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We introduce a lifted ¢; (LL1) regularization framework for the recovery of sparse signals. The
proposed LL1 regularization is a generalization of several popular regularization methods in the field
and is motivated by recent advancements in re-weighted ¢ approaches for sparse recovery. Through a
comprehensive analysis of the relationships between existing methods, we identify two distinct types of
lifting functions that guarantee equivalence to the ¢ minimization problem, which is a key objective
in sparse signal recovery. To solve the LL1 regularization problem, we propose an algorithm based on
the alternating direction method of multipliers and provide proof of convergence for the unconstrained
formulation. Our experiments demonstrate the improved performance of the LL1 regularization compared
with state-of-the-art methods, confirming the effectiveness of our proposed framework. In conclusion, the
LL1 regularization presents a promising and flexible approach to sparse signal recovery and invites further
research in this area.

Keywords: Compressed sensing; sparse recovery; reweighted L1; nonconvex minimization; alternating
direction method of multipliers.

1. Introduction

Compressed sensing [14] plays an important role in many applications including signal processing,
medical imaging, matrix completion, feature selection and machine learning [18,24,33]. One important
assumption in compressed sensing is that a signal of interest is sparse or compressible. This allows
for an efficient representation of high-dimensional data only by a few meaningful subsets. Compressed
sensing often involves sparse recovery from an under-determined linear system that can be formulated
mathematically by minimizing the £, ‘pseudo-norm’, i.e.

arg)r(Iel]iRI% Ix|ly s.t. Ax =D, (1.1)

where A € R™*" is called a sensing matrix and b € R™ is a measurement vector. Since the minimization
problem (1.1) is NP-hard [34], various regularization functionals are proposed to approximate the £,
penalty. The £; norm is widely used as a convex relaxation of £, which is called LASSO [46] in statistics
or basis pursuit [13] in signal processing. Due to its convex nature, the £; norm is computationally
traceable to optimize with exact recovery guarantees based on restricted isometry property (RIP) and/or
null space property (NSP) [9,15,47]. Alternatively, there are non-convex models, i.e. concave with respect
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2 Y. RAHIMI ET AL.

to the positive cone, that outperform the convex £, approach in terms of improved accuracy of identifying
sparse solutions. For example, ¢ [,(0 < p < 1) [12,26,56,57], smoothly clipped absolute deviation
(SCAD) [17], minimax concave penalty (MCP) [61], capped ¢; (CL1) [30,43,64] and transformed ¢
(TL1) [31,62,63] are separable and concave penalties. Some non-separable non-convex penalties include
sorted £, [23], £; — £, [4,28,29,58,59] and £, /¢, [39,51,55]. Properties of sparsity-promoting functions
are developed in [42]. In addition, a large volume of literature discusses greedy algorithms [25,33] that
minimize the £ regularization, such as orthogonal matching pursuit [49], COSAMP [35], iterative hard
thresholding (IHT) [7], conjugate gradient IHT [6] and algebraic pursuits [11].

In this paper, we generalize a type of re-weighted approaches [10,20,53] for sparse recovery based on
the fact that a convex function can be smoothly approximated by subtracting a strongly convex function
from the objective function [36]. In particular, we propose a lifted regularization, which we referred to
as lifted £, (LL1),

FY,(x) = min (u, [x]) + ag(u), (1.2)
uel
where we denote [x| = [|x{],...,|x,|] € R" and (-, ) is the standard Euclidean inner product. In (1.2),

the variable u plays the role of weights with U as a set of restrictions on u, e.g. U = [0,00)" or U =
[0, 1]". The function g : R" — R is decreasing near zero (please refer to Definition 1 for multi-variable
decreasing function) to ensure a non-trivial solution of (1.2), and @ > 0 is a parameter. We can consider
a more general function g(u; o), instead of ag(u) when making a connection of the proposed model to
several existing sparse-promoting regularizations in Section 2.2. We focus on two specific types of g
functions (see Definition 2) that ensure the existence and uniqueness of the minimum.

To find a sparse signal from a set of linear measurements, we propose the following constrained
minimization problem:

min (u, |x|) +ag(a) s.t. Ax =Db. (1.3)
x,uel

We lift the dimension of a single vector X € R" in the original £, problem (1.1) into a joint optimization
over X and u in the proposed model (1.3). We can establish the equivalence between the two if the
function g and the set U satisfy certain conditions. For the measurements with noise, we consider an
unconstrained formulation, i.e.

min (u, [x]) + eg@) + Z[|Ax — b3, (1.4)
x,uelU 2

where y > 0 is a balancing parameter.

From an algorithmic point of view, the lifted form enables us to minimize two variables each with
fast implementation, and can lead to a better local minimum in a higher dimension than the original
formulation [2,27,36,60]. The idea of updating u while finding the sparsest solution x is also related to
the classic graduated non-convex algorithm [5,4 1] that constructs a family of functions (1.3) approaching
to the true cost function (1.1). To minimize (1.3) and (1.4), we apply the alternating direction method of
multipliers (ADMM) [8,19], and conduct convergence analysis of ADMM for solving the unconstrained
problem (1.4). We demonstrate in experiments that the proposed approach outperforms the state of the
art. Our contributions are threefold,

*  We propose a unified model that generalizes many existing regularizations and re-weighted algo-
rithms for sparse recovery problems;
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A LIFTED ¢; FRAMEWORK FOR SPARSE RECOVERY 3

*  We establish the equivalence between the proposed model (1.3) and the £, model (1.1);
* We present an efficient algorithm that is supported by a convergence analysis.

The rest of the paper is organized as follows. In Section 2, we present details of the proposed
model, including its properties with an exact sparse recovery guarantee. Section 3 describes the ADMM
implementation and its convergence. Section 4 presents experimental results to demonstrate how this
lifted model improves the sparse recovery over the state of the art. Finally, concluding remarks are given
in Section 5.

2. The Proposed Lifted L1 Framework

We first introduce definitions and notations that are used throughout the paper. The connection to well-
known sparsity-promoting regularizations is presented in Section 2.2. We present useful properties of
LL1 in Section 2.3, and establish its equivalence to the original £, problem in Section 2.4.

2.1 Definitions and Notations

We mark any vector in bold, specifically 1 denotes the all-ones vector and 0 denotes the zero vector.
For a vector x € R”, we define |x|(;) as the i-th largest component of |x|. We say that a vector X € R"
majorizes X' € R” with the notation |x| > |x/|, if we have Zig/ Xl < Zig IX|;) V1 <j < nand
> Il =27 1x)]. For two vectors X,y € R”, the notation X < y means each element of x is smaller
than or equal to the corresponding element in y; similarly for x > y, x > y and x < y. The positive
cone refers to the set R’} = {x € R" | x > 0}. A rectangular subset of R" is a Cartesian product of
intervals aligned with the canonical axes. We define two elementwise operators, max(x,y) and X © y,
both returning a vector form by taking maximum and multiplication, respectively, for every component.
The proposed regularization (1.2) can be expressed by the §-function,

0 ifxeU

too ifx & U. 2D

F,(X) = min (u, [x]) 4+ ag(u) + §;(w), where §;(x) =
’ u

We use (1.2) and (2.1) interchangeably throughout the paper. The constrained LL1 problem (1.3) is
equivalent to

rg(liun (u, [x]) + ag) + ) + 55 (x), (2.2)

where 2 = {x € R" | Ax = b}. We denote [n] as the set {1,2,...,n}, S, as the symmetric group of n
elements and a permutation 7 € S, of a vector X is defined as xo = (xn(l), C Xy (n)) . We summarize
the relevant properties of a function as follows.

DermniTion 1. Let g : R” — R U {400, —00} be a function, we say that

» The function g is separable if there exists a set of functions {g; : R — R} for i € [n] s.t.

gx) =D gi(x), Vx=[x, - .x,l.
i=1
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* The function g is strongly convex with parameter u > 0 if
n
8(y) = () + (Vg(x),y —x) + Elly —xl3, V¥x y. (2.3)

* The function g is symmetric if g(x) = g(xom), Vx e R" and Vz € S,.
e The function g is coercive if g(x) — +00 as ||x|| - +o0.

* The function g is decreasing on U if g(x) < g(y), VX >yandx, y € U.

2.2 Connections to Sparsity Promoting Models

Many existing models can be understood as special cases of the proposed LL1 model (1.3). We start with
two recent works. One is a joint minimization model [65] between the weights and the vector,

min(u, [x| —€) s.t. Ax=b, u € {0, 1}", 2.4)
X,u

where € > 0 is a fixed number and |x| — € is a vector subtracting € from all components of |x|. With the
assumption that the weights are binary, the authors [65] established the equivalence between (1.1) and
(2.4) for a small enough €. Another related work is the trimmed LASSO [1,3],

n
min ||x — = x| = min (u, [X|) + §;,(u),
min x =yl .Z ¥l gy = min {u, [x]) + 8 (w)
i=k+1
which is equivalent to the LL1 form on the right with U = {u € {0, 1}" | |lu|l; = n — k}. In the middle,
the sum is over the n — k smallest components of the vector x for a given sparsity k.
In what follows, we consider a more general form of g(u; ), as opposed to ag(u), i.e.

Fl(x) = min (u, |X|) + g(u; @) + 8, (w). (2.5)

As a consequence of the Fenchel-Moreau’s Theorem, regularizations that are concave on the positive
cone are of the form (2.5). In other words, we have the following theorem:

THEOREM 1. Any proper and lower semi-continuous function J(x) that is concave on the positive cone
can be lifted by a convex function g : R” — R and a set U such that J(|x]|) = F g (x) as in (2.5). Here
g(u) 1= supy.¢ (X, —u) + J(x) and U = {u € R" | g(u) # +o0}.

Please refer to Appendix A and Appendix B for the proof of Theorem 1 and detailed computations,
respectively. As many sparsity-promoting functions satisfy the assumptions in Theorem 1, we can rewrite
J(x) in the form of F g . Using Theorem 1, we relate (2.5) to the following functionals that are widely
used to promote sparsity.

(i) The Zp model [12,26] is defined as J¢ x) = Z?:l lx;IP. Asp — 0, 55 approaches to £, while
it reduces to £, for p = 1. Much research focuses on p = 1/2, due to a closed-form solution

»
[56,57] in the optimization process. By choosing g(u;p) = lp;” > uf_l and U = R, we
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can express the £, regularization as
i ul” p=T >
mdn[zl:<u|x|+ » )|u,_0].
=

The log-sum penalty [10,38] is given by JtllOg(x) = > log(lx;| + a), for a small positive
parameter a to make the logarithmic function well-defined. The re-weighted £, algorithm [10]
(IRL1) minimizes J;Og (x), which is equivalent to (2.5) in that

n

muin ’ Z (ui|xl-| + au; — log(ui)) | u; > 0].

i=1

Smoothly clipped absolute deviation (SCAD) [17] is defined by

alt| if [f| < a,
JSCAD £SCAD SCAD 2blt| — 2 — a” if <ab
()—Z (), where f, 220 =1~ 2 =1) ifa<ltf<ab, (3¢
b+ a?
# if 7| > ab.

This penalty is designed to reduce the bias of the £; model. For g(u,a,b) = —ab|u|l; + (b —

py lul W5 and U = [0, a]", we have JSCAD is equivalent to
n u2
min [Z}(uilxil — abu; + (b — 1)7’) | u; € [0, a]} :
i
Mini-max concave penalty (MCP) [61] is defined by

2

o
MCP( X) = Z MCP(x) where fMCP(t) — Jaltl = o if |z] < ab, @7
%baz if |t| > ab.

With the same purpose of reducing bias as SCAD, MCP consists of two piece-wise defined
functions, which is simpler than SCAD. For g(u,a,b) = —b(a|ull; — ”uHZ) and U = R", we

JMCPas
n 2
muin{zl:(u |x|+b(?—au)) |ui20}.
=

can rewrite J,
Capped £, (CL1) [64] is defined as Jgu(x) = Z?:l min{|x;|, a}, with a positive parameter
a > 0. As a — 0 the function FELI /a approaches to £,. The CL1 penalty is unbiased and has
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fewer internal parameters than SCAD/MCP. For g(u,a) = —allu|l; and U = [0, 1]", the CL1
regularization can be expressed as

n

m&n[Z(ui|xi| —aui) |0 <u; < 1].

i=1

It is similar to the model in [65], except for a binary restriction on u as in (2.4).

Transformed ¢, (TL1) [31] is defined as JI-! (x) = D%, %&T'I It reduces to £, for a = 0,

and converges to £, as a — o0o. The TL1 regularization is Lipschitz continuous, unbiased and
equivalent to

n

m&n [ Z (ui|xl~| + au; — 2\/a_ui) | u; > 0].

i=1
Error function penalty (ERF) [20] is defined by
n t ) )
JERF (%) = Z FERE(1x,)), where fERF(r) = / e T dr. (2.8)
i=1 0

This model is less biased than £, and gives a good approximation to £, for a small value of
o. Let h(t) = ftl V—log(r)dr, then for g(u,0) = o >i h(y;) and U = [0, 1]", the ERF
function is equivalent to

muin{z (;1x;] + oh(u)) | u; € [0, 1]].

i=1

The £; — ¢, penalty, defined as JUL2(x) = Ix|l; — IIxll,, is an example of non-separable
regularization, which has been proven to perform very well when the matrix A is highly coherent
[29,59]. The £, — £, regularization is equivalent to

n
m&n[Zu,wx,w | 1=l <1}
i=1

In this case, the corresponding g function is zero, and the set U is a non-rectangular set, thus
non-separable.

We summarize these existing regularizations with their corresponding g function and U set in
Table 1. All these g functions are separable, and hence we can plot g as a univariate function. As illustrated
in Fig. 1, each g function is decreasing on a small interval near the origin, thus motivating the conditions
on the function g presented in Definition 2 as well as Theorems 5 and 6 for exact recovery guarantees.
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TaBLE | Summary of various regularizations and their corresponding g function and U set

Model Regularization Function g Set U
)4

1— P
¢, it bl SEXu R
log-sum >t log(lx;| 4+ a) alull; = X%, log(u;) ) R%
SCAD (2.6) —ablul, + b — ML [0, a]"

2

MCP 22.7) —b(allull; — %) R%
CL1 D miri{lxl-l, a} —allully [0, 17"
TL1 pY (i:r—\)xlfl allally — 2% ,(/au,) R?
ERF (2.8) o> i h(u;) [0,17"
=4, IxIl; — 11xll, 0 {11 —uf, <1}

0 ! T L ——
——SCAD
—CL1
—ERF
-0.5 1
a4t
_1 5 L L L
0 0.2 0.4 0.6 0.8 1
(a) Decreasing functions on a bounded interval (b) Convex functions on an unbounded interval

Fic. 1. Plotting the associated g function for models listed in Table 1 into two categories: (a) SCAD witha = 1,b = 2, CL1 with
a = 1 and ERF with o0 = 1; and (b) £, with p = 1/2, log-sum with a = 1, MCP with @ = 1,b = 3 and TL1 with a = 4. This
motivates Type B and Type C in Definition 2.

2.3 Properties of the Proposed Regularization

There is a wide range of analysis related to concave and symmetric regularization functions based on RIP
and NSP conditions [9,15,47,48] regarding the sensing matrix A. Our general model F g o, satisfies all the
NSP-related conditions discussed in [48] so that the exact sparse recovery can be guaranteed. Theorem
2 summarizes some important properties of the proposed regularization.

TreoreM 2. For any x € R”, o > 0, and a feasible set U on the weights u, F’ ga (x) defined in (1.2) has
the following properties:
() The function FY,(x) = — (ag+ 8y)" (—IxI), where f* denotes the convex conjugate of a
function f, thus F' ga (x) is concave in the positive cone.

(i) If g is symmetric on U, then F ga is symmetric on R”".
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(vii)

Proof.

(ii)
(iii)

(iv)

)

Y. RAHIMI ET AL.

If g is separable on U, then F g o 18 separable on R”.

If g is separable and symmetric on U, F g ., satisfies the increasing property on R}, i.e.
F(ga(|x|) > Fga(|x’|) for any |x| > |x'|, and reverses the order of majorization, i.e. Fga(|x|) <
Fga(|x/|) if |x| > |x/|, where > is defined in Section 2.1.

If g is separable and U is rectangular, then F ga satisfies the sub-additive property on R”, i.e.
FU (X +%) S FU(x) + F, (%), Vx.x, € R".

The equality holds if x; and x, have disjoint support, and each coordinate of g has the same
minimum.

Let U be compact and g continuous. Then F’ ga is continuous and the set of sub-differentials of
—F(, at the point x > 0 is given by

d(—F,)(x) = —Conv (arg Ilféizr} (u, [x]) + ag(u)) ,

where Conv is the convex hall of the points. In addition, the function F é{ « 1s differentiable at x
if there exists a unique solution u for minimizing F’ g «(x). Consequently, if g is strongly convex,

F ga is continuously differentiable on the positive cone.

If g(0) = 0 and g takes its minimum value at some pointin U € R’} , then we have for o; > «,
that

FU, %) < FU, (), ¥xeR"

Recall the convex conjugate of a function f is defined as f*(y) = sup{(x,y) —f(x)}. Comparing
it with the definition FY, (x) in (1.2), we have F{,,(x) = — (ag+8y)" (=Ix]). As convex

O
. . U . . .
conjugate is always convex, F, (X) is concave on the positive cone.

If g is symmetric, it is straightforward that F’ g o 18 also symmetric.

Since g is a separable function, min, ., f(x, u) breaks down into n scalar problems, and hence

U .
Fg, is separable.

The increasing property follows from the fact that we have for every u € U
(w,]x]) + ag(u) > (u, [X'|) + agm) Vx| > x|

Taking the minimum of both sides with respect to u proves the increasing property. The reverse
order of majorization can be proved in the same way as in [48, Proposition 2.10].

The sub-additive property can be proved in the same way as in [48, Lemma 2.7].
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A LIFTED ¢; FRAMEWORK FOR SPARSE RECOVERY 9

(vi) Itis straightforward that

— Fga(x) = —min (u, |x|) + g(u) = max — (u, [x|) — ag(u), (2.9)
’ uel uel
for eachu € U. We set f,(x) = — (u, [x]) — ag(u). As g is continuous, the map u — f,(x) is

continuous for every X, and for each u € U, the function f, is continuous. For x > 0, it follows
from the loffe—Tikhomirov’s Theorem [21, Proposition 6.3] that

0(—FY)(x) = Conv {Uyer 3o (®} = Conv {Uy e {—ul}

= Conv{—u | —Fga(x) =fu(x)} = Conv{—u | u € arg milljl (u, |x]) + ag()}
ue

= —Conv{arg min (u, |x|) + ag(u)},
uelU

where T(x) = {u | —Fga (x) =f,(®)}.

(vii) Givenx € R" with o, we denote uj € arg miny ., (u, |x|) +a,g(w), which implies F' g o, (X) =
(w3, 1x|) + apg(u}) and (3, [x|) + a,g(u}) < (0, [x]) + a,g(0) = 0. It further follows from
(u?, |X|) > 0 that g(u3) < 0. For oy > a,, we have o;g(u}) < a,g(u3) and hence Fgal x) <
(u, 1xI) + oy g(ud) < (w3, X)) + arg(u3) = Fgaz(x). 0

Using proprieties (i)—(v), we can prove that every s-sparse vector X is the unique solution to (1.3)
if and only if F o0 satisfies the generalized null space property (gNSP) [48] of order s. A function F
satisfies the gNSP of order s corresponding to a matrix A if

ker(A) \ {0} C {v e R" | F(vg) < F(vg), forall S with|S| < s}.

Note that S C {1,...,n}, S is the gomplement of §, and vy refers to the vector with the same coordinates
as v except zero for indices in S. Please refer to [48, Theorem 4.3] for more details on gNSP. The
property (vii) has algorithmic benefits, as many optimization algorithms are designed for continuously

differentiable functions. We show in Theorem 3 that F él,/ isrelated to £, and £, if g is separable (without

,a
the assumption of strong convexity on g). The relationship of F é,{a to iteratively re-weighted algorithms,

e.g. [10,20] is characterized in Theorem 4.

TreoreM 3. Suppose U = [0, 1]" and g is separable, i.e. g(u) = >, g;(u;) with each g; being a strictly
decreasing function on [0, 1] with a bounded derivative. If g;(0) = 0 and g;(1) = —1for 1 <i < n, we
have that for x € R” there are «; < o such that

() 2FY(®) +n=|xll forall 0 < o < ap;

(i) FY,(0) —ag) = x|}, foralla > a;.

and consequently, we have the functional convergent results

() %Fga+n—>£0,asa—>0;
(i) Fga—ag(l)—>£1,asoe—> +00.

Note that the function F’ g is defined in (1.2).

o7
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Proof.

(i) For any fixed x € R", we consider the derivative of F' g . With respect to each of its component,
ie.f; == |x;|+ag (u;). If x; = 0, then f; is negative due to decreasing g, and hence the minimum
is attained at u; = 1. If x; # 0, f; is positive for a small enough «, due to the assumption that
g is bounded. Then positive derivative implies that the function is increasing, and hence the
minimum is attained at #; = 0. In summary, if « is sufficiently small, then we obtain that u; = 1
if x; = 0 and u; = 0 if x; # 0. For this choice of u, we get that (u, |x|) = 0 and

D sy = giu) =D (=) =[xl —n,

xi=0 xi=0

which implies that F' 0o (X = a(lx[lp —n) for a small enough o that depends on the choice of
x. By letting « — 0, we have Fg’a (x)/a = ||x|| — n for all x.

(i) Since g(1) < g(0) there exists a value of u; € (0, 1] with g’(u;) < 0 and so for large enough «,
the derivative |x;| + ag’(i;) is always negative. It further follows from the decreasing function
g that the minimizer is always attained at u = 1 to reach to the desired result. Similarly to (i),
by letting « — 400, the analysis holds for all x. 0

Theorem 3 presents the ideal choice for the weight,i.e.u; = 1ifx; = Oand u; = Oif x; # 0. A similar
idea of zero weights on the known support was explored in [32,40,50], which is referred to as weighted

£,. In addition, Theorem 3 implies that the function éF g + n approximates the £, norm from below.

o

‘We can define a function of H(x, ) := %F é‘,{a (x) +n:R" x [0,5] = R as a transformation between

x|l and a—loF g oo (X) + n for a fixed «. As characterized in Corollary 1, this relationship motivates us
to consider a type of homotopic algorithm (discussed in Section 3) to better approximate the desired £,

norm, although H(x, &) is not homotopy itself (it is not continuous with respect to x).

CoroLLary 1. If {;} is a decreasing sequence converging to zero and g satisfies the conditions in
Theorem 3, then a sequence of functions {iF gai} are increasing, i.e.
8

1 U 1 U
a_Fg,ao(X) = a_Fg’“‘ x) == lxllg—n, Vx.
0 1

If we do not restrict all the g; functions attain the same value at 1 as in Theorem 3, but rather g;(1)
can take different values, then the proposed regularization F g » 1s equivalent to a weighted £; model with
a certain shift of g(1); see Theorem 4.

THEOREM 4. Suppose U = [0, 1]" and g is separable, i.e. g(u) = >\, g;(u;) with each g, being a strictly

decreasing function on [0, 1] with a bounded derivative. Let w = (wy,...,w,) > 0, then if g;(0) = 0
and g;(1) = —w; for 1 <i < n, we have for all x ¢ R",
U
Fg’a(x) —ag(l) - (W,x), aso — 4o0. (2.10)

U

In another words, for a sufficiently large o, F , is approaching to a weighted £, model.

Proof. Since each derivative g is bounded, there exists a positive number M, (depending on x) such
that |x;| + g’(u,) is negative for @ > M,. As a result, the minimizer of arg min,, (u;, |x;1) + ag;(u;) is
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A LIFTED ¢; FRAMEWORK FOR SPARSE RECOVERY 11

attained at u; = 1. For a sufficiently large «, the minimizer u* = 1. By letting @ — 400, (2.10) holds
for all x. (]

2.4  Exact Recovery Analysis

There are many models approximating the £, minimization problem (1.1), and yet only a few of them
have exact recovery guarantees. Motivated by the equivalence [65] between the £, model (1.1) and (2.4)
with a sufficiently small parameter €, we give conditions on the g function to establish the equivalence
between our proposed model (1.3) and (1.1). Note that the weight vector u in our formulation is not
binary, but takes continuous values. By taking Table 1 and Fig. 1 into account, we consider two types of
g functions defined as follows:

DerFINITION 2. Let g : R" — R U {400, —00} be a separable function with g(u) = >7_, g;(u;), for
u=[u, - ,u,] € R". We define

Type B: All g; functions have bounded derivatives on [0, 1], and are strictly decreasing on [0, 1] with
the same value at 0 and 1, i.e. there exist two constants a,b € R such that g;(0) = a, g;(1) =
b,Vi € [n].

Type C: All g; functions are convex on [0, c0) with the same value at 0 and the same minimum at
a point other than zero, i.e. there exist two constants a > b € R such that g;(0) = a and
min,. g;(1) = b,Vi € [n].

An important characteristic both types of functions share is that they are decreasing near zero. Type B
functions are defined on a bounded interval, and we enforce a box constraint on u for strictly decreasing
8. Type C refers to convex functions defined on an unbounded interval due to lim,_, ., g(¥) > g(0). Note
that Theorems 3 and 4 hold when g is a Type B or Type C function. We establish the equivalent between
(1.3) and (1.1) for Type B and Type C functions in Theorems 5 and 6, respectively.

THEOREM 5. Suppose g is a Type B function in Definition 2 on U = [0, 1]". There exists o« > 0 such that
the model (1.3) is equivalent to (1.1), i.e. if (x*,u*) is a minimizer of (1.3), then x* is a minimizer of
(1.1); conversely, if x* is a minimizer of (1.1) then by taking ] = 1 for x] = 0 and u} = 0 otherwise,
(x*,u*) is a minimizer of (1.3).

Proof. Since g is a Type B function, we represent g(u) = >, g;(u;) with each g; strictly decreasing
and having bounded derivatives on [0, 1]. Without loss of generality, we assume that g;(0) = 0 and
gi(1) = —1,Vi € [n]. Denote s := min,{|[x|l | AXx = b} and ¢, := min{|x]|, | Ax = b}. Here ¢; > 0;
otherwise there exists a solution to (1.1) with sparsity less than s. Since g; has bounded derivatives, there
exists a scalar ¢ > 0 such that —fx—o < gi(w),Yu € [0,1] and i € [n].

Let (x*,u*) be a solution of (1.3). If |x}| > ¢,, we obtain ;—i = |x}| + agi(u;) > 0. Therefore,
h(t) == t|x;.“| + ag;(¢) is an increasing function on [0, 1], thus attaining its minimum at # = 0. As a result,
we have uf = 0; otherwise (x*,u*) is not a minimizer of (1.3). In addition, we have u|x| 4+ ag;(1) >
ag;(u) > ag;(1),Yu € [0, 1] and Vx, as g; is strictly decreasing. By combining two cases of |x}| > ¢,
and [x7| < €j, we estimate a lower bound of

f(x*,u®) :zzn:[u;-klxj»kl—kagi(u?)]: Z ag;(0) + Z [M?IX?IJragi(uik)]

i=1 {illx} |=€0} {illxf1<eo}

> > agi O+ D agil)=—al{i| x| <}l = —a(—s),

{illx} =0} {illx} | <o}
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12 Y. RAHIMI ET AL.

where we use the assumptions of g;(0) = 0 and g;(1) = —1 together with |{i | |x;| < €3} < n— s by the
definitions of s and €,. On the other hand, the lower bound —a« (n — s) for f(x*, u*) can be achieved by
any solution x of AXx = b with sparsity s, by choosing u; = 0 forx; # 0 and u; = 1 otherwise. Therefore,
we have f(x*,u*) = —a(n — s).

Next we show that x* must have sparsity s. If |x;.k| € (0, ¢y) for some i, then we have u;|x;| +og;(u;) >
ag;(1). Note that the inequality is strict, forcing f(x*, u*) to be strictly greater than the lower bound
—a(n — s), which is a contradiction. Therefore, if |x]| < ¢;, we must have x; = 0. Based on the
definition of €(, we have ||x*||, = s, which implies x* is a minimizer of (1.1).

Conversely, if x* is a solution of (1.1), then x* satisfies Ax* = b. With the choice of u} = 0 for
Ix7| # 0 and u} = 1 otherwise, we get (x*,u*) is a minimizer of (1.3) such that the objective function
attains the minimum value —a(n — s). O

THEOREM 6. Suppose U = [0, 00)" and g is a Type C function in Definition 2. Then there exists a constant
o > 0 such that the model (1.3) is equivalent to (1.1).

Proof. We define f(x,u), s and €, in the same way as in the proof of Theorem 5. Since g; is convex, g
is increasing and hence gg(u) > gg(O),Vu € [0,00) and i € [n]. Then there exists a scalar « > 0 such
that g/(0) > —;—",Vi € [n]. Without loss of generality, we assume a = 0,b = argmin,.( g;(r) = —1. In
this setting, we get

ulx| + ag;(u) > ag;(u) > ag;(d;) = —a, Yu € [0,00), Vx, i € [n],

which implies that f (x*, u*) > —a/(n—s). The rest of the proof follows exactly from the one of Theorem
5, thus omitted. O

ReMARK 1. In Theorems 5 and 6, we consider a linear constraint set 2 = {x € R" | Ax = b}. All the
analysis can be extended to a feasible set of inequality constraints, e.g. £2, = {x € R" | [Ax — b|| < €}
for € > 0. In this case, we can show that our model (2.2) with a given £2, is equivalent to the following
£, formulation:

arg min x|l +8g, (¥). @2.11)

3. Numerical Algorithms and Convergence Analysis

We describe in Section 3.1 the ADMM [8,19] for solving the general model, with convergence analysis
presented in Section 3.2. In Section 3.3, we discuss closed-form solutions of the u-subproblem for two
specific choices of g.

3.1 The Proposed Algorithm

‘We define a function v (-) to unify the constrained and the unconstrained formulations, i.e. ¥ (X) = 5 (X)
for (1.3) and ¥ (x) = £ ||Ax — b||% for (1.4). We introduce a new variable y in order to apply ADMM to
minimize

arg {1{1;3{<u, X|) +ag(u) +5y(w) + ¥ (y) | y=x} (3.1
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A LIFTED ¢; FRAMEWORK FOR SPARSE RECOVERY 13
The corresponding augmented Lagrangian becomes
o
L, (u.x.y:v) = (W [x]) + ag@) + 8y () + 9 (y) + (v.x —y) + S [Ix - yli3, (3.2)

where v is the Lagrangian dual variable and p is a positive parameter. The ADMM scheme involves the
following iterations:

ukt! = arg min,, L, (u, XK, yk: vk)
1 = arg minXLp(ukH,x, y&: vE) (33)
yk+l = arg miny Lp (llk+1,Xk+1,y; Vk) .

Vk—H — Vk + p(xk+l _ yk—i—l).

The original problem (1.3) jointly minimizes u and x, which are updated separately in (3.3). In particular,
the u-subproblem can be expressed as

k+1

u = arg min <u, |xk|> + ag(u). (3.4
uelU

In general, one may not find a closed-form solution to (3.4). For a separable function g and a rectangular
set U, the u-update simplifies into n one-dimensional minimization problems; refer to Section 3.3 for the
u-update with two specific g functions that are used in experiments. For the x-update, it has a closed-form
solution given by

1 1
x*! = shrink (yk — —vk, —ukH) ,
o p

where shrink(v, u) = sign(v) © max(|v| — u,0).
For the constrained formulation, i.e. ¥ (y) = 8, (y), the y-subproblem becomes

1 1
arg min [—Ily — T+ VO | Ay = b] :
y |2 0
It is equivalent to a projection into the affine solution of Ax = b, which has a closed-form solution,
1
¥ = (1, - AT@a")™a) (xk“ + —vk) +AT(AAT) b,
0

For the unconstrained formulation, ¥ (y) = %||Ay — b||%, the y-subproblem also has a closed-form
solution by solving a linear system

_y P 1
Y = argmin < Ay — b[5 + Sy — (¢ + —vH|3
y 2 2 Y

—1
= (,oln + )/ATA) (,oxkJrl + vk 4+ yATb) . (3.5
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14 Y. RAHIMI ET AL.

It is worth noting that for the unconstrained formulation, a more accurate choice for v is ¥ (y) =
“2—” lAy — b ||%. The reason for this is further explained in Remark 2.

Algorithm 1 Adaptive ADMM algorithm for solving the general model (3.1)

Require: A and b. Set parameters: p, n and Max.
Initialize: XO, yo, o).
for k=1 to Max do
u“t! = argming, (u, [x*]) + e g(u)
x*1 = shrink (yk — %Vk, %uk“)
yH! = argming ¥ (y) + Slly — !+ 2vOI13
Vk+l — Vk + p(xk+l _ yk—H)
akJrl — (1 _ n)ak
end for

The ADMM iterations (3.3) minimize the general model (2.2) for a fixed value of «. Following
Theorem 3 and Corollary 1, we consider a type of homotopy optimization (also known as continuation
approach) [16,52] to update « in order to better approximate the £, norm. In particular, we gradually
decrease o to 0 while optimizing (3.1) for each «. Algorithm 1 summarizes the overall iteration for the
proposed approach.

REMARK 2. We remark that letting o approach to O is not exactly a homotopy algorithm, as the
transformation between |[|x]|, and O%OF g «p(X) + n is not continuous. We observe empirically the rate
that o decays to zero plays a critical role in the performance of sparse recovery. On the other hand,
we should minimize éF g wp(X) + %HAX - b||% to approximate the £, norm. This formulation requires
the inversion of (p/,, + yaATA) for different & in the y-update, which is computationally expensive, as
opposed to pre-computing the inverse of (oI, + yATA) with a fixed value y.

3.2 Convergence Analysis for ADMM

We prove the convergence for the ADMM method (3.3) for the unconstrained case, i.e. ¥ (y) = % ||Ay —
b % The steps that we take to prove the convergence of (3.3) are similar to the convergence of the standard
ADMM method. Yet, since we update x and u separately, the method (3.3) is not actually the ADMM
iterations for the Lagrangian (3.2), and the function in the optimization (3.1) is not jointly convex with
respect to u and x. Note that we apply an adaptive « update in Algorithm 1, but the convergence analysis
is restricted to a fixed « value. In addition, we assume that g is a Type B or Type C function that is
continuously differentiable on U.

In the case of Type C functions with U = [0, 00)", it follows from optimality conditions for each
sub-problem in (3.3) that there exists s“™! > 0 and p**! € 9|x**!| such that

0= |Xk| + OlVg(llk+1) — gkt
0= uk+1 0] pk+1 + Vk + p(xk-l-l _ yk) (3.6)
0= Vw(yk+l) _ Vk _ p(xk+1 _ yk+1)’

with s**1 @ u**! = 0.
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A LIFTED ¢; FRAMEWORK FOR SPARSE RECOVERY 15

Note that for the Type B functions with U = [0, 1], the optimality condition for u# sub-problem
is that there exists s*t1, t“*1 > 0 such that s**! @ w1 = 0, t*1 © ! —1) = 0, and 0 =
|Xk| + OlVg(llkJrl) _ gkt + i1

LemMa 1. Suppose the sequence {u*, x*, y¥, v¥} is generated by (3.3) and denote Cy = ||ATA||2, then
the following inequality holds:
yC
I =y, < A

KL gk

lly y

Proof. 1t is straightforward that v has Lipschitz continuous gradient with parameter y C,. From the
v-update in (3.3) and the last optimality condition in (3.6), we have vkt = vy (y*1), and hence
IVy ) = Vi (¥)lly < v Cally**" — y¥Ilp, which implies that

1 1 yC
I =yl = IV = Vil = 19y 6 - Vel < AT - ¥

O

TreoreM 7. Sufficient decrease conditionSuppose the sequence {u¥, x, y*, v} is generated by (3.3). Let
p > 2y Cy, then there exists a constant C > 0 such that the augmented Lagrangian L, (uk, xk, yk; vF)
defined in (3.2) satisfies

Lp (llk+1, Xk+1, yk+1; vk+1)

k ok k. k 4 k+1 kypi2 k+1 k2 Pkt k2 3.7)
SLP(U,X,y;V)—EllA(y =yl = Cly —YIIZ—EIIX — x5,

which implies that L, decreases sufficiently.

Proof. The v-update in (3.3) and Lemma 1 lead to

Lp(llk+1, Xk+1, yk+l : Vk+l) _ Lp(ukJrl ,Xk+1 ’yk+l : Vk)

22
k+1 102 _ Y CA okt k2
= plx ! — T < Ay — yR3.

_ <Vk+1 vk Xk _y

k+1>

Using the y-update in (3.3) and the last optimality condition in (3.6), we have

Lp(uk+l’xk+l’yk+l;vk) _ Lp(uk+1’xk+l’yk;vk)

4 p

=2 (IAY I3 = 1AV IB) + SIS = 1913) + (AT + oxt vyt — )
4 p

=2 A3 = 1AV D) + S 13 = V1) + (voy ! + yaTaylyt -y

14 1Y
= EuAy"+1 — AyMI3 - Euyk+1 -yI3.
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16 Y. RAHIMI ET AL.

As for the x-update, we get

k+1 k41 k. Jk k+1 Jk k. ok
Lp(u+5x+’y 7V)_Lp(u+7x 7y 5V)

1 1 1 o 1 2 P 2
= (Wb — ) (VT o) S =yt = S =y
P P
:<uk+1’|xk+1| _ |Xk|> _<uk+1 O pft! 4 pxfH xkH _Xk>+ §||Xk+1”% _ E”Xk”%
k41 | k+1 k k+1 k1 Jk+1 k P k+1 k)2
= [ = ) = (b o pt T )] - St — )3

P k+1 k2
<—§||X+ — x5,

where the last inequality comes from the definition of subgradient. For the u-update, we use the fact that
u**! is a minimizer, hence

L, xE yhvh) — L b xE y5vh) < 0.

202
Adding all these inequalities yields the desired inequality (3.7) with C = (% — 7 pCA ). If p > /2yC 4>

then C > 0, leading to the sufficient decreasing of L ,. 0

TreorEM 8. [Residue convergent] Suppose the sequence {u¥, x¥, y*, v} is generated by (3.3). If g is a
Type B or Type C function and p > /2y C '+» the following hold as k — oo

k+1 k

X _xk 0, ka—yk—)O, and rf:=x —yk—>0.
Proof. Since g is a Type B or Type C, then it is bounded below, and hence we denote m, := min, ¢, g(w).
By telescoping summation of (3.7) from k = 1 to N, we obtain

14 o
(10" = yI3 + Cly = yH 15 + i — X5

M=

=~
Il

0
N
< Z Lp (Xk, yk’ uk’ Vk) _ Lp (Xk+1 , yk+1 , uk-‘rl’ Vk+l)
k=0

=L,x",y% 0, v0) — L, MLV M N < L (0000 V0 —am, < o,
which implies that 32, [IX¥F! — x¥||3 < 0o and 332 [ly**! — y¥|13 < oco. Therefore, we must have
||xk+l—xk||% — Oand ||ly*t! —yk||% — 0, as k — oo. It further follows from Lemma 1 that ||xk—yk||2 —
0, which completes the proof. g

THEOREM 9. [Stationary points] Suppose the sequence {u¥, x*, y*, v¥} is generated by (3.3). If g € ¢ (R)
is a Type B or Type C function and p > +/2yC 4> and (u¥, x¥) is bounded, then every limit point of
{uk, x*, y¥, v}, denoted by {u*, x*,y*, v*}, is a stationary point of L,(u,x,y;v) and also {x*,u*} is a
stationary point of (1.4).
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Proof. Using V¢ = Vi (y¥) from Lemma 1, i.e. v = yAT (Ay* — b), we have
14
Y5 + (Vx = y) = Ziayt — I3 + (vaT@ay - b).x - )

4 4 4 yC
=5||Ax" ~ b} - EnA(xk -¥O13 > EnAx" — b} - TAnxk -y 3.

Consequently, we obtain that

LCA”

14 1Y
L, .5y v = o, ) + agh) + ZIAX = bI3 + ==X =y (38

If p > yC,, then Lp(uk,xk,yk;vk) > ag(uk) > amyg, where my = min, ., g(u), showing Lp is lower

bounded. On the other hand, Theorem 7 gives an upper bound of L o (uk ,xk, yk; vk), ie. L o (uo, x0, yO; VO).

The boundedness of L, uX and x* together with (3.8) implies that y* is bounded, and hence v*

is bounded due to v¥ = V1 (y¥). Then the Bolzano—Weierstrass Theorem guarantees that there exists
a subsequence, denoted by {ka, ykf, uks, ka}, that converges to a limit point, i.e. (ka, ykS, uks, VkS) —
(X*, y*, u*, V*).

By Theorem 8, we get xks — yk»‘ — 0, leading to x* = y*, and (x yk?*]) — (x*,y%), and
hence we have v&s—! — v*. Let p* be the corresponding variables in the optimality condition (3.6). As
p% € 3|x%|, we know p% is bounded by [—1, 1]. Therefore, there exists a limit point of the sequence
p%s. Without loss of generality, we assume it is the sequence itself, i.e. p& — p*, and hence we have
p* € d|x*|.

Type C: If g is a Type C function then u € [0,00)" and hence the optimality condition for the
u—update is 0 = |xF| + aVgu*T!) — sk with s*T1 © u¥t! = 0. We define

ks—1

s* = lim |x571) 4+ aVg@h),
§—>00

andsos* > Oand s’ — s* (since g is continuously differentiable). The optimality condition s Qufs = 0
implies that s* © u* = 0. Since all the equations in (3.6) are continuous, we can replace k by k, — 1 and
take the limit as k, — oo to get

0= |x*| + aVg(u*) —s*

0=u"Op"+ Vv +px" —y")

0=Vy@y") — v —px" -y,
where s* > 0 with s* ©® u* = 0, and p* € 9|x*|. Hence, (x*,y*,u*, v*) is a stationary point of
Lp(u, X, y; V). Furthermore, we have vk = le(ykS) from the proof of Lemma 1, leading to v* =

Vi (y*). Together with x* = y*, we get

0 = |x*| + aVg(u*) — s*,
0=u"Op"+ Vy ("),

which means that (x*, u*) is a stationary point of (1.4) for U = [0, c0)".
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18 Y. RAHIMI ET AL.

Type B: If g is a type B function then u € [0, 1]" and hence the optimality condition for the u—update
is 0 = |x*| + aVgult!) — s+t 4 th+1 with 51 @ ukt! = 0 and t*t1 © (ft! — 1) = O with s¥*! > 0
and t¢t1 > 0.

Note that we have sk — ths = |xb~1| 4 aVg(u*). Since u¥ — u*, x4~! — x* and g is continuously
differentiable, the sequence s* — t is bounded and converges to the limit |x*| + «Vg(u*). Combining
the boundedness of s* — t¥ together with the optimality conditions, the sequences s* and t* must be
bounded. Therefore, each sequence has a convergent sub-sequence and without loss of generality, we

may assume it is the sequence itself, i.e. sk — ¢* and t& — t*. We must have

k ks—1

s* —t* = lim x5! + aVg®),
§—> 00

and s* > 0 and t* > 0 with the conditions s* ® u* = 0 and t* © (u* — 1) = 0. The rest of the analysis
is similar to the Type C functions and we get

0= |x*| + aVg(u*) — s* 4 t*
0=u"Op"+Vv'+p(x" —y")
0=Vy@y") — v —px" —y"),

which means (x*, y*, u*, v¥) is a stationary point of L o (u,x,y;v) and

0 = |x*| + aVg(u*) — s* + t¥,
0=u"Op"+ Vy(y"),

which means that (x*, u*) is a stationary point of (1.4) for U = [0, 1]". O

3.3 Algorithm Updates for Different Lifting Functions

Here we consider two examples of g functions, with which the u-subproblem has a closed-form solution.
We define one function as g, (u) = —% ||u||%, a Type B function with U; = [0, 1]" and a Type C function

g () = %||u||% — [lu]l; with U, = [0, 00)". For these combinations the update for (3.4) simplifies to

k
|x; |

o
é’ and for g,, U, ul.‘“zmax{l——,O].
2’

1 if |k
Forg,, U}, Wt = ' le:

i _[o if [k

=
| >
il =

! o
Note that for this choice of g,, the proposed model simplifies to

, 1
min_ (u,|x]) + a(z[[ull3 = [ufl,) st. Ax=h,
xeR" ueR?, 2

which can be solved by a quadratic programming with linear constraints.

4. Numerical Experiments

We demonstrate the performance of Algorithm 1 with € = 0.01 and two specific g functions discussed
in Section 3.3. We compare with the following sparsity promoting regularizations: £, [13], £, , [57],
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transformed ¢, (TL1) [62], £; — £, [59] and ERF [20]. For more related models, see [54]. For each
model, we consider both constrained and unconstrained formulations. Specifically for the Ep model,
we adopt the iteratively reweighted least-squares algorithm [12] in the constrained case and use the half
thresholding [57] as a proximal operator for minimizing the unconstrained £, ,, formulation. Both £; — £,
and TL1 are minimized by the difference of convex algorithm (DCA) for the best performance as reported
in [59,62]. We use the online code provided by the authors of [20] to solve for the ERF model. We use
the default values of model parameters suggested in respective papers; note that £, and £; — £, do not
involve any parameters. In Appendix C, we present a comparison between using ADMM and DCA for
the proposed model. All the experiments are conducted on a Windows desktop with CPU (Intel i7-6700,
3.19GHz) and MATLAB (R2021a).

4.1 Constrained Models

We examine the performance of finding a sparse solution that satisfies the constraint Ax = b. We
consider two types of sensing matrices, Gaussian and over-sampled discrete cosine transform (DCT).
The Gaussian matrix is generated based on the multivariate normal distribution .4(0, X'), where Ei,/' =
(1 — 8@ = j) + r for a parameter r > 0. Note that §(i = j) is 1 if i = j and zero otherwise. The
over-sampled DCT matrix is defined by A = [a, ...,a,] € R"*" with each column defined as

1 2 wj
a, ;= —— cos R
J Jm F

where w is a uniformly random vector and F' € R, is a scalar. The larger the F is, the larger the coherence
of the matrix A is, thus more challenging to find a sparse solution.

We fix the dimension as 64 x 1024 for Gaussian and DCT matrix, while generating Gaussian matrices
with 7 € {0,0.2,0.8} and DCT matrices with F' € {1, 5, 10}. The ground truth vector X, € R”" is simulated
as s-sparse signal, where s is the total number of non-zero entries each drawn from normal distribution
M0, 1) and the support index set is also drawn randomly. We evaluate the performance by success rates
where a ‘successful’ reconstruction refers to the case when the distance of the output vector x and the
ground truth X, is less than 1072, i.e.

Ix — %l

A

1072,

Figure 2 presents success rates for both Gaussian and DCT matrices, and demonstrates that the
proposed LL1 outperforms the state of the art in all the testing cases. For the Gaussian matrices, the
parameter r has little affect on the performance, as we observe the same ranking of these models under
various r values. As for the DCT matrices, the parameter F influences the coherence of the resulting
matrix. For smaller F' value, Ep is the second best, while TL1 and ¢; — £, perform well for coherent
matrices (for F = 10). With a well-chosen g function, the proposed LL1 framework always achieves
the best results among the competing methods. The results of LL1 using g; with U, and g, with U, are
similar. This phenomenon illustrates that our model works best as it is equivalent to the £, model for
small enough «.
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FiG. 2. Success rate comparison among all the competing methods based on Gaussian matrices (left) with » = 0,0.8 and DCT
matrices (right) with F = 1, 10.

4.2 Unconstrained Models

We consider the unconstrained £, model for comparison on noisy data:
. 4 2
arg min ||x]|, + = [|Ax — b||3, 4.1
xeR” 2

where y is a regularization parameter. We consider signals of length 512 with sparsity 130, and m
measurements b, determined by a Gaussian sensing matrix A. The columns of A are normalized with
mean zero and unit norm. A Gaussian noise with means zero and standard deviation o is also added to
the measurements. To evaluate the success rate of algorithms, we consider the mean square error (MSE)
of the output signal x with the ground-truth solution x* using the formula

MSE(x) = ||x — X*[|,.
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Fic. 3. Comparison of all algorithms for m x 512 matrices.

For each algorithm, we compute the average of MSE for 100 realizations by ranging the number of
measurements in the range 60 < m < 120. Figure 3 presents the comparison results for two noise levels
o € {107°,0.01}. All the algorithms perform badly with a few measurements, and as the number of
measurements m increases, their MSE error decreases. For the smaller amount of the noise (o = 107%),
our approach almost works perfectly in around 100 measurements, while other algorithms either require
more measurements to achieve the nearly perfect MSE or are unable to do so. Figure 3c presents the
computational times, which suggests that LL1 performs as fast as the £; model and at the same time it
has the lowest recovery error.

When the noise level is high, for instance o = 0.1, then it is almost impossible to reconstruct the
ground-truth signal using any number of measurements. In such cases, our algorithm finds a signal that
is sparser and has smaller objective for any choice of the regularization parameter y.

5. Concluding Remarks

In this paper, we proposed a lifted £ model for sparse recovery, which describes a class of regularizations.
Specifically we established the connections of this framework to various existing methods that aim to
promote sparsity of the model solution. Furthermore, we proved that our method can exactly recover
the sparsest solution under a constrained formulation. We promoted the use of ADMM to solve for the
proposed model with convergence analysis. An alternative approach of using DCA was discussed in
Section C, showing the efficiency of ADMM over DCA. Experimental results on both noise-free and
noisy cases illustrate that the proposed framework outperforms the state-of-the-art methods in terms of
accuracy and is comparable with the convex £, approach in terms of computational time.

One future work involves the convergence analysis of ADMM for solving the constrained model.
One difficulty lies in the fact that the corresponding function ¥ (-) is a §-function, which is neither
differentiable nor coercive, and as a result, the proof presented in Section 3.2 for the unconstrained
minimization is not applicable for the constrained case. We observe that the ADMM algorithm for the
constrained case does converge and the augmented Lagrangian is decreasing. This empirical evidence
suggests the potential to prove the convergence or the sufficient decrease of the augmented Lagrangian,
which will be left as future work.
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A. Proof of Theorem 1

Proof. Set

—Jx) x>0
400 otherwise.

o-|

The function f is proper, lower semi-continuous and convex, hence by the Fenchel-Moreau’s theorem
we have that f = f**. Also, we have

f5(y) = sup (x,y) — f(x) = sup (x,y) +J(x) = g(—y)

xeR” x>0
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using g(y) := supy¢ (X, —y) + J(x). In addition,

fx) =) = sup (x,y) —f*(y) = sup (x,y) — g(—y).
yeR” yeR”

Therefore, since |x| > 0

ye n

J(x)) = =f(x]) = —(bUP {Ixl.y) = g(—)’)) = yieann (Ix], =y) + g(=y)

= inf (Ix|,y) +g(y) = inf (|x],y) + g(¥),
yeR” yeU

where U C {y € R" | g(y) # +o0}. O

B. Finding the Lift Corresponding to Existing Models

Given a regularization function J(x), we want to find a proper g function and a set U such that J(x) =
F U(X) up to a constant. We assume J(x) = J(|x|) since F, v satisﬁes this condition. Consequently, we
only need to consider the case x > 0 so that the notation 3I " should be in place of ‘” for x; > 0.
Using Theorem 1, we can directly find F’ g ; however, sometimes it might be easier to use the following
observation which leads to simpler computations. Suppose F’ g has a unique minimizer u, and hence u
satisfiesu = V_ F g (x) = V, J(x). Assuming that the minimum of (2.5) is finite, the optimality condition
gives |x| + V,g = 0 for u € int(U), where int(U) denotes the interior of the set U (Note that [x| 4+ Vg

can have non-zero coordinates on the boundary of U.) Thus, we only need to solve the following two
equations for a function g with respect to u on the feasible set U:

=V
U= Vil (%), . (B.1)
x| +V,g =0, ueint(U).
@) Ep model: Consider J = J% /p, and note that 57 = [x;[P~ ! For g(u) = > g;(u;) andx € R”,

the (B.1) simplifies into

P!
lx;| + g;(u;) = 0,

e
for all i. From the first equation we get that |x;| = u - and then from the second equation we
1
get gi(u;) = — . A solution for g is g;(u;) = p
P

and g(u) = D ; lTpu” ' one can check that FU J.

”7 for u; > 0. Finally taking U = R’}
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(i)

(iii)

@iv)
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log-sum penalty: Consider J = J,llog, and note that B?J o = m For g(u) = > g;(u;) and

x € R”, the (B.1) simplifies into

Ui = Tva
Ix;| + gi(u;) =0,

for all i. From the first equation we get that |x;| = Ml[ — a and then from the second equation
we get gi(u;) = a — ul, A solution for g is g;(u;) = au; — log(u;) for u; > 0. Finally taking
U=Rjand gu) = >, (aui — log(ui)), one can check that Fg +1=J.

, and note that

Smoothly clipped lasso model: Consider J = J)S,?AD

A if [f] < A
afSCAD() oyt 1 ||_ s

= B.2
T v=b B2
0 if |¢t] > yA.
For g(u) = > g;(u;) and x € R", the first equation in (B.1) simplifies into
A if |x;| <A,
u; = % if A < |x;] < YA,
0 if [x;] > yA.
for all i. In the case of A < |x;| < yA, we get that |x;] = YA — (y — Du;, which means

we should have g;(ui) = —yA+ (y — Duy; and u; < A. By taking U = [0,A]" and g(u) =
2
> (—ylui +(y — 1)%), one can check that Fg + M =J.

Mini-max concave penalty: Consider J = JJIYICP , and note that

CAC) RGN P Lifje < ya, B3)
S o if |¢] > yA. '
For g(u) = > g;(u;) and x € R", the first equation in (B.1) simplifies into
uy = 5 — bl if x| < v,
0 if [x;] > yA,
for all i. When |x;/] < yA, we obtain |x;] = y(A — u;), which implies that gg(ui) =

—y (A — u;) from the second equation in (B.1). Therefore, we set U = [0,00)" and g(u) =
2
2 (—V()»”i - uj’)) leading to Fg + %y)»z =J.
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CL1
‘]a

Capped ¢, model: Consider J = , and note that

(B.4)

~ 1o if |x;| > a.

0J {1 if |x;| < a,
x|

For g(u) = > g;(1;) and x € R", the first equation in (B.1) simplifies into

1 if x| <a,
0 if |x;| > a,

for all i. Note that the second equation in (B.1) only happens if the minimizer is in the interior of
the set U. Consider U = [0, 1], therefore for this case since the minimizer is on the boundary,
therefore we need a g function which is non-zero in the interior of U and for |x;| < a we have
Ix;| + g;(u;) < 0 and for |x;| > a we have |x;| + g/(u;) > 0. Therefore g;(#;,) = —a and a
solution for this is g;(#;) = —au;. Finally taking U = [0,1]" and g(u) = >_; (—au,), one can
check that Fg +a=1J.

Transformed ¢, model: Consider / = J™! /(a+ 1), and note that 7 = Trione- Forg() =
> g;(u;) and x € R”, the (B.1) simplifies into

— a
Ui = armn?
|-x,'| + g:(’h) =0,

for all i. From the first equation we get that |x;| = \/uz, — a and then from the second equation
we get g.(u;) = a — \/uz, A solution for g is g;(¢;) = au; — 2, /au; for u; > 0. Finally taking
U =R and g(n) = > ; au; — 2. /au;, one can check that Fg +1=J.

Error function penalty: Consider J = JERF, and note that % — /7" and /7" € (0, 1].
For g(u) = > g,;(1;) and x € R", the (B.1) simplifies into

u; = e*xlz/"z,
Ix;| + g;(u;) =0,

for all i. From the first equation we get that |x;] = o,/—log(u;) and then from the second
equation we get gi(y;) = —o,/—log(u;). A solution for g is g;(u;) = o fu]l /—log(t)dt for
u; € (0,1]. Finally taking U = [0,1]" and g(u) =0 > ; ful, +/—log(t)drt, one can check that
FY =1.

g
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(viii) £, —¥£, penalty: As forJ = JE1=L2 working with derivatives is a bit challenging so we directly
apply Theorem 1 for finding the lifted form. First note that

sup (X, y) — X[l =

x>0

+0o |yl > 1,
0 Iy l, = 1.

Hence we get that

g(u) = sup (x, —u) + |Ix[|; — IIx|l, =

x>0

+oo A —wyf, > 1,
0 Ja-w,l,<L

Therefore, the set U = {u | [[(1 —w) ||, < 1} and the function g = 0. Notice that we can relax
the set U to {u | ||1 — u|l, < 1} and still get the same J function.

C. Comparing the ADMM and DCA based algorithms

Alternatively to ADMM, one can minimize the proposed model (1.3) and (1.4) by the graduated non-
convexity algorithm [5] and the DCA [22,44,45]. Specifically for DCA, since our function —F ga is
convex on the positive cone, then we use the algorithm introduced in [37], where we only need to find
the sub-differential of the function on R’ . We use the function ¥ (-) to unify the constrained and the
unconstrained formulations and we have the model

arg min Fy', (%) + ¥/ (). (C.1)

Since the function F' g o 18 concave on R:‘L, it can be written as a difference of two convex functions, i.e.

Fga(x) + ¥ (x) = hy(X) — hy(X), where 1y (X) = ¥ (x)+ g ||x||% and h,(x) = §||x||% —F[f,{a(x) for g > 0.
An interesting fact about using a DCA form is that if g is a Type B or Type C then for x > 0 we have
sub-differentials of the form

0(—Fgo)(®) = —argmin (u, [x) + ag(w).

For x € R”, take ., xk) € arg ming (u, |xk |> + ag(u) then the DCA iterations become

4
2

k+

X! = arg min ¥ (x) + = [|x|2 — <,3|xk| —u,, (3, |x|>. (C.2)
xeR”

We implement the DCA iterations of (C.2) for 8 = 0 for its simplicity and efficiency as opposed to
B > 0. In addition, we can consider an adaptive scheme to update «, which is adopted in Algorithm 2.
We compare ADMM (Algorithm 1) and DCA (Algorithm 2) for minimizing the same constrained
formulation (1.3) with g; and g, discussed in Section 3.3. We are particularly interested in the algorithmic
behaviours when dynamically updating . As mentioned in Theorem 5, « is supposed to be small enough
to approximate the £, solution. A common way involves an exponential decay in the form of okl =
(1 —n)ak, for n € (0, 1). If the parameter 7 is close to 1 then o converges to zero too quickly and hence
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Algorithm 2 Homotopy-based DCA algorithm

Require: x°

for k = 1 to MaxOuter do

LoV >0, n > 0, function g, set U and MaxOuter

uk = arg min,_; (u, [x¥]) + oFg(u).
k+1 _ : k
Xt = arg ming pn ¥ (X) + <ug’a(x ), |x|>.
o = (1 — n)ak
end for
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Fic. C1. Success rate comparison of ADMM and DCA with two g functions and different n for Gaussian matrices (left) with r = 0

and r = 0.8 and DCT matrices (right) with F = 1, 5.
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the algorithm cannot converge to a good local minimum as it is equivalent to having « = 0 in the
very beginning. On the other hand, if 7 is close to O then o slowly decreases to zero; and as a result,
Algorithm 1 may terminate before « is small enough for F’ ga to approximate the £, norm.

The comparison between ADMM and DCA on Gaussian and DCT matrices is presented in Fig. C1.
By fixing n = 0.1, we select the optimal p = 2 for ADMM withj € {—1,0,1,2,3,4,5,6,7, 8} that
achieves the smallest relative error to the ground-truth. Then using the optimal parameters p and y,
Fig. CI1 presents the ADMM results for € {0.001,0.01, 0.1} and the DCA ones for n € {0.01,0.1}. For
all the cases, ADMM is superior to DCA in that it is less sensitive to 7. In addition, DCA consists of
two loops and hence it is generally slower than ADMM. Our experiment shows that a suitable choice for
our experiments is 7 = 0.01. These comparisons show that the lifted form works well with ADMM, but
not necessarily with DCA. This may be due to the fact that DCA usually converges in a few iterations
and this is not enough for « to get close to 0. One may incorporate the decreasing of « into the x-update
iteration, or update « according to the result of each iteration, which is left for future work.
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