
The Globus Compute Dataset:
An Open Function-as-a-Service Dataset From the Edge to the Cloud

André Bauera,b, Haochen Pana, Ryan Chardb, Yadu Babujia, Josh Bryana, Devesh Tiwaric, Ian Fosterb,a, Kyle Charda,b

aUniversity of Chicago, United States
bArgonne National Laboratory, United States

cNortheastern University, United States

Abstract

We present a unique function-as-a-service (FaaS) dataset capturing the use of the Globus Compute (previously funcX) platform.
Globus Compute implements a federated model via which users may deploy endpoints on arbitrary remote computers, from the
edge to high performance computing (HPC) cluster, and they may then invoke Python functions on those endpoints via a reliable
cloud-hosted service. The dataset covers 31 weeks and includes 2 121 472 task submissions from 252 users executed on 580
remote computing endpoints. It includes 277 386 registered functions. We describe the dataset and various observations, some
that are similar to other FaaS datasets, for example, that 74% of tasks run for less than 1 second, and some that are unique to
Globus Compute, for example, that endpoints are used in different ways and that the majority of functions are related to scientific
computing and machine learning. To the best of our knowledge, this dataset represents the first federated FaaS dataset that includes
user workloads, distributed computing endpoints, and analysis of registered function bodies. We expect the dataset to be useful for
researching FaaS architectures, workload modeling, container warming, and other distributed computing architectures.

Keywords: Serverless computing, Function-as-a-Service, Globus Compute, FAIR dataset, Computing continuum

1. Introduction

Serverless computing has emerged as a productive and scal-
able approach to developing and deploying applications. Server-
less computing is a cloud-based paradigm that enables develop-
ers to write code without worrying about infrastructure manage-
ment, thereby reducing barriers and potentially increasing effi-
ciency and scalability. The most common serverless paradigm,
Function-as-a-Service (FaaS), popularized by Amazon Lambda,
Google Functions, and Azure Functions, allows users to regis-
ter programming functions with a cloud service and then in-
voke those functions with arbitrary input arguments. The cloud
provider transparently provisions the virtual infrastructure (typ-
ically a container), executes the function, and returns results.

In this paper, we describe and analyze an open FaaS data-
set from Globus Compute (previously known as funcX [1, 2]).
Globus Compute implements a unique federated FaaS model
that is primarily aimed at scientific computing scenarios. Un-
like cloud FaaS platforms, Globus Compute’s federated model
is based on a hybrid architecture via which users deploy com-
puting endpoints on arbitrary remote resources (from the edge
to the data center). These endpoints are responsible for manag-
ing the local computing infrastructure, including provisioning
resources via different interfaces (e.g., batch schedulers, Ku-
bernetes, local threads). Globus Compute endpoints are de-
ployed on various high performance computing (HPC) systems,
cloud platforms, and edge devices (e.g., Raspberry Pi, Jetson
Nano, and personal laptops). Like other FaaS platforms, Glo-
bus Compute exposes a REST API that enables users to define

their functions, specify input parameters, and submit tasks for
execution. However, unlike cloud FaaS platforms, users must
also specify the endpoint on which to execute the function. Glo-
bus Compute handles the distribution of task execution across
available resources, ensuring scalability and efficient utilization
of computational power. It also provides features like function
versioning, result caching, and performance monitoring.

We present a new open-source dataset that encompasses 31
weeks of data, with 2.1 million function invocations from 252
users executed across 580 distributed endpoints. We explore
a wide range of dimensions, such as usage patterns, function
invocation patterns, endpoint configurations, function bodies,
and geographical locations. Our analysis aims to uncover valu-
able insights that can contribute to a deeper understanding of
serverless architectures and their performance characteristics.
For instance, the extracted arrival rates and run time distribu-
tion can be used for simulating scientific workloads and explor-
ing scheduling challenges across the computing continuum.

To promote FAIR (findability, accessibility, interoperability,
and reusability) research, we have publicly made the dataset
and analysis scripts available.1 We intend to update the dataset
as the adoption of the platform grows.

In contrast to other public FaaS datasets, such as the Azure
dataset [3], our dataset is unique in the following ways.

1. We capture the function execution lifecycle in detail, with
six timestamps as functions flow through the platform

1The dataset is publicly available: https://doi.org/10.5281/zenodo.
10044780

Preprint submitted to Future Generation Computer System May 3, 2024

https://doi.org/10.5281/zenodo.10044780
https://doi.org/10.5281/zenodo.10044780

and endpoints. These timestamps allow us to explore the
time taken to acquire resources from batch schedulers,
for example.

2. We consider a federated model that provides informa-
tion about how 580 endpoints are configured (e.g., HPC,
cloud, and edge) and where they are deployed across the
computing continuum. This inherently differs from a sin-
gle hosted service that users use from a data center.

3. We include data from 252 users spanning a wide variety
of mostly scientific applications.

4. We analyze the function source code to classify the differ-
ent “types” of functions and compare how they are used.

5. Our dataset spans 31 weeks of usage, which allows us to
explore temporal patterns.

Like the Azure dataset, which has generated new research in
workload performance prediction [4], serverless function schedul-
ing [5], load-balancing policies [6], and cold-starts [7], we be-
lieve that our dataset and the insights presented in this paper can
advance research for FaaS architectures, workload modeling,
container warming, and other distributed computing architec-
tures. This is particularly noteworthy due to the level of detail
offered by our dataset.

The remainder of this article is structured as follows: Sec-
tion 2 introduces the Globus Compute platform and briefly out-
lines three example use cases. Section 3 describes the dataset
and how it was obtained. Section 4 presents a high-level sta-
tistical overview of the dataset. Section 5 provides a deeper
analysis of various topics of interest. Section 6 reviews related
work. Finally, Section 7 summarizes our contributions.

2. Globus Compute

Globus Compute, previously known as funcX [1, 2], is a
unique federated function-as-a-service platform primarily used
for scientific computing. We describe here the architecture of
Globus Compute and some representative applications.

2.1. Globus Compute Architecture

The Globus Compute architecture is shown in Figure 1.
Unlike traditional cloud-hosted FaaS platforms (e.g., Amazon
Lambda) and open-source platforms (e.g., OpenWhisk [8] or
OpenFaaS [9]), Globus Compute combines a single cloud-hosted
web service with an ecosystem of user deployed endpoints. The
cloud service exposes a REST API to users and a message
queue interface to remote computing endpoints.

2.1.1. User interface
Task execution is similar to other FaaS platforms. First,

users register Python functions with the cloud service by pass-
ing a serialized function body. The Cloud service stores the
serialized function body in the database and assigns a unique
UUID for subsequent use. Users may then invoke the function
by supplying the function UUID, target endpoint UUID, and

Pod 2Pod 1

Globus Compute

Endpoint

Slurm
Provider

Logs

Database

Node 1 Node 2

…

HPC Kubernetes Local

Endpoint Endpoint

HTEnginer
Kubernetes

Provider

HTEnginer
Local

Provider

TPEnginer

Figure 1: Globus Compute Architecture. The cloud service maintains state
(e.g., functions, endpoints, and tasks). It uses message queues to communicate
with remote endpoints. Endpoints provision resources from different sources
(e.g., HPC, Kubernetes, Local) and execute tasks on those resources.

1 from globus compute sdk import Executor
2
3 # function to be executed
4 def science function (input args) :
5 # do work
6 return resu l t
7
8 # create the executor for a specif ic endpoint
9 gce = Executor (endpoint id=<endpoint id>)

10
11 # submit the function to be executed
12 future = gce . submit (science function ,
13 input args=<args>)
14
15 # wait for the task to complete
16 print (future . resu l t ())
Listing 1: Using Globus Compute to execute a function: First, a simple function
is defined (Line 4). Then, an Executor is created specifying the endpoint to use
(Line 9). The Executor is used to submit the function and input arguments
(Line 12). Finally, the future is used to access the result (Line 16).

optionally any input arguments. The Globus Compute SDK of-
fers various interfaces to simplify use, including a batch sub-
mission interface and an implementation of Python’s concur-
rent futures executor interface. In Listing 1, we show an exam-
ple of using the executor interface to execute a task.

Globus Compute uses Globus Auth for authentication and
authorization. Users may authenticate using one of hundreds
of supported identity providers. The Globus Compute service
is represented as an OAuth 2 resource server with associated
OAuth 2 scopes. Users may obtain OAuth 2 access tokens to
access the service and register, manage, and execute functions.
Upon creation, endpoints are securely paired with the Globus
Compute service (by following an OAuth 2 flow). Globus Com-
pute allows endpoints to be shared among a group of users un-
der restrictive conditions: it is an admin operation (not exposed
to users) that must be done by the Globus Compute team. We
only enable sharing when endpoint owners and resource own-
ers approve. In such cases, the endpoint is associated with a

2

user-managed Globus Group. Further, an endpoint manager can
specify an allowlist of function UUIDs that may be executed at
the endpoint by authorized users.

2.1.2. Endpoints
Globus Compute endpoints are designed to abstract remote

computing resources. They are assigned to retrieve tasks from
the cloud service and then execute them in a local environment.
Globus Compute endpoints use Parsl [10] to dynamically provi-
sion compute resources and execute tasks. The model relies on
two key constructs: Providers and Engines. Providers abstract
the interface used to provision resources from different paral-
lel and distributed computing systems. For example, Globus
Compute includes providers for local processes, batch sched-
ulers (e.g., Slurm, portable batch system (PBS), and load shar-
ing facility (LSF)), and Kubernetes. In each case, the provider
communicates with the target system to request resources (e.g.,
processes, nodes, or containers), deploy required software on
those resources (e.g., the endpoint worker), and monitor usage.

An Engine manages how tasks are executed on provisioned
resources. We leverage Parsl’s pilot job model, which deploys
a manager process on a provisioned node to manage commu-
nication and deploys one or more Python worker processes to
execute tasks. The worker receives tasks from the manager, ex-
ecutes them, and returns the results. Like other FaaS systems,
Globus Compute enables workers to be deployed in containers
to create customized and isolated execution environments. It
is also able to scale resources to meet workload needs dynam-
ically; however, unlike cloud FaaS systems, Globus Compute
layers such scaling behavior over various resource types, in-
cluding Kubernetes and HPC schedulers.

2.2. Example Use Cases

Globus Compute is used for a range of use cases. We de-
scribe briefly three common examples: bag of tasks, federated
workflows, and computation as a service.

2.2.1. Bag of Tasks
At the height of the COVID-19 pandemic, the US Depart-

ment of Energy formed the National Virtual Biotechnology Lab-
oratory (NVBL) to pool resources to address key challenges in
response to the pandemic [11, 12]. As part of the NVBL, a
vast amount of computing resources were made available from
DOE, NSF, industry, and internationally. The Globus Com-
pute platform played a key role in running an enormous bag
of tasks computations across contributed resources. For exam-
ple, it was used to extract features from 4.2 billion molecules
for use in machine-learning workflows to screen therapeutics.
The search space was broken into smaller batches of roughly
20 000 molecules per batch, and then the batches were executed
across several supercomputers to create a canonical simplified
molecular-input line-entry system (SMILES), compute molec-
ular descriptors, render 2D figures, and compute molecular fin-
gerprints. The processing produced a 60TB dataset that has
been subsequently used for various analyses [13].

Such workloads are typified by a large number of tasks run
for a short period of time (perhaps hours to days) with long
periods of inactivity between work.

2.2.2. Federated Workflows
Scientific instruments produce massive volumes of data at

very high velocities. Effectively utilizing such data requires
online processing, often requiring extreme-scale resources, to
provide rapid feedback to the experiment. Globus Compute has
been used as a key component of automated workflows con-
necting various experiments at the Advanced Photon Source
and the Argonne Leadership Computing Facility (ALCF). In
prior work [14], we reported on experiences implementing pro-
duction workflows for five different scientific instruments, each
of which engaged powerful computers for data inversion, model
training, or other purposes. The workflows were constructed
using Globus Flows [15], enabling, for example, data to be
transferred from an instrument to an HPC system when it was
acquired, for various Globus Compute functions to be executed
both at the edge and HPC for purposes such as model training,
quality control, reconstruction, and metadata extraction; and for
results to be shared with scientists via catalogs.

These workloads are typified by high arrival rates while ex-
periments are progressing and long periods of downtime with-
out experiments. Functions are used for many purposes; thus,
they may run from seconds to hours.

2.2.3. Computation as a Service
The complexity of modern machine learning (ML) models,

both in terms of computational resources needed for training as
well as the complex environments required for inference, have
made it intractable for many researchers. The inference-as-a-
service paradigm aims to democratize access to ML models by
deploying a model as a service and enabling on-demand infer-
ence. Globus Compute provides an ideal platform on which
to build such services. Endpoints can be deployed on special-
ized and scalable computers, pre-configured with suitable en-
vironments (e.g., via Conda or containers). ML models can
then be registered as functions and called by users to run in-
ference against input arguments. The Data and Learning Hub
(DLHub) [16], which enables the publication of ML models and
on-demand inference relies on Globus Compute endpoints de-
ployed on a Kubernetes cluster. Similarly, researchers at ALCF
deployed AlphaFold [17], a deep learning system that predicts
protein structures, as a service on the Polaris supercomputer [15].

These workloads are typified by sporadic usage. Model in-
ference tasks typically run for short periods of time and are of-
ten involved across a wide range of input parameters.

3. The Globus Compute Dataset

The dataset2 was gathered from the Globus Compute plat-
form starting from November 28th, 2022, 00:00:00 UTC (in-
clusive) until July 3rd, 2023, 00:00:00 UTC (exclusive). It

2The dataset is publicly available: https://doi.org/10.5281/zenodo.
10044780

3

https://doi.org/10.5281/zenodo.10044780
https://doi.org/10.5281/zenodo.10044780

contains 2 121 472 task submissions from 252 users executed
across 580 geographically distributed endpoints. Moreover, the
dataset includes 277 386 registered functions, among which we
found 3026 unique serialized function bodies. Due to chal-
lenges with the serialization method (and changes over the pe-
riod of the dataset), we were able to deserialize 2473 function
bodies, of which 1847 are unique after deserialization. Please
note that we do not differentiate between failed and successful
tasks. We also do not include function bodies in the publicly
released dataset for privacy reasons.

To avoid confusion in the following sections, we describe
the relationships between different terms as depicted in Fig-
ure 2. We use function to refer to the registered Python code
(including the input signature and function body), task to refer
to an instance of a running function (an invocation), and end-
point to refer to the location on which a task is executed.

Task

+ Task UUID
+ User UUID
+ Endpoint UUID
+ Function UUID

Function

+ Function UUID
+ Function body UUID

Endpoint

+ Endpoint UUID

Function Body

+ Function body UUID

Figure 2: Overview of the relationship between terms.

3.1. Data Collection

We collected data from the cloud-hosted Globus Compute
platform and by reconciling logs. Specifically, Endpoint and
function data are stored in a relational cloud-hosted database.
We extracted a subset of the data related to endpoints and func-
tions used during the recording period.

Globus Compute captures and records timestamps as tasks
transition through the system. The complete set of transitions is
depicted in Figure 3 and further described in Table 1. The ini-
tial time that a task is submitted is recorded when the request is
first submitted to the Globus Compute web service. Subsequent
task lifecycle transitions, such as when the task is delivered to
an endpoint and when execution is performed by a worker pro-
cess, are captured and returned back to the web service to be
recorded. Logs are stored in Amazon CloudWatch and are ex-
ported in the format described in this paper.

3.1.1. Data Processing
We describe how we deserialized the function bodies and

obtained geo-locations for endpoints.
Preprocessing. We preprocessed the dataset to remove func-
tions run as part of automated continuous integration testing by
the Globus Compute team. We filtered the endpoint and func-
tion data by the IDs reported in the task trace so as only to report
endpoints and functions used during this period.
Function deserialization. Globus Copmute records serialized
function bodies in a central database. However, we found that

Cloud
Platform Endpoint

submitted

assigned

queued

started

finished

reported

received (tre)

waiting for
nodes (twn)

waiting for
launch (twl)

execution
start (tes)

execution
end (tee)

results
received (trr)

Worker

assigned

reported

finished

reported

Acquire
resources

Figure 3: Sequence diagram of the flow of a submitted task.

the way functions are serialized differs based on the environ-
ment in which it was defined. For functions defined in local
Python interpreters, we can obtain a string that represents the
raw Python file. We were able to obtain unique source code for
1554 of 1578 functions defined in this way.

For functions defined in Jupyter notebooks, we have only
the function object and the code attribute representing the
compiled function body. In this case, we used the metadata to
create a pyc file. We were able to recover 1208 of 1448 pyc.
The most common reason for failures was when the function
imported private libraries that were not accessible to us. We
then decompiled the byte code to source code and discarded
files with syntax errors.

We were able to recover 919 source files from the byte code.
Following this process, many import statements are included
on a single line. We used the isort Python utility to separate
the import statements. After deserialization of both function
types, we remove duplicates (using cloc) to obtain 1847 unique
function bodies.
Geo-locations. Globus Compute records IP addresses for end-
points. Of the 580 endpoints included in the dataset, we ob-
tained IP addresses for 428. We used the GeoLite2 city data-
base [18] to map IP addresses to locations. While the map-
ping is accurate in many cases, for some IP addresses without
city-level information, the location is stated as the center of the
country.
Anonymization. To preserve anonymity, we obscure the data
by hashing all identifiers using HMAC-SHA256 with secret
salts. We apply a different salt to each column but ensure that
identifiers (function, endpoint, user) are consistent across the
dataset. This allows us to maintain the relationships between
the data while removing any identifiable data.
Summary. The dataset comprises information about (i) the
function invocations (see Table 1), (ii) the functions (see Ta-
ble 2), and (iii) the endpoints (see Table 3). The UTC times-
tamps in the function invocation dataset are recorded in nanosec-
onds allowing fine-grained insights.

4

Characteristic Description

Task uuid The id of the submitted task.
User uuid The id of the user who submitted the task.
Endpoint uuid The id of the endpoint where the task is executed.
Function uuid The id of the invoked function.
Argument size The Byte size of the (black-box) input.
Received (tre) The UTC timestamp when the task was received by the cloud platform.
Waiting for nodes (twn) The UTC timestamp the task was received by an endpoint and is queued for execution.
Waiting for launch (twl) The UTC timestamp the task was assigned and was waiting to be started.
Execution start (tes) The UTC timestamp when the task execution started.
Execution end (tee) The UTC timestamp when the task execution finished.
Result received (trr) The UTC timestamp when the results were returned to the web service.

Table 1: Description of tasks (function invocations) dataset (N = 2 121 472).

Characteristic Description

Function uuid The id of the function.
Lines of code The number of source code lines.
Cyclomatic complexity The calculated complexity.
Imported libraries The number of imported libraries.

Table 2: Description of functions dataset (N = 277 386).

Characteristic Description

Endpoint uuid The id of the endpoint.
Type The type of provider of the endpoint

(e.g., HPC scheduler).
Endpoint version The version of the endpoint.

Table 3: Description of endpoints dataset (N = 580).

4. Statistical Analysis

To provide a high-level overview of the dataset, we report
descriptive statistical measures for the system performance, in-
terarrival times, task invocations, function bodies, and user be-
havior in Table 4. As central tendency, we report the mean and
the median. As measures of variability, we report the standard
deviation and the range.

4.1. System Performance

Figure 4 shows the cumulative distribution function (CDF)
of submitted tasks per hour. The average task submission rate
per hour was 404.31. In 25%, 50%, and 75% of the recorded
time, the Globus Compute platform received at most 59, 179,
and 381 tasks per hour, respectively. The highest rate observed
was 4500 tasks per hour, which occurred on April 25th, 2023,
coinciding with the annual Globus World conference in which
the transition from funcX to Globus Compute was announced
and Globus Compute was added to the Globus website. In con-
trast, during 8% of the recorded time, the Globus Compute plat-
form did not receive any task submissions. The time-dependent
behavior of the task submissions is discussed in Section 5.1.

10
0

10
1

10
2

10
3

10
4

10
5

Arrival Rate (Tasks/Hour)

0

0.25

0.5

0.75

1

C
D

F

Figure 4: Distribution of the task arrival rate per hour with the x-axis in log-
scale.

Changing the perspective from the overall system to the in-
dividual endpoints, we investigate each endpoint’s average task
submission rate. The endpoints had to handle an average sub-
mission rate of 110.75 tasks per hour. 25%, 50%, 75%, and
90% of the endpoints received an average of 0.80, 2.03, 10.24,
and 66.85 tasks per hour, respectively. The most used endpoint
had to serve an average invocation rate of 8110 tasks per hour.
Please note, unlike the Globus Compute platform, an endpoint
can be started and shut down arbitrarily by users and thus can
have long periods of unavailability. Therefore, an endpoint’s
minimum average tasks per hour was just 0.33.

The CDF of end-to-end times (from task received to results
received) is displayed in Figure 5. The average end-to-end time
for a submitted task was 23 minutes, with a median time of
0.34 seconds. Additionally, 59% of all submitted tasks were
completed in less than 1 second, while 80% finished in less
than 10 seconds. Moreover, 85% of all tasks were completed
in less than 1 minute. The peak time of 1.17 million seconds is
due to one task waiting to be delivered to an endpoint that was
offline at the time. The user must have started the endpoint ap-
proximately 13 days and 14 hours after the task was submitted.
In the subsequent subsection, we examine the different states a
task goes through to understand the breakdown of the end-to-

5

Characteristic Central Tendency Measure of Variability

Mean Median SD Range

System performance
Arrival rate [req/h] 404.31 179.00 1.46e+03 [0e+00; 4.53e+04]
Avg. arrival rate per endpoint [req/h] 110.75 2.03 634.45 [0.33; 8.11e+03]
End-to-end time [s] 1.36e+03 0.34 1.66e+04 [1.57e-03; 1.17e+06]

Interarrival times
Received (tre)→Wait for node (twn) [s] 414.83 0.10 1.48e+04 [1.02e-06; 1.17e+06]
Wait for node (twn)→Wait for launch (twl) [s] 260.58 7.23e-03 1.88e+03 [1.77e-04; 1.31e+05]
Wait for launch (twl)→ Execution starts (tes) [s] 298.89 9.02e-03 2.08e+03 [4.91e-04; 1.31e+05]
Execution starts (tes)→ Execution ends (tee) [s] 49.04 0.03 300.37 [7.6e-05; 1.04e+05]
Execution ends (tee)→ Results received (trr) [s] 5.42 0.13 51.13 [3.74e-05; 4.9e+04]

Tasks
Avg. function idle time [s] 2.13e+03 61.38 5.55e+04 [5.12e-06; 5.44e+06]
Argument size [Bytes] 1.73e+04 62.00 2.14e+05 [30.00; 1.03e+07]

Function Bodies
Lines of code 35.68 48.00 29.47 [1.00; 467.00]
Cyclomatic complexity 5.91 6.00 3.96 [1.00; 20.00]
Imported libraries 1.50 1.00 1.52 [0.00; 18]

Users
Avg. task submission interval [s] 1.89e+05 3.25e+03 8.1e+05 [2.67e-06; 7.48e+06]
Tasks submitted 8.42e+03 22.50 5.12e+04 [1.00; 6.78e+05]
Functions submitted 1.1e+03 7.50 1.07e+04 [1.00; 1.23e+05]
Used endpoints 3.08 1.00 4.56 [1.00; 29.00]

Table 4: Descriptive statistical measures of the dataset.

end time.

10
4

10
2

10
0

10
2

10
4

10
6

End-to-End Time (Second)

0

0.25

0.5

0.75

1

C
D

F

Figure 5: Distribution of the task end-to-end time of all submitted tasks in
seconds with the x-axis in log-scale.

4.2. Interarrival times

Figure 6 shows five CDFs representing interarrival times.
As expected, we see significant differences between the differ-
ent times matching the different stages of the task lifecycle. The
blue curve illustrates the CDF of the time between the states
tre → twn. On average, a submitted task had to wait 414.83
seconds to be queued for execution. However, for 40% of the

10
4

10
2

10
0

10
2

10
4

10
6

Interarrvial…Time…(Second)

0

0.25

0.5

0.75

1

C
D

F tre…to…twn

twn…to…twl

twl…to…tes

tes…to…tee

tee…to…trr

Figure 6: Distributions of the five interarrival times in seconds with the x-axis
in log-scale.

submitted tasks, the waiting time was less than 0.1 seconds.
Further, 97% and 99% of submitted tasks experienced a waiting
time of less than 1 second and 1 minute, respectively. Similar to
the end-to-end time (see Section 4.1), the longest waiting time
observed was 1.17 million seconds (13.5 days).

Times between the states twn → twl and twl → tes are shown
as CDFs by the orange and green curves in Figure 6, respec-
tively. The transition time from the queue to being assigned and
waiting for execution was 260.58 seconds on average. In 70%

6

of cases, it took less than 0.01 seconds for the transition. Simi-
larly, for 84% of tasks, this transition occurred within 1 second,
and for 92% of tasks, it happened within 1 minute. Afterward, a
task was assigned for, on average, 298.89 seconds until the ex-
ecution started. For 39% of the submitted tasks, this time was
less than 0.001 seconds. Moreover, 92% and 98% of tasks were
started within 0.1 seconds and 1 second, respectively.

In Figure 6, the CDF of the execution time of a submitted
task, tes → tee, is represented as red curve. The average exe-
cution time for a task was 49.04 seconds, with a median value
of 0.03 seconds. Additionally, 74% of submitted tasks had an
execution time of less than 1 second. Our findings align with
similar studies. For instance, the median of the average exe-
cution time in the Azure dataset is below one second [3], and
another investigation reported a median execution time of 0.06
seconds [19]. Among the submitted tasks that ran for less than
1 second, 43% were submitted by a single user. Notably, nearly
all of this user’s tasks were interacting with the batch sched-
uler, involving actions such as job submissions to the cluster or
monitoring the status of submitted jobs. Additionally, 90% and
99% of submitted tasks were completed within 1 minute and
1 hour, respectively. Tasks running for more than 1 hour were
submitted by only 4.4% of the total users. Among these users,
two were responsible for 90% of these long-running tasks.

The purple curve in Figure 6 depicts the CDF of the time
between the states tee→ trr. On average, the time taken to return
the results to the web service was 5.42 seconds. However, for
32% of the submitted tasks, the time taken to return the results
to the web service was less than 0.1 seconds. Furthermore, 84%
and 93% of tasks received their results within 1 second and 10
seconds, respectively.

4.3. Task Invocations

10
3

10
1

10
1

10
3

10
5

10
7

Function Idle Time (Second)

0

0.25

0.5

0.75

1

C
D

F

Figure 7: Distribution of the average function idle time in seconds with the x-
axis in log-scale.

As noted in Section 3, a single function may be executed
many times. To this end, we are interested in the average func-
tion idle time, which represents the time between the end of one
function’s execution and its next call. The average function idle
time is displayed as CDF in Figure 7. On average, a function
was called approximately every 35 minutes after its execution

was finished. In contrast, 50% of functions were called again
in less than 61.38 seconds. Furthermore, 6%, 17%, and 99% of
functions were repeatedly called after execution less than every
second, minute, and hour, respectively. Notably, by implement-
ing a keep-alive or warming time of 5 minutes, the cold start for
93% of functions can be avoided.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Argument…Size…(Byte)

0

0.25

0.5

0.75

1

C
D

F

Figure 8: Distribution of the task argument size of all submitted functions in
Bytes with the x-axis in log-scale.

The CDF of the size of arguments for submitted tasks is de-
picted in Figure 8. The average input size for a submitted task
was 17 Kilobytes. Moreover, 50%, 75%, and 99% of submit-
ted tasks had an input less than 62 Bytes, 4 Kilobytes, and 132
Kilobytes, respectively. Tasks with argument sizes exceeding 5
Megabytes were submitted by 4.7% of the users and accounted
for 0.03% of all submitted tasks. Of these 12 users, two were re-
sponsible for 86% of these submissions. Please note that these
two users are different from the two users with long-running
tasks discussed previously.

4.4. Function Bodies

In this section, we report statistics about the function bod-
ies. As we were not able to deserialize all function bodies,
we focused on a subset of the data that maps to a deserialized
function. More specifically, the subset includes 1 854 104 tasks,
268 476 functions, and 1847 function bodies.

The length of function bodies in our dataset varies, rang-
ing from 1 to 467 lines of code (LoC). On average, a submit-
ted task had 35.68 lines, and 50% of these tasks contained 48
LoC or fewer. Moreover, 96% of the tasks had a maximum of
54 LoC. Interestingly, 44% of submitted tasks had exactly 54
LoC. This is due to the repeated calls of a specific function.
When focusing only on unique functions (268 476) instead of
all submitted functions (1 854 104), the average function length
reduced to 19.90 LoC, with 50% of functions having 15 LoC or
fewer. When considering only unique function bodies (1847),
the average LoC was 32.30, with a median of 13. The CDFs of
LoC for all tasks, functions, and function bodies are displayed
as the blue, orange, and green curves, respectively, in Figure 9.

To understand the workload of the Globus Compute plat-
form, we analyze function complexity. The cyclomatic com-
plexity of the functions, which represents the number of linearly

7

1 10 100 1000
Lines…of…Code…(LoC)

0

0.25

0.5

0.75

1

C
D

F

tasks
functions
function…bodies

Figure 9: Distributions of lines of code with the x-axis in log-scale. The blue
curve represents data from 1 854 104 submitted tasks, the orange curve from
268 476 functions, and the green curve from 1847 unique functions.

independent paths within the code, in our dataset ranges from
simple (1-10) to more complex (11-20). Consequently, none
of the functions are classified as complex (21-50) or untestable
(>50) according to the given categorization [20]. On average,
the complexity is 5.91, with 99% of submitted tasks (1 854 104)
having a complexity of 10 or lower. The average complexity re-
duces to 3.32 and 2.97, with a median of 2 for unique functions
(268 476) and 1 for unique function bodies (1847). The CDFs
of the cyclomatic complexity for all submitted tasks, all unique
functions, and all unique function bodies are shown as the blue,
orange, and green curves, respectively, in Figure 10. Remark-
ably, 99% of the submitted tasks and 94% of function bodies
tend to be more simple than complex, respectively. These re-
sults are corroborated by previous studies [21, 22].

0 5 10 15 20
Cyclomatic…Complexity

0

0.25

0.5

0.75

1

C
D

F

tasks
functions
function…bodies

Figure 10: Distributions of the cyclomatic complexity. The blue curve rep-
resents data from 1 854 104 submitted tasks, the orange curve from 268 476
functions, and the green from 1847 unique functions.

Lastly, we are interested in the number of libraries used
within a function. In our dataset, functions had between 0 and
18 imported libraries. A detailed investigation of the libraries
is conducted in Section 5.8. On average, 1.50 libraries were
imported, with 70% and 92% of submitted tasks (1 854 104)
having 1 or fewer and 3 or fewer imported libraries, respec-
tively. For unique functions (268 476) and unique function bod-

ies (1847), the average number of imported libraries increases
to 1.83 and 2.36, while the median is 2 for both cases. The
CDFs of the number of imported libraries for all submitted
tasks, all unique registered functions, and all unique function
bodies are depicted as the blue, orange, and green curves, re-
spectively, in Figure 11.

0 5 10 15 20
Number…of…Imported…Libraries

0

0.25

0.5

0.75

1

C
D

F

tasks
functions
function…bodies

Figure 11: Distributions of the number of imported libraries. The blue curve
represents data from 1 854 104 submitted tasks, the orange curve from 268 476
functions, and the green curve from 1847 unique functions.

4.5. User Behavior
After investigating the function idle time (see Section 4.3),

we switch our focus to the user perspective. Here, we are inter-
ested in the user’s “task submission interval,” which represents
the time between two task submissions by the same user. To this
end, we calculated the average user task submission interval per
user, and the corresponding CDF is displayed in Figure 12. On
average, a user submitted a task approximately every 2 days
and 4 hours. Further, 22%, 51%, 81%, and 96% of users sub-
mitted functions in less than a minute, hour, day, and week,
respectively. Notably, eight users submitted functions at a rate
exceeding 1 Hz.

10
5

10
3

10
1

10
1

10
3

10
5

10
7

User's…Task…Submission…Interval…(Second)

0

0.25

0.5

0.75

1

C
D

F

Figure 12: Distribution of user’s task submission interval in seconds with the
x-axis in log-scale.

Next, we are interested in the submission behavior of users.
To this end, we investigate how many tasks (2 121 472) and

8

unique functions (277 386) were invoked by users. The CDFs
of the number of tasks and unique registered functions submit-
ted by each are depicted by the blue and orange curves in Fig-
ure 13, respectively. On average, a user submitted 8.42 thou-
sand tasks. Among the users, 29% have submitted less than 10
tasks, while 65%, 85%, and 94% of the users have submitted
fewer than 100, 1000, and 10 000 tasks, respectively. Only two
users submitted more than 250 000 tasks. When considering the
number of unique registered functions, a user submitted on av-
erage 1.1 thousand unique functions. While 15% of users have
submitted only 1 unique function, 50% of users have submit-
ted fewer than 7 unique functions. However, 65%, 85%, and
94% of the users have submitted 100, 1000, and 10 000 unique
functions, respectively.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number…of…Tasks…/…Functions

0

0.25

0.5

0.75

1

C
D

F

tasks
functions

Figure 13: Distributions of the number of tasks per user (2 121 472) depicted as
blue curve and the number of functions per user (277 386) as orange curve.

Finally, we analyze the number of endpoints used by each
user. The corresponding CDF is shown in Figure 14. The av-
erage number of endpoints used per user is 3.08. More than
half of users (54%) used only 1 endpoint for their computa-
tions. Moreover, 72%, 88%, and 94% of the users used 2, 5,
and 10 endpoints or fewer, respectively. While 5 users used 24
endpoints or more, and 3 users used 25 endpoints or more.

0 5 10 15 20 25 30
Number…of…Endpoints

0

0.25

0.5

0.75

1

C
D

F

Figure 14: Distribution of the number of endpoints per user.

5. Detailed Analysis

We now delve deeper into specific topics of interest. Our fo-
cus in this section includes analyzing task submission patterns,
investigating invocations per user and endpoint, examining the
recurring functions and content of all functions and the libraries
they import, as well as exploring the the type and location of
endpoints.

5.1. Task Submission Behavior

To gain insight into the Globus Compute workload, we ex-
amine the submission patterns of tasks. While we have already
discussed the statistical description in Section 4.1, we now fo-
cus on behavior over time. To this end, we present two visu-
alizations: Figure 15 illustrates the task submissions per hour
throughout the dataset’s duration, while Figure 16 provides a
clearer representation of the submitted task rates per day. No-
tably, we observe a consistent usage level across the dataset,
with discernible declines around December 25th and January
1st, corresponding to Christmas Day and New Year’s Day, re-
spectively. We are unsure what caused the drop in usage around
April 10th. Additionally, several peaks are noticeable, such as
on April 24th, coinciding with the Globus World conference
(see Section 4.1).

Examining the task submission behavior in more detail, we
focus on the average task submission rate per hour and per
weekday. Please note that we removed outliers beforehand (3-σ
rule) so that events like Globus World do not distort the aver-
age. As shown in Figure 17, a distinct diurnal trend is evident in
the average hourly invocation pattern. The task submission rate
experiences fluctuations throughout the day, with notable peaks
occurring during the morning and afternoon hours in the Cen-
tral Daylight Time (CDT) zone. Particularly prominent peaks
are observed at 10 am, 2 pm, and 4 pm CDT. After 10 pm,
the invocation rate gradually decreases, reaching its minimum
at 7 am CDT. This pattern suggests lower activity levels during
the late-night and early-morning hours CDT. Figure 18 presents
the average daily invocations. The data reveals a clear pat-
tern where the task submission rates increase during the week,
reaching its lowest point on Saturday. Subsequently, the invo-
cation rate begins to increase again. This pattern is likely influ-
enced by regular work schedules and typical usage patterns.

5.2. Task Invocations per User

As already touched on in Section 4.5, a small set of users
contribute significantly to the overall number of task submis-
sions. In order to delve deeper into this behavior, we con-
ducted a more detailed investigation, and the results are pre-
sented in Figure 19. The CDFs for the most active users, dis-
playing their contributions in terms of task submissions (blue
curve), unique functions (green curve), and unique function
bodies (green curve). Each dot on the lines represents a user,
and for clarity, we plotted only the ten most active users.

Remarkably, the five most active users, or 1.9% of the total
users, account for 69.35% of the task submissions. Expanding
the scope to the top ten users, they are responsible for 91.70%

9

Nov
…

28

Dec
…

05

Dec
…

12

Dec
…

19

Dec
…

26

Ja
n…

02

Ja
n…

09

Ja
n…

16

Ja
n…

23

Ja
n…

30

Feb
…

06

Feb
…

13

Feb
…

20

Feb
…

27

Mar…
06

Mar…
13

Mar…
20

Mar…
27

Apr…
03

Apr…
10

Apr…
17

Apr…
24

May
…

01

May
…

08

May
…

15

May
…

22

May
…

29

Ju
n…

05

Ju
n…

12

Ju
n…

19

Ju
n…

26

Ju
l…

03
0

500

1…K

1.5…K

2…K

Ta
sk

s…
pe

r…
H

ou
r

Figure 15: Task submissions per hour with values greater than 2000 truncated.

Nov
…

28

Dec
…

05

Dec
…

12

Dec
…

19

Dec
…

26

Ja
n…

02

Ja
n…

09

Ja
n…

16

Ja
n…

23

Ja
n…

30

Feb
…

06

Feb
…

13

Feb
…

20

Feb
…

27

Mar…
06

Mar…
13

Mar…
20

Mar…
27

Apr…
03

Apr…
10

Apr…
17

Apr…
24

May
…

01

May
…

08

May
…

15

May
…

22

May
…

29

Ju
n…

05

Ju
n…

12

Ju
n…

19

Ju
n…

26

Ju
l…

03
100

1…K

10…K

100…K

Ta
sk

s…
pe

r…
D

ay

Figure 16: Task submissions per day with the maximum (107 890) and the minimum (20) truncated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
UTC…Hour

0

200

400

600

Av
g.

…T
as

ks
…

pe
r…

H
ou

r

CDT…noon…(Mar.…-…Nov.)

CST…noon…(Nov.…-…Mar.)CDT…7…am…(Mar.…-…Nov.)

CST…7…am…(Nov.…-…Mar.)

Figure 17: Average task submissions per UTC hour with outliers removed by 3-σ rule.

Mon Tue Wed Thu Fri Sat Sun
Weekday

0

5K

10K

15K

Av
g.

…T
as

ks
…

pe
r…

D
ay

Figure 18: Average task submissions per weekday with outliers removed by
3-σ rule.

of the submissions. These findings are consistent with previ-
ous studies [23, 3]. The trend of concentration becomes even
more apparent when it comes to unique functions. The top five
users contribute to 91.92% of all functions, while the top ten
users are responsible for 95.67% of the total unique functions.

1% 10% 100%
Percentage…of…Most…Active…Users

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

tasks
functions
function…bodies

Figure 19: Distributions of task submissions per user in percentage. The blue
curve represents data from 2 121 472 submitted tasks, the orange curve from
277 386 functions, and the green curve from 1847 unique function bodies.

Examining the function bodies, we find that the top five users
contribute 24.53% of all unique function bodies, and the top ten
users contribute 41.91% of all unique function bodies. These
figures underscore the significant impact of a few users. Inter-

10

estingly, the top ten users in the three categories (task submis-
sions, functions, and function bodies) show some overlap but
not complete consistency. This indicates different usage pat-
terns among these users. While some users issue as many tasks
as they have functions, others repeatedly invoke a few func-
tions. Further, there are users who programmed many function
bodies, but are not among the top users in terms of task sub-
missions or functions. In summary, the user behavior can be
broadly categorized into two groups: those who repeatedly ex-
ecute the same or similar tasks and those who utilize various
functions but less frequently.

5.3. Task Invocations per Endpoint

In Section 5.2, we observed that Globus Compute is pre-
dominantly used by a small group of power users. A similar
trend can be seen in the usage of endpoints, as depicted in Fig-
ure 20. This figure displays a CDF of the most popular end-
points, with each dot representing an individual endpoint. For
clarity, we have included only the top 10 popular endpoints.
The most heavily used endpoint serves 32.01% of all submitted
tasks. Expanding the scope to the top five endpoints, they col-
lectively handle about 63.42% of all submitted tasks, while the
top ten endpoints were used for 77.70% of all tasks.

0.1% 1% 10% 100%
Percentage…of…Most…Popular…Endpoints

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 20: Distribution of most popular endpoints in percentage.

Although it is possible to share endpoints among users, it
is uncommon as we carefully limit usage and require approval
from administrators and users. As a result, only a small frac-
tion, around 5%, of endpoints are shared with multiple users.
Among these shared endpoints, Figure 21 presents the CDFs of
the most frequent users accessing the most shared endpoints,
where each dot corresponds to a user. For the sake of clarity,
we show only the top 5 users each. The most widely shared
endpoint (blue curve) is used by 92 different users, followed
by 33 users (orange curve), 13 users (green curve), and 7 users
(red curve). The most shared endpoint serves only 8214 tasks,
equivalent to 0.39% of all submitted tasks. Within these in-
vocations, the top-ranked user is responsible for 33.36% of all
executions at this particular shared endpoint, while the top five
users collectively account for 76.28% of these invocations. The
second most shared endpoint receives 5895 invocations, with
the most active user responsible for 45.99% of these tasks. The

third most shared endpoint is used for 43 submitted tasks, and
the fourth most shared endpoint handles ten submitted tasks.

0.1% 1% 10% 100%
Percentage…of…Most…Frequent…Users

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

most…shared
2nd…most…shared

3rd…most…shared
4th…most…shared

Figure 21: Distributions of the most frequent users in task submissions per-
centage, individually ranked in the four most shared endpoints, with the x-axis
in log-scale. The most shared endpoint (blue curve) is used by 92 different
users, the second most shared (orange curve) by 33, the third most shared (green
curve) by 13, and the fourth most shared (red curve) by 7.

We reviewed the usage of all endpoints and identified sev-
eral common endpoint “types.” Figure 22 shows four endpoints
that are representative of broader types in the data. The first
(blue) shows ephemeral use, where the endpoint is used for a
short period of time and never used again. The second (orange)
shows constant use, likely supporting a regular workload with
about the same number of task submissions per hour. The third
(green) shows sporadic use with seemingly no pattern for usage
every few days. The fourth shows a campaign style pattern in
which an endpoint is used for a number of tasks over a few days
and then not used again for several months.

5.4. Frequently Invoked Functions

We investigated the popularity of functions invoked by sub-
mitted tasks, taking into account that different tasks may in-
voke the same function, and different functions may have iden-
tical function bodies. Please note that we derived the results
on the reduced dataset (1 854 104 tasks, 268 476, 1847 unique
function bodies) as discussed in Section 4.3. Figure 23 pro-
vides the CDFs for the most frequently invoked functions based
on unique function (orange curve) and unique function body
(green curve). Each dot in the figure represents a function. For
clarity, we include only the ten most popular functions.

The function with the most invocations (leftmost orange
dot) was called 53 370 times, making up 2.5% of all task sub-
missions (1 854 104 in total). The combined invocations of the
top five most popular functions account for 11.31% of all sub-
missions, while the top 10 most invoked functions (i.e., 0.04%
of all functions) make up 18.65% of all task submissions. Con-
sequently, the remaining 99.996% of functions constitute the
remaining 81.34% of submissions. To be more specific, the top
1% of all 268 476 unique functions are responsible for 66.72%
of all task submissions, while the top 10% account for 86.72%.

The unique function body that is most frequently invoked
accounts for 816 027 task submissions, representing 44.01% of

11

1
10

100
1 K

10 K

1
10

100
1 K

10 K

1
10

100
1 K

10 K

Oct
25

Nov
 01

Nov
 08

Nov
 15

Nov
 22

Nov
 29

Dec
 06

Dec
 13

Dec
 20

Dec
 27

Ja
n 0

3

Ja
n 1

0

Ja
n 1

7

Ja
n 2

4

Ja
n 3

1

Feb
 07

Feb
 14

Feb
 21

Feb
 28

Mar
06

Mar
13

Mar
20

Mar
27

Apr
03

Apr
10

Apr
17

Apr
24

May
 01

May
 08

May
 15

May
 22

May
 29

1
10

100
1 K

10 KTa
sk

s
pe

r H
ou

r

Figure 22: Task submissions per hour for four selected endpoints with each y-axis in log-scale.

0.0001% 0.001% 0.01% 0.1% 1% 10% 100%
Percentage…of…Most…Invoked…Functions

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

functions
function…bodies

Figure 23: Distributions of task submissions in percentage, individually ranked
by functions (268 476) and function bodies (1847).

all submissions. Cumulatively, the top five and top 10 func-
tion bodies are responsible for 62.94% and 73.70% of all in-
vocations, respectively. Remarkably, 756 function bodies are
invoked only once, which is depicted by the relatively flat por-
tion of the green curve in Figure 23. Moreover, the top 10% of
function bodies account for 99.51% of all submissions.

5.5. Function Idle Time
To explore similarities between functions in our dataset,

we investigate the function idle time patterns of frequently in-
voked functions. Please recall that the function idle time is
the time between the end of one function’s execution and its
next call. Moreover, we consider a function to be frequently
invoked if it was called at least 50 times. 2825 of 277 386 func-
tions meet this criteria. We then computed the Kolmogorov-
Smirnov statistic to compare the function idle time distributions
for each pair of functions, resulting in a dissimilarity matrix of
size 2825 × 2825. To facilitate visualization and density-based
clustering with HDBSCAN [24], we applied principal compo-
nent analysis to reduce the matrix dimensionality to 2825 × 2.
After fine-tuning the HDBSCAN hyperparameters, we identi-
fied two meaningful clusters alongside an unclustered set in the

10
4
10

2
10

0
10

2
10

4
10

6

Sample Mean (Second)

10
4

10
2

10
0

10
2

10
4

10
6

S
am

pl
e

S
td

. D
ev

. (
S

ec
on

d)

0 25 50 75 100

Sample Mean (Second)

0

20

40

60

80

100

1-min timer (2225) consecutive (575) unclustered (25)

Figure 24: Characterization of the frequently-invoked functions with colors
reflect their HDBSCAN clusters and legends.

reduced embedding space.
The clustering result is shown in Figure 24. Each point cor-

responds to one of the 2825 functions. The color of a function
represents the cluster, while the x and y coordinates represent
the sample mean and standard deviation of its idle time. In other
words, the x-value indicates how long it typically takes for the
function to be invoked again, while the y-value shows the vari-
ation until its next invocation. The left plot shows both axes in
seconds with a logarithmic scale. Since 2371 out of the 2825
functions fall within the range of (x, y) ∈ [0; 100]× [0; 100], the
right plot is non-scaled and limited to 100 seconds on both axes
to provide a more focused view.

Upon analyzing the left plot, a significant amount of func-
tions (1825 out of 2825) emerge within the range of 60 ≤ x ≤
65, indicating these functions exhibit a consistent invocation
pattern with an interval of approximately one minute. When
examining the zoomed-in plot, most of these functions (1818
out of 1825) can be found with (x, y) ∈ [60; 65] × [0; 20]. 1806
of these functions belong to the blue cluster that we identified
as one-minute timer tasks, which exhibit varying sample stan-
dard deviations but relatively consistent sample means. In to-
tal, the blue cluster contains 78.76% of the frequently-invoked

12

0

0.5

1

0

0.5

1

0 50 100
0

0.5

1

0 50 100 0 50 100

Function Idle Time (Second)

P
ro

po
rti

on

Figure 25: Nine selected sample functions showing idle time distributions, one
row per cluster and the last row representing unclustered distributions.

functions, although occupying a smaller area in both plots.
Another concentration of functions (478 orange dots) is lo-

cated within (x, y) ∈ [0; 20]×[0; 20], suggesting these functions
are invoked consecutively with low and almost constant idle
times. In total, there are 575 functions in the orange cluster,
which we refer to as consecutive tasks as they are submitted
consecutively with a sample mean of less than a minute and
varying sample standard deviations. The remaining 25 func-
tions are labeled as unclustered and exhibit relatively high sam-
ple means and sample standard deviations. Please note that as
the HDBSCAN clustering is based on the function idle time
distributions, functions with a similar mean and deviation can
belong to different clusters.

We also visualize representative CDFs of samples from each
cluster in Figure 25. By comparing these plots with the plots of
the Azure dataset [3], we find that our function idle time dis-
tributions are comparable. For example, most functions in the
blue cluster also exhibit a low number of bins, and the functions
from the orange cluster follow a right-skewed distribution. The
difference is that we calculate the idle time on a function level
while they perform it on an application level.

5.6. Analysis of Function Bodies

We proceed to explore the types of functions used on the
Globus Compute platform. For this purpose, we cluster the
1847 unique functions, focusing on their source code. Specif-
ically, we use an embedding model from OpenAI [25], which
transforms each function into a 1536-dimensional array with
values ranging from -1 to 1, capturing various semantic and
syntactic aspects of the code. Before we applied HBSCAN
clustering, we reduced the dimensionality from 1847 × 1536
to 1847 × 2 with UMAP [26].

The clustering identified 29 meaningful clusters and one un-
clustered set. We manually assigned one of five labels to each

5 0 5 10 15 20
Embedded…Dimension…1

10

0

10

20

30

40

E
m

be
dd

ed
…

D
im

en
si

on
…

2

Data…(140)
Job…(170)

ML…(515)
Sci…(403)

Trivial…(594)
Unclustered…(25)

Figure 26: HDBSCAN clustering of the embedding semantics vectors.

of these 29 clusters, indicating the function type for most, if
not all, of the functions in each group. The labels include Data
Manipulation (Data), Job Scheduling and Program Entry
(Job), Machine Learning (ML), Non-ML Scientific Comput-
ing (Sci), and Trivial Program (Trivial). Clusters with the
same label were merged, resulting in five clusters along with
the unclustered functions, which are visualized in Figure 26.

The Data Manipulation cluster is the smallest cluster and
contains 140 function bodies. Functions in this cluster transmit
or retrieve data from online platforms (like Globus) and per-
form local data manipulation tasks. As shown in Figure 26, the
eight groups (blue squares) in this cluster found by HBSCAN
are relatively distant from others, indicating that data manipula-
tion tasks are written very differently based on the nature of the
tasks and user preferences. The Job Scheduling and Program
Entry cluster comprises 170 function bodies, primarily involv-
ing functions related to sending or querying HPC jobs or start-
ing other Python or shell programs. They appear in two groups
(orange hexagons) found by HBSCAN. The small group on the
top right in Figure 26 comprises the uses of qsub commands,
while the large group on the left contains the uses of psij

commands [27], mpirun commands, and Python, shell, and bi-
nary scripts. The machine learning cluster includes 515 func-
tion bodies and is spread across twelve groups (green stars).
Each group represents one or more ML algorithms or strate-
gies, such as graph neural networks, n-nearest neighbors, long
short-term memory networks, federated learning, AlphaFold,
etc. The Non-ML Scientific Computing cluster has 403 func-
tion bodies and involves functions related to data collection,
processing, and analysis for scientific data (e.g., from simula-
tions or instruments). They are aggregated from six groups (red
crosses) found by HBSCAN and are relatively close to each
other, as shown in the lower right portion of Figure 26. The

13

largest cluster is the Trivial Program cluster, with 594 func-
tion bodies. The functions are either minimal function bodies
used by tutorial users or individuals exploring Globus Com-
pute. These trivial programs (purple triangles) appear in one
extremely large group found by HBSCAN. Lastly, 25 function
bodies (brown circles) remain unclustered by HBSCAN, indi-
cating their unique patterns or functionalities that were not cap-
tured within the clustering analysis.

After we clustered the different function bodies, we investi-
gated how different groups of functions vary in code and perfor-
mance measures. We report the median, minimum value, and
maximum value for each measure in Table 5. The code-related
measures consist of Lines of Code (LoC), cyclomatic complex-
ity, and the number of imported libraries, all of which are deter-
mined from the function bodies. The performance measures en-
compass the argument size, end-to-end time, and function idle
time, which are derived from tasks.

When examining the code-related measures, we observed
that the Trivial Program cluster comprises the shortest function
bodies, with the lowest complexity and the fewest imported li-
braries. The Job Scheduling and Program Entry cluster follows
closely, also having relatively short and simple function bod-
ies with few imports. In contrast, functions from the Machine
Learning cluster and Scientific Computing cluster have longer
function bodies compared to the other clusters. Further, the
Machine Learning cluster functions display higher complexity
compared to others. Interestingly, the Data Manipulation clus-
ter’s median function has the second-highest median complex-
ity, but its functions have the second-lowest maximum com-
plexity. Regarding the number of imported libraries, functions
from the Machine Learning, Scientific Computing, and Data
Manipulation clusters import the most libraries, with the Ma-
chine Learning cluster having the most imports.

Regarding performance-related measures, functions from the
Data Manipulation cluster and Scientific Computing cluster re-
ceive the highest median input sizes, although they do not have
the highest maximal argument size. On the other hand, the Triv-
ial Program cluster contains functions with the lowest median
input size, followed by functions from the Job Scheduling and
Program Entry cluster. Functions from the Job Scheduling and
Program Entry cluster and Machine Learning cluster exhibit
the shortest median end-to-end times, indicating for the latter
cluster a higher likelihood of being used for inference rather
than training. In contrast, functions from the Data Manipula-
tion cluster have the longest median end-to-end times. Inter-
estingly, functions from the Trivial Program cluster have the
longest maximal end-to-end times and the third-longest median
end-to-end times. Moreover, functions from the Trivial Pro-
gram and Machine Learning clusters are called much more fre-
quently than those of the other clusters. On the other hand,
functions from the Job Scheduling and Program Entry cluster
are the least frequently called.

5.7. Sub-Processes and External Function Calls
In order to understand the function usage better, we inves-

tigated what code is run within the functions by manually ex-
amining function bodies. Of the 1847 unique function bodies,

297 (i.e., 16%) functions call sub-processes or external scripts.
We classified the type of external target and reported the re-
sults in Table 6. The most frequent usage is to call shell scripts
(36.71%), followed by running binary programs (33.23%). Also,
4.43% of the calls run another Python script. We hypothesize
that users are using Globus Compute to run various external
programs for several reasons: (i) they may have existing code
bases; (ii) Globus Compute supports only Python functions; or
(iii) Scientific computing applications are often written in low-
level languages and use higher level languages for coordination.
We expect that this behavior is unlike other FaaS systems.

5.8. Imported Libraries

1% 10% 100%
Percentage…of…Most…Popular…Imports

0

0.25

0.5

0.75

1

C
D

F

tasks
functions
function…bodies

subprocess

os
sys

anon1
json

sys

anon1

os

subprocess
tempfile

os
numpy

time
pathlib

sys

Figure 27: Distributions of most popular imported libraries in percentage. The
blue curve represents data from 1 854 104 submitted tasks, the orange curve
from 268 476 functions, and the green curve from 1847 unique functions.

After examining the statistical distribution of important li-
braries in Section 4.3, we now investigate the most frequently
used libraries (see Figure 27). As mentioned in Section 4.3, we
consider for this analysis also the reduced dataset (1 854 104
tasks, 268 476 functions, 1847 unique function bodies). In to-
tal, 130 different Python libraries were imported. To protect
privacy, we requested permission from users to report packages
that are not available on PyPI. In some cases, we anonymized
the names as anon1, anon2, etc. Among the top libraries used
in all submitted tasks, subprocess stands out, followed by
os, sys, anon1, and json. Collectively, these five libraries
were imported a total of 1 773 211 times, accounting for 64% of
all imports. When considering only unique functions, the fre-
quently employed libraries are sys, anon1, os, subprocess,
and tempfile. These libraries were imported together 428 965
times, which represents 87% of all imports. For unique func-
tion bodies, the most commonly used libraries are os, numpy,
time, pathlib, and sys. These libraries were imported 1780
times and account for 41% of all imports.

5.9. Endpoint Provider Types

Globus Compute implements a unique model in which the
endpoints can be deployed on heterogeneous resources, ranging
from supercomputers and clouds to edge devices. To accommo-
date the differences between these systems, Globus Compute

14

Function
Category

Lines of
Code

Cyclomatic
Complexity

Number of
Imports

Argument
Size (Byte)

End-to-End
Time (Second)

Function Idle
Time (Second)

Data Manipulation 23 [4; 225] 2 [1; 8] 3 [1; 9] 4089.00 [30.00; 6.75e+06] 378.97 [0.01; 3.2e+05] 8.69 [2.30e-06; 1.37e+06]
Job Scheduling 15 [2; 125] 1 [1; 20] 2 [1; 6] 62.00 [30.00; 1.03e+07] 0.28 [0.02; 1.79e+05] 61.48 [3.53e-04; 8.65e+04]
Machine Learning 32 [2; 145] 3 [1; 18] 3 [1; 12] 111.00 [30.00; 1.02e+07] 1.41 [0.03; 9.29e+04] 0.01 [2.89e-05; 366.90]
Sci. Computing 25 [2; 467] 1 [1; 18] 2 [1; 18] 4186.00 [30.00; 1.39e+06] 4.73 [0.03; 5.94e+05] 4.00 [1.56e-05; 2.87e+06]
Trivial Program 3 [3; 37] 1 [1; 6] 1 [1; 4] 46.00 [30.00; 5.71e+06] 2.75 [0.01; 1.17e+06] 0.02 [2.56e-07; 3.1e+06]

Table 5: Selected Statistics Per Function Cluster.

Call Distribution

Shell scripts 36.71%
Binary programs 33.23%
Usage of echo 20.25%
Misc. shell commands 5.38%
Python scripts 4.43%

Table 6: Overview of sub-processes or external calls.

leverages Parsl [10] to support various systems. When config-
uring a Globus Compute endpoint, the user can select and con-
figure an appropriate provider to enable the endpoint to acquire,
manage, and release resources. Table 7 provides a summary of
the providers used by endpoints included in the dataset. The
most common endpoint provider type is a local provider with
74.50%. The local provider is used by an endpoint to provision
resources on a single node to perform work by spawning a local
process to perform a function. It is deployed, for example, on
an edge device, laptop, cloud instance, or even a login node on
an HPC system. The second most used type is Slurm (10.50%)
followed by Kubernetes (7.75%). The least used type is LSF
with 0.25%. These results show the vast majority of endpoints
are configured to utilize a single node and manage execution
on multicore processors. The Slurm and Kubernetes endpoints
are likely to be significantly more computationally powerful as
they are provisioning compute nodes from a cluster.

Provider Distribution

Local 75.55%
Slurm 10.50%
Kubernetes 7.75%
PBSPro 5.00%
Cobalt 1.25%
LSF 0.25%

Table 7: Use of the different provider types on the endpoints.

5.10. Geographical Distribution of Endpoints

A key feature of Globus Compute is its federated architec-
ture, which encompasses endpoints deployed on heterogeneous
resources worldwide. Figure 28 displays the number of end-
points deployed at different locations. The locations were de-
termined based on the IP addresses. In North America, end-
points are located in the United States, Mexico, and Canada. In

Europe, endpoints can be found in Germany, Norway, Switzer-
land, Finland, Romania, the United Kingdom, and Spain. In
Asia, endpoints are present in India, China, and Taiwan. Mean-
while, Oceania has endpoints exclusively in New Zealand. No-
tably, North America is the only continent with locations having
more than five endpoints, with several clusters located in both
the United States and Mexico.

> 25
5-25
< 5

Figure 28: Worldwide distribution of Globus Compute endpoints. Colors indi-
cate the number of endpoints in any single location.

6. Related Work

Prior research has explored various aspects of the serverless
paradigm. We consider three categories relevant to our work:
(i) examination and release of serverless (trace) datasets, (ii)
benchmarking and measuring of serverless applications or sys-
tems, and (iii) characterization of serverless platforms, applica-
tions, or the paradigm itself.

6.1. Serverless Trace Datasets

To the best of our knowledge, there are few publicly ac-
cessible serverless (trace) datasets available, and most are pro-
vided by cloud providers like Azure and Alibaba. For instance,
Azure’s dataset from 2019 [3] is one of the most frequently ref-
erenced, containing 12.5 billion invocations over 14 days, orga-
nized based on the number of invocations per minute per func-
tion. This dataset also includes statistics on execution times,
such as averages and medians, reported in per-day intervals
per function. Researchers have used this dataset extensively
for performance analysis [29, 30, 31, 32], cold-start optimiza-
tion [33, 7], synthetic trace generation [34], and to characterize
the behavior of serverless applications [35].

In a more recent study, Azure released another dataset [28],
also covering 14 days of serverless invocations, but instead of

15

Dataset Duration Characteristics Granularity

Azure19 [3] 14 days
14.7 K users, 24.3 K apps,
72.4 K functions, 12.5 B invocations

per-function per-minute invocation counts
per-function per-day duration statistics

Azure21 [28] 14 days
119 apps, 424 functions,
2.0 M invocations per-invocation end timestamp and duration

This work 217 days
252 users, 277.4 K functions,
2.1 M invocations per-invocation six timestamps and duration

Table 8: Comparisons of real-world serverless datasets.

per-minute counts, it provides a timestamp and duration for
each invocation. This dataset is the closest to our work.

Alibaba released 12-hour traces of its microservice archi-
tecture [23]. While not FaaS directly, microservices share simi-
lar characteristics (e.g., short, on-demand usage). Like Azure’s
2019 dataset, microservices invocation counts are recorded in
per-minute bins, but only the average execution time per bin
is reported. This trace dataset highlights the call relations of
microservices, a feature not available in Azure’s datasets.

Although these datasets exist, the availability of compre-
hensive, in-depth serverless trace datasets remains limited. Con-
sequently, the aim of our work is to enhance the available data-
sets by providing in-production serverless system traces span-
ning 217 days. Each invocation in the dataset includes six times-
tamps, accurately depicting the invocation’s lifecycle in Glo-
bus Compute and spanning a set of 580 distributed endpoints.
Additionally, we include code statistics, significantly extend-
ing the possibilities for future research using this dataset. An
overview and comparison with the mentioned serverless data-
sets are listed in Table 8.

6.2. Serverless Measurements and Benchmarks

Another approach to gaining insights into serverless com-
puting involves benchmarking or evaluating such systems and
applications. Some studies utilize real-world traces to evalu-
ate their solutions, while it is more common for serverless sys-
tems to be assessed under various synthetic workloads, encom-
passing variations in CPU, memory, disk, network usage, and
degrees of parallelism. For instance, DeathStarBench [36], a
widely used benchmarking set, comprises six Docker microser-
vice applications (three of them are open-source), serving as
a means to stress test serverless systems under load [37, 38].
ServerlessBench [39], which incorporates synthetic functions
and applications, is used to evaluate function communication
latency and startup latency on serverless platforms.

There are customized benchmarks tailored to scientific com-
puting and data manipulation. For instance, the Faas-µbench-
mark [40] includes two non-trivial functions, Fast Fourier Trans-
formation and Matrix Multiplication, and can stress the CPU
and memory at different levels. The FaaSdom benchmarking
tool [41] contains testing suites that stress the CPU through in-
teger factorization and matrix multiplication. Figiela et al. [42]
used HPL Linpack to stress the CPU for floating-point perfor-
mance evaluation. Kuhlenkamp et al. [43] focused on a work-
load to determine whether a number is a prime number, based

on the Sieve of Eratosthenes algorithm, to stress the CPU and
memory. Similarly, Lee et al. [44] designed a workload involv-
ing two-dimensional array multiplication with 0-100 concur-
rent invocations. Lloyd et al. [45] designed computational and
memory-intensive workloads to reflect different stress levels,
introducing 2 thousand to 10 million random math operations
and 20 to 100 thousand operand array sizes to evaluate CPU
and memory stress.

6.3. Serverless Characterization

The functions executed in our dataset share similarities with
those run on other serverless systems concerning execution time,
code complexity, and bursty workload patterns. Eismann et
al. [22] found that over 75% of the serverless functions in their
study run for less than a minute. They point out that execution
time statistics are only discussed in Shahrad et al. [3] and two
cloud SaaS company reports. Shahrad et al. rank the average
of function execution time and reveal that the median of the
average was less than a second. The authors also ranked the
maximum function execution time and found that the median
of the average was less than three seconds. Findings in a sub-
sequent work by Zhang et al. [28] corroborate these statistics:
the authors rank the average and 90 percentile of the applica-
tion execution time and found that the median of the average is
well less than a second, and the median of the 90-percentile is
a round one second. They also provide some apple-to-apple
comparison with our statistics: they rank 2.2 M invocations
with recorded duration time and found 85% of these invoca-
tions take less than 1 second, and 96% of the invocations take
less than 30s.

As pointed out by Eismann et al. [22], in 2019, New Relic
reports [46] that the median duration of all monitored invoca-
tions in the second half of 2019 was approximately 719 ms,
with functions on Node.js 10.x and Python 3.8 run shortest and
below 450 ms. Similarly, in 2021, Datadog reported [19] the
median of the monitored Lambda function execution time of
about 130ms in 2019, but only 60ms in 2020. These findings
align with our observations that serverless function execution
times are typically short, as the median execution time of Glo-
bus Compute functions in our dataset is 30ms.

Serverless functions are also known for their simplicity. Eis-
mann et al. estimated that 53% of the applications in their study
processed a data volume of less than 1MB [22]. Our findings
reveal that the median argument size was only 62 bytes, and ap-
proximately 75% of the functions have argument sizes less than

16

4MB. The authors of AWSomePy found that 55% of the AW-
SomePy repositories contained less than 1000 LoC [21]. Al-
though these statistics are not directly comparable to ours, as
their statistics are per applications while ours are per Python
function, their findings support our impression that serverless
functions are simple in terms of source code complexity.

Furthermore, serverless functions often exhibit bursty work-
loads and hot-spot invocation patterns. Eismann et al. [22] char-
acterized 86% of serverless applications as having bursty work-
loads. Shahrad et al. [3] revealed that over 99.6% of the invo-
cations occur in 18.6% of the applications. A parallel pattern in
Alibaba’s microservice architecture [23] showed a mere 5% of
the microservices appear in nearly 90% of all call graphs and
are responsible for handling 95% of all invocations. This aligns
with our observations from hourly task submission figures and
hourly task submissions by clusters of endpoints, which showed
spiky request rates that were high one hour and zero the next,
with occasional periods of sustained high request rates.

While Globus Compute is primarily used for Python-based
scientific computing and machine-learning tasks, the serverless
application landscape is considerably more diverse regarding
programming languages and use cases. This diversity was un-
derscored in a 2020 study by Eismann et al. [47, 22], revealing
that a relatively small proportion, only 16%, of these applica-
tions were specifically designed to handle scientific workloads,
and ML applications only make up to 5% of the applications. In
contrast, our dataset shows that Globus Compute is dominated
by scientific computing and scientific ML tasks. By providing
realistic system traces and function classifications, our dataset
paves the way for future research from a complementary per-
spective of the application repositories.

7. Conclusion

We presented a unique and comprehensive serverless data-
set derived from the Globus Compute platform. Over 31 weeks,
we collected data from 2.1 million function invocations across
580 distributed endpoints, involving 252 users and over 277 000
registered functions. Our analysis offers valuable insights that
can contribute to a deeper understanding of serverless archi-
tectures and their performance characteristics. For instance,
we observed intriguing patterns in the dataset, including the
concentration of task submissions among a small group of ac-
tive users, a common trend in serverless platforms. Moreover,
our fine-grained capture of function execution lifecycles and
the consideration of diverse endpoint configurations allowed us
to explore arrival rates, run time distributions, and scheduling
across the computing continuum, encompassing edge, cloud,
and HPC environments. By analyzing function source code, we
categorized functions into clusters representing different types
of tasks, such as data manipulation, job scheduling, machine
learning, and non-ML scientific computing. This classification
sheds light on the diversity of serverless use and provides in-
sights into function complexity and library dependencies.

We believe that the availability of this open-source and FAIR
dataset, along with the analysis scripts, will foster further re-
search in serverless computing and related fields. Moreover,

we encourage researchers to explore the dataset and leverage
its unique features to advance our understanding of serverless
architectures and their applications across different computing
environments. As the Globus Compute platform continues to
grow, we plan to update the dataset to capture evolving usage
patterns and further expand the research opportunities it offers.

References

[1] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Fos-
ter, K. Chard, funcx: A federated function serving fabric for science,
in: 29th International Symposium on High-Performance Parallel and Dis-
tributed Computing, ACM, 2020, pp. 65–76. doi:10.1145/3369583.

3392683.
[2] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T. J. Skluzacek, K. Nagait-

sev, A. Woodard, B. Blaiszik, J. Bryan, D. S. Katz, et al., ƒX: Federated
function as a service for science, IEEE Transactions on Parallel and Dis-
tributed Systems 33 (12) (2022) 4948–4963.

[3] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, R. Bianchini, Serverless in
the wild: Characterizing and optimizing the serverless workload at a
large cloud provider, in: 2020 USENIX Annual Technical Conference,
USENIX Association, 2020, pp. 205–218.

[4] L. Zhao, Y. Yang, Y. Li, X. Zhou, K. Li, Understanding, predicting and
scheduling serverless workloads under partial interference, in: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ACM, St. Louis Missouri, 2021, pp.
1–15. doi:10.1145/3458817.3476215.
URL https://dl.acm.org/doi/10.1145/3458817.3476215

[5] K. Kaffes, N. J. Yadwadkar, C. Kozyrakis, Hermod: principled and prac-
tical scheduling for serverless functions, in: Proceedings of the 13th Sym-
posium on Cloud Computing, ACM, San Francisco California, 2022, pp.
289–305. doi:10.1145/3542929.3563468.
URL https://dl.acm.org/doi/10.1145/3542929.3563468

[6] A. Fuerst, P. Sharma, Locality-aware Load-Balancing For Serverless
Clusters, in: Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, ACM, Minneapolis
MN USA, 2022, pp. 227–239. doi:10.1145/3502181.3531459.
URL https://dl.acm.org/doi/10.1145/3502181.3531459

[7] R. B. Roy, T. Patel, D. Tiwari, Icebreaker: Warming serverless functions
better with heterogeneity, in: Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 753–767.

[8] Apache Software Foundation, Openwhisk (n.d.).
URL https://openwhisk.apache.org/community.html

[9] OpenFaas Ltd., Openfaas (n.d.).
URL https://www.openfaas.com

[10] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacin-
ski, R. Chard, J. M. Wozniak, I. Foster, et al., Parsl: Pervasive parallel
programming in python, in: Proceedings of the 28th International Sym-
posium on High-Performance Parallel and Distributed Computing, 2019,
pp. 25–36.

[11] M. M. Head, Nvbl (national virtual biotechnology laboratory) molecular
therapeutics, Tech. rep., USDOE Office of Science (2020).

[12] A. A. Saadi, D. Alfe, Y. Babuji, A. Bhati, B. Blaiszik, A. Brace, T. Brettin,
K. Chard, R. Chard, A. Clyde, et al., Impeccable: Integrated modeling
pipeline for covid cure by assessing better leads, in: Proceedings of the
50th International Conference on Parallel Processing, 2021, pp. 1–12.

[13] Y. Babuji, B. Blaiszik, T. Brettin, K. Chard, R. Chard, A. Clyde, I. Fos-
ter, Z. Hong, S. Jha, Z. Li, X. Liu, A. Ramanathan, Y. Ren, N. Saint,
M. Schwarting, R. Stevens, H. van Dam, R. Wagner, Targeting sars-cov-
2 with ai- and hpc-enabled lead generation: A first data release (2020).
arXiv:2006.02431.

[14] R. Vescovi, R. Chard, N. D. Saint, B. Blaiszik, J. Pruyne, T. Bicer,
A. Lavens, Z. Liu, M. E. Papka, S. Narayanan, N. Schwarz, K. Chard, I. T.
Foster, Linking scientific instruments and computation: Patterns, tech-
nologies, and experiences, Patterns 3 (10) (2022) 100606. doi:https:

//doi.org/10.1016/j.patter.2022.100606.

17

https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://dl.acm.org/doi/10.1145/3458817.3476215
https://dl.acm.org/doi/10.1145/3458817.3476215
https://doi.org/10.1145/3458817.3476215
https://dl.acm.org/doi/10.1145/3458817.3476215
https://dl.acm.org/doi/10.1145/3542929.3563468
https://dl.acm.org/doi/10.1145/3542929.3563468
https://doi.org/10.1145/3542929.3563468
https://dl.acm.org/doi/10.1145/3542929.3563468
https://dl.acm.org/doi/10.1145/3502181.3531459
https://dl.acm.org/doi/10.1145/3502181.3531459
https://doi.org/10.1145/3502181.3531459
https://dl.acm.org/doi/10.1145/3502181.3531459
https://openwhisk.apache.org/community.html
https://openwhisk.apache.org/community.html
https://www.openfaas.com
https://www.openfaas.com
http://arxiv.org/abs/2006.02431
https://doi.org/https://doi.org/10.1016/j.patter.2022.100606
https://doi.org/https://doi.org/10.1016/j.patter.2022.100606

[15] R. Chard, J. Pruyne, K. McKee, J. Bryan, B. Raumann, R. Ananthakr-
ishnan, K. Chard, I. T. Foster, Globus automation services: Research
process automation across the space–time continuum, Future Generation
Computer Systems 142 (2023) 393–409. doi:https://doi.org/10.

1016/j.future.2023.01.010.
[16] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke,

B. Blaiszik, M. J. Franklin, I. Foster, Dlhub: Model and data serving
for science, in: IEEE International Parallel and Distributed Processing
Symposium, 2019, pp. 283–292. doi:10.1109/IPDPS.2019.00038.

[17] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, A. Bridg-
land, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-
Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, D. Hassabis, Highly accurate protein structure prediction
with AlphaFold, Nature 596 (7873) (2021) 583–589. doi:10.1038/

s41586-021-03819-2.
[18] MaxMind, Geolite2 free geolocation data.

URL https://dev.maxmind.com/geoip/

geolite2-free-geolocation-data

[19] DataDog, The state of serverless 2021 (May 2021).
URL https://www.datadoghq.com/

state-of-serverless-2021/

[20] J. Beningo, Software quality, metrics, and processes, in: Embedded Soft-
ware Design: A Practical Approach to Architecture, Processes, and Cod-
ing Techniques, Springer, 2022, pp. 151–178.

[21] G. Raffa, J. B. Alis, D. O’Keeffe, S. K. Dash, Awsomepy: A dataset
and characterization of serverless applications, in: Proceedings of the
1st Workshop on SErverless Systems, Applications and MEthodologies,
2023, pp. 50–56.

[22] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, A. Iosup, The state of serverless applications:
Collection, characterization, and community consensus, IEEE Transac-
tions on Software Engineering 48 (10) (2021) 4152–4166.

[23] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, C. Xu,
Characterizing microservice dependency and performance: Alibaba trace
analysis, in: Proceedings of the ACM Symposium on Cloud Computing,
2021, pp. 412–426.

[24] L. McInnes, J. Healy, Accelerated hierarchical density based clustering,
in: Data Mining Workshops, 2017 IEEE International Conference on,
IEEE, 2017, pp. 33–42.

[25] OpenAI, Openai: Text and code embeddings (2022).
URL https://platform.openai.com/docs/guides/embeddings

[26] L. McInnes, J. Healy, UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction, ArXiv e-prints (Feb. 2018). arXiv:
1802.03426.

[27] M. Hategan-Marandiuc, A. Merzky, N. Collier, K. Maheshwari, J. Ozik,
M. Turilli, A. Wilke, J. M. Wozniak, K. Chard, I. Foster, R. F. da Silva,
S. Jha, D. Laney, Psi/j: A portable interface for submitting, monitoring,
and managing jobs, in: Accepted to eScience, 2023.

[28] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. De-
limitrou, R. Bianchini, Faster and cheaper serverless computing on har-
vested resources, in: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, Association for Computing
Machinery, New York, NY, USA, 2021, p. 724–739. doi:10.1145/

3477132.3483580.
[29] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,

J. Mace, Serving {DNNs} like clockwork: Performance predictability
from the bottom up, in: 14th USENIX Symposium on Operating Systems
Design and Implementation, 2020, pp. 443–462.

[30] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh, S. Venkatara-
man, A. Akella, Atoll: A scalable low-latency serverless platform, in:
Proceedings of the ACM Symposium on Cloud Computing, 2021, pp.
138–152.

[31] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T. Kan-
demir, C. Das, Kraken: Adaptive container provisioning for deploying
dynamic dags in serverless platforms, in: Proceedings of the ACM Sym-
posium on Cloud Computing, 2021, pp. 153–167.

[32] B. Wang, A. Ali-Eldin, P. Shenoy, Lass: Running latency sensitive server-
less computations at the edge, in: Proceedings of the 30th International

Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’21, Association for Computing Machinery, New York, NY, USA,
2021, p. 239–251. doi:10.1145/3431379.3460646.

[33] A. Fuerst, P. Sharma, Faascache: keeping serverless computing alive with
greedy-dual caching, in: Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, 2021, pp. 386–400.

[34] D. H. Sallo, G. Kecskemeti, Towards Generating Realistic Trace for
Simulating Functions-as-a-Service, in: R. Chaves, D. B. Heras, A. Ilic,
D. Unat, R. M. Badia, A. Bracciali, P. Diehl, A. Dubey, O. Sangyoon,
S. L. Scott, L. Ricci (Eds.), Euro-Par 2021: Parallel Processing Work-
shops, Springer International Publishing, Cham, 2022, pp. 428–439.

[35] L. Zhao, Y. Yang, Y. Li, X. Zhou, K. Li, Understanding, predicting and
scheduling serverless workloads under partial interference, in: Proceed-
ings of the International conference for high performance computing, net-
working, storage and analysis, 2021, pp. 1–15.

[36] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, C. Delimitrou, An open-source benchmark suite for mi-
croservices and their hardware-software implications for cloud & edge
systems, in: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’19, Association for Computing Machinery, New York,
NY, USA, 2019, p. 3–18. doi:10.1145/3297858.3304013.

[37] Z. Jia, E. Witchel, Boki: Stateful serverless computing with shared logs,
in: Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, Association for Computing Machinery, New
York, NY, USA, 2021, p. 691–707. doi:10.1145/3477132.3483541.

[38] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, H. Chen, Catalyzer:
Sub-millisecond startup for serverless computing with initialization-less
booting, in: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’20, Association for Computing Machinery, New York,
NY, USA, 2020, p. 467–481. doi:10.1145/3373376.3378512.

[39] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, H. Chen,
Characterizing serverless platforms with serverlessbench, in: Proceedings
of the 11th ACM Symposium on Cloud Computing, 2020, pp. 30–44.

[40] T. Back, V. Andrikopoulos, Using a microbenchmark to compare func-
tion as a service solutions, in: Service-Oriented and Cloud Computing:
7th IFIP WG 2.14 European Conference, ESOCC 2018, Como, Italy,
September 12-14, 2018, Proceedings 7, Springer, 2018, pp. 146–160.

[41] P. Maissen, P. Felber, P. Kropf, V. Schiavoni, Faasdom: A benchmark
suite for serverless computing, in: Proceedings of the 14th ACM Interna-
tional Conference on Distributed and Event-Based Systems, DEBS ’20,
Association for Computing Machinery, New York, NY, USA, 2020, p.
73–84. doi:10.1145/3401025.3401738.

[42] K. Figiela, A. Gajek, A. Zima, B. Obrok, M. Malawski, Performance eval-
uation of heterogeneous cloud functions, Concurrency and Computation:
Practice and Experience 30 (23) (2018) e4792.

[43] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, D. Wenzel, Bench-
marking elasticity of faas platforms as a foundation for objective-driven
design of serverless applications, in: Proceedings of the 35th Annual
ACM Symposium on Applied Computing, 2020, pp. 1576–1585.

[44] H. Lee, K. Satyam, G. Fox, Evaluation of production serverless comput-
ing environments, in: 2018 IEEE 11th International Conference on Cloud
Computing, IEEE, 2018, pp. 442–450.

[45] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, S. Pallickara, Serverless
computing: An investigation of factors influencing microservice perfor-
mance, in: 2018 IEEE international conference on cloud engineering,
IEEE, 2018, pp. 159–169.

[46] N. Relic, For the love of serverless (2020).
URL https://newrelic.com/resources/ebooks/

serverless-benchmark-report-aws-lambda-2020#

toc-function-faster-on-aws-lambda

[47] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, A. Iosup, Serverless applications: Why, when,
and how?, IEEE Software 38 (1) (2020) 32–39.

18

https://doi.org/https://doi.org/10.1016/j.future.2023.01.010
https://doi.org/https://doi.org/10.1016/j.future.2023.01.010
https://doi.org/10.1109/IPDPS.2019.00038
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3401025.3401738
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020#toc-function-faster-on-aws-lambda
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020#toc-function-faster-on-aws-lambda
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020#toc-function-faster-on-aws-lambda
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020#toc-function-faster-on-aws-lambda

	Introduction
	Globus Compute
	Globus Compute Architecture
	User interface
	Endpoints

	Example Use Cases
	Bag of Tasks
	Federated Workflows
	Computation as a Service

	The Globus Compute Dataset
	Data Collection
	Data Processing

	Statistical Analysis
	System Performance
	Interarrival times
	Task Invocations
	Function Bodies
	User Behavior

	Detailed Analysis
	Task Submission Behavior
	Task Invocations per User
	Task Invocations per Endpoint
	Frequently Invoked Functions
	Function Idle Time
	Analysis of Function Bodies
	Sub-Processes and External Function Calls
	Imported Libraries
	Endpoint Provider Types
	Geographical Distribution of Endpoints

	Related Work
	Serverless Trace Datasets
	Serverless Measurements and Benchmarks
	Serverless Characterization

	Conclusion

