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Abstract

Graph comparison is a certain type of condition on metric space en-
coded by a finite graph. We show that any nontrivial graph comparison
implies one of two Alexandrov’s comparisons. The proof gives a complete
description of graphs with trivial graph comparisons.

Preface. The notion of graph comparison was introduced in [8]. It was studied
further in [4–7, 11, 12]. Let us mention some of the results.

⋄ Graph comparisons for the tripod and four-cycle capture nonnegative and
nonpositive curvature in the sense of Alexandrov; see below.

⋄ Graph comparison for star graphs provides a stronger version of the so-
called Lang–Schroeder–Sturm inequality [3, 6, 10].

⋄ The all-tree comparison gives a metric description of target spaces of sub-
metries from subsets of Hilbert space [8].

⋄ The comparison for the tree on the diagram has tight re-
lation with the transport continuity property and the so-
called Ma–Trudinger–Wang condition [8, 9].

⋄ Octahedron comparison holds in products of trees [7].

We will show that any nontrivial graph comparison implies one of two Alex-
androv’s comparisons.

Introduction. Let us start with the definition. Suppose Γ is a graph with
vertices v1, . . . , vn. We write vi ∼ vj (or vi ≁ vj) if vi is adjacent (respectively
nonadjacent) to vj .

A metric space X meets the Γ-comparison if for any n points in X labeled
by vertices of Γ there is a model configuration ṽ1, . . . , ṽn in the Hilbert space H
such that

vi ∼ vj =⇒ |ṽi − ṽj |H ⩽ |vi − vj |X ,

vi ≁ vj =⇒ |ṽi − ṽj |H ⩾ |vi − vj |X ;

here | − |X denotes the metric in X. (Note that vi refers to a vertex in Γ and
to the corresponding point in X.)
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T3 C4

Denote by T3 and C4 the tripod and four-cycle
shown on the diagram. The C4-comparison is equiv-
alent to nonnegative curvature, and T3-comparison is
equivalent to the nonpositive curvature in the sense of
Alexandrov [8]. These definitions are usually applied to length spaces, but they
can be applied to general metric spaces; the latter convention is used in [1].

Theorem. Let Γ be an arbitrary finite graph. Then either Γ-comparison holds
in any metric space, or it implies C4- or T3-comparison.

The next statement is a corollary from the proof of the theorem; it describes
all graphs with trivial comparison.

Corollary. Let Γ be a finite connected graph. Suppose that Γ-comparison is
trivial; that is, it holds in any metric space. Then Γ can be constructed from
a path Pℓ of length ℓ ⩾ 0 and two complete graphs Km1

, Km2
by attaching k1

vertices of Km1
to the left end of Pℓ and k2 vertices of Km2

to the right end
of Pℓ.

The graph Γ in the corollary is described by five integers (m1, k1, ℓ, k2, m2)
such that ℓ ⩾ 0, mi ⩾ ki ⩾ 0, and ki > 0 if mi > 0 for each i. Examples of such
graphs and their 5-arrays are shown below.

(4, 2, 2, 2, 3) (4, 2, 0, 2, 4) (4, 2, 0, 0, 0) (2, 2, 0, 3, 3)

Proof of the theorem. Suppose Γ has connected components Γ1, . . . ,Γk.
Observe that Γ-comparison holds in a metric space X if and only if so does
every Γi-comparison. Therefore we can assume that Γ is connected.

Suppose Γ is a graph with vertices v1, . . . , vn as before. Remove two vertices,
say v1 and v2, from Γ, and add a new vertex w such that for any other vertex
u we have

⋄ if u ∼ v1 and u ∼ v2, then u ∼ w;

⋄ if u ≁ v1 and u ≁ v2, then u ≁ w;

⋄ in the remaining cases, we may choose u ∼ w or u ≁ w.

Denote the so-obtained graph by Γ′.
Applying the definition of Γ-comparison assuming that v1 = v2 in X, we get

the following.

Claim. If Γ-comparison holds in a metric space X, then so does Γ′-comparison.

The described construction of Γ′ from Γ will be called vertex fusion. If a
graph ∆ can be obtained from Γ applying vertex fusion several times, then we
will write ∆ ≺ Γ.

From above we get the following two observations:
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⋄ If ∆ is an induced subgraph of a connected finite graph Γ, then ∆ ≺ Γ.

⋄ If ∆ ≺ Γ, then Γ-comparison implies ∆-comparison.

Hence we get the following reformulation of the theorem.

Reformulation. For any finite connected graph Γ,

(a) Γ-comparison is trivial, or

(b) C4 ≺ Γ, or

(c) T3 ≺ Γ.

A connected graph will be called multipath if it has an integer function ℓ on
its vertex set such that

v ∼ w ⇐⇒ |ℓ(v)− ℓ(w)| ⩽ 1.

The value ℓ(w) will be called the level of the vertex w. Multipath is completely
described by a sequence of integers that give the number of vertexes on each
level. An example of a multipath with its sequence is shown on the diagram.

(3, 1, 2, 1, 2, 2, 1, 1, 1, 2)

Lemma. Let Γ be a connected finite graph such that C4 ⊀ Γ and T3 ⊀ Γ.
Then Γ is a multipath.

Proof. We will denote by | − |Γ the path metric on the vertex set of Γ; it is the
number of edges in a shortest path connecting two vertices. Let us show that

(∗) |u−w|Γ ⩾ |u− v|Γ ⩾ |v −w|Γ ⩾ 2 =⇒ |u−w|Γ = |u− v|Γ + |v −w|Γ

for any three vertices u, v, and w in Γ.
Suppose (∗) does not hold. Let ∆ be the subgraph of Γ induced by three

shortest paths between each pair in the triple u, v, w. Note that ∆ is either

u v

w

u v

w

o

a cycle or it has three paths from a vertex, say o, to each of u, v, and w such
that each of these paths does not visit the remaining vertices in the triple. In
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these cases, we have C4 ≺ ∆ or T3 ≺ ∆ respectively. By the observation above
∆ ≺ Γ; (∗) is proved.

Denote by d the diameter of Γ. We can assume that d ⩾ 2; if d = 1, then Γ
is a complete graph; in particular, it is a multipath.

Choose vertices p and q such that |p − q|Γ = d. Let us show that Γ is a
multipath with the following level function

ℓ(w) =

⎧⎪⎨⎪⎩
|p− w|Γ if |p− w|Γ ⩾ 2,

d− |q − w|Γ if |q − w|Γ ⩾ 2,

1 otherwise.

By (∗), |p− w|Γ + |q − w|Γ = d if |p− w|Γ ⩾ 2 and |q − w|Γ ⩾ 2; therefore ℓ is
well defined.

If d ⩾ 4, then the statement follows from (∗). Two cases remain d = 2 and
d = 3.

↓

Observe that the fan graph on the diagram cannot appear as
an induced subgraph of Γ. If this is the case, then applying the
vertex fusion to the ends of the marked edge, we could get a tripod
— a contradiction.

Case d = 2. By (∗), ℓ−1(0) and ℓ−1(2) are cliques. Observe that
ℓ(v) = 1 if and only if p ∼ v and q ∼ v. Note that ℓ−1(1) is a clique; indeed,
if u ≁ v for some u, v ∈ ℓ−1(1), then the subgraph induced by {p, q, u, v} is a
four-cycle — a contradiction.

It remains to show that u ∼ v, v ∼ w, and u ≁ w if ℓ(u) = 0, ℓ(v) = 1, and
ℓ(w) = 2.

v
p

u w

q

m
p

v q

w

Suppose u ∼ w. Note that v ∼ u and v ∼ w; otherwise, Γ con-
tains an induced 4- or 5-cycle with vertices p, u, v, w, q. Therefore
the induced subgraph for {p, u, v, w, q} is isomorphic to the fan —
a contradiction.

Now, suppose v ≁ w; note that w ̸= q. Denote by m a midver-
tex of w and p. From above, ℓ(m) = 1; in particular, v ∼ m ∼ q.
And again, the induced subgraph for {p, v,m,w, q} is isomorphic
to the fan — a contradiction. The same way one shows that u ∼ v.

Case d = 3. We need to show that u ∼ v if ℓ(u) = 2 and ℓ(v) = 3; the rest
follows from (∗).

p

u u
′

v
′ v

q

Suppose the contrary; let u′ (v′) be a midvertex of u and
q (respectively, v and p). Observe that ℓ(u′) = 3, ℓ(v′) = 2,
and u′ ∼ v′ (otherwise the subgraph induced by {u, v, u′, v′} is
a four-cycle). It follows that the subgraph induced by {p, q, u, v, u′, v′} is shown
on the diagram. Note that it contains an induced fan — a contradiction.

Proposition. Let Γ be a multipath with sequence (k0, . . . , km). Suppose C4 ⊀ Γ
and T3 ⊀ Γ. Then

(a) If m ⩾ 4, then k2 = · · · = km−2 = 1.
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(b) If m = 3, then k1 = 1 or k2 = 1.

(c) If m = 2, then k0 = 1, k1 = 1, or k2 = 1.

Proof. Assuming the contrary in each case we get

(a) if m ⩾ 4, then multipath (1, 1, 2, 1, 1) is an induced subgraph of Γ,

(b) if m = 3, then multipath (1, 2, 2, 1) is an induced subgraph of Γ,

(c) if m = 2, then multipath (2, 2, 2) is an induced subgraph of Γ.
In each case, we arrive at a contradiction by applying vertex fusion to the

ends of the marked edges as shown on the diagram.

(a) (b) (c)

↓ ↓ ↓

↓ ↓ ↓

It remains to show that Γ-comparison is trivial for every multipath Γ de-
scribed in the proposition. This is done by prescribing the coordinates for the
needed model configuration on the real line.

Each edge of Γ comes with weight — the distance between the endpoints in X.
Define the distance ∥v−w∥Γ as the minimal total weight of paths connecting v
to w in Γ. Note that

∥v − w∥Γ ⩾ |v − w|X
for any v and w.

If m ⩽ 1, then Γ is a complete graph. In this case, Γ-comparison is trivial.
It remains to consider cases m ⩾ 2.

Let us choose a special vertex w that is unique on its level and not too far
from the middle of Γ. Namely, if m ⩾ 4, then choose w on the second level; by
the proposition, it is unique on its level. If m = 3, then by the proposition we
can assume that k2 = 1; in this case choose w on the second level. Finally, if
m = 2, let w be any vertex that is unique on its level; it exists by the proposition.

For every vertex vi, let

ṽi = ±∥w − vi∥Γ,

where the sign is plus if vi has a higher level than w and minus otherwise.
By the triangle inequality, the obtained configuration ṽ1, . . . , ṽn ∈ R meets the
condition of Γ-comparison.
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Remarks. The statements in the preface indicate that for a carefully chosen
graph (or a family of graphs) its graph comparison is responsible for meaningful
geometric properties of metric spaces. Let us state two more observations about
graph comparison.

Graph comparisons for all complete bipartite graphs imply the so-called
pure inequalities of negative type [2, 6.1.1]. By Schoenberg’s criterion, these
inequalities are sufficient for the existence of isometric embedding into a Hilbert
space [2, 6.2.1]. In particular, the comparisons for all graphs imply that the
metric space is isometric to a subset of a Hilbert space. The latter statement
can be also proved directly the same way as Proposition 1.9 in [11].

The last observation works for arbitrary metrics. For length
metrics, most graph comparisons imply that the space is isometric
to a subset of a Hilbert space. Indeed if C4 ≺ Γ and T3 ≺ Γ (as
for the graph on the diagram), then any complete length space
that meets Γ-comparison has vanishing curvature in the sense of Alexandrov; in
particular, it is isometric to a convex closed set in a Hilbert space.
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