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Abstract

Seismic data is contaminated by noise due to a variety of factors including wind, ocean
currents, vehicular traffic, and construction. Further receiver malfunction and limitations in
acquisition geometry may lead to missing data. Seismic data naturally contains redundancies
because surveys repeatedly sample the same region of the subsurface. If this data is orga-
nized into a high-dimensional data structure (a tensor), then the incomplete noisy data will
have higher rank than the ground truth data. Direct rank reduction for tensors is an NP-hard
problem. Thus one instead minimizes an approximation to rank such as the tensor nuclear
norm (TNN), which sums the tensor’s singular values. This TNN model together with the
alternating direction method of multipliers (ADMM) optimization method is denoted TNN-
ADMM. While convergence of ADMM has been shown previously for general minimization
of functions, here we formulate tensor properties which allow us to prove a sufficient con-
dition: by bounding the step size to be greater than one, the Lagrangian function is strictly
decreasing and bounded. Therefore, ADMM applied to the TNN model converges. This
condition reduces the computational burden of tuning the step size parameter. We demon-
strate the performance of denoising and reconstruction on two synthetic seismic datasets and
on a real dataset from offshore Western Australia. In the case of the linear synthetic data,
TNN-ADMM out-performs another popular method by giving four times less error in half the
computational time. We also illustrate that TNN-ADMM can effectively remove the majority
of artificially added noise to real data.
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1 Introduction

When recording seismic data, noise is usually present in the recording due to environmental
factors and man-made sources. Examples of noise include weather, ocean currents, construc-
tion, and vehicular traffic. Additionally, data may be incomplete due to limitations in source
and receiver placement and the range of frequencies possible for these devices. To mitigate
these issues, simultaneous reconstruction and denoising methods have been developed to
recover the desired data [10, 26].

We are interested in a class of reconstruction and denoising methods based on minimizing
rank. The rank of a matrix is the number of linearly independent rows. Generalized definitions
of rank exist for tensors, or multi-dimensional arrays, such as Tucker rank, tubal rank, and
tensor trainrank [10, 17, 21]. In the absence of noise, the complete data often has redundancies
and hence has low rank. Noise and missing entries generally lead to observations of higher
rank. These factors motivate low rank methods for recovering data [4]. As minimizing rank
directly is NP-hard [4], two popular alternate approaches are minimizing rank approximations
[4, 20, 22, 34] and factorizing a matrix into the product of two lower-rank matrices [8, 16,
41].

Methods that generalize rank minimization of tensors are of interest for a variety of
applications that utilize high dimensional data including multiview clustering [38], remote
sensing [13, 33], computerized tomography [24, 31], and seismic data completion [18, 19,
27, 28]. The multidimensional nature of seismic data makes tensors a natural choice for
organizing this data (for example, x and y source and receiver coordinates and time). The
tensor nuclear norm (TNN) is the sum of a tensor’s singular values and is used in low
rank tensor reconstruction methods [10, 40]. The alternating direction method of multipliers
(ADMM) [2] can be used to minimize the TNN model. We refer to this combination of model
and method as TNN-ADMM. Using ADMM allows for separation of the TNN and the data
matching terms and is more efficient than other methods [27] such as multichannel singular
spectrum analysis (MSSA) [26, 32] and projection onto convex sets (POCS) [1].

The convergence of ADMM has been studied previously for general functional minimiza-
tion [2, 9, 35] where the function operates on vectors and matrices. However, these results
cannot be directly applied to the tensor case. While Zhang et al. [39] mention convergence
of the TNN-ADMM algorithm, they do not prove convergence. Instead they refer the reader
to the work of Boyd et al. [2] in which they prove that if the function f(x) is Lipschitz
continuous and the function g(x) is convex, for a vector x € R”" (of dimension ), then
ADMM converges to a stationary point of the function f(x) 4+ g(x). When minimizing a
nonconvex logarithmic approximation of rank, Xue et al. [37] show that the sequence gen-
erated by ADMM has a convergent subsequence, but not that it converges to a stationary
point. Here we prove tensor properties that then allow us to show that the sequence for the
TNN minimization via ADMM converges to a stationary point. Our data completion prob-
lem involves tensor-tensor element-wise multiplication (a.k.a Hadamard product), not the
standard vector—matrix multiplication as considered in [2]. We fully exploit the properties
of tensors and include a lower bound for the internal parameter (the step size) introduced by
ADMM, thereby reducing the computational burden of tuning this parameter.

The primary contributions of this paper include our proof of convergence for TNN-ADMM
as well as numerical experiments that demonstrate denoising and reconstruction of both
synthetic and real seismic data from offshore Western Australia. In the remainder of this
paper we present background material on tensor linear algebra and develop several new
properties in Sect.2 in preparation for the convergence proof. In Sect. 3 we outline the data
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completion problem and ADMM algorithm, and we provide the proof of convergence for
ADMM. Finally, in Sect.4 we demonstrate TNN-ADMM for simultaneous reconstruction
and denoising on two synthetic seismic examples (one with linear events, one with parabolic
events). We compare results from this numerical method with a competing algorithm, MSSA,
which has also been used for seismic data completion [26]. Lastly, we present a promising
example that indicates TNN-ADMM can be successful at reconstructing and denoising real
data.

2 Background Material

We consider X € R™M1*Xm2X--X1p a9 an order-p tensor, p € ZT. Multi-index notation is
commonly used for referring to scalar elements of a tensor, using an index for each dimension,
ie. X = [Xi iy,...i,]. We will instead use linear indexing to refer to scalar elements, e.g.
X =[X;]fori =1,2,..., N,with N = Hip:1 n;. Using linear indexing, the first element of
the tensor (i.e. first column, row, and slice) is assigned an index value of one. Along the first
column of the first slice the index of each scalar element is one greater than the previous row,
resulting in the elements of this column being indexed from 1 to n;. This indexing pattern
continues for each column of the first slice, i.e. the second column is indexed from n; + 1
to 2n1 and the last column is indexed from n| x (no — 1) + 1 to nyny. The indexing then
continues with the second slice, following the same pattern and so on. For completeness, the
mapping from multi-indexing to linear indexing is given by,

Xt iz..oip = XH‘Z}[():l(ik—l)nf;ll n M

We illustrate both conventional multi-indexing and linear indexing for a 3 x 3 x 2 example,
with the two slices separated by a comma,

X111 X1 X3 X2 Xi22 Xi3o2
X=1|&11 X221 X231 |, | X212 X222 A232 )
L 311 A321 Az X312 Az22 X332

X1 Ay Ay X0 X3 Xis
=X A5 A |, | X X X7 |- 3
X3 X Ao X2 X5 Alg

Linear indexing is very convenient when we wish to refer to elements of a tensor without
concern for the number of dimensions. The set of tensors with the same dimension form a
vector space, under which we can define the Frobenius inner product and norm [12] (see
Appendix).

2.1 Tensor Algebra

For a tensor X € RM*XM2%.-Xp we denote its multidimensional Fourier transform as X,
which is implemented via the Fourier transform for each dimension from 3 to p. Specifically,
we consider vectors oriented along the third dimension as fubes. For each tube we compute its
Fourier transform treating the tube as a vector. Similarly we can compute the multidimensional
inverse Fourier transform on X’ that yields X'.

The tensor product (tProduct) [23] of two tensors A € RMXMXM3X-Xp and B €
Rm>m2xn3XXNp pregults in a tensor C = AB € RMXM2XM3X--XNp To compute AB, we
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multiply the frontal slices of A and B, storing the result of each matrix product as a frontal
slice in C , followed by the multidimensional inverse Fourier transform.

The identity tensor Z; € R X1X713X.-X71p hag the identity matrix as its first frontal slice
and zeros elsewhere. Transposing an order-3 tensor is computed by transposing each frontal
slice and reversing the order of all but the first frontal slice. Transposing an order-p tensor
(p > 3) is computed recursively by transposing each order-(p — 1) subtensor and reversing
the order of all but the first order-(p — 1) subtensor. Just as with matrices, orthogonal tensors
have the property that their transpose is their inverse, i.e., UUT =uUTU = 1,.

The tensor singular value decomposition (tSVD) decomposes a tensor into a product of
three tensors [23],

X =uUsvyr, )

where the tensors U € R*1*X13XXp gpd )Y € RM2XM2X7M3X--XMp are orthogonal and S is
a frontal diagonal tensor (meaning each frontal slice is a diagonal matrix).
The tensor nuclear norm (TNN) is defined as [10]:

N
XItNN = Y 1 C D @)

i=1
where )?(:, ., 1) is the i slice of 2?, and || - ||« is the matrix nuclear norm. As TNN is not

differentiable, we rely on the concept of subgradient [30] to define an optimality condition.

Definition 1 (Subgradient) For a convex function f : R™1*"2X--X"p — R and a point M €
RM>n2x--xnp the subgradient of f at M, denoted 9 f (M), is the set of tensors,

D (M) = [P e RMXMXXty |y £(X) — f(M) > (P, X — Mg} ©)
Elements of the TNN’s subgradient, P € 9| M| NN, can be expressed as [40]
P=uv’ +w, 7

such that M = USVT is the tSVD of M and |W||» < 1, where || - ||» is the tensor spectral
norm (the largest singular value of the tensor).

Next we introduce the Hadamard product and its related algebraic concepts [15, 29]. The
Hadamard product is used to model the missing data problem by a sampling operator, which
is a tensor with ones where data is sampled (receivers are located) and zeros where no data
is recorded.

Definition 2 (Hadamard Product [15]) The Hadamard product, denoted A o BB, between two
tensors with matching dimensions is element-wise multiplication, i.e. (A o B); = A; B; for
i =1,2,..., N where N is the number of elements of A and B.

The Hadamard product has associated definitions for identity, inverse, and idempotent

(see Appendix). Sampling operators in particular are idempotent since zero and one are
idempotent under scalar multiplication.

2.2 Tensor Properties

This subsection lists useful properties on tensors and the Hadamard product which we
will use in our convergence proof in Sect. 3. Additional Frobenius inner product properties

@ Springer



Journal of Scientific Computing (2023) 97:49 Page50f26 49

on symmetry, linearity, the polarization identity, and orthogonal invariance are provided in
the Appendix.

Property 1 For three real-valued tensors A, B and C of the same size, the composition of the
Frobenius inner product and the Hadamard product has the following commutative property,

(Ao B,C)g =(AoC, B)f. 8)

Proof Using the definition of Frobenius inner product (Definition 6), the definition of
Hadamard product (Definition 2), and the associativity and commutativity of scalar
multiplication we obtain,

N N
(AoB,C)r =) (Ao B)iCi =) (AiB)C; ©)
i=1 i=l1
N N
=) (AC)Bi =) (A0C);B; = (AoC, B)E. (10)
i=1 i=1
O

Next we consider two reshaping operators that permute the elements of a tensor into
another data structure, such as a vector or matrix, which are called vectorization and diagonal
matricization [16], respectively. Then Properties 2 and 3 are introduced to relate vectoriza-
tion, matricization, and a Hadamard product of tensors to a matrix—vector product. Both
properties are useful when proving the Frobenius norm of a Hadamard product of tensors
can be expressed in terms of the L, norm (Property 7).

Definition 3 (Vectorization [16]) Given a tensor A, we use vec(A) to denote the vectorization
of A. This operation reshapes the scalar elements of the tensor into a vector as such,

Ay
A
vec(A) =| . | eRV, €5
Ay
where N is the number of element of A.

Definition 4 (Diagonal Matricization [16]) We use dimat(A) to denote the diagonal matri-
cization of tensor A. This operation forms a diagonal matrix with the elements of
A,

Ay
dimat(A) = A e RNV, (12)

Ay

Property 2 (Shape Invariance) The Frobenius norm is invariant under reshaping and is
equivalent to the L, norm for vectors, i.e.

[Allp = l[dimat(A) g = [[vec(A)||F = [[vec(A)|l2.

Proof Reshaping operators do not affect the values of the scalar entries and do not result in
additional non-zero entries, hence the Frobenius norm of any reshaped tensor has the same
value as the Frobenius norm of the original tensor by the commutivity of addition. For a
vector the Frobenius norm and L, norm have the same value by definition. O
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Property 3 For tensors A and B, the vectorization of their Hadamard product is equivalent to
the matrix—vector product of the diagonal matricization of A and vectorization of B, i.e.,

vec(A o B) = dimat(A)vec(B). (13)
Proof This property can be proved using matrix—vector multiplication,
A1B; Ay By
AxBo A B
vec(Ao B) = . = . . | = dimat(A)vec(B).
AnBn AN By

[m}

Below we define the circulant [16] of tensors, which will be used to show the block-
diagonalization property (Property 4) of circulant matrices.

Definition 5 (Circulant [16]) The circulant of tensor A € R™1*"2%--*"p i3 g matrix denoted
circ(A) € RMM>mM ‘where M = []/_, n; is the number of frontal slices. Let A. . x denote
the k' slice of A fork = 1,2, ..., M. The circulant matrix is defined as,

A:,.,l -A:,:,M -A:,:,Mfl A:,:,Z
A:,:,Z A:,:,l A:,:,M A:,:,S

circ(A) = i ) ) . ) . (14)
A:,:,M A:,:,Mfl ce A:,:,Z A:,:,l

Unlike the vectorization and diagonal matricization, the circulant operator is not a reshaping
operator since elements of the tensor are repeated in the circulant. However, each block
column and block row are reshaped forms of .A. Next we introduce a property of the circulant
that diagonalizes the circulant matrix into a block diagonal matrix.

Property 4 (Block-Diagonalization [16]) The circulant matrix circ(A) can be diagonalized
into a block diagonal matrix,

v‘i:,:,l
. A:,:,Z
(Fy ® I))circ(A)(Fyy ® In,) = ) , (15)
A:,:,M

where Fy is the discrete Fourier transform (DFT) matrix of size M, Fy; is the conjugate
transpose of Fjy, I is the identity matrix (with size specified by the subscript), M is the total
number of frontal slices of A, and ® is the Kronecker product [14] (see Definition 11 in the
Appendix).
In the case that A is a diagonal tensor, the block diagonal matrix of the right-hand side of
(15) is equivalent to the diagonal matriziation of A.

The circulant possesses a property similar to the Shape Invariance Property 2 under the
Frobenius norm.

Property 5 The square of the Frobenius norm of tensor .4 is directly proportional to the square
of the Frobenius norm of circ(A) with the proportionality factor of ﬁ,

1
IAlIE = Mnclrc(A)n%, (16)

where M is the number of slices of A.
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Proof The matrix circ(A) repeats all the elements of A M-many times. Thus, ||circ(A)||Z =
MY AP = MIAJ. .

Combining Properties 4, 5, and Orthogonal Invariance (see Property 12 in the Appendix)
we relate the Frobenius norms of A and A.

Property 6 The square of the Frobenius norm of tensor .4 is directly proportional to the square
of the Frobenius norm of A (the multidimensional Fourier transform of .A) by a factor of ﬁ,

F M B
Where M iS the Ilumber Of SliCeS Of A.

Proof 1t follows from Property 4 (Block-Diagonalization) that we can express circ(A) into
the product of three matrices. Further applying Property 5 we obtain,

A:,:,l

2 1 _1 A:,:,Z % 1
Al = M (Fy ® Iny) . (Fy; ® Iny) ) (18)

~

-A:,:,M F

Since the Kronecker product of orthogonal matrices is also orthogonal [14], we apply Property
12 to simplify the right-hand side to the Frobenius norm of the block-diagonal matrix,
~ 2
A:,:,l
AR = - (19)
F= - :
-A:, M F

Property 2 (Shape Invariance) guarantees that the Frobenius norm of the block diagonal
matrix is equal to the Frobenius norm of A. O

Lastly we prove two properties to show that the Frobenius norm of a Hadamard product
of tensors is bounded by the maximum value and Frobenius norm of the tensors.

Property 7 The Frobenius norm of a Hadamard product of tensors .A and 3 can be expressed
as the Ly norm of a product of a diagonal matricization and vectorization,

Ao Bllr = [ldimat(A)vec(B)]|>. (20)
Proof The desired equality can be obtained by using Properties 2 and 3, i.e.,

Ao Bllr = llvec(A o B)|IF
= ||dimat(A)vec(B)||r = ||dimat(A)vec(B)|2.

[m}

Property 8 (Hadamard-Frobenius Inequality) The Frobenius norm of a Hadamard product of
a non-negative tensor A and tensor B is bounded by the max value of 4 and the Frobenius
norm of B,

Ao Bllr < max(A)| Bl 21
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Proof Using Properties 2 and 7, we obtain the following inequality,
Ao Bllp = [ldimat(A)vec(B)[l2 < ||dimat(A)ll2[[vec(B)]l2.

The L, norm of a matrix, also known as the spectral norm, is defined as the largest singular
value. Since dimat(.A) is a non-negative diagonal matrix, its largest singular value is its largest
diagonal value. Hence,

|[dimat(A)||» = max(diag(dimat(A))) = max(.A),
and thus,

Ao Bllp < max(A)|B|F.

3 Convergence Analysis for TNN-ADMM Applied to Tensors

In Sect. 3.1 we describe the unconstrained TNN minimization problem for data completion
and an iterative algorithm using ADMM with closed-form solutions of the subproblems.
By analyzing the convergence in Sect. 3.2, we guarantee the sequence generated by ADMM
has a subsequence convergent to a solution that minimizes the unconstrained TNN problem,
provided the parameters of the problem satisfy strict inequalities derived in our analysis.
These strict inequalities help guide the parameter selection in practice.

3.1 TNN-ADMM Problem Setting

Data acquired through experiments may be incomplete (i.e. it may contain gaps) and is likely
be contaminated by noise. Gaps in seismic data can be caused by physical limitations on
the placement of sources and receivers and receiver failure. Sources of noise include natural
sources such as weather and man-made sources such as construction. We model this process
by the equation,

YV=AoX+WN, (22)

where ) is the observation, A is the sampling operator, X is the underlying, complete data,
and N is additive noise. Here the sampling operator is a tensor of zeros and ones, which
acts on the data via the Hadamard product. It should be noted that we are only concerned
with noise at sampled locations and thus consider the noise tensor A/ and the observation
Y invariant to the sampling operator, i.e. A o N/ = A and A o Y = Y. By simultaneously
reconstructing and denoising the sampled noisy data ), our goal is to recover X'. We consider
the unconstrained TNN minimization problem [10],

. 1
min A X[y + 5 1Y — Ao X, (23)

where A > 0 is a weighting parameter. We introduce the auxiliary variable Z to decouple the
TNN and data matching terms, rewriting (23) as

. 1
m{éﬂkllelTNN+§ll)i—AoZ||% stX = Z. (24)
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With the TNN and data matching terms separated, we can apply ADMM to solve (24).
The method proceeds as follows: first we form the augmented Lagrangian,

1 o
Lo(X. 2:B) = M Xlltan + 511V — Ao Z|E+p(B. X — Z)F + Shx - Z|Ig, (29)

where B is the Lagrange multiplier or dual variable and the parameter p > 0 is the step size.
Note that p appears in the Lagrange multiplier to make completing the square simpler. This
form is referred to as a scaled augmented Lagrangian by Boyd et al. [2]. The dual variable
serves to add the X = Z equality constraint to the objective function. Additionally, the last
term of the augmented Lagrangian is a quadratic penalty term for the equality constraint. The
augmented Lagrangian includes both the Lagrangian and quadratic penalty terms to reduce
the chance of ill-conditioning [5, 25]. When using only one penalty term, if the step size
parameter tends to zero (or infinity), then the update steps could result in ill-conditioned
tensors.
Using the augmented Lagrangian we can define the ADMM iterations as,

X = arg min L, (X, 2k B (26)
2kl = arg min Ly(x*+t 2z, 8Y (27)
BEHl = BK 4 okt _ gzl (28)

where k denotes iteration number.
To solve the X'-problem (26),

1
xR = argmin | X[y + 1Y = Ao ZIE+ pB5, & — Zhp + gnx - zZ4)2,
(29)
we rewrite the last two terms using the polarization identity (see Property 11 in the Appendix),
o P P
p(BE, X — 25 + S = ZNE = S - zZk 4 B4 - 5||B"||%. (30)

Substituting this equality into the X update (29), we then simplify by considering
minimization only over the terms that include X,

k! =argngnxn;chNNJr§||X—zk+8"||§. 31)

Next welet X = USVT and 2% — B* = 1//'S'V'T be the tSVD of X and Z* — B* respectively.
Substituting these decompositions into (31) yields,

X = arg  min . MUSVT |Ian + gnusvT —u'sVTz. (32)
=USV

Next we factor ¢4’ and V'T from the Frobenius norm term to obtain,

X Zarg min AUSVT Iman + 21U @TUSVTV — SHY'T |12, (33)
X=USVT 2

We use the orthogonal invariance (Property 12) of the TNN and Frobenius norm to simplify
(33),

X4 = arg min S -+ gnu”usvTv’ — 8|2 (34)

@ Springer



49 Page 100f26 Journal of Scientific Computing (2023) 97:49

Since S’ is a diagonal tensor, the Frobenius norm is minimized when 247 t/SVT V" is diagonal.
By selecting / = U’ and V = V' the product U'TUUSVT V' simplifies to the diagonal tensor
S. We can now consider the X update as X*T! = 1/ ST where Skt is the solution of
the argmin problem,

SH! = argmin A Sl + 1S = S'I- (35)

Next we use properties of TNN and the Frobenius norm to transform this problem into
a series of independent 1-dimensional problems. Specifically, we denote S as the block
diagonal matrix with the frontal slices of S as the block-diagonal elements. Since the tensor
S has the same singular values as the matrix S [27], ||S|'tTan = || S|l«. The nuclear norm is
the sum of the singular values, which is equivalent to the L; norm of a vector containing
the singular values. We then apply Property 6 to express the Frobenius norm term of (35) in
terms of S and &’. We now consider the argmin problem as an update step for S,

Sk argmin)»llgll* + L”é _ 3/”12:! (36)
3 2M

with S¥*1 as the inverse Fourier transform of S¥*!. By expressing the norms in terms of
singular values the argmin problem can be written as,

L L
Skt arg min A Z&,- + ﬁ Z(&i - &l!)Z’ 37
S o i=1
where 6; and 6] are the i th diagonal values of the tensors Sand & respectively, and L =
p
min(ny, ny) 1—[ ng is the number of singular values. To find the minimum value, we calculate
k=3
the partial derivative of (37) with respect to 6; and set it equal to zero,
[P A
bt 16 = 6) =0, (38)
fori = 1,2, ..., L. Solving for 6; yields,
. ., AM
6 =6/ -2 (39)
P
However, singular values must be positive, so we have the additional constraint that ; > 0,
and hence,
. ., M
0; = max | 0; —7,0 . (40)

To summarize the closed-form solution of the X'-problem, let X k1 — 1/ SKHIYT  \ywhere
2k _B* =1/'S'V'T isthe tSVD of 2K — BX. The tensor S¥*! is the inverse Fourier transform
of S¥*1 and the diagonal values of S¥*! are given by (40) in terms of the diagonal values of
S'. This result is also known as singular value thresholding (SVT) [3] for matrices.

The Z-problem (27) can be solved by setting its gradient evaluated at Z¥*! to zero and
solving for Z¥*+1. This results in the Z update as follows,

Z — (A4 pT) o (p(xF £ BN 1), (41)
where (A + pZ)~! is the Hadamard inverse and 7 is the Hadamard identity tensor. The dual
variable B is updated in (28) using gradient ascent. Specifically, taking the gradient of the
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Lagrangian function (25) with respect to the dual variable B yields p(X**+! — zk+1) By
taking the step size 6 to be 1/p in the gradient ascent for 3, we obtain

Bk-‘rl _ Bk

S = (- 2k, (42)

which is equivalent to (28).

3.2 Convergence Analysis

We refer to the combination of applying ADMM to the TNN objective function as TNN-
ADMM. To prove convergence of TNN-ADMM we first start by proving the following
lemmas. Lemma 1 shows that the Lagrangian L, (X%, ZK: B¥) is strictly decreasing with
each iteration of ADMM and provides an upper bound on the difference between Lagrangians
evaluated at consecutive iterations. Lemma 2 shows that both the sequence {X’ k zk Bk}
generated by ADMM and the Lagrangian L, (X k. zk. BX) are bounded. Theorem 1 uses
these two preceding lemmas to show that the limit point of the sequence generated by ADMM
is a stationary point of the unconstrained minimization problem (23).

Lemma 1 (Sufficient Decay) If p > 1, there exist two strictly positive parameters c1, ¢ such
that

Lo 28 B — L, (%, 285 B < —er| A — K — e 24 - 241
43)
Proof First we examine the difference in the Lagrangian when Z and B are constant,
Lo(X* 25 BY) — Ly (X%, 2% BY) = a2 | mnw + p(BF, X4 — 25
+ 20 - ZE - GO I 4
+ (B, X — 2+ DX - 2.

By applying the polarization identity (Property 11) the two Frobenius norm terms simplify
as follows,

o P
SN —ZHE = Dk — 25|
? 14 1,2 ’ 2 1 “5)
= 5<||X’<+ I3 — 1A 1E — 2(x%F, 25 + 2(xk, 2h)p).

By using the symmetry and linearity of the Frobenius inner product (see Properties 9 and 10
in the Appendix) the inner product terms in (44) and (45) can be simplified as follows,

p(BF — 2k, M xkyp = p(BF, Akt - Zhye — p(BF, Ak — 2K

(46)
— px*H Zhe 4 ok, Z6)g.

Thus the difference (44) simplifies to,
Lp(Xk+],Zk; Bk) _ Lp(Xk, Zk7 Bk)
o)
=2 X ran = 1A% lmw) + p(BF — 25, 28 — x4 5(||X’<+‘ IE — 1A% 1)
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For P € 9| ¢%H! mnn, we have [ X% flann — X mnn < (PFHL A6 — x)p by
Definition 1, hence,

(47
<P 4 p(BF — 28, A — ke + Lk R -t ).
Now we use the optimality condition of the X'-problem (26),
AP 4 Bk + Ak — 2Ky — 0,
to simplify (47) as follows,
Lp(Xk+l,Zk; Bk) _ Lp(Xk,Zk; Bk)
o
<(=pX L A — A+ SR - 12D (48)
e P A
2
Next we examine the difference in the Lagrangian when X" and B are constant,
Lp(XkJrl, Zk+1 gy _ LP(X]H“I, zk. g5
_1 k12 ko k] _ okl Pkl k2
—EHy—AOZ Ig + p{B", X - Z )F+E||X -Z I (49)
1 P
- (§||y = Ao ZHf+ p(B", XM — 2+ Tyt — Z"n%) :
We apply Properties 10 and 11 to simplify the Frobenius norm terms,
1 1 1
2||37 ° I 2||37 o Z%||g 2(II ° g = Ae Z%E (50)
—2(¥, Ao 2 — Ao 2N)p),
Pkl k412 _ Py kel k2 P k412 k)2
Zlaktt— z — Dkt zh2 =212 -z
2 It~ 51 17 =502 - 120 s

— (xR ZhH gk

By applying Property 1 to the inner product term of (50) and utilizing the fact that the
observation ) is invariant to the sampling operator A, we can rewrite this term as,

20, Ao 2K — Ao ZKp = 2(p, 2K — 2Ky (52)

We substitute the results of (50)-(52), into the Lagrangian difference (49), then simplify using
Property 10 to obtain,

Lp(Xk-H’Zk-H; Bk) . Lp(Xk-H’Zk;Bk) _ <y+p(6k _}_Xk-t-l)’Zk . Zk+l>F
- %(nAo ZE - 140 24 1R (53)
+ SUZ R - 12t .
Now we use the optimality condition of the Z-problem (27),

(V= Ao 2Ky o () — p(BF + XK — ZkH1y = . (54)
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The Z terms of this optimality condition (54) can be moved to the right-hand side and then
simplified using the idempotent property (see Definition 10 in the Appendix) of the sampling
operator,

Y+ p(B* + XKty = Ao 2K 4 p2hHT (55)

This expression (55) can be substituted into the inner product term of (53) and simplified
using Properties 10 and 11 to obtain,

Lp(Xk+], Zk+]; Bk) _ Lp(Xk+1, Zk, Bk)

1 p (56)
=— E”A" ZK_ po 2R)E — Euzk“ — 252,

By applying the Hadamard-Frobenius inequality (Property 8) to the first term of (56) and
using max(.4) = 1, we obtain,

1
LM+, 240 By — L+, 2K, By < | ‘;P)

(A [N 1)
Next we examine the difference in the Lagrangian (25) when X’ and Z are constant,
Lp(Xk—H’ ZhHL gty Lp(Xk+1, ZhHL gRy — Bkl gk kL gkl

which can be rewritten as

L, (XK1, gkl gy g (ke zhel ghy = Bk k2, (58)

by the dual variable update step (28). We return to the optimality condition of the Z-problem
(54) and use the idempotent property of the sampling operator .4 and the dual variable update
(28) to obtain,

pBH = Aoz —y, (59)

Substituting this relation (59) into the Lagrangian difference (58) for both B*! and B* and
simplifying yields,

1
Lp(Xk+l’ Zk+l; Bk+l) _ Lp(Xk+l, Zk+l; Bk) — ;”AO (Zk+l _ Zk)”IZ: (60)

Applying the Hadamard-Frobenius inequality (Property 8) to (60) and using max(A) = 1
produces the following inequality,

1
Lp(Xk-H, Zk+l; Bk+]) _ Lp(Xk+l, Zk+1; Bk) < 7||Zk+l _ Z/( “12: (61)
0

Summing the three Lagrangian differences (48), (57), and (61) and canceling the common
terms (namely, L ,(X**1, 2% B%) and L, (x**1, Zk+1) Bk)) we obtain

Lp(XkJrl,ZkJrl; Bk+1) _ Lp(Xk,Zk; Bk)

p I+p |1 (62)
<= DI = AR — (== = = )12 - 2
2 2 P
When p > 1 the coefficients ¢; = 5 and ¢ = (HTP - %) are strictly positive and we have
the desired inequality. O

Lemma?2 If p > 1, the sequence {X*, Z¥ B*} generated by (26)-(28) and its Lagrangian
Lp(Xk, Zk: B are bounded.
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Proof By Lemma 1, L,(X*, 2% BY) < L,(x°, 2% BY), hence the Lagrangian has an
upper bound. We consider the Lagrangian L, (X**1, zk+1; g&+1) for the lower bound. By
the optimality condition of the Z problem given by (59) we have

1
Ly, 20 B = 2 X ey + 1Y — A0 25 (63)
+<AOZk+1 _ y’ Xk+1 _ Zk-‘rl)F + gnxk-‘rl _ Zk+1||12:.

By applying Properties 1, 10, and 11, the second and third terms of (63) can be expressed as
follows,

1
§||y_AOZk+1”12:‘+ (AOZk+1 -, Xk+l —Zk+l)F
64
1 k41,2 1 k+1 k41,2 ( )
25”37—,40)( ||F—5||Aoz — Ao XFHE.

By substituting equality (64) into (63), applying Property 8 to the third term, and using
max A = 1, we obtain the inequality,

Lp(Xk+l, ZkJrl; Bk+l)

1 p—1 (65)
> rew + Sy = Ao ZH2 4 THX"“ — zZHh2

The right hand side of (65) is positive if p > 1. Hence, the Lagrangian is bounded below by
zero. Furthermore, due to the presence of || X" Kllran and ||k — Zk+ ||12: in the Lagrangian
L p(Xk, zk. Bk), the boundedness of the Lagrangian implies that the sequence {Xk, Zk} is
bounded. By the relation between the dual variable B and the auxiliary variable Z* given
by (59), the boundedness of (2K implies the boundedness of {BK}. ]

Theorem 1 If p > 1, every limit point (X*, Z*, B*) of the sequence {X*, 2%, BK} generated
by the ADMM updates (26)-(28) is a stationary point of L ,(X, Z; B) and X* is a stationary
point of the unconstrained minimization problem.

Proof By Lemmas 1 and 2, Lp(Xk , zk. Bk) is decreasing and bounded below, hence
there exists a subsequence {xks 2k Bks) that converges to a limit point (X*, Z*, B*).
By telescoping summation of (43) from k = 0 to K, we obtain

K K

1 Y I — KR 4o Y 2 - 2R
k=0 k=0

pr(XO,ZO; BO) _ Lp(XK+1,ZK+1; BK+1).

(66)

Since the Lagrangian L is bounded, we get
o [e.¢]
DI — k3 <00, Y2 - 243 < 0,
k=0 k=0

which implies that || X1 — x*%|2 — 0, | 2! — 2k|3 — 0. Furthermore, by using the
dual variable update (28), the optimality condition of the Z problem (59), Property 8, and
max(A) = 1, it can be shown that,

1 1
R — 2R L = g - BR2 = ;nA o(2M - 2M)2 < Enzk“ - zMiE - o.
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Therefore, we have X* = Z* and (X1, zk+l phkstly 5 (x* z* B*).
Next we consider elements of the subgradient, Pks e )% || tan, for the subsequence
{5} that converges to X*. It follows from the formula of the TNN’s subgradient (7) that

P51 < VT 1l + IWll2 < 2. (67)

Thus {P*} is a bounded sequence, so there exists a convergent subsequence. Let P* denote

the limit point of this subsequence. Without loss of generality, let us use {P*} to denote

this convergent subsequence. Since P% € 8| X% ||tan, we have || X |ltan — 125 TN >

(Pks, x — xXks)g, V. By the continuity of the TNN norm, klimoo ||st Itan = 1A I TNN-
g

Similarly, by the continuity of the Frobenius inner product, . lim (Pk-" , X=X ks VE= (P*, X—
§—>00

X*>F. Thus, ”X”TNN — ||X*||TNN > (P*, X — X*)F, and hence P* € 3||X*||TNN.
Evaluating the optimality condition of the X’-problem (26) at k; and taking the limit of
the sequence we obtain,

AP+ p(B*+ X% — 2% =0, (68)
Taking the same limit for the optimality condition of the Z-problem (59) we obtain,
pB*=AoZ* =Y, (69)

hence (X*, Z*, B¥) is a stationary point of the Lagrangian L,(X, Z; B). Furthermore, by
substituting the limit of the Z-problem (69) into the limit of the X'-problem (68) and using
the fact X* = Z*, we obtain,

AP*+ Ao Z*¥—Y =0, (70)

which implies that X* is a stationary point of the original unconstrained minimization
problem (23). ]

Remark 1 We consider additive Gaussian noise in Equation (22) because it is straight-forward
to handle. Specifically in the unconstrained problem (23) the data fitting term for Gaussian
noise is modeled by a least-squares misfit whose gradient is linear. Hence the corresponding
optimization problem is efficient to solve. For other types of noise we can still use TNN as a
low-rank regularization term, but we would need to use a different data fidelity term. As one
example, with Poisson noise the data discrepancy is modeled by a log-likelihood term. The
convergence analysis conducted in this paper is applicable to non-additive noise, so long as
the corresponding data fidelity term is convex and Lipschitz continuous.

With the proof of convergence, we are now ready to apply TNN-ADMM to numerical
experiments for data completion and denoising. Furthermore, to ensure the success of our
experiments we restrict the parameter selection to p > 1 based on the convergence analysis.

4 Numerical Experiments

In this section we illustrate simultaneous denoising and completion of seismic data arranged
into a tensor using the TNN-ADMM algorithm. We perform experiments on two synthetic and
one real dataset. The real data was recorded offshore Western Australia. (While we chose not
to do so here, one could also test the method using benchmark datasets, such as those contained
in the OpenFW1I suite [ 7].) For both synthetic examples, we compare the performance of TNN-
ADMM to a competing method, multi-channel singular spectrum analysis (MSSA). MSSA
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Fig.1 A 20 x 20 x — y grid slice 20
representing part of the

computational domain with the x 15
ninth row highlighted. Each grid §
cell is associated with a seismic ;10. 1 A A
trace recorded at that location K s
O0 5 10 15 20
Col Index
Fig.2 a The slice of the ground (@) (b)
truth synthetic data 9 0
corresponding to the ninth row of 0.1 0.1
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resulting from adding Gaussian AO'Q N ’_n" /_\0‘2 haial
noise with a SNR of 10 to 1 and Boalisinseiisisinl  Boaliphiaiibiing
subsequently decimating 60% of . 1934 1438 =
the data 0.41» 0.4+
0.5 0.5
0 10 20 0 10 20
Col Index Col Index

is a reconstruction and denoising algorithm that has been successfully applied previously
to seismic data [26]. MSSA has also been applied to astrophysical data (see [36]) where
the authors state that singular spectrum analysis or “SSA is a non-parametric analysis tool
for time-series analysis.... It makes no strong prior assumptions about the spectrum. An
oscillation does not have to be periodic to be accurately represented.” The paper by Ghil et
al. [11] provides a review. Our goal with this comparison is to quantify how TNN-ADMM
performs relative to a reasonable established method in terms of accuracy and performance.

4.1 Linear Synthetic Example

We use a synthetic dataset consisting of three linear events created using a code made publicly
available by Chen et al. [6]. The events are recorded on a grid of dimension 20 x 20 with 2
ms time sampling and a recording duration of 0.6 s. This data arranged as an order-3 tensor,
with dimensions of (x, y, t), represents the underlying ground truth. We add Gaussian noise
to this data with a signal-to-noise ratio (SNR) of 10 to 1 and then apply a sampling operator
that randomly decimates 60% of the data. For the purposes of our experiments, we regard the
data before adding noise and decimating as the ground truth. In Fig. 1 we plot an x — y grid
slice of the domain. Each grid cell is associated with a seismic trace recorded at that location,
hence each row is associated with a seismic gather. In Fig. 2a, b we plot a slice of the ground
truth synthetic data and the noisy decimated observation respectively along a fixed row of
the grid.

The orientation of a tensor is the order of its dimensions, and reordering or permuting its
dimensions produces a different orientation. We arrange the data into a tensor using the most-
square orientation for optimal results [27]. (The most-square orientation is the permutation
of dimensions that produces the most-square frontal faces out of all possible orientations.)
We then apply TNN-ADMM with parameter values of p = 1.1 and > = 0.1.

These parameters were chosen based on a grid search in which we vary the magnitude of
the parameters and select the pair that produced the least relative error. (In the case of real
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Fig.3 a The recovered result 0 (@) 0 (®)
after applying TNN-ADMM to i
the noisy observation shown in 0.1 0.1

Fig.2b. b The difference between 0.2 My 8 ool i |
the recovered result and the true ’ i3 »' ' | i
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function for the true data 8 500
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data we use an approximation to the error.) We note that in our prior work (Popa et al. [27])
we discuss tuning parameters for both MSSA and TNN-ADMM in some detail. (Specifically,
see p. V225 of [27].) We do not repeat that discussion here but instead, refer the reader to
that paper for details. The relative error is computed as the Frobenius norm of the difference
between the ground truth and the reconstructed data produced by the algorithm, divided by
the Frobenius norm of the ground truth.

Additionally, the grid search was restricted to values of p > 1 to satisfy the theory
presented in the convergence analysis. A grid search suggests that our algorithm is not par-
ticularly sensitive to p, in the sense that for many values of p the algorithm will still converge
but at different rates. In general A should be chosen proportional to the noise. We define
convergence of the algorithm to be when the relative error between consecutive iterations
reaches a tolerance of 10~%. The TNN-ADMM algorithm converges in 305 iterations with
a runtime of 8.21 s. The error in reconstruction is error around 9%. We plot the recovered
result and difference plots in Fig.3a, b respectively. From these plots we observe accurate
reconstruction and successful denoising. We plot the unconstrained TNN-ADMM objective
function (23) as a function of iteration in Fig.4. The objective function decreases with each
iteration, and for this number of iterations it converges to a value of 350.33, which is slightly
greater than the true objective value of 306.11.

Next we compare our results to a competing algorithm, MSSA. The MSSA method is
based on reducing the rank of block Hankel matrices formed from frequency slices of the
data [6, 26]. The MSSA algorithm uses a parameter N to represent the number of non-
zero singular values preserved when reducing the rank of the block Hankel matrix for each
frequency slice. Each block Hankel matrix of the underlying data has the same number of
non-zero singular values as the number of linear events, so we select N = 3 for the synthetic
experiment. We use a version of the MSSA algorithm that weights and sums the observation
and the rank-reduced data to produce the reconstructed data. This algorithm can be expressed
as,

XK = Y+ (T — axA) o F(X), k=1,2, ..., knax, (71)
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Fig.5 a The recovered result 0 (@) 0 (b)
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where ay, is the weighting parameter at iteration k, and F () represents the result of MSSA
reducing the rank of the block Hankel matrices of the frequency slices of XX. We select the
initial and final values of the weighting parameter as a; = 1 and ay,,,, = 0. This parameter
decreases linearly over a fixed number of iterations. Experimenting over a range of values for
the fixed number of iterations, we found 10 iterations to be optimal for this synthetic example.
The runtime for 10 iterations of MSSA is 20.78 s for this experiment. While MSSA converges
in fewer iterations than TNN-ADMM, the computational cost per iteration is significantly
greater for MSSA due to the rank reduction of the block Hankel matrix for each frequency
slice. So the overall time to convergence for MSSA for this example is more than twice the
time for TNN-ADMM convergence.

We plot the recovered result and the error in Fig. 5. We observe the reconstruction result has
error around 36%, significantly greater than the error from TNN-ADMM. In the recovered
and difference plots we see noise is still present in the reconstructed result — MSSA was only
able to partially denoise this example.

We now repeat this same experiment with data that has 3 times the added noise of the
previous experiment (a SNR of 10-3). We apply the same sampling operator which decimates
60% of the data and plot this observation in Fig. 6. On the scale of the data it is difficult to
observe the increase in noise compared to Fig. 2b. For TNN-ADMM this data uses parameters
of p = 1.1, A = 1.5 and a convergence tolerance of 10~*. The algorithm converges in
43 iterations and 1.19s, with error around 19%. We plot the reconstructed result and the
difference in Fig.7a, b respectively. We observe that the error is concentrated primarily
where the events occur (error in the event amplitude).

We then apply MSSA to this example and plot a recovered and difference slice in Fig. 8.
We observe these results appear very similar to the previous example with less noise, with a
runtime of 20.72 s and error in recovery around 37%. These results indicate the performance
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Fig.7 a The recovered result 0 @ 0 (b)
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Table 1 The initial and final SNR 10-1 (%) SNR 10-3 (%)
reconstruction errors for
TNN-ADMM and MSSA Initial error 77 79
TNN-ADMM 9 19
MSSA 36 37

The initial error is the error between the initial observation (with noise
added and 60% of traces decimated) and the ground truth

of MSSA is less sensitive to the SNR than TNN-ADMM. We summarize the reconstruction
error for each synthetic experiment in Table 1.

4.2 Parabolic Synthetic Example

We construct a similar synthetic dataset as in the previous example but with curved, parabolic
events rather than linear events. One of the events is linear in x and parabolic in y, one is linear
in y and parabolic in x, and one is parabolic in both x and y. The events are recorded on a grid
of dimension 30 x 50 with 2 ms time sampling and a recording duration of 1s. Gaussian noise
with SNR 10-3 is added to the data. The resulting noisy data is then decimated, removing
60% selected randomly. We show the synthetic data and noisy observation in Fig. 9. We apply
TNN-ADMM and MSSA to denoise and complete the noisy observation.

For the TNN-ADMM method we tune the parameters p and A by determining the pair
that produces the least error while restricting the grid search to p > 1. For this example, we
find the parameters p = 1.1 and A = 3 are optimal. We use a convergence tolerance of 10™%.
The TNN-ADMM method converges in 41 iterations, with a runtime of 6.37 s. We plot the
recovered and difference plots in Fig. 10. The final relative error is 16%.
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Fig.9 a A slice of the parabolic 0 (@) 0 (b)
synthetic data. This data is ‘
considered the ground truth. b 0.2 0.2

The noisy observation resulting
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decimating the ground truth
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Fig. 10 a The recovered result 0 @ 0 (b)
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observation for the parabolic e
synthetic data shown in Fig.9. b _0.AIIN T _04
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For MSSA we run 10 iterations with a linearly decreasing weighting parameter as in the
previous example. We determine that the parameter value N = 25 produces the least error
for the example. We plot the recovered and difference plots in Fig. 11. The MSSA method
has a runtime of 228.75 s and results in a relative error of 76%.

4.3 Real Data Example

In a marine seismic experiment, a disturbance (wave) is generated when a source of energy
such as an airgun emits a pressure pulse in the ocean. The sound waves generated by the
source are transmitted into the subsurface and reflect off of rock and fluid interfaces back up
to the ocean surface. A seismic survey vessel is equipped with the airgun source and an array
of streamers containing receivers which record the returning waves.

For our real data experiments we use a single shot from seismic survey data recorded
offshore Western Australia. We plot the acquisition geometry for this shot location in Fig. 12.
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Fig. 12 The acquisition geometry .

for a single shot location of a \
survey conducted offshore 2

Western Australia. The circles =

represent receivers and the square =

in the top left represents the >1

source location

Fig. 13 The data gather of one
streamer shown in Fig. 12 from
offshore Western Australia

1000 2000 3000
Offset (m)

Fig. 14 A gather produced by 0
adding noise and randomly
decimating 60% of the real data
shown in Fig. 13

1000 2000 3000
Offset (m)

The acquisition geometry shows the relative locations of the source and receivers. The data
is recorded using 12 streamers, each with 288 receivers and a 2 ms sampling rate.

Real data contains noise from many sources such as ocean currents and wind. The addition
of noise makes seismic data more difficult to interpret, increasing uncertainty in identifying
subsurface resources. Filling in missing data and removing noise improves the precision of
interpretation and hydrocarbon detection.

Quantifying the success of a denoising method on real data is difficult without considerable
processing by experts. Instead here we again add 10% artificial random Gaussian noise to
the recorded data and measure removing this added noise and reconstructing the data. We
compute the relative reconstruction error by taking the Frobenius norm of the difference
between the recorded and reconstructed data and normalizing by the recorded data.

The data for all receivers along a streamer constitutes a gather. Each gather may be stored
as a matrix, and these 12 gathers become slices of a three-dimensional tensor. In Fig. 13 we
plot a single streamer gather of the recorded data. We then add random Gaussian noise and
apply a sampling operator to decimate 60% of the data. The indices where the sampling
operator decimates the data are chosen at random. Figure 14 shows this noisy, decimated
gather. Applying this sampling operator to the entire tensor of data, the resulting decimated
data is the “observation,” from which we will reconstruct and denoise to recover the recorded
data. The error between the recorded data and the noisy, decimated observation is 77.89%.
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Fig. 15 The result from applying
TNN-ADMM to the decimated
data shown in Fig. 14 to
simultaneously reconstruct and
denoise
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Offset (m)

Fig. 16 The difference between
the denoised and reconstructed
gather and the recorded data
shown in Fig. 14. The error in this
reconstruction is about 29% i

1000 2000 3000
Offset (m)

We tune the p and A parameters using the same procedure as described in the synthetic data
example. Note that A determines the recovery performance that typically depends on the noise
level, while p controls the convergence rate. We showed a sufficient condition of p > 1 for
guaranteed convergence, but in practice, ADMM converges faster for smaller values of p. In
the case of real data, we can determine a reasonable value for p by considering a subsampled
portion of the data (treated as an observation) while the recorded data, before subsampling,
is treated as the ground truth. This subsampling results in a completion problem where
the solution is known and the parameter p can be tuned. The A parameter must normally be
manually tuned without a priori knowledge of the noise present in the data by an optimization
over values which give the best denoising result. For our example, which includes added
synthetic noise, we are able to tune the lambda parameter to remove as much of this noise
as possible. We find that o = 1.1 and A = 400 are reasonable parameter choices for our
problem. We use a convergence tolerance of 10~3. The TNN-ADMM method converges in
83 iterations for this example. The reconstructed result is shown in Fig. 15, and the difference
between the reconstructed and recorded data is plotted in Fig. 16. We observe successful
reconstruction with an error of approximately 29.29%.

To better understand how effective the denoising process is, we perform an additional
experiment using the recorded data without adding any artificial noise. We apply the same
sampling operator to decimate 60% of the data. we then use the constrained version of
TNN-ADMM solely for data completion without denoising to recover the missing data. The
error for this example is approximately 25.53%. The fact that the two errors are similar
between data completion alone and simultaneous denoising and completion indicates that
TNN-ADMM is able to remove the majority of the artificial noise in this experiment.

5 Conclusions

The TNN-ADMM method is useful for simultaneous reconstruction and denoising. To prove
convergence of this method we first show that the Lagrangian evaluated at each iteration and
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the sequence generated by ADMM for each variable (the reconstructed data, the auxiliary
variable, and the dual variable) is sufficiently decreasing and bounded. We are then able to
show that the limit point of each sequence is a stationary point of the Lagrangian and of the
unconstrained minimization problem.

We compare TNN-ADMM with MSSA for reconstruction and denoising for two synthetic
datasets. For the linear synthetic experiment MSSA has similar performance for two differ-
ent SNRs, but TNN-ADMM performs better in each case both in terms of final error and
computational runtime. For the parabolic synthetic experiment TNN-ADMM strongly out-
performs MSSA. Finally we apply the TNN-ADMM denoising and reconstruction algorithm
to real data from offshore Western Australia. The algorithm appears to reconstruct the data
and remove the majority of the added noise. Properly denoising real data requires significant
processing to estimate the noise level in the data and the sources of the noise which is beyond
the scope of this work. However, in future incorporating geoscience expertise could further
illucidate the promise of using TNN-ADMM to denoise and reconstruct real data.
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Appendix

We present here some additional definitions and properties which form part of the background
material but which may be known to those familiar with tensor algebra.

Definition 6 (Frobenius inner product [12]) The Frobenius inner product between two real-
valued tensors of the same size, A and B, is defined as the sum of the entry-wise product of
elements,

N
(A Bl =Y AB. (72)
i=1
The Frobenius inner product induces the Frobenius norm.
Definition 7 (Frobenius norm [12]) The Frobenius norm of a tensor .4 is given by the sum
of the squares of the magnitude of the elements,

N

IAIE = (A A)e =Y |4 (73)
i=1

Definition 8 (Hadamard Identity [15]) The Hadamard identity tensor, denoted Z, is a tensor
comprised entirely of ones which has the property,

AocZ =T A=A, 74
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for any tensor A.

Definition 9 (Hadamard Inverse [29]) The Hadamard inverse of a tensor A with only non-
zero elements is denoted .A~! and has the property,

AoA ' =AToA=T. (75)

Note that the Hadamard inverse is the entry-wise inverse, such that (A~1); = A% Since the
Hadamard inverse is only defined for tensors with non-zero entries, sampling operators do
not have a Hadamard inverse, except for the Hadamard identity tensor.

Definition 10 (Idempotent [15]) A tensor A is idempotent under the Hadamard product if its
product with itself produces the same tensor, i.e.,

Ao A=A (76)

It can be observed that any tensor comprised exclusively of zeros and ones is idempotent
under the Hadamard product since zero and one are idempotent under scalar multiplication.
Hence, every sampling operator is idempotent.

Property 9 (Symmetry [12]) The Frobenius inner product is symmetric for real tensors .A and
Ba

(A, B)r = (B, A)F. (77)

Property 10 (Linearity [12]) The Frobenius inner product is linear, for tensors A, B, C, and
real-valued scalar s,

(A+B,C)r = (A, C)p + (B,C)r (additivity) (78)
(sA, B)F = s{A, B)p (homogeneity). (79)

These fundamental inner product properties imply the polarization identity (Property 11)
and orthogonal invariance (Property 12) for the Frobenius norm [12]. In addition, we state
a new property (Properties 1) regarding the Frobenius inner product.

Property 11 (Polarization Identity [12]) For real-valued tensors .4 and B,
A+ BIg = Al + 2(A, B + 1Blg- (80)

Property 12 (Orthogonal Invariance [12]) The Frobenius norm is invariant to orthogo-
nal tensors, such that for any tensor A € R">*"2*-*" apd any orthogonal tensors
u € Rnlxn]x“.xnp and V c Rngxnzx...xnp’

et Alle = [ Alle.  1AVT g = [ Alle. 8D
It is worth noting that the TNN also has the orthogonal invariance property [31].

Definition 11 (Kronecker Product [14]) The Kronecker product of matrices A € R"1*"2 and
B € R™1>*™M2 i3 a matrix denoted A ® B € R"1"1*"2M2_defined as follows,

AgB ... A\ n,B
AQ B = : ; , (82)
Ay aB ... Ay B

where A; ; is the scalar entry of A in row i and column j.
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