
Information and Inference: A Journal of the IMA (2024) 13, iaad055
https://doi.org/10.1093/imaiai/iaad055
Advance Access publication on 15 January 2024

A lifted �1 framework for sparse recovery

YAGHOUB RAHIMI AND SUNG HA KANG

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

AND

YIFEI LOU∗

Department of Mathematics & School of Data Science and Society, The University of North Carolina

at Chapel Hill, NC 27599, USA
∗Corresponding author: yflou@unc.edu

[Received on 14 March 2023; revised on 10 August 2023; accepted on 18 November 2023]

We introduce a lifted �1 (LL1) regularization framework for the recovery of sparse signals. The
proposed LL1 regularization is a generalization of several popular regularization methods in the field
and is motivated by recent advancements in re-weighted �1 approaches for sparse recovery. Through a
comprehensive analysis of the relationships between existing methods, we identify two distinct types of
lifting functions that guarantee equivalence to the �0 minimization problem, which is a key objective
in sparse signal recovery. To solve the LL1 regularization problem, we propose an algorithm based on
the alternating direction method of multipliers and provide proof of convergence for the unconstrained
formulation. Our experiments demonstrate the improved performance of the LL1 regularization compared
with state-of-the-art methods, confirming the effectiveness of our proposed framework. In conclusion, the
LL1 regularization presents a promising and flexible approach to sparse signal recovery and invites further
research in this area.

Keywords: Compressed sensing; sparse recovery; reweighted L1; nonconvex minimization; alternating
direction method of multipliers.

1. Introduction

Compressed sensing [14] plays an important role in many applications including signal processing,
medical imaging, matrix completion, feature selection and machine learning [18,24,33]. One important
assumption in compressed sensing is that a signal of interest is sparse or compressible. This allows
for an efficient representation of high-dimensional data only by a few meaningful subsets. Compressed
sensing often involves sparse recovery from an under-determined linear system that can be formulated
mathematically by minimizing the �0 ‘pseudo-norm’, i.e.

arg min
x∈Rn

‖x‖0 s.t. Ax = b, (1.1)

where A ∈ R
m×n is called a sensing matrix and b ∈ R

m is a measurement vector. Since the minimization
problem (1.1) is NP-hard [34], various regularization functionals are proposed to approximate the �0
penalty. The �1 norm is widely used as a convex relaxation of �0, which is called LASSO [46] in statistics
or basis pursuit [13] in signal processing. Due to its convex nature, the �1 norm is computationally
traceable to optimize with exact recovery guarantees based on restricted isometry property (RIP) and/or
null space property (NSP) [9,15,47]. Alternatively, there are non-convexmodels, i.e. concavewith respect

© The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

2 Y. RAHIMI ET AL.

to the positive cone, that outperform the convex �1 approach in terms of improved accuracy of identifying
sparse solutions. For example, �p(0 < p < 1) [12,26,56,57], smoothly clipped absolute deviation
(SCAD) [17], minimax concave penalty (MCP) [61], capped �1 (CL1) [30,43,64] and transformed �1
(TL1) [31,62,63] are separable and concave penalties. Some non-separable non-convex penalties include
sorted �1 [23], �1 − �2 [4,28,29,58,59] and �1/�2 [39,51,55]. Properties of sparsity-promoting functions
are developed in [42]. In addition, a large volume of literature discusses greedy algorithms [25,33] that
minimize the �0 regularization, such as orthogonal matching pursuit [49], CoSAMP [35], iterative hard
thresholding (IHT) [7], conjugate gradient IHT [6] and algebraic pursuits [11].

In this paper, we generalize a type of re-weighted approaches [10,20,53] for sparse recovery based on
the fact that a convex function can be smoothly approximated by subtracting a strongly convex function
from the objective function [36]. In particular, we propose a lifted regularization, which we referred to
as lifted �1 (LL1),

FUg,α(x) = min
u∈U

〈u, |x|〉 + αg(u), (1.2)

where we denote |x| = [|x1|, ..., |xn|] ∈ R
n and 〈·, ·〉 is the standard Euclidean inner product. In (1.2),

the variable u plays the role of weights with U as a set of restrictions on u, e.g. U = [0,∞)n or U =
[0, 1]n. The function g : Rn → R is decreasing near zero (please refer to Definition 1 for multi-variable
decreasing function) to ensure a non-trivial solution of (1.2), and α > 0 is a parameter. We can consider
a more general function g(u;α), instead of αg(u) when making a connection of the proposed model to
several existing sparse-promoting regularizations in Section 2.2. We focus on two specific types of g
functions (see Definition 2) that ensure the existence and uniqueness of the minimum.

To find a sparse signal from a set of linear measurements, we propose the following constrained
minimization problem:

min
x,u∈U

〈u, |x|〉 + αg(u) s.t. Ax = b. (1.3)

We lift the dimension of a single vector x ∈ R
n in the original �0 problem (1.1) into a joint optimization

over x and u in the proposed model (1.3). We can establish the equivalence between the two if the
function g and the set U satisfy certain conditions. For the measurements with noise, we consider an
unconstrained formulation, i.e.

min
x,u∈U

〈u, |x|〉 + αg(u) +
γ

2
‖Ax − b‖22, (1.4)

where γ > 0 is a balancing parameter.
From an algorithmic point of view, the lifted form enables us to minimize two variables each with

fast implementation, and can lead to a better local minimum in a higher dimension than the original
formulation [2,27,36,60]. The idea of updating u while finding the sparsest solution x is also related to
the classic graduated non-convex algorithm [5,41] that constructs a family of functions (1.3) approaching
to the true cost function (1.1). To minimize (1.3) and (1.4), we apply the alternating direction method of
multipliers (ADMM) [8,19], and conduct convergence analysis of ADMM for solving the unconstrained
problem (1.4). We demonstrate in experiments that the proposed approach outperforms the state of the
art. Our contributions are threefold,

• We propose a unified model that generalizes many existing regularizations and re-weighted algo-
rithms for sparse recovery problems;

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 3

• We establish the equivalence between the proposed model (1.3) and the �0 model (1.1);

• We present an efficient algorithm that is supported by a convergence analysis.

The rest of the paper is organized as follows. In Section 2, we present details of the proposed
model, including its properties with an exact sparse recovery guarantee. Section 3 describes the ADMM
implementation and its convergence. Section 4 presents experimental results to demonstrate how this
lifted model improves the sparse recovery over the state of the art. Finally, concluding remarks are given
in Section 5.

2. The Proposed Lifted L1 Framework

We first introduce definitions and notations that are used throughout the paper. The connection to well-
known sparsity-promoting regularizations is presented in Section 2.2. We present useful properties of
LL1 in Section 2.3, and establish its equivalence to the original �0 problem in Section 2.4.

2.1 Definitions and Notations

We mark any vector in bold, specifically 1 denotes the all-ones vector and 0 denotes the zero vector.
For a vector x ∈ R

n, we define |x|(i) as the i-th largest component of |x|. We say that a vector x ∈ R
n

majorizes x′ ∈ R
n with the notation |x|
 |x′|, if we have

∑

i≤j |x|(i) ≤
∑

i≤j |x′|(i) ∀1 ≤ j < n and
∑n

i=1 |xi| =
∑n

i=1 |x′i|. For two vectors x, y ∈ R
n, the notation x ≤ ymeans each element of x is smaller

than or equal to the corresponding element in y; similarly for x ≥ y, x > y and x < y. The positive
cone refers to the set Rn

+ = {x ∈ R
n | x ≥ 0}. A rectangular subset of Rn is a Cartesian product of

intervals aligned with the canonical axes. We define two elementwise operators, max(x, y) and x � y,
both returning a vector form by taking maximum and multiplication, respectively, for every component.
The proposed regularization (1.2) can be expressed by the δ-function,

FUg,α(x) = min
u

〈u, |x|〉 + αg(u) + δU(u), where δU(x) =
{

0 if x ∈ U

+∞ if x �∈ U.
(2.1)

We use (1.2) and (2.1) interchangeably throughout the paper. The constrained LL1 problem (1.3) is
equivalent to

min
x,u

〈u, |x|〉 + αg(u) + δU(u) + δΩ(x), (2.2)

where Ω = {x ∈ R
n | Ax = b}. We denote [n] as the set {1, 2, . . . , n}, Sn as the symmetric group of n

elements and a permutation π ∈ Sn of a vector x is defined as x◦π =
(

xπ(1), . . . , xπ(n)

)

. We summarize
the relevant properties of a function as follows.

DEFINITION 1. Let g : Rn → R ∪ {+∞,−∞} be a function, we say that

• The function g is separable if there exists a set of functions {gi : R → R} for i ∈ [n] s.t.

g(x) =
n

∑

i=1

gi(xi), ∀x = [x1, · · · , xn].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

4 Y. RAHIMI ET AL.

• The function g is strongly convex with parameter μ > 0 if

g(y) ≥ g(x) + 〈∇g(x), y − x〉 +
μ

2
‖y − x‖22, ∀x, y. (2.3)

• The function g is symmetric if g(x) = g(x ◦ π), ∀x ∈ R
n and ∀π ∈ Sn.

• The function g is coercive if g(x) → +∞ as ‖x‖ → +∞.

• The function g is decreasing on U if g(x) ≤ g(y), ∀x ≥ y and x, y ∈ U.

2.2 Connections to Sparsity Promoting Models

Many existing models can be understood as special cases of the proposed LL1 model (1.3). We start with
two recent works. One is a joint minimization model [65] between the weights and the vector,

min
x,u

〈u, |x| − ε〉 s.t. Ax = b, u ∈ {0, 1}n, (2.4)

where ε > 0 is a fixed number and |x| − ε is a vector subtracting ε from all components of |x|. With the
assumption that the weights are binary, the authors [65] established the equivalence between (1.1) and
(2.4) for a small enough ε. Another related work is the trimmed LASSO [1,3],

min
‖y‖0≤k

‖x − y‖1 =
n

∑

i=k+1

|x|(i) = min
u

〈u, |x|〉 + δU(u),

which is equivalent to the LL1 form on the right with U = {u ∈ {0, 1}n | ‖u‖1 = n− k}. In the middle,
the sum is over the n− k smallest components of the vector x for a given sparsity k.

In what follows, we consider a more general form of g(u;α), as opposed to αg(u), i.e.

FUg (x) = min
u

〈u, |x|〉 + g(u;α) + δU(u). (2.5)

As a consequence of the Fenchel–Moreau’s Theorem, regularizations that are concave on the positive
cone are of the form (2.5). In other words, we have the following theorem:

THEOREM 1. Any proper and lower semi-continuous function J(x) that is concave on the positive cone
can be lifted by a convex function g : Rn → R and a set U such that J(|x|) = FUg (x) as in (2.5). Here
g(u) := supx≥0 〈x,−u〉 + J(x) and U = {u ∈ R

n | g(u) �= +∞}.

Please refer to Appendix A and Appendix B for the proof of Theorem 1 and detailed computations,
respectively. Asmany sparsity-promoting functions satisfy the assumptions in Theorem 1, we can rewrite
J(x) in the form of FUg . Using Theorem 1, we relate (2.5) to the following functionals that are widely
used to promote sparsity.

(i) The �p model [12,26] is defined as J�p(x) =
∑n

i=1 |xi|p. As p → 0, �pp approaches to �0, while
it reduces to �1 for p = 1. Much research focuses on p = 1/2, due to a closed-form solution

[56,57] in the optimization process. By choosing g(u; p) = 1−p
p

∑n
i=1 u

p
p−1
i and U = R

n
+, we

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 5

can express the �p regularization as

min
u

{

n
∑

i=1

(

ui|xi| +
1 − p

p
u

p
p−1
i

)

| ui ≥ 0

}

.

(ii) The log-sum penalty [10,38] is given by Jloga (x) =
∑n

i=1 log(|xi| + a), for a small positive
parameter a to make the logarithmic function well-defined. The re-weighted �1 algorithm [10]

(IRL1) minimizes Jloga (x), which is equivalent to (2.5) in that

min
u

{ n
∑

i=1

(

ui|xi| + aui − log(ui)
)

| ui ≥ 0

}

.

(iii) Smoothly clipped absolute deviation (SCAD) [17] is defined by

JSCADa,b (x) =
n

∑

i=1

f SCADa,b (xi), where f
SCAD
a,b (t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a|t| if |t| ≤ a,

2ab|t| − t2 − a2

2(b− 1)
if a < |t| ≤ ab,

(b+ 1)a2

2
if |t| > ab.

(2.6)

This penalty is designed to reduce the bias of the �1 model. For g(u, a, b) = −ab‖u‖1 + (b −
1)

‖u‖22
2 and U = [0, a]n, we have JSCADa,b is equivalent to

min
u

{

n
∑

i=1

(

ui|xi| − abui + (b− 1)
u2i
2

)

| ui ∈ [0, a]

}

.

(iv) Mini-max concave penalty (MCP) [61] is defined by

JMCP
a,b (x) =

n
∑

i=1

fMCP
a,b (xi), where fMCP

a,b (t) =

⎧

⎨

⎩

a|t| −
t2

2b
if |t| ≤ ab,

1
2ba

2 if |t| > ab.
(2.7)

With the same purpose of reducing bias as SCAD, MCP consists of two piece-wise defined

functions, which is simpler than SCAD. For g(u, a, b) = −b(a‖u‖1 − ‖u‖22
2) and U = R

n
+, we

can rewrite JMCP
a,b as

min
u

{

n
∑

i=1

(

ui|xi| + b

(

u2i
2

− aui

))

| ui ≥ 0

}

.

(v) Capped �1 (CL1) [64] is defined as JCL1a (x) =
∑n

i=1 min{|xi|, a}, with a positive parameter
a > 0. As a → 0 the function FCL1

a /a approaches to �0. The CL1 penalty is unbiased and has

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

6 Y. RAHIMI ET AL.

fewer internal parameters than SCAD/MCP. For g(u, a) = −a‖u‖1 and U = [0, 1]n, the CL1
regularization can be expressed as

min
u

{ n
∑

i=1

(

ui|xi| − aui
)

| 0 ≤ ui ≤ 1

}

.

It is similar to the model in [65], except for a binary restriction on u as in (2.4).

(vi) Transformed �1 (TL1) [31] is defined as JTL1a (x) =
∑n

i=1
(a+1)|xi|
a+|xi| . It reduces to �0 for a = 0,

and converges to �1 as a → ∞. The TL1 regularization is Lipschitz continuous, unbiased and
equivalent to

min
u

{ n
∑

i=1

(

ui|xi| + aui − 2
√
aui

)

| ui ≥ 0

}

.

(vii) Error function penalty (ERF) [20] is defined by

JERFσ (x) =
n

∑

i=1

f ERFσ (|xi|), where f ERFσ (t) =
∫ t

0
e−τ 2/σ 2

dτ . (2.8)

This model is less biased than �1, and gives a good approximation to �0 for a small value of

σ . Let h(t) =
∫ 1
t

√
− log(τ)dτ , then for g(u, σ) = σ

∑n
i=1 h(ui) and U = [0, 1]n, the ERF

function is equivalent to

min
u

{

n
∑

i=1

(

ui|xi| + σh(ui)
)

| ui ∈ [0, 1]

}

.

(viii) The �1 − �2 penalty, defined as JL1-L2(x) = ‖x‖1 − ‖x‖2, is an example of non-separable
regularization, which has been proven to perform very well when thematrixA is highly coherent
[29,59]. The �1 − �2 regularization is equivalent to

min
u

{ n
∑

i=1

ui|xi| | ‖1 − u‖2 ≤ 1

}

.

In this case, the corresponding g function is zero, and the set U is a non-rectangular set, thus
non-separable.

We summarize these existing regularizations with their corresponding g function and U set in
Table 1. All these g functions are separable, and hencewe can plot g as a univariate function. As illustrated
in Fig. 1, each g function is decreasing on a small interval near the origin, thus motivating the conditions
on the function g presented in Definition 2 as well as Theorems 5 and 6 for exact recovery guarantees.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 7

TABLE 1 Summary of various regularizations and their corresponding g function and U set

Model Regularization Function g Set U

�p
∑n

i=1 |xi|p
1−p
p

∑n
i=1 u

p
p−1
i R

n
+

log-sum
∑n

i=1 log(|xi| + a) a‖u‖1 −
∑n

i=1 log(ui) R
n
+

SCAD (2.6) −ab‖u‖1 + (b− 1)
‖u‖22
2 [0, a]n

MCP (2.7) −b(a‖u‖1 − ‖u‖22
2) R

n
+

CL1
∑n

i=1 min{|xi|, a} −a‖u‖1 [0, 1]n

TL1
∑n

i=1
(a+1)|xi|
a+|xi| a‖u‖1 − 2

∑

i(
√
aui) R

n
+

ERF (2.8) σ
∑

i h(ui) [0, 1]n

�1 − �2 ‖x‖1 − ‖x‖2 0 {‖1 − u‖2 ≤ 1}

FIG. 1. Plotting the associated g function for models listed in Table 1 into two categories: (a) SCAD with a = 1, b = 2, CL1 with
a = 1 and ERF with σ = 1; and (b) �p with p = 1/2, log-sum with a = 1, MCP with a = 1, b = 3 and TL1 with a = 4. This
motivates Type B and Type C in Definition 2.

2.3 Properties of the Proposed Regularization

There is a wide range of analysis related to concave and symmetric regularization functions based on RIP
and NSP conditions [9,15,47,48] regarding the sensing matrix A. Our general model FUg,α satisfies all the
NSP-related conditions discussed in [48] so that the exact sparse recovery can be guaranteed. Theorem
2 summarizes some important properties of the proposed regularization.

THEOREM 2. For any x ∈ R
n, α > 0, and a feasible set U on the weights u, FUg,α(x) defined in (1.2) has

the following properties:

(i) The function FUg,α(x) = −
(

αg+ δU
)∗

(−|x|), where f ∗ denotes the convex conjugate of a

function f , thus FUg,α(x) is concave in the positive cone.

(ii) If g is symmetric on U, then FUg,α is symmetric on R
n.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

8 Y. RAHIMI ET AL.

(iii) If g is separable on U, then FUg,α is separable on R
n.

(iv) If g is separable and symmetric on U, FUg,α satisfies the increasing property on R
n
+, i.e.

FUg,α(|x|) ≥ FUg,α(|x′|) for any |x| ≥ |x′|, and reverses the order of majorization, i.e. FUg,α(|x|) ≤
FUg,α(|x′|) if |x|
 |x′|, where
 is defined in Section 2.1.

(v) If g is separable and U is rectangular, then FUg,α satisfies the sub-additive property on R
n, i.e.

FUg,α(x1 + x2) ≤ FUg,α(x1) + FUg,α(x2), ∀x1, x2 ∈ R
n.

The equality holds if x1 and x2 have disjoint support, and each coordinate of g has the same
minimum.

(vi) Let U be compact and g continuous. Then FUg,α is continuous and the set of sub-differentials of

−FUg,α at the point x ≥ 0 is given by

∂(−FUg,α)(x) = −Conv

(

arg min
u∈U

〈u, |x|〉 + αg(u)

)

,

where Conv is the convex hall of the points. In addition, the function FUg,α is differentiable at x

if there exists a unique solution u for minimizing FUg,α(x). Consequently, if g is strongly convex,

FUg,α is continuously differentiable on the positive cone.

(vii) If g(0) = 0 and g takes its minimum value at some point in U ⊆ R
n
+, then we have for α1 > α2

that

FUg,α1(x) ≤ FUg,α2(x), ∀x ∈ R
n.

Proof.

(i) Recall the convex conjugate of a function f is defined as f ∗(y) = sup{〈x, y〉− f (x)}. Comparing
it with the definition FUg,α(x) in (1.2), we have FUg,α(x) = −

(

αg+ δU
)∗

(−|x|). As convex

conjugate is always convex, FUg,α(x) is concave on the positive cone.

(ii) If g is symmetric, it is straightforward that FUg,α is also symmetric.

(iii) Since g is a separable function, minu∈U f (x,u) breaks down into n scalar problems, and hence
FUg,α is separable.

(iv) The increasing property follows from the fact that we have for every u ∈ U

〈u, |x|〉 + αg(u) ≥
〈

u, |x′|
〉

+ αg(u) ∀|x| ≥ |x′|.

Taking the minimum of both sides with respect to u proves the increasing property. The reverse
order of majorization can be proved in the same way as in [48, Proposition 2.10].

(v) The sub-additive property can be proved in the same way as in [48, Lemma 2.7].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 9

(vi) It is straightforward that

− FUg,α(x) = −min
u∈U

〈u, |x|〉 + αg(u) = max
u∈U

−〈u, |x|〉 − αg(u), (2.9)

for each u ∈ U. We set fu(x) = −〈u, |x|〉 − αg(u). As g is continuous, the map u �→ fu(x) is
continuous for every x, and for each u ∈ U, the function fu is continuous. For x ≥ 0, it follows
from the Ioffe–Tikhomirov’s Theorem [21, Proposition 6.3] that

∂(−FUg,α)(x) = Conv
{

∪u∈T(x)∂fu(x)
}

= Conv
{

∪u∈T(x){−u}
}

= Conv{−u | −FUg,α(x) = fu(x)} = Conv{−u | u ∈ arg min
u∈U

〈u, |x|〉 + αg(u)}

= −Conv{arg min
u∈U

〈u, |x|〉 + αg(u)},

where T(x) = {u | −FUg,α(x) = fu(x)}.

(vii) Given x ∈ R
n with α2, we denote u

∗
2 ∈ arg minu∈U 〈u, |x|〉+α2g(u), which implies FUg,α2(x) =

〈

u∗
2, |x|

〉

+ α2g(u
∗
2) and

〈

u∗
2, |x|

〉

+ α2g(u
∗
2) ≤ 〈0, |x|〉 + α2g(0) = 0. It further follows from

〈

u∗
2, |x|

〉

≥ 0 that g(u∗
2) ≤ 0. For α1 > α2, we have α1g(u

∗
2) ≤ α2g(u

∗
2) and hence FUg,α1(x) ≤

〈

u∗
2, |x|

〉

+ α1g(u
∗
2) ≤

〈

u∗
2, |x|

〉

+ α2g(u
∗
2) = FUg,α2(x). �

Using proprieties (i)–(v), we can prove that every s-sparse vector x is the unique solution to (1.3)
if and only if Fg,α satisfies the generalized null space property (gNSP) [48] of order s. A function F
satisfies the gNSP of order s corresponding to a matrix A if

ker(A) \ {0} ⊂ {v ∈ Rn | F(vS) < F(vS̄), for all S with |S| < s}.

Note that S ⊆ {1, . . . , n}, S̄ is the complement of S, and vS refers to the vector with the same coordinates
as v except zero for indices in S̄. Please refer to [48, Theorem 4.3] for more details on gNSP. The
property (vii) has algorithmic benefits, as many optimization algorithms are designed for continuously
differentiable functions. We show in Theorem 3 that FUg,α is related to �0 and �1 if g is separable (without

the assumption of strong convexity on g). The relationship of FUg,α to iteratively re-weighted algorithms,
e.g. [10,20] is characterized in Theorem 4.

THEOREM 3. SupposeU = [0, 1]n and g is separable, i.e. g(u) =
∑n

i=1 gi(ui)with each gi being a strictly
decreasing function on [0, 1] with a bounded derivative. If gi(0) = 0 and gi(1) = −1 for 1 ≤ i ≤ n, we
have that for x ∈ R

n there are α0 ≤ α1 such that

(i) 1
α
FUg,α(x) + n = ‖x‖0, for all 0 < α ≤ α0;

(ii) FUg,α(x) − αg(1) = ‖x‖1, for all α ≥ α1.

and consequently, we have the functional convergent results

(i) 1
α
FUg,α + n → �0, as α → 0;

(ii) FUg,α − αg(1) → �1, as α → +∞.

Note that the function FUg,α is defined in (1.2).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

10 Y. RAHIMI ET AL.

Proof.

(i) For any fixed x ∈ R
n, we consider the derivative of FUg,α with respect to each of its component,

i.e. fi := |xi|+αg′(ui). If xi = 0, then fi is negative due to decreasing g, and hence the minimum
is attained at ui = 1. If xi �= 0, fi is positive for a small enough α, due to the assumption that
g′ is bounded. Then positive derivative implies that the function is increasing, and hence the
minimum is attained at ui = 0. In summary, if α is sufficiently small, then we obtain that ui = 1
if xi = 0 and ui = 0 if xi �= 0. For this choice of u, we get that 〈u, |x|〉 = 0 and

∑

i

gi(ui) =
∑

xi=0

gi(ui) =
∑

xi=0

(−1) = ‖x‖0 − n,

which implies that Fg,α(x) = α(‖x‖0 − n) for a small enough α that depends on the choice of
x. By letting α → 0, we have Fg,α(x)/α = ‖x‖0 − n for all x.

(ii) Since g(1) < g(0) there exists a value of ui ∈ (0, 1] with g′(ui) < 0 and so for large enough α,
the derivative |xi| + αg′(ui) is always negative. It further follows from the decreasing function
g that the minimizer is always attained at u = 1 to reach to the desired result. Similarly to (i),
by letting α → +∞, the analysis holds for all x. �

Theorem 3 presents the ideal choice for the weight, i.e. ui = 1 if xi = 0 and ui = 0 if xi �= 0. A similar
idea of zero weights on the known support was explored in [32,40,50], which is referred to as weighted
�1. In addition, Theorem 3 implies that the function 1

α
FUg,α + n approximates the �0 norm from below.

We can define a function of H(x,α) := 1
α
FUg,α(x) + n : Rn × [0,α0] → R as a transformation between

‖x‖0 and 1
α0
FUg,α0(x) + n for a fixed α0. As characterized in Corollary 1, this relationship motivates us

to consider a type of homotopic algorithm (discussed in Section 3) to better approximate the desired �0
norm, although H(x,α) is not homotopy itself (it is not continuous with respect to x).

COROLLARY 1. If {αi} is a decreasing sequence converging to zero and g satisfies the conditions in
Theorem 3, then a sequence of functions { 1

αi
FUg,αi} are increasing, i.e.

1

α0
FUg,α0(x) ≤

1

α1
FUg,α1(x) ≤ · · · → ‖x‖0 − n, ∀x.

If we do not restrict all the gi functions attain the same value at 1 as in Theorem 3, but rather gi(1)
can take different values, then the proposed regularization FUg,α is equivalent to a weighted �1 model with
a certain shift of g(1); see Theorem 4.

THEOREM 4. SupposeU = [0, 1]n and g is separable, i.e. g(u) =
∑n

i=1 gi(ui)with each gi being a strictly
decreasing function on [0, 1] with a bounded derivative. Let w = 〈w1, . . . ,wn〉 ≥ 0, then if gi(0) = 0
and gi(1) = −wi for 1 ≤ i ≤ n, we have for all x ∈ R

n,

FUg,α(x) − αg(1) → 〈w, x〉 , as α → +∞. (2.10)

In another words, for a sufficiently large α, FUg,α is approaching to a weighted �1 model.

Proof. Since each derivative g′
i is bounded, there exists a positive number Mx (depending on x) such

that |xi| + αg′(ui) is negative for α > Mx. As a result, the minimizer of arg minui〈ui, |xi|〉 + αgi(ui) is

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 11

attained at ui = 1. For a sufficiently large α, the minimizer u∗ = 1. By letting α → +∞, (2.10) holds
for all x. �

2.4 Exact Recovery Analysis

There are many models approximating the �0 minimization problem (1.1), and yet only a few of them
have exact recovery guarantees. Motivated by the equivalence [65] between the �0 model (1.1) and (2.4)
with a sufficiently small parameter ε, we give conditions on the g function to establish the equivalence
between our proposed model (1.3) and (1.1). Note that the weight vector u in our formulation is not
binary, but takes continuous values. By taking Table 1 and Fig. 1 into account, we consider two types of
g functions defined as follows:

DEFINITION 2. Let g : Rn → R ∪ {+∞,−∞} be a separable function with g(u) =
∑n

i=1 gi(ui), for
u = [u1, · · · , un] ∈ R

n. We define

Type B: All gi functions have bounded derivatives on [0, 1], and are strictly decreasing on [0, 1] with
the same value at 0 and 1, i.e. there exist two constants a, b ∈ R such that gi(0) = a, gi(1) =
b,∀i ∈ [n].

Type C: All gi functions are convex on [0,∞) with the same value at 0 and the same minimum at
a point other than zero, i.e. there exist two constants a > b ∈ R such that gi(0) = a and
mint≥0 gi(t) = b,∀i ∈ [n].

An important characteristic both types of functions share is that they are decreasing near zero. Type B
functions are defined on a bounded interval, and we enforce a box constraint on u for strictly decreasing
g. Type C refers to convex functions defined on an unbounded interval due to limt→∞ g(t) > g(0). Note
that Theorems 3 and 4 hold when g is a Type B or Type C function. We establish the equivalent between
(1.3) and (1.1) for Type B and Type C functions in Theorems 5 and 6, respectively.

THEOREM 5. Suppose g is a Type B function in Definition 2 on U = [0, 1]n. There exists α > 0 such that
the model (1.3) is equivalent to (1.1), i.e. if (x∗,u∗) is a minimizer of (1.3), then x∗ is a minimizer of
(1.1); conversely, if x∗ is a minimizer of (1.1) then by taking u∗

i = 1 for x∗i = 0 and u∗
i = 0 otherwise,

(x∗,u∗) is a minimizer of (1.3).

Proof. Since g is a Type B function, we represent g(u) =
∑n

i=1 gi(ui) with each gi strictly decreasing
and having bounded derivatives on [0, 1]. Without loss of generality, we assume that gi(0) = 0 and
gi(1) = −1,∀i ∈ [n]. Denote s := minx{‖x‖0 | Ax = b} and ε0 := minx{|x|(s) | Ax = b}. Here ε0 > 0;
otherwise there exists a solution to (1.1) with sparsity less than s. Since gi has bounded derivatives, there
exists a scalar α > 0 such that − ε0

α
< g′

i(u),∀u ∈ [0, 1] and i ∈ [n].

Let (x∗,u∗) be a solution of (1.3). If |x∗i | ≥ ε0, we obtain ∂f
∂ui

= |x∗i | + αg′
i(ui) > 0. Therefore,

h(t) := t|x∗i |+αgi(t) is an increasing function on [0, 1], thus attaining its minimum at t = 0. As a result,
we have u∗

i = 0; otherwise (x∗,u∗) is not a minimizer of (1.3). In addition, we have u|x| + αgi(u) ≥
αgi(u) ≥ αgi(1),∀u ∈ [0, 1] and ∀x, as gi is strictly decreasing. By combining two cases of |x∗i | ≥ ε0
and |x∗i | < ε0, we estimate a lower bound of

f (x∗,u∗) :=
n

∑

i=1

[

u∗
i |x

∗
i | + αgi(u

∗
i)

]

=
∑

{i||x∗i |≥ε0}
αgi(0) +

∑

{i||x∗i |<ε0}

[

u∗
i |x

∗
i | + αgi(u

∗
i)

]

≥
∑

{i||x∗i |≥ε0}
αgi(0) +

∑

{i||x∗i |<ε0}
αgi(1) = −α|{i | |x∗i | < ε0}| ≥ −α(n− s),

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

12 Y. RAHIMI ET AL.

where we use the assumptions of gi(0) = 0 and gi(1) = −1 together with |{i | |xi| < ε0}| ≤ n− s by the
definitions of s and ε0. On the other hand, the lower bound −α(n − s) for f (x∗,u∗) can be achieved by
any solution x of Ax = bwith sparsity s, by choosing ui = 0 for xi �= 0 and ui = 1 otherwise. Therefore,
we have f (x∗,u∗) = −α(n− s).

Next we show that x∗ must have sparsity s. If |x∗i | ∈ (0, ε0) for some i, then we have ui|xi|+αgi(ui) >

αgi(1). Note that the inequality is strict, forcing f (x∗,u∗) to be strictly greater than the lower bound
−α(n − s), which is a contradiction. Therefore, if |x∗i | < ε0, we must have xi = 0. Based on the
definition of ε0, we have ‖x∗‖0 = s, which implies x∗ is a minimizer of (1.1).

Conversely, if x∗ is a solution of (1.1), then x∗ satisfies Ax∗ = b. With the choice of u∗
i = 0 for

|x∗i | �= 0 and u∗
i = 1 otherwise, we get (x∗,u∗) is a minimizer of (1.3) such that the objective function

attains the minimum value −α(n− s). �

THEOREM 6. SupposeU = [0,∞)n and g is a Type C function in Definition 2. Then there exists a constant
α > 0 such that the model (1.3) is equivalent to (1.1).

Proof. We define f (x,u), s and ε0 in the same way as in the proof of Theorem 5. Since gi is convex, g
′
i

is increasing and hence g′
i(u) ≥ g′

i(0),∀u ∈ [0,∞) and i ∈ [n]. Then there exists a scalar α > 0 such
that g′

i(0) > − ε0
α
,∀i ∈ [n]. Without loss of generality, we assume a = 0, b = arg mint≥0 gi(t) = −1. In

this setting, we get

u|x| + αgi(u) ≥ αgi(u) ≥ αgi(di) = −α, ∀u ∈ [0,∞), ∀x, i ∈ [n],

which implies that f (x∗,u∗) ≥ −α(n−s). The rest of the proof follows exactly from the one of Theorem
5, thus omitted. �

REMARK 1. In Theorems 5 and 6, we consider a linear constraint set Ω = {x ∈ R
n | Ax = b}. All the

analysis can be extended to a feasible set of inequality constraints, e.g. Ωε = {x ∈ R
n | ‖Ax − b‖ ≤ ε}

for ε ≥ 0. In this case, we can show that our model (2.2) with a given Ωε is equivalent to the following
�0 formulation:

arg min
x∈Rn

‖x‖0 + δΩε
(x). (2.11)

3. Numerical Algorithms and Convergence Analysis

We describe in Section 3.1 the ADMM [8,19] for solving the general model, with convergence analysis
presented in Section 3.2. In Section 3.3, we discuss closed-form solutions of the u-subproblem for two
specific choices of g.

3.1 The Proposed Algorithm

We define a functionψ(·) to unify the constrained and the unconstrained formulations, i.e.ψ(x) = δΩ(x)

for (1.3) and ψ(x) = γ
2 ‖Ax − b‖22 for (1.4). We introduce a new variable y in order to apply ADMM to

minimize

arg min
u,x,y

{〈u, |x|〉 + αg(u) + δU(u) + ψ(y) | y = x}. (3.1)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 13

The corresponding augmented Lagrangian becomes

Lρ(u, x, y; v) = 〈u, |x|〉 + αg(u) + δU(u) + ψ(y) + 〈v, x − y〉 +
ρ

2
‖x − y‖22, (3.2)

where v is the Lagrangian dual variable and ρ is a positive parameter. The ADMM scheme involves the
following iterations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uk+1 = arg minu Lρ(u, xk, yk; vk)
xk+1 = arg minx Lρ(uk+1, x, yk; vk)
yk+1 = arg miny Lρ(uk+1, xk+1, y; vk)
vk+1 = vk + ρ(xk+1 − yk+1).

(3.3)

The original problem (1.3) jointly minimizes u and x, which are updated separately in (3.3). In particular,
the u-subproblem can be expressed as

uk+1 = arg min
u∈U

〈

u, |xk|
〉

+ αg(u). (3.4)

In general, one may not find a closed-form solution to (3.4). For a separable function g and a rectangular
setU, the u-update simplifies into n one-dimensional minimization problems; refer to Section 3.3 for the
u-update with two specific g functions that are used in experiments. For the x-update, it has a closed-form
solution given by

xk+1 = shrink

(

yk −
1

ρ
vk,

1

ρ
uk+1

)

,

where shrink(v,u) = sign(v) � max(|v| − u, 0).
For the constrained formulation, i.e. ψ(y) = δΩ(y), the y-subproblem becomes

arg min
y

{

1

2
‖y − (xk+1 +

1

ρ
vk)‖22 | Ay = b

}

.

It is equivalent to a projection into the affine solution of Ax = b, which has a closed-form solution,

yk+1 =
(

In − AT(AAT)−1A
)

(

xk+1 +
1

ρ
vk

)

+ AT(AAT)−1b.

For the unconstrained formulation, ψ(y) = γ
2 ‖Ay − b‖22, the y-subproblem also has a closed-form

solution by solving a linear system

yk+1 = arg min
y

γ

2
‖Ay − b‖22 +

ρ

2
‖y − (xk+1 +

1

ρ
vk)‖22

=
(

ρIn + γATA
)−1 (

ρxk+1 + vk + γATb
)

. (3.5)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

14 Y. RAHIMI ET AL.

It is worth noting that for the unconstrained formulation, a more accurate choice for ψ is ψ(y) =
αγ
2 ‖Ay − b‖22. The reason for this is further explained in Remark 2.

Algorithm 1 Adaptive ADMM algorithm for solving the general model (3.1)

Require: A and b. Set parameters: ρ, η and Max.
Initialize: x0, y0, α0.
for k = 1 to Max do

uk+1 = arg minu∈U
〈

u, |xk|
〉

+ αkg(u)

xk+1 = shrink
(

yk − 1
ρ
vk, 1

ρ
uk+1

)

yk+1 = arg miny ψ(y) + ρ
2 ‖y − (xk+1 + 1

ρ
vk)‖22

vk+1 = vk + ρ(xk+1 − yk+1)

αk+1 = (1 − η)αk

end for

The ADMM iterations (3.3) minimize the general model (2.2) for a fixed value of α. Following
Theorem 3 and Corollary 1, we consider a type of homotopy optimization (also known as continuation
approach) [16,52] to update α in order to better approximate the �0 norm. In particular, we gradually
decrease α to 0 while optimizing (3.1) for each α. Algorithm 1 summarizes the overall iteration for the
proposed approach.

REMARK 2. We remark that letting α approach to 0 is not exactly a homotopy algorithm, as the
transformation between ‖x‖0 and 1

α0
FUg,α0(x) + n is not continuous. We observe empirically the rate

that α decays to zero plays a critical role in the performance of sparse recovery. On the other hand,
we should minimize 1

α
FUg,α0(x) + γ

2 ‖Ax − b‖22 to approximate the �0 norm. This formulation requires

the inversion of (ρIn + γαATA) for different α in the y-update, which is computationally expensive, as
opposed to pre-computing the inverse of (ρIn + γATA) with a fixed value γ .

3.2 Convergence Analysis for ADMM

We prove the convergence for the ADMMmethod (3.3) for the unconstrained case, i.e. ψ(y) = γ
2 ‖Ay−

b‖22. The steps that we take to prove the convergence of (3.3) are similar to the convergence of the standard
ADMM method. Yet, since we update x and u separately, the method (3.3) is not actually the ADMM
iterations for the Lagrangian (3.2), and the function in the optimization (3.1) is not jointly convex with
respect to u and x. Note that we apply an adaptive α update in Algorithm 1, but the convergence analysis
is restricted to a fixed α value. In addition, we assume that g is a Type B or Type C function that is
continuously differentiable on U.

In the case of Type C functions with U = [0,∞)n, it follows from optimality conditions for each
sub-problem in (3.3) that there exists sk+1 ≥ 0 and pk+1 ∈ ∂|xk+1| such that

⎧

⎨

⎩

0 = |xk| + α∇g(uk+1) − sk+1

0 = uk+1 � pk+1 + vk + ρ(xk+1 − yk)

0 = ∇ψ(yk+1) − vk − ρ(xk+1 − yk+1),
(3.6)

with sk+1 � uk+1 = 0.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 15

Note that for the Type B functions with U = [0, 1]n, the optimality condition for u sub-problem
is that there exists sk+1, tk+1 ≥ 0 such that sk+1 � uk+1 = 0, tk+1 � (uk+1 − 1) = 0, and 0 =
|xk| + α∇g(uk+1) − sk+1 + tk+1.

LEMMA 1. Suppose the sequence {uk, xk, yk, vk} is generated by (3.3) and denote CA := ‖ATA‖2, then
the following inequality holds:

‖xk+1 − yk+1‖2 ≤
γCA
ρ

‖yk+1 − yk‖2.

Proof. It is straightforward that ψ has Lipschitz continuous gradient with parameter γCA. From the
v-update in (3.3) and the last optimality condition in (3.6), we have vk+1 = ∇ψ(yk+1), and hence
‖∇ψ(yk+1) − ∇ψ(yk)‖2 ≤ γCA‖yk+1 − yk‖2, which implies that

‖xk+1 − yk+1‖2 =
1

ρ
‖vk+1 − vk‖2 =

1

ρ
‖∇ψ(yk+1) − ∇ψ(yk)‖2 ≤

γCA

ρ
‖yk+1 − yk‖2.

�

THEOREM 7. Sufficient decrease conditionSuppose the sequence {uk, xk, yk, vk} is generated by (3.3). Let
ρ >

√
2γCA, then there exists a constant C > 0 such that the augmented Lagrangian Lρ(uk, xk, yk; vk)

defined in (3.2) satisfies

Lρ(uk+1, xk+1, yk+1; vk+1)

≤Lρ(uk, xk, yk; vk) −
γ

2
‖A(yk+1 − yk)‖22 − C‖yk+1 − yk‖22 −

ρ

2
‖xk+1 − xk‖22,

(3.7)

which implies that Lρ decreases sufficiently.

Proof. The v-update in (3.3) and Lemma 1 lead to

Lρ(uk+1, xk+1, yk+1; vk+1) − Lρ(uk+1, xk+1, yk+1; vk)

=
〈

vk+1 − vk, xk+1 − yk+1
〉

= ρ‖xk+1 − yk+1‖22 ≤
γ 2C2

A

ρ
‖yk+1 − yk‖22.

Using the y-update in (3.3) and the last optimality condition in (3.6), we have

Lρ(uk+1, xk+1, yk+1; vk) − Lρ(uk+1, xk+1, yk; vk)

=
γ

2
(‖Ayk+1‖22 − ‖Ayk‖22) +

ρ

2
(‖yk+1‖22 − ‖yk‖22) +

〈

γATb + ρxk+1 + vk, yk − yk+1
〉

=
γ

2
(‖Ayk+1‖22 − ‖Ayk‖22) +

ρ

2
(‖yk+1‖22 − ‖yk‖22) +

〈

γρyk+1 + γATAyk+1, yk − yk+1
〉

= −
γ

2
‖Ayk+1 − Ayk‖22 −

ρ

2
‖yk+1 − yk‖22.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

16 Y. RAHIMI ET AL.

As for the x-update, we get

Lρ(uk+1, xk+1, yk; vk) − Lρ(uk+1, xk, yk; vk)

=
〈

uk+1, |xk+1| − |xk|
〉

+
〈

vk, xk+1 − xk
〉

+
ρ

2
‖xk+1 − yk‖22 −

ρ

2
‖xk − yk‖22

=
〈

uk+1, |xk+1| − |xk|
〉

−
〈

uk+1 � pk+1 + ρxk+1, xk+1 − xk
〉

+
ρ

2
‖xk+1‖22 −

ρ

2
‖xk‖22

=
[〈

uk+1, |xk+1| − |xk|
〉

−
〈

uk+1 � pk+1, xk+1 − xk
〉]

−
ρ

2
‖xk+1 − xk‖22

≤ −
ρ

2
‖xk+1 − xk‖22,

where the last inequality comes from the definition of subgradient. For the u-update, we use the fact that
uk+1 is a minimizer, hence

Lρ(uk+1, xk, yk; vk) − Lρ(uk, xk, yk; vk) ≤ 0.

Adding all these inequalities yields the desired inequality (3.7) with C = (
ρ
2 − γ 2C2

A
ρ

). If ρ >
√
2γCA,

then C > 0, leading to the sufficient decreasing of Lρ . �

THEOREM 8. [Residue convergent] Suppose the sequence {uk, xk, yk, vk} is generated by (3.3). If g is a
Type B or Type C function and ρ >

√
2γCA, the following hold as k → ∞

xk+1 − xk → 0, yk+1 − yk → 0, and rk := xk − yk → 0.

Proof. Since g is a Type B or Type C, then it is bounded below, and hence we denotemg := minu∈U g(u).
By telescoping summation of (3.7) from k = 1 to N, we obtain

N
∑

k=0

(γ

2
‖A(yk+1 − yk)‖22 + C‖yk+1 − yk‖22 +

ρ

2
‖xk+1 − xk‖22

)

≤
N

∑

k=0

Lρ(xk, yk,uk, vk) − Lρ(xk+1, yk+1,uk+1, vk+1)

=Lρ(x0, y0,u0, v0) − Lρ(xN+1, yN+1,uN+1, vN+1) ≤ Lρ(x0, y0,u0, v0) − αmg < ∞,

which implies that
∑∞

k=0 ‖xk+1 − xk‖22 ≤ ∞ and
∑∞

k=0 ‖yk+1 − yk‖22 ≤ ∞. Therefore, we must have
‖xk+1−xk‖22 → 0 and ‖yk+1−yk‖22 → 0, as k → ∞. It further follows fromLemma 1 that ‖xk−yk‖2 →
0, which completes the proof. �

THEOREM 9. [Stationary points] Suppose the sequence {uk, xk, yk, vk} is generated by (3.3). If g ∈ C
1(R)

is a Type B or Type C function and ρ >
√
2γCA, and (uk, xk) is bounded, then every limit point of

{uk, xk, yk, vk}, denoted by {u∗, x∗, y∗, v∗}, is a stationary point of Lρ(u, x, y; v) and also {x∗,u∗} is a
stationary point of (1.4).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 17

Proof. Using vk = ∇ψ(yk) from Lemma 1, i.e. vk = γAT(Ayk − b), we have

ψ(yk) +
〈

vk, xk − yk
〉

=
γ

2
‖Ayk − b‖22 +

〈

γAT(Ayk − b), xk − yk
〉

=
γ

2
‖Axk − b‖22 −

γ

2
‖A(xk − yk)‖22 ≥

γ

2
‖Axk − b‖22 −

γCA

2
‖xk − yk‖22.

Consequently, we obtain that

Lρ(uk, xk, yk; vk) ≥ 〈uk, |xk|〉 + αg(uk) +
γ

2
‖Axk − b‖22 +

ρ − γCA

2
‖xk − yk‖22. (3.8)

If ρ > γCA, then Lρ(uk, xk, yk; vk) ≥ αg(uk) ≥ αmg, where mg := minu∈U g(u), showing Lρ is lower

bounded. On the other hand, Theorem 7 gives an upper bound of Lρ(uk, xk, yk; vk), i.e. Lρ(u0, x0, y0; v0).

The boundedness of Lρ , u
k and xk together with (3.8) implies that yk is bounded, and hence vk

is bounded due to vk = ∇ψ(yk). Then the Bolzano–Weierstrass Theorem guarantees that there exists
a subsequence, denoted by {xks , yks ,uks , vks}, that converges to a limit point, i.e. (xks , yks ,uks , vks) →
(x∗, y∗,u∗, v∗).

By Theorem 8, we get xks − yks → 0, leading to x∗ = y∗, and (xks−1, yks−1) → (x∗, y∗), and
hence we have vks−1 → v∗. Let pks be the corresponding variables in the optimality condition (3.6). As
pks ∈ ∂|xks |, we know pks is bounded by [−1, 1]. Therefore, there exists a limit point of the sequence
pks . Without loss of generality, we assume it is the sequence itself, i.e. pks → p∗, and hence we have
p∗ ∈ ∂|x∗|.

Type C: If g is a Type C function then u ∈ [0,∞)n and hence the optimality condition for the
u−update is 0 = |xk| + α∇g(uk+1) − sk+1, with sk+1 � uk+1 = 0. We define

s∗ := lim
s→∞

|xks−1| + α∇g(uks),

and so s∗ ≥ 0 and sks → s∗ (since g is continuously differentiable). The optimality condition sks�uks = 0

implies that s∗ � u∗ = 0. Since all the equations in (3.6) are continuous, we can replace k by ks − 1 and
take the limit as ks → ∞ to get

⎧

⎨

⎩

0 = |x∗| + α∇g(u∗) − s∗

0 = u∗ � p∗ + v∗ + ρ(x∗ − y∗)
0 = ∇ψ(y∗) − v∗ − ρ(x∗ − y∗),

where s∗ ≥ 0 with s∗ � u∗ = 0, and p∗ ∈ ∂|x∗|. Hence, (x∗, y∗,u∗, v∗) is a stationary point of
Lρ(u, x, y; v). Furthermore, we have vks = ∇ψ(yks) from the proof of Lemma 1, leading to v∗ =
∇ψ(y∗). Together with x∗ = y∗, we get

{

0 = |x∗| + α∇g(u∗) − s∗,
0 = u∗ � p∗ + ∇ψ(y∗),

which means that (x∗,u∗) is a stationary point of (1.4) for U = [0,∞)n.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

18 Y. RAHIMI ET AL.

Type B: If g is a type B function then u ∈ [0, 1]n and hence the optimality condition for the u−update
is 0 = |xk|+α∇g(uk+1)− sk+1 + tk+1, with sk+1 �uk+1 = 0 and tk+1 � (uk+1 − 1) = 0 with sk+1 ≥ 0
and tk+1 ≥ 0.

Note that we have sks −tks = |xks−1|+α∇g(uks). Since uks → u∗, xks−1 → x∗ and g is continuously
differentiable, the sequence sks − tks is bounded and converges to the limit |x∗| + α∇g(u∗). Combining
the boundedness of sks − tks together with the optimality conditions, the sequences sks and tks must be
bounded. Therefore, each sequence has a convergent sub-sequence and without loss of generality, we
may assume it is the sequence itself, i.e. sks → s∗, and tks → t∗. We must have

s∗ − t∗ = lim
s→∞

|xks−1| + α∇g(uks),

and s∗ ≥ 0 and t∗ ≥ 0 with the conditions s∗ � u∗ = 0 and t∗ � (u∗ − 1) = 0. The rest of the analysis
is similar to the Type C functions and we get

⎧

⎨

⎩

0 = |x∗| + α∇g(u∗) − s∗ + t∗

0 = u∗ � p∗ + v∗ + ρ(x∗ − y∗)
0 = ∇ψ(y∗) − v∗ − ρ(x∗ − y∗),

which means (x∗, y∗,u∗, v∗) is a stationary point of Lρ(u, x, y; v) and

{

0 = |x∗| + α∇g(u∗) − s∗ + t∗,
0 = u∗ � p∗ + ∇ψ(y∗),

which means that (x∗,u∗) is a stationary point of (1.4) for U = [0, 1]n. �

3.3 Algorithm Updates for Different Lifting Functions

Here we consider two examples of g functions, with which the u-subproblem has a closed-form solution.
We define one function as g1(u) = − 1

2‖u‖22, a Type B function with U1 = [0, 1]n and a Type C function
g2(u) = 1

2‖u‖22 − ‖u‖1 with U2 = [0,∞)n. For these combinations the update for (3.4) simplifies to

Forg1,U1, uk+1
i =

{

1 if |xki | ≤ α
2 ,

0 if |xki | ≥ α
2 ,

and for g2,U2, uk+1
i = max

{

1 −
|xki |
α

, 0

}

.

Note that for this choice of g2, the proposed model simplifies to

min
x∈Rn,u∈Rn+

〈u, |x|〉 + α(
1

2
‖u‖22 − ‖u‖1) s.t. Ax = b,

which can be solved by a quadratic programming with linear constraints.

4. Numerical Experiments

We demonstrate the performance of Algorithm 1 with ε = 0.01 and two specific g functions discussed
in Section 3.3. We compare with the following sparsity promoting regularizations: �1 [13], �1/2 [57],

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 19

transformed �1 (TL1) [62], �1 − �2 [59] and ERF [20]. For more related models, see [54]. For each
model, we consider both constrained and unconstrained formulations. Specifically for the �p model,
we adopt the iteratively reweighted least-squares algorithm [12] in the constrained case and use the half
thresholding [57] as a proximal operator for minimizing the unconstrained �1/2 formulation. Both �1−�2
and TL1 areminimized by the difference of convex algorithm (DCA) for the best performance as reported
in [59,62]. We use the online code provided by the authors of [20] to solve for the ERF model. We use
the default values of model parameters suggested in respective papers; note that �1 and �1 − �2 do not
involve any parameters. In Appendix C, we present a comparison between using ADMM and DCA for
the proposed model. All the experiments are conducted on a Windows desktop with CPU (Intel i7-6700,
3.19GHz) and MATLAB (R2021a).

4.1 Constrained Models

We examine the performance of finding a sparse solution that satisfies the constraint Ax = b. We
consider two types of sensing matrices, Gaussian and over-sampled discrete cosine transform (DCT).
The Gaussian matrix is generated based on the multivariate normal distribution N (0,Σ), where Σi,j =
(1 − r)δ(i = j) + r for a parameter r > 0. Note that δ(i = j) is 1 if i = j and zero otherwise. The
over-sampled DCT matrix is defined by A = [a1, ..., an] ∈ R

m×n with each column defined as

aj :=
1

√
m

cos

(

2πwj

F

)

,

wherew is a uniformly random vector and F ∈ R+ is a scalar. The larger the F is, the larger the coherence
of the matrix A is, thus more challenging to find a sparse solution.

We fix the dimension as 64×1024 for Gaussian and DCTmatrix, while generating Gaussian matrices
with r ∈ {0, 0.2, 0.8} and DCTmatrices with F ∈ {1, 5, 10}. The ground truth vector xg ∈ R

n is simulated
as s-sparse signal, where s is the total number of non-zero entries each drawn from normal distribution
N(0, 1) and the support index set is also drawn randomly. We evaluate the performance by success rates
where a ‘successful’ reconstruction refers to the case when the distance of the output vector x and the
ground truth xg is less than 10−2, i.e.

‖x − xg‖2
‖xg‖2

≤ 10−2.

Figure 2 presents success rates for both Gaussian and DCT matrices, and demonstrates that the
proposed LL1 outperforms the state of the art in all the testing cases. For the Gaussian matrices, the
parameter r has little affect on the performance, as we observe the same ranking of these models under
various r values. As for the DCT matrices, the parameter F influences the coherence of the resulting
matrix. For smaller F value, �p is the second best, while TL1 and �1 − �2 perform well for coherent
matrices (for F = 10). With a well-chosen g function, the proposed LL1 framework always achieves
the best results among the competing methods. The results of LL1 using g1 with U1 and g2 with U2 are
similar. This phenomenon illustrates that our model works best as it is equivalent to the �0 model for
small enough α.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

20 Y. RAHIMI ET AL.

FIG. 2. Success rate comparison among all the competing methods based on Gaussian matrices (left) with r = 0, 0.8 and DCT
matrices (right) with F = 1, 10.

4.2 Unconstrained Models

We consider the unconstrained �0 model for comparison on noisy data:

arg min
x∈Rn

‖x‖0 +
γ

2
‖Ax − b‖22, (4.1)

where γ is a regularization parameter. We consider signals of length 512 with sparsity 130, and m
measurements b, determined by a Gaussian sensing matrix A. The columns of A are normalized with
mean zero and unit norm. A Gaussian noise with means zero and standard deviation σ is also added to
the measurements. To evaluate the success rate of algorithms, we consider the mean square error (MSE)
of the output signal x with the ground-truth solution x∗ using the formula

MSE(x) = ‖x − x∗‖2.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 21

FIG. 3. Comparison of all algorithms for m× 512 matrices.

For each algorithm, we compute the average of MSE for 100 realizations by ranging the number of
measurements in the range 60 < m < 120. Figure 3 presents the comparison results for two noise levels
σ ∈ {10−6, 0.01}. All the algorithms perform badly with a few measurements, and as the number of
measurements m increases, their MSE error decreases. For the smaller amount of the noise (σ = 10−6),
our approach almost works perfectly in around 100 measurements, while other algorithms either require
more measurements to achieve the nearly perfect MSE or are unable to do so. Figure 3c presents the
computational times, which suggests that LL1 performs as fast as the �1 model and at the same time it
has the lowest recovery error.

When the noise level is high, for instance σ = 0.1, then it is almost impossible to reconstruct the
ground-truth signal using any number of measurements. In such cases, our algorithm finds a signal that
is sparser and has smaller objective for any choice of the regularization parameter γ .

5. Concluding Remarks

In this paper, we proposed a lifted �1model for sparse recovery, which describes a class of regularizations.
Specifically we established the connections of this framework to various existing methods that aim to
promote sparsity of the model solution. Furthermore, we proved that our method can exactly recover
the sparsest solution under a constrained formulation. We promoted the use of ADMM to solve for the
proposed model with convergence analysis. An alternative approach of using DCA was discussed in
Section C, showing the efficiency of ADMM over DCA. Experimental results on both noise-free and
noisy cases illustrate that the proposed framework outperforms the state-of-the-art methods in terms of
accuracy and is comparable with the convex �1 approach in terms of computational time.

One future work involves the convergence analysis of ADMM for solving the constrained model.
One difficulty lies in the fact that the corresponding function ψ(·) is a δ-function, which is neither
differentiable nor coercive, and as a result, the proof presented in Section 3.2 for the unconstrained
minimization is not applicable for the constrained case. We observe that the ADMM algorithm for the
constrained case does converge and the augmented Lagrangian is decreasing. This empirical evidence
suggests the potential to prove the convergence or the sufficient decrease of the augmented Lagrangian,
which will be left as future work.

Funding

NSF CAREER 1846690; Simons Foundation grant 584960.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

22 Y. RAHIMI ET AL.

Data Availability Statement

No new data were generated or analysed in support of this review.

REFERENCES

1. AMIR, T., BASRI, R. & NADLER, B. (2021) The trimmed lasso: sparse recovery guarantees and practical
optimization by the generalized soft-min penalty. SIAM J. Math. Data Sci., 3, 900–929.

2. ASKARI, A., NEGIAR, G., SAMBHARYA, R. & EL GHAOUI, L. (2018) Lifted neural networks arXiv preprint
arXiv:1805.01532.

3. BERTSIMAS, D., COPENHAVER, M. S. & MAZUMDER, R. (2017) The trimmed lasso: sparsity and robustness arXiv
preprint arXiv:1708.04527.

4. BI, N. & TANG, W.-S. (2022) A necessary and sufficient condition for sparse vector recovery via l1 − l2
minimization. Appl. Comput. Harmon. Anal., 56, 337–350.

5. BLAKE, A. & ZISSERMAN, A. (1987) Visual reconstruction. MIT press.
6. BLANCHARD, J. D., TANNER, J. & WEI, K. (2015) CGIHT: conjugate gradient iterative hard thresholding for

compressed sensing and matrix completion. Inf. Inference, 4, 289–327.
7. BLUMENSATH, T. & DAVIES, M. E. (2009) Iterative hard thresholding for compressed sensing. Appl. Comput.

Harmon. Anal., 27, 265–274.
8. BOYD, S., PARIKH, N., CHU, E., PELEATO, B. & ECKSTEIN, J. (2011) Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends� in Machine learning,
3, 1–122.

9. CANDES, E. J., ROMBERG, J. K. & TAO, T. (2006) Stable signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math., 59, 1207–1223.

10. CANDES, E. J., WAKIN, M. B. &BOYD, S. P. (2008) Enhancing sparsity by reweighted l1 minimization. J. Fourier
Anal. Appl., 14, 877–905.

11. CEVHER, V. An ALPS view of sparse recovery. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5808–5811. IEEE, 2011.

12. CHARTRAND, R & YIN, W. Iteratively reweighted algorithms for compressive sensing. In 2008 IEEE interna-
tional conference on acoustics, speech and signal processing, pages 3869–3872. IEEE, 2008.

13. CHEN, S. S., DONOHO, D. L. & SAUNDERS, M. A. (2001) Atomic decomposition by basis pursuit. SIAM Rev.,
43, 129–159.

14. DONOHO, D. L. (2006) Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289–1306.
15. DONOHO, D. L. & HUO, X. (2001) Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf.

Theory, 47, 2845–2862.
16. DUNLAVY, D. M. & O’LEARY, D. P. (2005) Homotopy optimization methods for global optimization Report

SAND2005-7495, Sandia National Laboratories.
17. FAN, J. & LI, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J.

Amer. Statist. Assoc., 96, 1348–1360.
18. FOUCART, S. & RAUHUT, H. (2013) An invitation to compressive sensing. Springer.
19. GABAY, D. & MERCIER, B. (1976) A dual algorithm for the solution of nonlinear variational problems via finite

element approximation. Comput. Math. Appl., 2, 17–40.
20. GUO, W., LOU, Y., QIN, J. & YAN, M. (2021) A novel regularization based on the error function for sparse

recovery. J. Sci. Comput., 87, 31.
21. HANTOUTE, A. & LÓPEZ, M. A. (2008) Characterizations of the subdifferential of the supremum of convex

functions. J. Convex Anal., 15, 831–858.
22. HORST, R. & THOAI, N. V. (1999) DC programming: overview. J. Optim. Theory Appl., 103, 1–43.
23. HUANG, X.-L., SHI, L. & YAN, M. (2015) Nonconvex sorted l1 minimization for sparse approximation. J. Oper.

Res. Soc. China, 3, 207–229.
24. KUTYNIOK, G. (2013) Theory and applications of compressed sensing. GAMM-Mitt., 36, 79–101.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 23

25. LAI, M.-J. & WANG, Y. (2021) Sparse solutions of underdetermined linear systems and their applications.
SIAM.

26. LAI, M.-J., XU, Y. & YIN, W. (2013) Improved iteratively reweighted least squares for unconstrained smoothed
lq minimization. SIAM J. Numer. Anal., 51, 927–957.

27. LI, J., XIAO, M., FANG, C., DAI, Y., CHAO, X. & LIN, Z. (2020) Training neural networks by lifted proximal
operator machines. IEEE Trans. Pattern Anal. Mach. Intell., 44, 3334–3348.

28. LOU, Y. & YAN, M. (2018) Fast L1–L2 minimization via a proximal operator. J. Sci. Comput., 74, 767–785.
29. LOU, Y., YIN, P., HE, Q. & XIN, J. (2015) Computing sparse representation in a highly coherent dictionary

based on difference of L1 and L2. J. Sci. Comput., 64, 178–196.
30. LOU, Y., YIN, P. & XIN, J. (2016) Point source super-resolution via non-convex L1 based methods. J. Sci.

Comput., 68, 1082–1100.
31. LV, J. & FAN, Y. (2009) A unified approach to model selection and sparse recovery using regularized least

squares. Ann. Stat., 37, 3498–3528.
32. MANSOUR, H. & SAAB, R. (2017) Recovery analysis for weighted l1-minimization using the null space property.

Appl. Comput. Harmon. Anal., 43, 23–38.
33. MARQUES, E. C., MACIEL, N., NAVINER, L., CAI, H. & YANG, J. (2018) A review of sparse recovery algorithms.

IEEE Access, 7, 1300–1322.
34. NATARAJAN, B. K. (1995) Sparse approximate solutions to linear systems. SIAM J. Comput., 24, 227–234.
35. NEEDELL, D. & TROPP, J. A. (2009) Cosamp: iterative signal recovery from incomplete and inaccurate samples.

Appl. Comput. Harmon. Anal., 26, 301–321.
36. NESTEROV, Y. (2005) Smooth minimization of non-smooth functions. Math. Program., 103, 127–152.
37. OCHS, P., DOSOVITSKIY, A., BROX, T. & POCK, T. (2015) On iteratively reweighted algorithms for nonsmooth

nonconvex optimization in computer vision. SIAM J. Imaging Sci., 8, 331–372.
38. PRATER-BENNETTE, A., SHEN, L. & TRIPP, E. E. (2022) The proximity operator of the log-sum penalty. J. Sci.

Comput., 93.
39. RAHIMI, Y., WANG, C., DONG, H. & LOU, Y. (2019) A scale-invariant approach for sparse signal recovery. SIAM

J. Sci. Comput., 41, A3649–A3672.
40. RAUHUT, H. & WARD, R. (2016) Interpolation via weighted l1 minimization. Appl. Comput. Harmon. Anal.,

40, 321–351.
41. NAOKI SAITO. Superresolution of noisy band-limited data by data adaptive regularization and its application

to seismic trace inversion. In International Conference on Acoustics, Speech, and Signal Processing, pages
1237–1240. IEEE, 1990.

42. SHEN, L., SUTER, B. W. & TRIPP, E. E. (2019) Structured sparsity promoting functions. J. Optim. Theory Appl.,
183, 386–421.

43. SHEN, X., PAN, W. & ZHU, Y. (2012) Likelihood-based selection and sharp parameter estimation. J. Am. Stat.
Assoc., 107, 223–232.

44. TAO, P. D. & AN, L. T. H. (1997) Convex analysis approach to DC programming: theory, algorithms and
applications. Acta Math. Vietnam., 22, 289–355.

45. TAO, P. D. & AN, L. T. H. (1998) A DC optimization algorithm for solving the trust-region subproblem. SIAM
J. Optim., 8, 476–505.

46. TIBSHIRANI, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267–288.
47. TILLMANN, A. M. & PFETSCH, M. E. (2013) The computational complexity of the restricted isometry property,

the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory, 60, 1248–1259.
48. TRAN, H. & WEBSTER, C. (2019) A class of null space conditions for sparse recovery via nonconvex, non-

separable minimizations. Results Appl. Math., 3, 100011.
49. TROPP, J. A. & GILBERT, A. C. (2007) Signal recovery from random measurements via orthogonal matching

pursuit. IEEE Trans. Inf. Theory, 53, 4655–4666.
50. VASWANI, N.&WEI, L. (2010)Modified-CS:modifying compressive sensing for problemswith partially known

support. IEEE Trans. Signal Process., 58, 4595–4607.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

24 Y. RAHIMI ET AL.

51. WANG, C., YAN, M., RAHIMI, Y. & LOU, Y. (2020) Accelerated schemes for the L1/L2 minimization. IEEE
Trans. Signal Process., 68, 2660–2669.

52. WATSON, L. T. (2001) Theory of globally convergent probability-one homotopies for nonlinear programming.
SIAM J. Optim., 11, 761–780.

53. WIPF, D. & NAGARAJAN, S. (2010) Iterative reweighted �1 and �2 methods for finding sparse solutions. IEEE
J. Sel. Top. Signal Process., 4, 317–329.

54. FANDING, X., DUAN, J. & LIU, W. (2023) Comparative study of non-convex penalties and related algorithms in
compressed sensing. Digit. Signal Process., 135, 103937.

55. YIMING, X., NARAYAN, A., TRAN, H. & WEBSTER, C. G. (2021) Analysis of the ratio of l1 and l2 norms in
compressed sensing. Appl. Comput. Harmon. Anal., 55, 486–511.

56. ZONG-BEN, X. U., GUO, H.-L., WANG, Y. & ZHANG, H. (2012) Representative of l1/2 regularization among
lq (0 < q < 1) regularizations: an experimental study based on phase diagram. Acta Automat. Sinica, 38,
1225–1228.

57. XU, Z., CHANG, X., XU, F. & ZHANG, H. L1/2 regularization: a thresholding representation theory and a fast
solver. IEEE Trans. Neural Netw. Learn. Syst., 23:1013–1027, 2012.

58. YIN, P., ESSER, E. & XIN, J. (2014) Ratio and difference of �1 and �2 norms and sparse representation with
coherent dictionaries. Commun. Inf. Syst., 14, 87–109.

59. YIN, P., LOU, Y., HE, Q. & XIN, J. (2015) Minimization of �1−2 for compressed sensing. SIAM J. Sci. Comput.,
37, A536–A563.

60. ZACH, C. & BOURMAUD, G. (2017) Iterated lifting for robust cost optimization. In British Machine Vision
Conference (BMVC).

61. ZHANG, C.-H. (2010) Nearly unbiased variable selection under minimax concave penalty. Ann. Stat., 38,
894–942.

62. ZHANG, S. & XIN, J. (2017) Transformed schatten-1 iterative thresholding algorithms for low rank matrix
completion. Commun. Math. Sci., 15, 839–862.

63. ZHANG, S. & XIN, J. (2018) Minimization of transformed �1 penalty: theory, difference of convex function
algorithm, and robust application in compressed sensing. Math. Program., 169, 307–336.

64. TONG ZHANG. Multi-stage convex relaxation for learning with sparse regularization. In Advances in neural
information processing systems , volume 21, 2008.

65. ZHU, W., HUANG, Z., CHEN, J. & PENG, Z. (2021) Iteratively weighted thresholding homotopy method for the
sparse solution of underdetermined linear equations. Sci. China Math., 64, 639–664.

A. Proof of Theorem 1

Proof. Set

f (x) =

{

−J(x) x ≥ 0

+∞ otherwise.

The function f is proper, lower semi-continuous and convex, hence by the Fenchel–Moreau’s theorem
we have that f = f ∗∗. Also, we have

f ∗(y) = sup
x∈Rn

〈x, y〉 − f (x) = sup
x≥0

〈x, y〉 + J(x) = g(−y)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 25

using g(y) := supx≥0 〈x,−y〉 + J(x). In addition,

f (x) = f ∗∗(x) = sup
y∈Rn

〈x, y〉 − f ∗(y) = sup
y∈Rn

〈x, y〉 − g(−y).

Therefore, since |x| ≥ 0

J(|x|) = −f (|x|) = −

(

sup
y∈Rn

〈|x|, y〉 − g(−y)

)

= inf
y∈Rn

〈|x|,−y〉 + g(−y)

= inf
y∈Rn

〈|x|, y〉 + g(y) = inf
y∈U

〈|x|, y〉 + g(y),

where U ⊆ {y ∈ R
n | g(y) �= +∞}. �

B. Finding the Lift Corresponding to Existing Models

Given a regularization function J(x), we want to find a proper g function and a set U such that J(x) =
FUg (x) up to a constant. We assume J(x) = J(|x|) since FUg satisfies this condition. Consequently, we

only need to consider the case x ≥ 0 so that the notation ∂J
∂|xi| should be in place of ∂J

∂xi
for xi ≥ 0.

Using Theorem 1, we can directly find FUg ; however, sometimes it might be easier to use the following

observation which leads to simpler computations. Suppose FUg has a unique minimizer u, and hence u

satisfies u = ∇xF
U
g (x) = ∇xJ(x). Assuming that the minimum of (2.5) is finite, the optimality condition

gives |x| + ∇ug = 0 for u ∈ int(U), where int(U) denotes the interior of the set U (Note that |x| + ∇ug

can have non-zero coordinates on the boundary of U.) Thus, we only need to solve the following two
equations for a function g with respect to u on the feasible set U:

{

u = ∇xJ(x),

|x| + ∇ug = 0, u ∈ int(U).
(B.1)

(i) �p model: Consider J = J�p/p, and note that ∂J
∂|xi| = |xi|p−1. For g(u) =

∑

gi(ui) and x ∈ R
n,

the (B.1) simplifies into

{

ui = |xi|p−1,

|xi| + g′
i(ui) = 0,

for all i. From the first equation we get that |xi| = u
1

p−1
i and then from the second equation we

get g′
i(ui) = −u

1
p−1
i . A solution for g is gi(ui) = 1−p

p
u

p
p−1
i for ui ≥ 0. Finally taking U = R

n
+

and g(u) =
∑

i
1−p
p
u

p
p−1
i , one can check that FUg = J.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

26 Y. RAHIMI ET AL.

(ii) log-sum penalty: Consider J = J
log
a , and note that ∂J

∂|xi| = 1
|xi|+a . For g(u) =

∑

gi(ui) and
x ∈ R

n, the (B.1) simplifies into

{

ui = 1
|xi|+a ,

|xi| + g′
i(ui) = 0,

for all i. From the first equation we get that |xi| = 1
ui

− a and then from the second equation

we get g′
i(ui) = a − 1

ui
. A solution for g is gi(ui) = aui − log(ui) for ui > 0. Finally taking

U = R
n
>0 and g(u) =

∑

i

(

aui − log(ui)
)

, one can check that FUg + 1 = J.

(iii) Smoothly clipped lasso model: Consider J = JSCADγ ,λ , and note that

∂f SCADλ,γ (t)

∂|t|
=

⎧

⎨

⎩

λ if |t| ≤ λ,
λγ−t
γ−1 if λ < |t| ≤ γ λ,
0 if |t| > γλ.

(B.2)

For g(u) =
∑

gi(ui) and x ∈ R
n, the first equation in (B.1) simplifies into

ui =

⎧

⎨

⎩

λ if |xi| ≤ λ,
λγ−|xi|

γ−1 if λ < |xi| ≤ γ λ,
0 if |xi| > γλ.

for all i. In the case of λ < |xi| ≤ γ λ, we get that |xi| = γ λ − (γ − 1)ui, which means
we should have g′

i(ui) = −γ λ + (γ − 1)ui and ui ≤ λ. By taking U = [0, λ]n and g(u) =
∑

i

(

−γ λui + (γ − 1)
u2i
2

)

, one can check that FUg + (γ+1)λ2

2 = J.

(iv) Mini-max concave penalty: Consider J = JMCP
γ ,λ , and note that

∂fMCP
λ,γ (t)

∂|t|
=

{

λ − t
γ

if |t| ≤ γ λ,
0 if |t| > γλ.

(B.3)

For g(u) =
∑

gi(ui) and x ∈ R
n, the first equation in (B.1) simplifies into

ui =

{

λ − |xi|
γ

if |xi| ≤ γ λ,
0 if |xi| > γλ,

for all i. When |xi| ≤ γ λ, we obtain |xi| = γ (λ − ui), which implies that g′
i(ui) =

−γ (λ − ui) from the second equation in (B.1). Therefore, we set U = [0,∞)n and g(u) =
∑

i

(

−γ (λui −
u2i
2)

)

, leading to FUg + 1
2γ λ2 = J.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 27

(v) Capped �1 model: Consider J = JCL1a , and note that

∂J

∂|xi|
=

{

1 if |xi| < a,
0 if |xi| > a.

(B.4)

For g(u) =
∑

gi(ui) and x ∈ R
n, the first equation in (B.1) simplifies into

ui =
{

1 if |xi| < a,
0 if |xi| > a,

for all i. Note that the second equation in (B.1) only happens if the minimizer is in the interior of
the set U. Consider U = [0, 1]n, therefore for this case since the minimizer is on the boundary,
therefore we need a g function which is non-zero in the interior of U and for |xi| < a we have
|xi| + g′

i(ui) < 0 and for |xi| > a we have |xi| + g′
i(ui) > 0. Therefore g′

i(ui) = −a and a
solution for this is gi(ui) = −aui. Finally taking U = [0, 1]n and g(u) =

∑

i

(

−aui
)

, one can
check that FUg + a = J.

(vi) Transformed �1 model: Consider J = JTL1a /(a+1), and note that ∂J
∂|xi| = a

(a+|xi|)2
. For g(u) =

∑

gi(ui) and x ∈ R
n, the (B.1) simplifies into

{

ui = a
(a+|xi|)2

,

|xi| + g′
i(ui) = 0,

for all i. From the first equation we get that |xi| =
√

a
ui

− a and then from the second equation

we get g′
i(ui) = a −

√

a
ui
. A solution for g is gi(ui) = aui − 2

√
aui for ui ≥ 0. Finally taking

U = R
n
+ and g(u) =

∑

i aui − 2
√
aui, one can check that FUg + 1 = J.

(vii) Error function penalty:Consider J = JERFσ , and note that ∂J
∂|xi| = e−x

2
i /σ

2
and e−x

2
i /σ

2 ∈ (0, 1].
For g(u) =

∑

gi(ui) and x ∈ R
n, the (B.1) simplifies into

{

ui = e−x
2
i /σ

2
,

|xi| + g′
i(ui) = 0,

for all i. From the first equation we get that |xi| = σ
√

− log(ui) and then from the second

equation we get g′
i(ui) = −σ

√

− log(ui). A solution for g is gi(ui) = σ
∫ 1
ui

√
− log(τ)dτ for

ui ∈ (0, 1]. Finally taking U = [0, 1]n and g(u) = σ
∑

i

∫ 1
ui

√
− log(τ)dτ , one can check that

FUg = J.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

28 Y. RAHIMI ET AL.

(viii) �1 − �2 penalty: As for J = JL1−L2 working with derivatives is a bit challenging so we directly
apply Theorem 1 for finding the lifted form. First note that

sup
x≥0

〈x, y〉 − ‖x‖2 =

{

+∞ ‖y+‖2 > 1,

0 ‖y+‖2 ≤ 1.

Hence we get that

g(u) = sup
x≥0

〈x,−u〉 + ‖x‖1 − ‖x‖2 =

{

+∞ ‖(1 − u)+‖2 > 1,

0 ‖(1 − u)+‖2 ≤ 1.

Therefore, the set U = {u | ‖(1− u)+‖2 ≤ 1} and the function g = 0. Notice that we can relax
the set U to {u | ‖1 − u‖2 ≤ 1} and still get the same J function.

C. Comparing the ADMM and DCA based algorithms

Alternatively to ADMM, one can minimize the proposed model (1.3) and (1.4) by the graduated non-
convexity algorithm [5] and the DCA [22,44,45]. Specifically for DCA, since our function −FUg,α is
convex on the positive cone, then we use the algorithm introduced in [37], where we only need to find
the sub-differential of the function on R

n
+. We use the function ψ(·) to unify the constrained and the

unconstrained formulations and we have the model

arg min
x∈Rn

FUg,α(x) + ψ(x). (C.1)

Since the function FUg,α is concave on R
n
+, it can be written as a difference of two convex functions, i.e.

FUg,α(x)+ψ(x) = h1(x)−h2(x), where h1(x) = ψ(x)+ β
2 ‖x‖22 and h2(x) = β

2 ‖x‖22−FUg,α(x) for β ≥ 0.
An interesting fact about using a DCA form is that if g is a Type B or Type C then for x ≥ 0 we have
sub-differentials of the form

∂(−FUg,α)(x) = − arg min
u∈U

〈u, |x|〉 + αg(u).

For x ∈ R
n, take ug,α(xk) ∈ arg minu∈U

〈

u, |xk|
〉

+ αg(u) then the DCA iterations become

xk+1 = arg min
x∈Rn

ψ(x) +
β

2
‖x‖22 −

〈

β|xk| − ug,α(xk), |x|
〉

. (C.2)

We implement the DCA iterations of (C.2) for β = 0 for its simplicity and efficiency as opposed to
β > 0. In addition, we can consider an adaptive scheme to update α, which is adopted in Algorithm 2.

We compare ADMM (Algorithm 1) and DCA (Algorithm 2) for minimizing the same constrained
formulation (1.3) with g1 and g2 discussed in Section 3.3.We are particularly interested in the algorithmic
behaviours when dynamically updating α. As mentioned in Theorem 5, α is supposed to be small enough
to approximate the �0 solution. A common way involves an exponential decay in the form of αk+1 =
(1− η)αk, for η ∈ (0, 1). If the parameter η is close to 1 then α converges to zero too quickly and hence

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

A LIFTED �1 FRAMEWORK FOR SPARSE RECOVERY 29

Algorithm 2 Homotopy-based DCA algorithm

Require: x0, α0 > 0, η ≥ 0, function g, set U and MaxOuter
for k = 1 to MaxOuter do

uk = arg minu∈U
〈

u, |xk|
〉

+ αkg(u).

xk+1 = arg minx∈Rn ψ(x) +
〈

ug,α(xk), |x|
〉

.

αk+1 = (1 − η)αk

end for

FIG. C1. Success rate comparison of ADMM and DCAwith two g functions and different η for Gaussian matrices (left) with r = 0
and r = 0.8 and DCT matrices (right) with F = 1, 5.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

30 Y. RAHIMI ET AL.

the algorithm cannot converge to a good local minimum as it is equivalent to having α = 0 in the
very beginning. On the other hand, if η is close to 0 then α slowly decreases to zero; and as a result,
Algorithm 1 may terminate before α is small enough for FUg,α to approximate the �0 norm.

The comparison between ADMM and DCA on Gaussian and DCT matrices is presented in Fig. C1.
By fixing η = 0.1, we select the optimal ρ = 2j for ADMM with j ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} that
achieves the smallest relative error to the ground-truth. Then using the optimal parameters ρ and γ ,
Fig. C1 presents the ADMM results for η ∈ {0.001, 0.01, 0.1} and the DCA ones for η ∈ {0.01, 0.1}. For
all the cases, ADMM is superior to DCA in that it is less sensitive to η. In addition, DCA consists of
two loops and hence it is generally slower than ADMM. Our experiment shows that a suitable choice for
our experiments is η = 0.01. These comparisons show that the lifted form works well with ADMM, but
not necessarily with DCA. This may be due to the fact that DCA usually converges in a few iterations
and this is not enough for α to get close to 0. One may incorporate the decreasing of α into the x-update
iteration, or update α according to the result of each iteration, which is left for future work.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

3
/1

/ia
a
d
0
5
5
/7

5
3
6
0
6
0
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 L

a
w

 u
s
e
r o

n
 0

3
 M

a
y
 2

0
2
4

	 A lifted <0:tex-math 0:notation="LaTeX" 0:id="ImEquation1" > l 1 framework for sparse recovery
	 1.Introduction
	 2.The Proposed Lifted L1 Framework
	 3.Numerical Algorithms and Convergence Analysis
	 4.Numerical Experiments
	 5.Concluding Remarks
	 A.Proof of Theorem 1
	 B.Finding the Lift Corresponding to Existing Models
	 C.Comparing the ADMM and DCA based algorithms

