 5ly- x|3 Ix,y.

Lemma B.2 (see [44]). The gradient of f(x) is Lipschitz continuous with parameter L > 0
if and only if one of the following conditions holds:

(@) laf(x)- af(y)laallx-yl2 Ixy;

(b) g(x) = Lzl x|2- f(x) is convex;

(c) fly)a f(x)+ e f(x)y- xer tly- x|3 Ix,y.

1
[x |2

Lemma B.3 (see [44]). Given a function f(x ) = and a set M :={x||x]2q n} for a

positive constant n> 0, we have

2
laf(x)- af(y)lz2q EIX- yl2lx,y n M.

Lemma B.4 follows from Lemma B.3 immediately.

1
[X |¢

Lemma B.4. Given a function g(X ) = and asetM  :={X[|X |, g a} for a positive

constant a> 0, we have

2
(B.1) lagX )-aglY)lea SIX- VI IX,YnM..
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Proof. Reshaping any tensors X ,Y n M ; into the vector forms of x and y, respectively,

and applying Lemma B.3, we have | | | |

X Y | x y |
o g - a g e = | e o = X

2 2
qaﬁlx' V|2=aT|X' Y |F.

B.1. Proof of Lemma 4.2.

Proof. The optimality condition of the H subproblem in (4.15) indicates that

|)( (k+1)| ( A(k>)

(B.2) - * Uy ten) oy x (ed) o oglked) p —— _ g
k1) F Uy

where O n RMS 25 M: js the zero tensor. Using the dual update A (k+1) = A(K) 4y (x (k+1) -

H (k+1)) we have
|) (s |

+ t. H(k+1)

(B.3) Ak =
k1) ¢

which directly deduces

5
(B.4) A = L K
. Hk|3 .
F

Then it is straightforward to have

(B.5)
(k+1) (k) |)‘(k+1)|t (k+1) |)‘(k)|t (k)
A - A = |1 1ty - | L
F [H () 3 [H T3
F F
I_(k+1)
:  rd) i (K
| [H (k1) ] t "
b (k1) P | F
+ X(k) (+ 1 1 )|
S PRI A L s
k+1
o | Lol Ry 8
_'|Wk1)|IF I E o ¢ MM« )™

d d
It follows from Lemma A.2 that [A|tq r|A|r g n|A]|g | A nRMSNS N Therefore,

(B.6) [X D) x W fg [x (et)e x‘”'ltq dnhx e x‘k”lF
According to Lemma B.4 and C1--C2, we have |
k+1) |
(B.7) |x‘k’|| %Ij—%(_ﬁ—“: A M A -yl
t] gk 1) : H ok z i ¢3 F

F (k) |

H

k

F

F

Putting (B.5), (B.6), (B.7) together with Cauchy--Schwarz inequality leads to the desired

inequality (4.18).
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B.2. Proof of Lemma 4.3.
Proof. It is straightforward that the function Lyjcy(X ,H (k),A (k) - 1; (X ) with fixed H (k)

and A (k) is strongly convex with constant u;. Then Lemma B.1 implies that

Lng(X 10 A 1) (x ) g Lg(x ©, 0 ®,A 1) -y x 19)
(B.8) 2
Lzl x (1) oy ™

F

As X (k+1) gnd X (k) are the optimal solutions in the X -subproblem in the kth and (k - 1)th
iteration, respectively, they satisfy the constraint, i.e., I; (X (k*1)) = |; (X (K)), and hence we
get

L
(.9)  Lngx ", H A M) q Lngx ¥,HM,A M) L

x (k+1) oy Gyl ®
F

On the other hand, we get

Ligy(x 8, 1 ), A () i (x Bt | 00, A 19)
x (k+1) x (k+1) u PR |2
(8.10) _ e | | ¢ PRLEN (IS TR (k+1)|| CU ke R ||
. IHe(k+1)| F |H(k)| Foe Ze Fe 2 F
N S TN (= R N U RV (S BT (T

It follows from Lemma B.4 and the assumption C2 that |_-Hl|— is Lipschitz continuous with
parameter 2. Using Lemma B.2 (c), we obtain

(B.11) e e
|X(k+1)| t Ix(k+1)| t |X(lk+1)| tlH(k)’H (k+1) k) 4 | X k+1)| t |:H(k+1)_ H(k)l:z.
[HkL e & [H® NCIE 3 F

Simple calculations of the third and the fourth terms in (B.10) yield

X(k+1)_ H(k+1)|‘2 _ Ll

L1 L1y (ke1) Lyl
2 | F 2 e F e
2 L1| 2
- H (k+1) i H (k) -u X (k+1)' H (k+1) _ H (k)
(B.12) 2 ||F 2 ||F ol e
= S Reen 2 I pl? o ey k) AR (kD) ()
2 F ‘
€ ¢
o 1|y (k) H(k)||2 S A L AR (kD) (k)
2 . ’ ’

where the second equality is from the A-update. Putting together (B.10), (B.11), (B.12),
we have
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(B.13)
Lygy(x 18, 1 0, A1) i (x (01 | 00, A 1)
€ €
. | ey S, X ()| ey H“‘)||2
X |k (0 BH 3 :
Uy || ) ||z € e ¢ €
e N T L N O R TR IO A AT C S
2 F
e € 2 k
_ X k1)) (k+1) X (k+1) ty )y (ke1) k) a |X (k+3) U1:|H(k+1)_ H(k):|2
|H(k+1)|F3 [H(k) |2 ’ 2
q- 1- M e H(k)||2
F u2 ;3 F !

where the equality is from (B.3).
Lastly, the A -update in (4.6) leads to

e
A1) o (k+1) H(k+1)€ AR x (k1) g (ked)

e e
(B.14) = Al plk) 1(A(k+1)_ NG 1 TN NCTE:

ul

2n L ‘2 4|v|2|L 2
Pk er1) ooyt 17, piy een) gty 1
g U1a4 |F u1a6 lF
By putting together (B.9), (B.13), (B.14) and using the Cauchy--Schwarz inequality, we get

Lty X (k+1)’ H (k+1),A (k+1) q Lng X (k),H (k),A (k)

(B.15) 2 2
_ Cl‘X(k+1)‘ X(k)|| _ CZIH(k+1)' H(k)|| ,
F F
where c; = Y- % and c;= - 1—“3" - %. If uy is suficiently large, we can guarantee that
1 1
c1,Cy are strictly positive. |

B.3. Proof of Lemma 4.4. | |
Proof. According to the optimal condition of X in (4.6), there exist P (k*1) n | (I' (X (k+1))] )
and T &+ n 1 1; (X (k+*1)) such that

(k+1)
(B.16) ‘I'L_| —e Tl g x () ) 4 A = o
F O]

Now, we denote

F (k+1)

( )
(k+1) , _ (k+1) (k+1) (k+1) (k+1)
(B.17) W1 = *’4—|—+ T + u; X - H + A .
k+1
Pk

By the definition of subgradient, it is straightforward that

W§k+1) nly LT}C}(X (k+1)’ H (k+1),A (k+1)).
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Putting (B.16) and (B.17) together, we have

( )
(B.18) Wik”) = i;(kll)ﬁ; ﬁ(i)ﬁ p U+ (- HKHD) 4 (k) 4 plke1) o A K),
H IO
Note that
(B.19) I(|A],)={UtV'+J |U'tJ =0,l tV=0,]J |q1},

where A= UtSt V.
Additionally, for any tensor A n R":5 "25 Ns e have

y
1 rank ) — d
(8.20) Al = elal g M AT g nlals

3

Based on (B.19) and (B.20), we do the skinny t-SVD of X (k1) py X (k+1) = y(k+1) ¢ g(k+1) ¢
v (""1))t ; then we get

|P(k+1)| P = |U(k+1)t (V(k+1))t + ) (k+1)| ;
q nlU(k+1)t (V(k+l))t + J (k+1)|

q ddnl U(k+1) t (V (k+1))t | + nl-] (k+1)|
q2 ng2 ni.

(B.21)

Considering that |H(k)| ¢ and |H(k+1)| ¢ are lower bounded by a, we can estimate an

upper bound of |W(1k+1)| F,

(B.22)
‘W£k+1) | (4 I 1)I ‘P(k+1)|| £ ug [H D H(k)|| b Atk oAl
F |Hk1)|F |H(k|F F F F
(k+1)L_ k)
_ L‘;“). | |I—SJI_|F |:P(k+1)|: N ull:H(k+1)_ H(k)|: N |:A(k+1)_ A(k)':
HET T Tp&T F F F
F FOF
“m | |
L e Y Y T I PN U RNCT
¢ F F F
( 4 ) ’ A |
n
- 1+ up Hk+1)_ Hk)l + | k+1)_ A(k)l ]
a? F F

Denote two tensors as follows:
Iy W+Hl| ( )

W(k+1):=- t_H(k+1)_ u X(k+1)_ H(k+1) _ A(k+1),
(B.23) ’ lF‘k+1’|§ 1

Wék”) o=y (k1) oo (ke1)
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By (B.2) and the A -update in (4.6), we get
(
(B.24) w2 AL Aled) gng w2 DT At a0
L1

( )
Let w ket = w I w I w (98 we get W(k+ 1 n 1 Lpgy X (2, H K41, A (k+1) and |
| ] I |
wle F o pwlen T el Ty senl 1

( d__ )2 2 | 1) 2
2 |
(B.25) 2 S My RN gy 34 T2 Al AR
q 5 1
a F u, F
qa, [x k1. X(k)|:2 +a (Rl H(k)l:Z ’
F F
where a3 = 4&2”1”““(;:421 U, ay= 16m 4+ 4u2+ ‘Lz(ug;a:F U, u
B.4. Proof of Theorem 4.5.
Proof.

(i) We first show {A(k)} is bounded. From (B.4), we have
| |
| | % (k I | | x (k I
NG 1—(—‘—&9—%1—=|—(—‘—L5;_,
S T I

which suggests that {A(k)} is bounded under assumptions C1--C2. Therefore, {H (K}

is also bounded due to the H -update in (4.17).
(ii) 1t follows from (B.15) that

(B.26) ( )
LT}C} X <k),H (k),A (k) q LT}C} X (O),H (0),A (0)
-1 | Fn 1
. 2 ) |2
_ Cllx(+1)_x(1)| -G H+1) _ H(J)| )
j=0 o F

Using (4.5), we obtain a lower bound of

Lng X ® H A ()

k e
C XYy, “i||x(k>_ H<k’||2 b ARy (0 K
|H(k)|F F e
X ] I E |
X Ky L YUl (k K 1w Z’ 1 k), 2
== T4y 22 - HY + A - 1
IH('<)||F I|( - 2 b( | ui F ZﬁLA | F
| k) "2
a- 2u1|A lF'

due to the boundnessnof {A(k)}. Let kw y ; by Lng(X (k),H (k),A (k)) having a lower

bound, we know that }20 | X (j“l) - X 002 and ;(=o |H (j“l) - HUO| 2 are finite,
which implies that |X (k*1) . X (k)l 2w 0and [H{k+1) - H (k)l 2w 0askwy . Then
we can get |A (k+1) . A(k)l 2 w 0 due to (4.18).
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Since {X ) H (k),A (k)} is bounded, the Bolzano--Weierstrass theorem suggests that
there exists a convergent subsequence, defined by {X (), H (ki),A (k‘)} w{XtHEtAt}.

It further follows from (ii) that {X (k“"l), H (ki+1) A (ki+1)} w (Xt Ht At}, which im-
plies that |H (ki*1) - H(ki)l £ w 0and |Alki+1) . Ayl F w 0. Hence Lemma 4.4m
guarantees that the zero tensor O n | Lyygy(X ', Ht,AY).
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