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Abstract. This paper proposes a novel nonconvex regularization functional by using an adaptively
weighted difference model of anisotropic and isotropic total variation. By choosing the weights adap-
tively at each pixel, our model can enhance the anisotropic diffusion so as to achieve robust image
recovery. Regarding to numerical implementations, we express the proposed model into a saddle point
problem with the help of a dual formulation of the total variation, followed by a primal dual method to
find a model solution. Numerical experiments demonstrate that the proposed approach is superior over
several gradient-based methods for image denoising in terms of both visual appearance and quantitative
metrics of signal noise ratio (SNR) and structural similarity index measure (SSIM).
Keywords. Anisotropic and isotropic total variation model; Difference of convex function; Image
denoising; Noconvex optimization; Primal dual method.

1. INT RODUC T I ON

Digital images commonly suffer from degradations caused by imaging systems during for-
mation, storage, transmission, etc. Image denoising plays a critical role in various applications
such as medical and astronomical imaging, video coding, and computer vision [1, 2]. Without
loss of generality, we assume that an underlying image is of size nn, which can be represented by
an n2-dimension vector using a column lexicographic order. Our approach can be easily ex-
tended to an arbitrary dimension. We consider a single-channel image degradation model as
follows

f =  u + n;

where f 2  Rn2 
is a noisy observation, u 2  Rn2 

is a clean image, and n 2  Rn2 
denotes the additive

white Gaussian noise with the zero mean and the variance s 2 . Restoring an underlying image u
from the noisy input f is known as an ill-posed problem. It is specifically challenging to preserve
image details such as edges and textures due to the lack of prior information. Among various
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traditional denoising techniques, a large number of studies have demonstrated that a variational-
based model is particularly useful in solving many ill-posed inverse problems [3, 4, 5, 6]. A
general mathematical model can be expressed as follows,

min 
l  

ku fk2 + R(u); (1.1)
u2Rn

where the quadratic fidelity term models the presence of the additive white Gaussian noise, the
regularization term R(u) encodes prior information on the target image u, and the positive
parameter l  balances these two terms. Total variation (TV) [7] is widely used as a regular-
ization functional due to its edge-preserving ability. However, it tends to favor a piecewise
constant output that contains undesirable staircasing artifacts. There are three major categories of
improvements over TV. First, nonlocal-based regularizations [8, 9, 10, 11, 12, 13, 14] take
advantages of image self-similarities that can significantly increase image recovery quality, but at
the cost of high computational complexity. Second, higher-order derivative models that rely on
(local) gradient information [4, 15, 16, 17] are proposed to preserve piecewise smoothness of the
reconstructed solution. Third, nonconvex regularizations [18, 19, 20, 21, 22] have recently
gained popularity to promote sparsity after taking the gradient. One naive way of enforcing the
sparsity involves the minimization of the ‘  quasinorm [23]. As it is NP hard to optimize, some
continuous and nonconvex alternatives are sought such as the capped-‘1 regularization [24], the
‘ p  (0 <  p <  1) quasinorm regularization [25], the minimax concave penalty (MCP) [26], etc.

This paper proposes an adaptively weighted difference of anisotropic and isotropic T V  (AW-
DAITV) regularization. Specifically, we define the image gradient by

Ñu =  (Ñxu; Ñyu) =  ((I
D)u; (D
I )u) 2  Rn2 2;

where
 denotes the Kronecker product, I  denotes the n n identity matrix, and D denotes the n n
difference matrix (please refer to Section 2 for more details on the notations.) Then the
proposed AWAITV model for image denoising is given by

min 
l  

ku fk2 + kT (Ñu)k1;1 akÑuk2;1; (1.2)
u2Rn

where l  >  0; a  2  [0;1]; and

T (Ñu) =  (t1Ñxu; t2Ñyu) : =  (t1 (I
D)u; t2 (D
I)u);

with pointwise multiplication  and two vectors t1; t2 2  Rn2
. When setting t1 =  t2 =  (1; 1;  ; 1)

2  Rn2
, the proposed model (1.2) reduces to the weighted difference of anisotropic and isotropic

T V  (WDAITV) that was originally proposed by Lou et al. [27]. WDAITV was later extended to
image segmentation [28, 29] and impulsive noise removal [30]. By adding the weighted op-
erator T to the anisotropic term, i.e., kÑuk1;1, our main motivation is to increase the anisotropic
diffusion along with the tangential direction of the edge in order to adaptively align with (true)
image gradients.

Due to the non-convexity and non-differentiability of the proposed AWDAITV model (1.2),
it is challenging to design an efficient algorithm that achieves a compromise between quality
and scalability. One way to solve for (1.2) is via the difference of convex algorithm (DCA)



proposed by Pham-Dihn and Le-Thi [31, 32, 33]. In general, DCA minimizes the difference of
convex functions in the form of f (x) g(x), so-called the DC function. The idea of DCA is to
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use the subgradient of f (x) and the subgradient of the Fenchel conjugate of g(x) to obtain an
iterative sequence. Under some conditions, the generated sequence satisfies the monotonicity
conditions, thus converging to a critical point of the original problem. DCA was used in [27,
28] for the WDAITV model, in which additional operator splitting techniques were involved to
decouple the gradient operators for the ‘1  and the ‘2  norms. For example, the alternating
direction method of multipliers (ADMM) was applied to solve a subproblem in [27], while
primal-dual hybrid gradient (PDHG) with a linesearch (PDHGLS) [34] was adopted for image
segmentation [28]. Due to an extra call of ADMM and PDHGLS, the DCA framework is
computationally expensive.

To enhance computational efficiency, we propose a new numerical method that combines the
dual formulation of T V  and primal-dual optimization framework. In particular, we rewrite the
model (1.2) as a saddle point problem by using the equivalent representations of the ‘1  and the ‘2

norms with conjugate functions. As a result, the primal dual method (PDM) [35] leads to a
single-loop scheme. The main contributions of this work are twofold:

 We propose a novel AWDAITV model (1.2) to increase the strength of the anisotropic
diffusion.

 We propose a single-loop PDM that significantly improves the computational efficiency
over the previous DCA approach for minimizing a DC function.

The remainder of this manuscript is organized as follows. Section 2 introduces the notations,
establishes the solution’s existence of the proposed model, and presents a toy example to il-
lustrate the advantages of the weighting operator T . A  numerical algorithm based on PDM is
described in Section 3. Section 4 presents experimental results of the proposed approach in
comparison to several related models. Finally, conclusions are given in Section 5.

2. MOD E L A N A LY S I S

We start with necessary notations and definitions that will be used throughout the paper. We
denote X   Rn2 

as the image domain and Y  : =  X X  as the domain of image gradient. The inner
products on the spaces X  and Y  are defined by

ha; biX =  å ai bi  and 
D

c; d
E 

=  å (c1;id1;i + c2;id2;i ) ;
i=1 i=1

for a;b 2  X;  c =  (c1; c2) 2  Y ,  and d =  (d1; d2) 2  Y .  We define the related norms on the spaces
X  and Y  as follows

v
u  n2 n2 n2 q

kak2 = ai ; kck1;1 = (jci;1j + jci;2j); kck2;1 = jci;1j2 + jci;2j2;
i=1

q  
i=1 i=1

and kck =  max jc j2 + jc  j2 :
1in2
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For convenience, we introduce the n-order difference matrix with the von Neumann boundary
condition used in the model (1.2) as

 1      1        0            0        0      0 0
1      1            0        0      0

B  0 0  1 0 0 0 C
D =  B  . . . . . . . . C :

B  0        0        0        1      1      0 C  @
0        0        0            0       1 1 A

0 0 0 0 0 0

The gradient operator can be written as Ñ =  (Ñx; Ñy) : =  (I
D;D
I ) based on the formulation used in [36]. The Green Theorem indicates that the divergence
operator is given by

divd =   (I
DT )d1 (DT

I)d2;

for d =  (d1; d2) 2  Y .  Then we establish in Theorems 2.1 the existence of solutions of model
(1.2).

Theorem 2.1. If minft1; t2g  a , then there exists a solution to problem (1.2).

Proof. Denote the objective function in model (1.2) as

P ( u )  : =  
2 

ku fk2 + kT (Ñu)k1;1 akÑuk2;1; (2.1)

referred to as the primal problem. Letting t =  minft1; t2g, we have

P ( u )   
2 

(kuk2 kfk2)2 + ( t  a)kÑuk2;1;

which implies that P ( u )  is coercive and nonnegative. Consequently, there exists a minimiz-
ing sequence ul      such that l i m l ! ¥  P  ul     =  m i n P  (u) : Due to the coercivity of P ( u ) ,  the

sequences kulk2 , kÑulk1;1 and kÑulk2;1 shall be bounded, and hence there exists a
convergent subsequence fuls g such that uls !  u. By using the weak lower semicontinuity of
P ( u ) ,  we obtain                                      

P ( u  )   lim m i n P  u s =  lim m i n P  u =  m i n P  (u) :

Therefore, u is the minimizer to problem (1.2).

We take a close look at the AWAITV regularization. At every pixel i; we denote x =  (I
 D)i; y =  (D
 I )i  as its derivatives along horizontal and vertical directions, respectively, and t1 : =  (t1)i ; t2
: =  (t2)i: Then the contribution of the pixel i to the AWAITV regularization can be expressed as

g(x; y) =  t1jxj + t2jyj a x2 + y2 :
Without loss of generality, we assume x 0;y 0 and hence g(x; y) is differentiable with respect to x
and y: Taking derivatives of g gives the optimality condition, i.e.,

¶ g 
=  t1   p  

a x
 
y2 

=  0 and
¶ g 

=  t2   p  
a y

 
y2 

=  0;
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which implies that (x; y) should be parallel to (t1; t2): By adaptively choosing (t1 ; t2) at each
pixel, we enforce the reconstructed (x; y) to align with the ideal image gradient. As the ground-
truth image is unknown, we choose the weighting vectors in the same way as in [37],

t1 =  
1 + k  jGs [(I

D) f]j 
and t2 =  

1 + k  jGs [(D

I) f]j
; (2.2)

where k is a positive parameter and G denotes the Gaussian convolution function with the
variance s2 for smoothing.

To illustrate the advantages of adaptive weights by t1 and t2; we present denoising results on
two simple images in Figure 1. These two artificial images contain smooth structures as well as
piecewise constant regions. We add the Gaussian noise with the variance s 2  =  0:01 and recover
the images by WDAITV (i.e., by setting t1 and t2 as all-one vectors) and AWDAITV with t1 and
t2 defined in (2.2). Figure 1 presents horizontal profiles and surface plots of the denoised
images, showing that the AWDAITV model can efficiently suppress the staircase and preserve
smooth regions.

3. N U M E R I C A L METHOD

Model (1.2) is a nonconvex optimization problem due to the DC term kT (Ñu)k1;1  akÑuk2;1.
It can be solved via DCA by interweaving two subgradients of kT (Ñu)k1;1 and akÑuk2;1. But
this approach involves a double loop, thus computationally expensive. Instead, we consider the
primal dual method (PDM) [35, 39, 40, 41], which is widely used in many fields, especially in
image processing.

To apply PDM to minimize the proposed model (1.2), we start by the dual forms of the ‘1
norm and anisotropic total variations [42], i.e.,

kT (Ñu)k1;1 =  maxht1Ñxu; q1iX + ht2Ñyu; q2iX (3.1)
1

kÑuk2;1 =  maxhÑu; piY; (3.2)
2

where C1 : =  fq  =  (q1; q2) 2  Y  s.t. kq1k¥  1 and kq2k¥  1g and C2 : =  fp =  (p1; p2) 2  Y
s.t. kpk2;¥  1g. We further define two indicator functions dC1 and dC2 as

0 if q 2  C1 0 if p 2  C2
1 + ¥ if q 2  C1                   

2 + ¥ if p 2  C2:

Using the dual formulations, the problem (1.2) can be written as a saddle point problem

min maxL (u; p; q) : =  
2 

ku fk2 + ht1 (I

D)u; q1iX

+ ht2 (D
I )u; q2iX dC1 (q) ha Ñu; piY + a dC 2 (p); (3.3)

where p =  (p1; p2) and q =  (q1; q2). We can rewrite (3.3) equivalently into a standard saddle
point formulation, i.e.,

min max F (u; p) + hK(u); qiY G(q); (3.4)
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where F (u; p) : =  l  ku fk2 ha Ñu; piY + a d C  (p), K (u) =  (t1 (I
D)u; t2 (D
I)u); and G(q) : =  dC1 (q):
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Original image WDAITV AWDAITV

F I G U R E 1. The first row demonstrates synthetic images and their noisy ver-
sions with noise variance of s 2  =  0:01. The second/third rows plot the horizon-tal
profiles for the ground-truth images and the denoised images by WDAITV and
AWDAITV; the corresponding surface plots are provided in the last two rows.

Notice that the function F (u; p) in problem (3.4) is nonconvex due to the coupling between
u and p; while G(q) is convex. Then problem (3.4) is the nonconvex-concave (but not strongly
concave) min-max problem. There are two types of algorithms that solve for the general min-
max problem. One is a nested-loop type of algorithms [43, 44] that either employ multiple
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gradient ascent steps for updating the dual variables to solve an inner subproblem (exactly or
inexactly) or further apply a similar scheme for updating the primal variables. As the name
implies, the nested loops are computationally expensive to implement. The second type is
single-loop algorithms [34, 45, 46]. For example, gradient descent-ascent (GDA) method [38]
performs a gradient descent step on the primal variable and a gradient ascent step on the dual
variable simultaneously at each iteration. As an extension of GDA, the primal-dual hybrid gra-
dient (PDHG) proposed in [34] is one of the most popular approaches for solving minimax
problem (3.4). To improve the convergence speed of gradient-based methods, some extrapola-
tion techniques [47] are often employed.

Here we focus on an extrapolation technique, referred to as primal dual method (PDM) [35],
which consists of two steps: the primal update and the dual update. The primal step minimizes
the combination of the Lagrangian function and the proximal terms, i.e.,

F (u; p) + hK (u); qiY +  
2t 

u uk2 
+  

2t 
p pk2 

;

to update the primal variables u and p, while the dual step involves a dual ascent based on the
consensus residual [47]. Specifically, applying the PDM scheme for minimizing (3.4) can be
written as

uk+1 =  argmin F u; pk +
D

K(u); qk
E

Y 
+  

2t 
u      uk

2 
;                       (3.5) < p k + 1

=  argmin F uk+1; p +  
2t 

p      pk
2 

;                                              (3.6)

uk =  2uk+1 uk; (3.7)
> q k + 1  =  argmax K(uk); q 

Y  
G(q)   

2x 
q qk ; (3.8)

where t  >  0 and x >  0 are the stepsize parameters of the primal and dual variables, respectively.
In the following, we describe the details for solving the subproblems (3.5)-(3.8).

 As subproblem (3.5) is smooth and convex, the optimality condition yields the closed-
form solution as

uk+1 =  
uk + t  l f + divqk adivpk 

; (3.9)

where qt : =  (t1 q1; t2 q2).
 As subproblem (3.6) involves an indicator function, we apply the gradient projection

method, leading to

pk+1 =  P C 2 (p k  + t a Ñuk + 1 )  =  
max

 
1; p

t
+

 
t a Ñuk+1

; (3.10)

in which the division is carried out elementwise.
As for subproblem (3.8), we can rewrite it as

ˆ k+1 =  argmin G(q)   K(uk); q +  
2x 

q qk ;
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F I G U R E 2. Original images with the size 256 256.
which is convex. We apply the gradient projection method to find the closed-form solu-
tion of qk+1 =  (qk+1; qk+1), i.e.,

>  k+1 qk +x t1 (I
D)uk

max 1;qk +x t1 (I
D)uk

k+1 qk +x t2 (D
I)uk

2 max(1;qk +x t2(D

I )uk)

Given parameters l ; a ; x ; t >  0, we choose the initial values of u0;p0;q0 to run the iterations
of (3.5)-(3.8) until the relative error (RE) reaches to

R E  : =  kuk+1 ukk=kukk  10 5; (3.12)

or the number of iterations exceeds 500. Due to the nonconvexity of model (3.3), it is chal-
lenging to prove the convergence of the algorithm. We empirically validate the convergence of
primal/dual variables in Section 4.2. The convergence proof will be left as a future work.

4. E X P E R I M E N T S

In this section, we test on ten (original) images, shown in Figure 2, to evaluate the effec-
tiveness of the proposed AWDAITV model. For the ease of parameter tuning (which will be
elaborated on Section 4.1), we normalize the intensity value of each testing image to [0;1] be-
fore adding the Gaussian noise by using the Matlab function “imnoise.” We consider three
noise levels of variance s 2  as 0.01, 0.05, and 0.1. We use the signal to noise ratio (SNR) and the
structural similarity index (SSIM) to quantitatively evaluate the denoising performance. All the
numerical experiments are performed in Matlab (R2022a) on a windows11 (64bit) desktop
computer with an Intel(R) Core(TM) i7-11700 2.50GHz CPU and 16.0GB RAM.

4.1. Parameter setting. There are two types of parameters in the proposed algorithm: step-
size parameters t ; x and model parameters a ; l .  For the stepsize parameters, we observe that a
constant value of the product t x achieves the best denoising results consistently. After fine-
tuning, we set t  =  x =  1 that works the best for most of the test images, and meanwhile this
combination satisfies a convergence condition of the PDM method [35] for convex optimization
problems. The value of a  2  [0;1] depends image structures. For an image with simple geome-



tries such as piecewise constant, we set a  to be close to 1 in order to enforce the sparseness after
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taking the gradient transform. Taking a phantom image of Figure 2(f) and a barcode image of
Figure 2(j) for an example, we set a  to be 0.5 or 0.7 depending on the noise level. For other im-
ages with relatively more complex structures, we set a  =  0:01. The parameter l  controls how
much smoothing is introduced by the regularization in an attempt to filter out the noise without
losing too much information when approximating the underlying image. There are a number of
automated and semi-automated approaches for finding the optimal regularization parameter l ,
such as the L-curve method, the generalized cross validation (GCV), and unbiased predictive
risk estimator (UPRE) and Stein’s unbiased risk estimator (SURE), all described in Chapter 4
of [6]. However, these methods require the data fitting term and the regularization term to lie in
the same functional space, thus not applicable to the proposed AWDAITV model, in which the
data fitting term lies in the ‘2  space and the regularization term lies in the bounded variation space.
In practice, we choose the regularization parameter l  based on trial and error. As for the weight
vectors (t1; t2) used in AWDAITV (1.2), we set them according to (2.2) with s =  0:5 and k as
f30; 10; 8g respectively for three noise variances from low to high.

4.2. Validation on convergence. The convergence of PDM was established in [35] for a con-
vex, closed, and proper objective function, which is unfortunately not applicable to the non-
convex AWDAITV model. Instead of a rigorous convergence proof, we analyze the conver-
gence of PDM empirically by examining relative errors (RE) as defined in (3.12) and the ob-
jective function values (1.2). We also consider the primal-dual gap (PDG) [48] to evaluate the
convergence. Based on the Legendre-Fenchel conjugation, we express the dual formulation of
the primal problem (1.2) as

max   
1 

kdiv(T (q)) adivpk2 h(div(Tq) a divp); fi ; (4.1)
p2dC2 ;q2dC1       {z }

D (p;q)

where d and d are defined in (3.1) and (3.2). Assume that u is a solution that minimizes the
primal problem P ( u )  defined in (2.1) and (p; q) is a pair of solutions to dual problem (4.1).
Then the weak duality always holds [49], i.e.,

P  (u)  D  (p; q) :

If the above inequality becomes equality, namely, the strong duality holds, then it implies that
the iterations reach to a saddle point of the problem (3.4). Hence, we can define the primal-dual
gap:

PDG =  P  u      D  p ;q :

as a measure for the convergence of the iterations (3.5)-(3.8).
We add Gaussian noises to the three testing images of Figure 2 (g), (h), (i) with three noise

levels (variance s 2  =  0:01;0:05, and 0:1). Figure 3 presents R E  between two consecutive
solutions, objective functions, and PDG values with respect to iteration numbers in a logarithmic
scale. We observe that all the R E  curves decrease till 10 4, which indicates the convergence of

Conjugate of a function h : X  !  R  is defined by

h(y) =  maxfhx; yi      h(x)g:
x 2 X



u

l 2
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F I G U R E 3. Empirical convergence analysis of the R E  curves (top), the ob-
jective function values (2.1) (middle), and the PDG plots in a logarithmic axis
(bottom) against the iteration number based on three images: Figure 2 (g), (h),
(i).

the sequence fukg. The objective values become flat after 200 iterations, showing that fukg may
converge to a stationary point of model (1.2). Lastly, PDG values are monotonically decreasing to
zero, demonstrating that the algorithm converges to a saddle point. The theoretical proof of
PDM for a non-convex problem will be left as future work.

4.3. Algorithmic comparison. The proposed AWDAITV model reduces to the weighted dif-
ference of anisotropic and isotropic total variation (WDAITV) [27] by setting t1 = t2  = (1; 1;  ;
1) 2  Rn2 

in (1.2), i.e.,

min 
2 

ku fk2 + kÑuk1;1 akÑuk2;1; (4.2)

which was originally minimized via DCA with a subproblem problem solved by ADMM [27].
We compare the performance of PDM and DCA for solving the same WDAITV model (4.2)
using a testing image of Figure 2 (a) under three noise levels. For this example, we set a  =  0:01
and report the denoising results quantitatively in terms of SNR, SSIM, and computational time in
Table 1, which clearly demonstrates the advantages of PDM over DCA. Specifically, PDM
always achieves better recovery results in much less time.
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TA B L E  1. Comparisons between DCA and PDM of denoising Figure 2 (a)
under the different noise variance s 2 .

NoiseVariance

s 2  =  0:01

s 2  =  0:05

s 2  =  0:1

Method l

DCA 16
PDM 16
DCA           7.2
PDM           7.2
DCA           5.3
PDM           5.3

SNR

20.9563
21.9260
16.5140
16.9596
14.3930
14.7296

SSIM TIME

0.7700 7.7272
0.8082 0.3078
0.5795 7.6989
0.6145 0.2592
0.4895 7.8182
0.5134 0.2428

4.4. Comparison with other related models. Here we compare the proposed AWDAITV
with other gradient-based denoising methods, including total variation (TV) [50], high-order
total variation (HOTV) [16], total generalized variation (TGV) [15] and the WDAITV model
(4.2). For these competing methods, we use the codes provided by the respective authors on
their websites. The optimal parameter of l  for each combination of testing images, noise levels,
and competing methods is listed in Table 2.

We present the denoising results of ten images as demonstrated in Figure 2 (a)-(j) in terms of
SNR and SSIM in Tables 3, 4, and 5 under different noise variances s 2  =  0:01;0:05; 0:1;
respectively. For each image, the best SNR/SSIM value is highlighted in bold. In most cases,
the AWDAITV achieves the highest SNR and SSIM, especially when the original image is
piecewise constant and the noise level is low. The sparsity of the gradient can be severely
altered by a high level noise, in which case higher-order T V  models are more effective. In
addition, we include the average of SNRs and SSIMs obtained from all the test images in the
last row of each table, demonstrating that AWDAITV generally yields competitive results.

TA B L E  2. The optimal regularization parameter l  in the general model (1.1).

s 2  =  0:01 s 2  =  0:05 s 2  =  0:1

T V HOTV

(a)       21.7 47.0

(b)       17.2 34.0

(c)       11.9 20.0

(d)       15.2 31.0

(e)       14.9 29.0

(f)       14.0 36.0

(g)       12.0 22.0

(h)       14.5 28.0

(i)       14.2 28.0

(j) 15.0 36.0

TGV        WA I T V        AWA I T V

47.0           27.0               16.0

34.3           21.0               13.0

19.7           14.0               11.0

30.7           18.0               11.0

29.0           17.8               10.0

37.0           17.0                4.9

21.8           13.9               10.0

27.7           17.6               12.8

27.9           17.0               12.0

36.0 16.0 3.6

T V        HOTV

8.4          16.0

7.1          12.0

5.3           7.0

6.4          11.0

6.8          11.0

7.0          16.0

5.5           8.0

6.2          10.0

6.3          10.0

8.0 19.0

TGV        WDA I T V

16.3             10.1

12.2              8.4

6.6               6.2

11.0              7.5

11.3              8.1

16.0              9.0

7.8               6.2

10.0              7.4

10.1              7.4

18.0 9.0

AW DA I T V

7.2

5.9

4.6

4.0

5.0

2.3

4.3

5.3

5.0

1.7

T V        HOTV       TGV

6.0          11.0          11.0

5.3           8.0            8.2

4.1           5.0            4.6

4.7           7.0            7.2

5.1           8.0            7.9

6.0          11.0          11.0

4.3           6.0            5.6

4.9           7.0            6.8

4.8           7.0            6.7

6.0 13.0 13.0

WDA I T V        AW DA I T V

7.2 5.3

6.2 4.0

4.7 4.0

5.5 3.0

6.0 3.0

6.0 1.7

4.8 3.2

5.7 4.0

5.6 4.1

7.0 1.0

We present the denoising results visually in Figure 4 where each testing image is contami-
nated by the middle level of noise, i.e., s 2  =  0:05: For a better visual comparison, we zoom
in on a region of interest for each image, as indicated by a red square in Figure 4, and the
corresponding results are illustrated in Figure 5.

We can observe that the T V  model suffers from staircasing artifacts in the smooth region; see
the cheek of Lena (h) in Figure 5. Both HOTV and TGV produce over-smooth outputs. HOTV is
based on the fourth-order diffusion that damps oscillations faster than second-order diffusion;
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TA B L E  3. SNR (dB) and SSIM for denoising results of s 2  =  0:01.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Average

T V

21.7704
0.7953

18.4554
0.7511

24.5387
0.8378

21.3756
0.7422

25.8937
0.8547

15.6145
0.4489

24.7755
0.7998

20.8174
0.7804

21.4537
0.7995

21.9027
0.9529

21.6598
0.7763

HOTV

21.8540
0.7953

18.7261
0.7583

24.3599
0.8260

21.0825
0.7102

25.7574
0.8216

14.3719
0.3683

24.3922
0.7632

20.9863
0.7771

21.4435
0.7921

20.9235
0.8723

21.3897
0.7484

TGV

21.8232
0.7944

18.7289
0.7574

24.3284
0.8272

21.0798
0.7130

25.7486
0.8213

14.2776
0.3638

24.4057
0.7647

21.0359
0.7803

21.4409
0.7925

20.8956
0.8717

21.3765
0.7486

WDAITV

21.7762
0.7921

18.4715
0.7494

24.5048
0.8380

21.3721
0.7419

26.0205
0.8534

15.8152
0.4445

24.7727
0.7984

20.6843
0.7755

21.5778
0.7998

23.1444
0.9567

21.8140
0.7750

AWDAITV

21.9260
0.8082

18.7737
0.7807

24.6511
0.8572

21.5685
0.7709

26.1341
0.8894

16.8022
0.4806

24.8569
0.8112

20.7236
0.7977

22.1112
0.8335

24.1201
0.9867

22.1667
0.8016

as a result, it may blur the edges when keeping the smooth regions. TGV has a coupling effect of
the total variation and the high-order total variation, so it can simultaneously preserve edges and
piecewise smoothing regions. Comparing WDAITV and AWDAITV, the latter enhances the
diffusion strength along with the important features, leading to better denoising results than
WDAITV in the areas such as the tripod in the Cameraman (d) and the pointer in Clock (e).

5. CO N C L U S I O N S

This paper proposed a novel denoising model based on the weighted difference of anisotropic
and isotropic total variation, where adaptive weights were incorporated to enhance the robust-
ness for the proposed model. We transformed the nonconvex and nonsmooth model into a
saddle point problem and applied the primal dual method to find the model solution. We vali-
dated the convergence of the proposed numerical algorithm by examining on the relative errors,
objective function values, and primal-dual gaps. Experiments demonstrated the performance of
the proposed AWAITV model in comparison to other gradient-based denoising methods. One
future work lies in the proof of the PDM convergence for a nonconvex problem.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Clean T V HOTV TGV WDAITV AWDAITV

F I G U R E 4. The comparison of denoising results for s 2  =  0:05 with red patches
zoomed in Figure 5.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Clean T V HOTV TGV WDAITV AWDAITV

F I G U R E 5. Zoomed-in patches in Figure 4.
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TA B L E  4. SNR (dB) and SSIM for denoising results of s 2  =  0:05.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Average

T V

16.8869
0.6090

13.9761
0.5555

20.4466
0.7600

16.7447
0.5874

19.9847
0.7464

8.9845
0.3574

20.4173
0.7145

16.5232
0.6397

17.0971
0.6590

14.7053
0.8172

16.5766
0.6446

HOTV

17.0521
0.6152

14.1648
0.5672

20.6000
0.7601

16.4686
0.5386

20.1407
0.7278

8.4277
0.2617

20.2242
0.6742

16.7508
0.6430

17.1189
0.6605

14.6680
0.7081

16.5616
0.6156

TGV

17.0285
0.6135

14.1704
0.5652

20.5933
0.7663

16.4764
0.5392

20.1329
0.7212

8.4029
0.2618

20.2267
0.6780

16.7739
0.6447

17.1359
0.6599

14.6436
0.7214

16.5585
0.6171

WDAITV

16.8855
0.6061

13.9354
0.5525

20.4161
0.7562

16.7360
0.5855

19.9897
0.7402

9.0897
0.3280

20.4055
0.7127

16.4227
0.6311

17.1364
0.6571

15.1568
0.8139

16.6174
0.6383

AWDAITV

16.9596
0.6145

14.0102
0.5851

20.2707
0.7917

16.5872
0.6385

19.8366
0.7924

9.4248
0.4202

20.3195
0.7418

16.2548
0.6688

17.4178
0.7154

16.0131
0.9212

16.7094
0.6890
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TA B L E  5. SNR (dB) and SSIM for denoising results of s 2  =  0:1.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Average

T V

14.6912
0.5075

12.2366
0.4720

18.1395
0.7132

14.6799
0.5279

16.9632
0.6800

6.4059
0.2559

17.9045
0.6587

14.5650
0.5684

15.1912
0.5911

11.3934
0.6967

14.2170
0.5671

HOTV

14.8568
0.5186

12.4479
0.4914

18.4052
0.7137

14.5404
0.4948

17.1458
0.6626

6.1578
0.2254

18.0502
0.6220

14.9298
0.5888

15.3547
0.6022

11.5947
0.6146

14.3483
0.5534

TGV

14.8499
0.5188

12.4461
0.4887

18.4182
0.7254

14.5467
0.4893

17.1449
0.6664

6.1528
0.2556

18.0694
0.6338

14.9477
0.5942

15.3708
0.6115

11.5955
0.6150

14.3542
0.5599

WAITV

14.6930
0.5055

12.2053
0.4695

18.1121
0.7180

14.6553
0.5225

16.9605
0.6760

6.4385
0.3205

17.9309
0.6569

14.5025
0.5662

15.1958
0.5878

11.6330
0.6817

14.2327
0.5697

AWAITV

14.7296
0.5134

12.1697
0.5045

18.1914
0.7465

14.3534
0.5808

16.7517
0.7404

6.3642
0.3896

17.7738
0.7011

14.2279
0.6199

15.2987
0.6518

12.2286
0.8285

14.2089
0.6277
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