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Abstract. We survey known proofs of the Fáry–Milnor theorem; it states that any nontrivial
knot makes at least two full turns.

INTRODUCTION. The following problem was posed by Karol Borsuk [4].
Show that the total curvature of any nontrivial knot is at least 4·π.
It is known by many proofs based on different ideas. We sketch several solutions,

one solution per section; each can be read independently.
This problem also has a number of refinements and generalizations; in particular,

a strict inequality holds — this is the famous Fáry–Milnor theorem. However, for the
sake of simplicity, we stick to the original formulation.

In order to continue, we need to agree on a definition of knot and explain what a
nontrivial knot is. Despite the intuitive idea of a knot as a cyclic rope, the simplest
formal definition uses polygonal curves. It turns out that this definition is also best
suited for our purposes.

A knot (more precisely, a tame knot) is a simple closed polygonal curve in the
Euclidean space R3 (simple means no self-intersections).

The solid triangle with vertices a, b, and c will be denoted by ▲abc. It is defined
as the convex hull of the points a, b, and c; the points a, b, and c are assumed to be
distinct, but they might lie on one line.

We define a triangular isotopy of a knot to be the generation of a new knot from the
original one by means of the following two operations:

• Assume [p, q] is an edge of the knot and x is a point such that the solid triangle
▲pqx has no common points with the knot except for the edge [p, q]. Then we can
replace the edge [p, q] with the two adjacent edges [p, x] and [x, q].

• We can also perform the inverse operation. That is, if for two adjacent edges [p, x]
and [x, q] of a knot the triangle ▲pqx has no common points with the knot except
for the points on the edges [p, x] and [x, q], then we can replace [p, x] and [x, q] by
one edge [p, q].

Polygons that arise from one another by a finite sequence of triangular isotopies are
called isotopic. A knot that is not isotopic to a triangle (that is, a simple polygonal
curve with three vertices) is called nontrivial.

Figure 1. Trefoil knot.

The trefoil knot shown on Figure 1 gives a simple example of a nontrivial knot.
A proof that it is nontrivial can be found in any textbook on knot theory. The most
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elementary and visual proof is based on the so-called tricolorability of knot diagrams
[1, Section 1.5].

The total curvature of a smooth curve is usually defined as the integral of its curva-
ture. For polygons, it is defined as the sum of its external angles. It is well known that
the total curvature of a curve cannot be smaller than the total curvature of an inscribed
polygonal curve (see, for example, [14]). In fact, the total curvature of a curve can be
defined as the least upper bound on the total curvature of inscribed polygonal curves
[2, 18]. This definition agrees with the definition given for smooth curves, and it makes
sense for any simple curve. The total curvature of a curve α will be denoted by Φ(α).

All this leads to the following reformulation which we are going to prove.

Main theorem. Φ(α) ⩾ 4·π for any nontrivial knot α.

1. MILNOR–FENNER. One of the first solutions to the problem was found by John
Milnor [12]. In this section, we present an amusing interpretation of his proof found
by Stephen Fenner [10]. Just like the original version, it is based on the following
sufficient condition for the triviality of a knot.

Proposition 1. Assume that a height function (x, y, z) → z has only one local maxi-
mum on a simple closed polygonal curve α and all the vertices of the polygonal curve
are at different heights. Then α is a trivial knot.

The proof is a straightforward construction of a triangular isotopy.

Proof. Let α = p1 . . . pn. We can assume that n ⩾ 4; otherwise the statement is triv-
ial. Note that the height function also has a unique local minimum, and α can be
divided into two arcs from the min-vertex to the max-vertex with a monotonic height
function.

Consider the three vertices with the largest height; they have to include the max-
vertex and two more. Note that these three vertices are consecutive in the polygonal
curve; without loss of generality, we can assume that they are pn−1, pn, and p1.

Note that the solid triangle ▲pn−1pnp1 does not intersect any edge of α except the
two adjacent edges [pn−1, pn] and [pn, p1]; see Figure 2. Indeed, if ▲pn−1pnp1 inter-
sects [p1, p2], then, since p2 lies below ▲pn−1pnp1, the edge [p1, p2] must intersect
[pn−1, pn]; the latter is impossible since α is simple.

The same way, one can show that ▲pn−1pnp1 cannot intersect [pn−2, pn−1]. The
remaining edges lie below ▲pn−1pnp1, hence they cannot intersect this triangle.

Applying a triangular isotopy to ▲pn−1pnp1 we get a simple closed polygonal
curve α′ = p1 . . . pn−1 which is isotopic to α.

Since all the vertices pi have different heights, the assumption of the proposition
holds for α′.

Repeating this procedure n− 3 times we get a triangle. Henceα is a trivial knot.

Proof of the main theorem. Let α = p1 . . . pn be a nontrivial polygonal knot. Denote
by vi the unit vector in the direction of pi+1 − pi; we assume that pn = p0.

Consider the set Ui formed by all unit vectors u such that ∡(u, vi) ⩾ π
2

and
∡(u, vi−1) ⩽

π
2

; see Figure 3. Note that u ∈ Ui if and only if the function x ↦→ ⟨u, x⟩
has a local maximum at pi on α; here ⟨ , ⟩ denotes the scalar product.

Let us choose (x, y, z)-coordinates in the space so that the z-axis points in the
direction of u. Then according to Proposition 1, the function p ↦→ ⟨u, p⟩ has at least
two local maxima on α. It follows that the sets U1, . . . , Un cover each point on the
unit sphere S2 twice.
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Figure 2. Triangular isotopy. Figure 3. Spherical slice.

Recall that area S2 = 4·π. Observe that φi = ∡(vi−1, vi) is the external angle of
α at pi. Note that Ui is a slice of the sphere between two meridians meeting at angle
φi, therefore Ui occupies a φi

2·π portion of the whole sphere; so, 2·φi = areaUi. Since
the sets U1, . . . , Un cover S2 twice, we get

Φ(α) = φ1 + · · ·+ φn = 1
2
· (areaU1 + · · ·+ areaUn) ⩾

2
2
· area S2 = 4·π.

2. FÁRY. In this section, we sketch the solution of István Fáry [9] which was pub-
lished before Milnor’s proof.

We start with Crofton-type formulas for total curvature [18, Proposition 4.1]. Given
a curve α in R3 and a unit vector u, denote by αu⊥ and αu the projections of α to the
plane perpendicular to u and the line parallel to u, respectively. Let us denote by f(u)
the average value of f(u) for a function f : S2 → R.

Crofton-type formula 2. Let α be a polygonal curve in R3. Then

Φ(α) = Φ(αu⊥) = Φ(αu).

Proof. Observe that it is sufficient to check the identities for α made of two edges.
Denote its external angle by φ, so Φ(α) = φ. Observe that each term in the formula
is proportional to φ. Therefore, it is sufficient to consider the case φ = π.

In other words, we can assume that α is made of two edges that turn in the oppo-
site direction. Note that the same holds for αu⊥ if u is not parallel to an edge of α.
Similarly, the same holds for αu if u is not perpendicular to an edge of α. Therefore,
Φ(αu⊥) = Φ(αu) = π for almost all u ∈ S2. In particular, Φ(αu⊥) = Φ(αu) = π
which proves the statement.

The original version of Milnor’s proof used the identity Φ(α) = Φ(αu); in Fenner’s
version of the proof, it was hidden under the rug.

Fáry’s proof is based on the identity Φ(α) = Φ(αu⊥) and the following inequality
for total curvature. Suppose α = p1 . . . pn is a simple closed polygonal curve in R3

and o /∈ α. Let us define the angular length of α with respect to o as the sum

Ψo(α) = ∡p1op2 + · · ·+ ∡pn−1opn + ∡pnop1.

Proposition 3. For any simple closed polygonal curve and any o /∈ α, we have

Ψo(α) ⩽ Φ(α).
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Figure 4. Definitions of angles.

Proof. Let α = p1 . . . pn; for each i, set

φi = π − ∡pi−1pipi+1, ψi = ∡pi−1opi, θi = ∡opipi+1;

see Figure 4. Here we assume that the indices are taken modulo n; in particular, pn =
= p0.

Note that φi is the external angle at pi; therefore

Φ(α) = φ1 + · · ·+ φn.

The directions of pi − pi−1, o− pi, and pi+1 − pi make angles ψi + θi−1, θi, and φi

to each other. Applying the triangle inequality for these angles, we get

φi ⩾ ψi + θi−1 − θi.

Summing up, we get

φ1 + · · ·+ φn ⩾ ψ1 + · · ·+ ψn,

and the result follows.

Proof of the main theorem. Consider a projection αu⊥ of the knot α to a plane in gen-
eral position (this time it means that the self-intersections of the projection are at most
double points and the projection of each edge is not degenerate). The closed polygonal
curve αu⊥ divides the plane into domains, one of which is unbounded, denoted by U ,
and the others are bounded.

U
D

U

Figure 5. Projection of an unknot. Figure 6. Projection of a knot.

First, note that all domains can be colored in a chessboard order; that is, they can
be colored in black and white in such a way that domains with common borderline get
different colors [1, Exercise 2.27]. If the unbounded domain is colored white and every
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other domain is colored black (see Figure 5), then one can untie the knot by flipping
these domains one by one.1

Therefore, there is a white bounded domain; denote it by D (see Figure 6). The do-
main D cannot adjoin U , since they have the same color. Fix a point o in this domain.

Since any ray from o crossesαu⊥ twice, we get Ψo(αu⊥) ⩾ 4·π; that is, the angular
length of αu⊥ with respect to o is at least 4·π. By Proposition 3, we have

Φ(αu⊥) ⩾ 4·π.

This is true for any u in general position. The remaining directions contribute nothing
to the average value. It remains to apply the Crofton-type formula Φ(α) = Φ(αu⊥).

3. PANNWITZ–HOPF–SCHMITZ–DENNE. Fáry’s paper [9] is ended with the
following note: “I just received a letter from Mr. Borsuk, which says that Theorem
3 (our main theorem) has been proved independently by Mr. H. Hopf. It uses the theo-
rem of Miss Pannwitz, which ensures that for any knot there is a line that crosses it at
least in four points.” This proof is the subject of this section.

The main step in the proof is the existence of the so-called alternated quadrisecant
of a knot α; that is, there is a line ℓ that shares with α four points a, b, c, and d that
appear on ℓ in the same order and have cyclic order a, c, b, d on α. See Figure 7.

a b c d

Figure 7. Alternated quadrisecant.

The question about the existence of a quadrisecant was posed by Otto Toeplitz and
answered by Erika Pannwitz for tame knots in general position [13]. She only proved
the existence of a quadrisecant, but the existence of an alternated quadrisecant can
be extracted from her proof. Elizabeth Denne had generalized this result to all knots
[6, 7]. But for us tame knots in general position will be sufficient; namely, we need the
following.

Proposition 4. Any nontrivial knot α in general position admits an alternated
quadrisecant.

The precise meaning of general position will be clear from the proof; what is im-
portant is that any knot is arbitrarily close to a knot in general position.

Proof of the main theorem modulo Proposition 4. Let α = p1 . . . pn be a knot in gen-
eral position. Suppose a, b, c, and d be the points as in the definition of an alternated
quadrisecant. Then acbd is an inscribed quadrangle with all external angles equal to π.
Therefore, Φ(abcd) = 4·π.

Since the total curvature of an inscribed polygonal curve cannot be larger than the
total curvature of the original curve, we get that Φ(α) ⩾ 4·π.

Finally, for any knot β = q1 . . . qn there is an arbitrarily close knot α = p1 . . . pn
in general position; in particular, for any ε > 0 we can assume that Φ(β) > Φ(α)− ε.
It follows that Φ(β) > 4·π − ε for any positive ε — hence the result.

1It is instructive to give a formal proof of the last statement; that is, show that if there is only one white
region, then α is trivial.
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In the proof of the proposition, we will use the following characterization of the
trivial knot.

Lemma 5. A knot α is trivial if there exists a piecewise linear map F from the disc D
to R3 such that the restriction of F to the boundary ∂D = S1 is a degree-one map to
α and F does not map interior points of D to α.

This statement can be deduced from the loop theorem — a heavy weapon of 3-
dimensional topology. For those who are familiar with the loop theorem, it would be
an exercise; otherwise, we suggest taking it for granted. In the following proof, we
follow closely the presentation of Carsten Schmitz [16] and the original argument of
Erika Pannwitz.

Proof of Proposition 4. We may assume that α comes with a 1-periodic piecewise
linear parametrization by R; so the space of oriented chords of α can be identified
with the open cylinder S1 × (0, 1), where S1 = R/Z. Namely, we assume that a pair
(x, y) ∈ S1 × (0, 1) corresponds to the oriented chord with the ends at α(x) and
α(x+ y).

Choose a pair (x, y) ∈ S1 × (0, 1). Let us denote by r(x, y) the ray that starts at
α(x) and goes in the direction opposite to α(x+ y); see Figure 8. We write (x, y) ∈
∈ C3 if r(x, y) crosses α at another point.

The points α(x) and α(x + y) divide the knot into two open arcs α|(x,x+y) and
α|(x+y,x+1). If (x, y) ∈ C3 and r(x, y) crosses the second arc, then we write (x, y) ∈
C+

3 ; if it crosses the first arc, then (x, y) ∈ C−
3 . Note that C+

3 ∪ C−
3 = C3.

α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)α(x)

α(x+ y)

r(x,
y)

Figure 8. Ray r(x, y). Figure 9. Colored set.

Observe that if C+
3 and C−

3 intersect, then the proposition follows. In general, the
set C±

3 is not closed; denote by C̄
±
3 its closure. Suppose

C̄
+

3 ∩ C̄−
3 = ∅.

Note that in this case there is a large n such that any 1
n
× 1

n
-square in S1 × (0, 1)

does not intersect both C̄
+

3 and C̄
−
3 . Let us cut S1 × (0, 1) into n2 such squares; each

square is a closed subset of S1 × (0, 1). Color the union of squares that intersect C̄
+

3 ;
see Figure 9. Note that every square in the lowest row is colored and that we did not
color squares in the upper row. Further, the boundary of the colored set contains a
simple curve t ↦→ (x(t), y(t)) that cuts the cylinder S1 × (0, 1) into two cylinders.

Note that (x(t), y(t)) /∈ C̄
±
3 for any t ∈ S1 and the curve t ↦→ (x(t), y(t))

runs along coordinate lines. Consider the one-parameter family of line segments
in r(x(t), y(t)) that start at α(x(t)) and end on the surface of a large cube that con-
tains α in its interior. In this way we obtain a piecewise linear annulus that connects
the curve t ↦→ α(x(t)) to a curve on the surface of the cube. The latter curve can
be contracted by a piecewise linear disc in the surface of the cube. It might have
self-intersection, but it cannot contains points of α.
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Observe that t ↦→ α(x(t)) defines a degree-one map S1 → α. Applying Lemma 5,
we get the result.

It remains to show that if α = p1 . . . pn is in general position, then

C+
3 ∩ C−

3 = ∅ implies that C̄
+

3 ∩ C̄−
3 = ∅.

AssumeC+
3 ∩C−

3 = ∅ and (x, y) ∈ C̄
+

3 ∩ C̄−
3 . Denote by ℓ the line containing α(x)

and α(x+ y). Checking the following statements is straightforward, but requires pa-
tience:

• α(x) is a vertex, so α(x) = pi for some i and ℓ contains pi;
• ℓ lies in the plane spanned by pi−1, pi, and pi+1;
• ℓ does not contain edge [pi−1, pi], nor [pi, pi+1];
• ℓ has at least 3 points of intersection with α.

Finally, if α is in general position, the line ℓ with the described properties does not
exist.

4. ALEXANDER–BISHOP. Here we sketch the proof given by Stephanie Alexan-
der and Richard Bishop [3]. This proof was designed to work for more general ambient
spaces. As a result, it is more elementary.

In the proof, we construct a total-curvature-decreasing deformation of a given knot
into a doubly covered bigon. The statement follows since the latter has total curvature
4·π.

Proof of the main theorem. Let α = p1 . . . pn be a nontrivial knot; that is, one cannot
get a triangle from α by applying a sequence of triangular isotopies defined in the
introduction.

If n = 3 the polygonal curve α is a triangle. Therefore, by definition, α is a trivial
knot — there is nothing to show.

Consider the smallest n for which the statement fails; that is, there is a nontrivial
knot α = p1 . . . pn such that

(∗) Φ(α) < 4·π.

We use the indices modulo n; that is, p0 = pn, p1 = pn+1, and so on. Without loss of
generality, we may assume that α is in general position; this time it means that no four
vertices of α lie on one plane.

Set α0 = α. If the solid triangle ▲p0p1p2 intersects α0 only in the two adjacent
edges, then applying the corresponding triangular isotopy, we get a knot α′

0 with n− 1
edges that is inscribed in α0. Therefore,

Φ(α0) ⩾ Φ(α′
0).

On the other hand, by minimality of n,

Φ(α′
0) ⩾ 4·π,

which contradicts (∗).
Let w′

1 be the first point on the edge [p1, p2] such that the line segment [p0, w′
1]

intersects α0, say at y1.
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pn = p0

p1

p2

w1

w′
1

y1

x1

Figure 10. Construction of w1.

Choose a point w1 on [p1, p2] a bit before w′
1. Denote by x1 the point on [p0, w1]

that minimizes the distance to y1. In this way we get a closed polygonal curve α1 =
= w1p2 . . . pn with two marked points x1 and y1; see Figure 10. Denote by m1 the
number of edges in the arc x1w1 . . . y1 of α1.

Note that Φ(α0) ⩾ Φ(α1), and α1 is isotopic to α0; in particular, α1 is a nontrivial
knot. Moreover, the point w1 can be chosen so that α1 is in general position.

Now let us repeat the procedure for the adjacent edges [w1, p2] and [p2, p3] of α1.
If the solid triangle ▲w1p2p3 intersects α1 only at these two adjacent edges, then
we get a contradiction the same way as before. Otherwise, we get a new knot α2 =
= w1w2p3 . . . pn with two more marked points x2 and y2. Denote by m2 the number
of edges in the polygonal curve x2w2 . . . y2.

Note that the points x1, x2, y1, y2 cannot appear on α2 in the same cyclic order;
otherwise the polygonal curve x1x2y1y2 can be made to be arbitrarily close to a doubly
covered bigon which again contradicts (∗).

Therefore, we can assume that the arc x2w2 . . . y2 lies inside the arc x1w1 . . . y1 in
α2 and therefore m1 > m2.

Continuing this procedure we get a sequence of polygonal curves αi = w1 . . .
. . . wipi+1 . . . pn with marked points xi and yi such that the number of edgesmi from
xi to yi decreases as i increases. Clearly mi > 1 for any i and m1 < n. Therefore, it
requires fewer than n steps to arrive at a contradiction.

5. EKHOLM–WHITE–WIENHOLTZ. In this section, we discuss a solution of the
problem based on the theorem of Tobias Ekholm, Brian White, and Daniel Wienholtz
[8]. This theorem was a breakthrough in minimal surface theory at the time. Yet it was
based on an elementary idea that we are going to explain.

We start with a polygonal curve α with total curvature less than 4·π; show that an
area-minimizing disc spanned by α has no self-intersections, and therefore α has to
be a trivial knot. So in a way the equation for area-minimizing surfaces solves our
problem; we only need to understand it.

The main hero in this proof is the so-called extended monotonicity theorem. We
will also apply the Douglas–Rado theorem on the existence of area-minimizing discs
and reuse the inequality between total curvature and angular length from Fáry’s proof;
see Proposition 3.

The image of a map from a domain of R2 to R3 will be called a surface; it might
have self-intersections and singularities, but we assume it is reasonable, say locally
Lipschitz [21]; so we can talk about its area. A point on the surface might refer to a
point in R3, or to the corresponding point in the domain of parameters in R2; it should
be easy to infer from the context.

We denote by D the closed disc in the plane. A surface defined by a map f : D → R3

will be called a disc. The restriction f |∂D as well as its image can be referred to as the
boundary of the disc.

A disc Σ is called area-minimizing if it has the smallest area among the discs with
the given boundary. The following statement about area-minimizing discs is easy to
believe, but not easy to prove; see [20].
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Theorem 6 (Douglas–Rado). Given a simple closed polygonal curve α in R3, there
is an area-minimizing disc Σ with boundary α; it is a smooth surface, possibly with
self-intersections and isolated singularities. Moreover, if Σ has no self-intersections,
then it is an embedded smooth surface with no singularities (in this case α is a trivial
knot).

Choose a disc Σ in R3 with boundary α. Given a point o /∈ α, let us consider the
collared Σ with respect to o; it is a new surface that will be denoted by Σ̂o; it includes
Σ and the collar formed by all rays that start at points of α and go in the direction
opposite to o; see Figure 11. Note that Σ̂o admits a natural parametrization by the
whole plane.

o

α

Σ

collarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollarcollar

Figure 11. Surface and its collar.

Theorem 7 (extended monotonicity). Let Σ be an area-minimizing disc with bound-
ary α. Given a point o /∈ α, consider the function

Wo(r) = area(Σ̂o ∩ B̄r(o)),

where B̄r(o) denotes the ball of radius r centered at o. Then r ↦→ Wo(r)

r2
is a nonde-

creasing function. Moreover,
(a) limr→∞

Wo(r)

r2
= 1

2
· Ψo(α), where Ψo(α) denotes the angular length of α with

respect to o; see Section 2;
(b) if o ∈ Σ, then limr→0

Wo(r)

r2
⩾ π.

The classical monotonicity theorem states that the function r ↦→ Wo(r)

r2
is monotonic

while r is smaller than the distance from o to α. The stated version is due to Brian
White [19]. The same statement holds for minimal surfaces [8]; its proof requires
a deeper dive into differential geometry. At the same time, the original formulation
admits a generalization to a wider class of ambient spaces [17].

Proof. Denote by λo(r) the curve of intersection of the sphere ∂Br(o) with Σ̂o; set
ℓ(r) = length[λo(r)]. Observe that

W ′
o(r) ⩾ ℓ(r)

for almost all r. (Formally speaking, this inequality follows from the so-called coarea
formula.)

Set ∆r = Σ̂o ∩ B̄r(o); it is a surface bounded by λo(r). Let ∆̃r be the cone over
λo(r) with the center at o. Note that ∆̃r differs from ∆r only inside Σ. Since Σ is
area-minimizing, we get that

(∗∗) area ∆̃r ⩾ area∆r
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for any r > 0. Observe that

area∆r =Wo(r), area ∆̃r =
1
2
· r · ℓ(r).

Applying (∗∗), we get

r · ℓ(r) ⩾ 2 ·Wo(r).

Therefore,

r ·W ′
o(r) ⩾ 2 ·Wo(r)

for almost all r. If Wo is smooth, then this inequality implies the main statement. In
general, (Wo(r)

r2
)′ ⩾ 0 holds almost everywhere, and this is enough to conclude the

monotonicity of r ↦→ Wo(r)

r2
since Wo is nondecreasing.

(a). Observe that up to a fixed error we have thatWo(r) is the area of the ball of radius
r in the cone over α with the tip at o. It follows that Wo(r)

r2
approaches the area of the

unit ball in this cone as r → ∞ — hence the result.
(b). The statement is evident for smooth points of Σ. Since smooth points are dense in
Σ, and o ↦→Wo(r) is a continuous function, the main part of the theorem implies that
Wo(r) ⩾ π · r2 for any point o ∈ Σ — hence the result.

Proof of the main theorem. Suppose that Φ(α) < 4·π. Consider an area-minimizing
surface Σ with the boundary α; it exists by the Douglas–Rado theorem. If Σ has no
self-intersections, then α is a trivial knot.

Suppose Σ has a self-intersection at a point o. In this case, the intersectionBr(o) ∩
∩Σ is covered by two or more small area-minimizing subdiscs of Σ. By Theorem 7(b),
we get

lim
r→0

Wo(r)

r2
⩾ 2·π.

Applying the main statement in the monotonicity theorem, we get Wo(r)

r2
⩾ 2·π for

any r > 0. By Theorem 7(b) and Proposition 3 in Fáry’s proof, we get

Φ(α) ⩾ Ψo(α) ⩾ 2 · Wo(r)

r2
⩾ 4·π

— a contradiction.

6. CANTARELLA–KUPERBERG–KUSNER–SULLIVAN. The following proof
is due to Jason Cantarella, Greg Kuperberg, Robert Kusner, and John Sullivan [5];
this is the only proof in our collection that uses knot theory a bit beyond the basic
definitions.

Choose a polygonal curve α = p1 . . . pn. Suppose a plane Π is in general position;
that is, it does not contain vertices of α. Let us denote by crossα(Π) the number of
intersections of Π and α. Extend the function Π ↦→ crossα(Π) to the minimal upper
semicontinuous function defined for all planes; in other words, crossα(Π) is the max-
imal integer k such that there is a generic plane Π′ arbitrarily close to Π that intersects
α at k points. The number crossα(Π) will be called the crossing number of Π. Note
that the crossing number is always even, and it cannot exceed n.

10



Figure 12. First and second hulls of a trefoil.

It is easy to see that the convex hull h1(α) of α can be defined in the following way:
x ∈ h1(α) if crossα(Π) ⩾ 2 for any plane Π containing x. This observation suggests
the following definition of the second hull: x ∈ h2(α) if crossα(Π) ⩾ 4 for any plane
Π containing x. See Figure 12.

Theorem 8. The second hull of any nontrivial knot α has a nonempty interior.

Recall that spherical polygonal curve is defined as a concatenation of a finite num-
ber of great-circle arcs on the unit sphere. To show that Theorem 8 implies the main
theorem, we will apply the spherical Crofton formula: for any spherical polygonal
curve γ we have

( ***) length γ = π·n,

where n denotes the average number of intersections of γ with equators. To prove this
formula, check it for an arc and sum it up for all edges of γ.

Proof of the main theorem modulo Theorem 8. Choose a point o ∈ h2(α); we can as-
sume that o /∈ α. Consider the radial projection α∗ of α to the unit sphere centered at
o; observe that

lengthα∗ = Ψo(α),

where Ψo(α) denotes the angular length of α with respect to o; see Section 2.
By Proposition 3, it is sufficient to show that

(****) lengthα∗ ⩾ 4·π.

Since o is in the second hull, α∗ crosses every equator in general position at least 4
times. It follows that the average number of crossings is at least 4. Applying ( ***), we
get (****).

Suppose that a plane Π divides a knot α into two arcs, one on each side; in particu-
lar, Π intersects α at two points, say p and q. Then we can create two knots α1 and α2

by joining the ends of the two arcs by the line segment [p, q]. In this case, we say that
α is a connected sum of α1 and α2.
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Claim 9. Suppose that a knot α is a connected sum of knots α1 and α2. If at least one
of the knots α1 or α2 is nontrivial, then so is α.

This claim has an amusing proof via the so-called infinite swindle [11]; see also
[15]. It also follows by additivity of knot genus [1, Section 4.3].

Suppose β is a polygonal curve inscribed in α; that is, the vertices of β lie on α
and they appear in the same cyclic order on α and β. If a plane in general position
intersects an edge of β, then it intersects the corresponding arc of α. Therefore, we get
the following.

Observation 10. If a polygonal line β is inscribed in α, then

h2(β) ⊂ h2(α).

Proof of Theorem 8. Assume the contrary; let α be a nontrivial polygonal knot with
the smallest number of vertices, say n, such that h2(α) has an empty interior. It is easy
to see that n ⩾ 6; in fact, any simple space 5-gon is a trivial knot.

Suppose Π is a plane in general position that dividesα into two arcs; thus it defines a
decomposition of α into a connected sum of two knots α1 and α2. By the observation,
h2(α1) and h2(α2) have empty interiors. It follows that one of these knots, say α1,
is trivial; therefore, the other, respectively α2, is isotopic to α. Indeed, if n1 and n2

denote the number of vertices in α1 and α2, then n1 + n2 = n+ 4. If both knots are
nontrivial, then n1 ⩾ 6 and n2 ⩾ 6. Therefore, n1 < n and n2 < n, which contradicts
the minimality of n.

The open half-space H bounded by Π and containing α2 \ Π will be called es-
sential. Intuitively, an essential half-space cuts off a trivial knot of α. (A half-space
containing all of α will be considered essential as well.) A rather straightforward ap-
plication of Claim 9 implies that if H ′ is another essential half-space for α, then it
is also essential for α2; see Figure 13. It follows that the intersection of all essential
half-spaces, say W , has nonempty interior — roughly speaking, it has to contain the
region where the knotting of α takes place.

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′H ′

Π

Π′

Figure 13. Two essential half-spaces.

Finally observe that if crossα(Π) = 2 for a plane Π in general position, then Π
bounds an essential half-space. It follows that if a plane in general position intersects
W , then it has crossing number at least 4, so h2(α) ⊃W — hence the result.
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