
Fine-grained accelerator partitioning for Machine Learning and
Scientific Computing in Function as a Service Platform

Aditya Dhakal
Hewlett Packard Labs
aditya.dhakal@hpe.com

Philipp Raith
Hewlett Packard Labs
philipp.raith@hpe.com

Logan Ward
Argonne National Laboratory

lward@anl.gov

Rolando P. Hong Enriquez
Hewlett Packard Labs

rhong@hpe.com

Gourav Rattihalli
Hewlett Packard Labs

gourav.rattihalli@hpe.com

Kyle Chard
University of Chicago
chard@uchicago.edu

Ian Foster
Argonne National Laboratory

foster@anl.gov

Dejan Milojicic
Hewlett Packard Labs

dejan.milojicic@hpe.com

ABSTRACT
Function-as-a-service (FaaS) is a promising execution environment
for high-performance computing (HPC) and machine learning (ML)
applications as it offers developers a simple way to write and deploy
programs. Nowadays, GPUs and other accelerators are indispens-
able for HPC and ML workloads. These accelerators are expen-
sive to acquire and operate; consequently, multiplexing them can
increase their financial profitability. However, we have observed
that state-of-the-art FaaS frameworks usually treat accelerator as
a single device to run single workload and have little support for
multiplexing accelerators.

In this work, we have presented techniques to multiplex GPUs
with Parsl, a popular FaaS framework. We demonstrate why GPU
multiplexing is beneficial for certain applications and how we have
implemented GPU multiplexing in Parsl. With our enhancements,
we show up to 60% lower task completion time and 250% improve-
ment in the inference throughput of a large language model when
multiplexing a GPU compared to running a single instance without
multiplexing. We plan to extend the support for GPU multiplexing
in FaaS platforms by tackling the challenges of changing compute
resources in the partition and approximating how to right-size a
GPU partition for a function.

ACM Reference Format:
Aditya Dhakal, Philipp Raith, Logan Ward, Rolando P. Hong Enriquez,
Gourav Rattihalli, Kyle Chard, Ian Foster, and Dejan Milojicic. 2023. Fine-
grained accelerator partitioning for Machine Learning and Scientific Com-
puting in Function as a Service Platform. In Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis
(SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3624062.3624238

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624238

1 INTRODUCTION
GPUs and other hardware accelerators are indispensable for speed-
ing up machine learning (ML), deep learning (DL), and other scien-
tific computing workloads [3, 21]. Popular ML/DL frameworks and
scientific computing workflow managers, offer APIs to facilitate
the use of GPUs and other accelerators. Usually, these frameworks
also offer runtime abstractions (e.g., , runtime graphs, data move-
ment) to improve hardware utilization by mapping nodes from a
computational graph to computational resources. To date, GPUs
remain the most utilized accelerators in the market; they are par-
ticularly well-suited to accelerate core ML/DL tasks such as matrix
multiplication and tensor operations.

Function-as-a-Service (FaaS) promises to provide an abstracted
development and deployment framework. A user of a FaaS frame-
work writes a compute function and the framework does the heavy
lifting of providing an environment for seamless function execu-
tion. Furthermore, FaaS frameworks enable workloads to scale as
functions may be executed repeatedly. Several open source FaaS
platforms able to run core ML tasks such as inference, are currently
under active research and development [2, 4, 23]. These compu-
tational workloads would greatly benefit from proper accelerator
support, specially for GPUs. Currently, most FaaS frameworks do
not offer such capabilities.

Various studies have shown that many ML workloads, such as in-
ference, do not fully utilize GPUs [17]. Other experiments also have
shown high idle time and low GPU utilization for some scientific
computing tasks [6]. Several authors have added GPU-awareness
capabilities to serverless environments in different ways [5, 13, 28].
However, to the best of our knowledge there are no universally ac-
cepted solutions to these optimization problems and consequently,
these issues related to low GPU utilization systemically manifest
themselves in HPC systems [18]. As a serverless framework op-
erator, it is crucial to maximize the hardware utilization to sup-
port more concurrent tasks, and therefore, increase profitability.
Multiplexing, i.e., sharing the GPU to run multiple tasks that do
not saturate the GPU concurrently, increases the utilization [12].
NVIDIA’s Multi-process service (MPS) and Multi-Instance GPUs
allow the partitioning of the NVIDIA GPU resources into isolated
partitions [20]. AMD GPUs also have comparable partitioning tech-
niques. Accelerator resources, both compute and memory, can be

1606

https://doi.org/10.1145/3624062.3624238
https://doi.org/10.1145/3624062.3624238
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624238&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA A. Dhakal, P. Raith, L. Ward, R. Hong Enriquez, G. Rattihalli, K. Chard, I. Foster, D. Milojicic

provided individually to applications that concurrently use the
GPU. However, many FaaS platforms do not support heterogeneity
beyond CPU and are designed for launching homogeneous tasks.
Especially because many FaaS platforms (e.g., , KNative, Parsl) can
run on the container orchestration service Kubernetes which only
has limited GPU sharing support. Other platforms (e.g., , Parsl) rely
on local environment of the node where the function will be exe-
cuted. These approaches often share the GPU temporally by default
and do not utilize the latest development in spatial GPU multiplex-
ing such as Multi-Process Service (MPS) and Multi-Instance GPUs
(MIGs).

In this paper, we use Parsl [2], the parallel runtime system be-
hind Globus Compute (previously known as FuncX[4]). Specifi-
cally, we enhance Parsl with GPU partitioning capabilities and we
demonstrate the use of GPU partitioning in Parsl by running a
large language model (LLaMa2), a scientific computing application
(Molecular-design), and well known deep neural networks (e.g., ,
ResNet). In section 5 we report our findings and discuss the remain-
ing challenges regarding accelerator partitioning for FaaS platforms.
In our discussion, we also address the potential overheads that come
with the use of accelerators.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the Function-as-a-Service (FaaS) para-
digm and the frameworks that we use in this paper (FunX/Parsl).
We also describe GPU partitioning, multiplexing, and the workloads
suitable for fine-grained accelerator partitioning.

2.1 Function-as-a-Service
Function-as-a-Service (FaaS) is a serverless computing model pi-
oneered by cloud providers. In serverless computing, the cloud
service provider manages the compute environment, execution of
the code as well as the underlying resource management. In the
FaaS model, users register programming functions alongside depen-
dencies needed to execute these functions. The FaaS platform can
then automatically create (and remove) the environment needed
to execute the function. Deploying fine-grained and self-contained
functions makes it simple for users to focus on the business logic
and abstracts the underlying infrastructure. Moreover, FaaS en-
ables the rapid spin up and down of function instances, making
them suitable for stateless parallel applications commonly observed
in scientific computing [25]. The scalability can increase perfor-
mance and reduce resource usage while users pay only for the
resources used over time. FaaS frameworks claim high scalability
assuming homogeneity in the underlying hardware architecture.
However, modern computing systems are often heterogeneous and
the resources required by a single workload can also be complex.
Therefore, FaaS frameworks should evolve to accommodate these
challenges. For instance, a key enabler for FaaS is the ability to
share resources and spawn multiple functions on a single node.
However, sharing hardware accelerators – such as GPUs – in the
same way, still poses challenges [9, 11, 32]. Addressing some of
those challenges is the focus of the present work.

2.2 Globus Compute/Parsl

Globus Compute (Previously FuncX [4]) is a federated FaaS plat-
form able to exploit HPC resources and therefore suitable for run-
ning scientific computing applications. Globus compute builds upon
the open source parallel programming library, Parsl[2]. In Parsl,
decorated Python functions (called “apps” in Parsl) are dispatched to
Workers that are dynamically deployed on remote compute nodes.
Globus Compute uses Parsl to manage the execution of functions
once they are dispatched from the Globus Compute cloud service
to a remote – and user-deployed – computing endpoint (e.g., , a
supercomputer).

2.2.1 Parsl Execution Provider and Executor. Parsl uses concepts
like Execution providers and Executors to deploy and run a work-
load on different types of hardware such as laptops, multi-core
servers or even supercomputers. Execution providers enable users
to define configuration parameters. e.g., Parsl execution provider
for SLURM can use SLURM for resource management in a large
hardware cluster. Here, we conduct experiments on a small scale
testbed of 24 CPU cores and two GPU machines. Therefore, we
used the LocalProvider, which provisions execution resources from
the local system (e.g., workstation, laptop) to deploy tasks in Parsl.

Parsl’s Executor model builds upon Python’s concurrent.futures
executor API and allows for different Executors to be used in dif-
ferent situations. Parsl supports Executors designed to support
different use cases; from extreme-scale to low latency. In this work
we use the HighThroughputExecutor which implements a pilot job
model and operates by deploying Python worker processes. Parsl
also supports existing libraries such as Python’s ThreadPoolExecutor
to schedule and scale a given function to multiple CPU cores. In
Listing 1 we present an example configuration of the HighThrough-
putExecutor, that must be defined before launching any tasks. Here,
the configuration defines two executors; one with instructions for
CPU use, and another one for the accelerators. Users define the
number of CPU workers (max_workers) and the maximum avail-
able accelerators. Alternatively, we can also pick desired GPUs by
providing the list of GPU-IDs. HighThroughputExecutor allows the
function to access the number of CPUs and GPUs defined in the
configuration. However, until now, HighThroughputExecutor could
not partition the GPU to spatially share the GPU across multiple
functions. In this paper, we enhance the HighThroughputExecutor
to enable fine-grained GPU partitioning and spatial multiplexing.

Source Code 1: HighThroughputExecutor Configuration

A configuration for a HighThroughputExecutor
def hsc(log_dir: str) -> Config:

"""Configuration to run ML work on the local node.

Args:
log_dir: Path to store monitoring DB

and parsl logs
Returns:

(Config) Parsl configuration
"""
config = Config(

run_dir=log_dir,

1607

Fine-grained accelerator partitioning for Machine Learning and Scientific Computing in Function as a Service Platform SC-W 2023, November 12–17, 2023, Denver, CO, USA

retries=1,
executors=[

HighThroughputExecutor(
label='cpu',
max_workers=16,

),
HighThroughputExecutor(

address='localhost',
label="gpu",
available_accelerators=1,

),
]

)

return config

2.3 GPU Multiplexing
GPU multiplexing, or running multiple workloads on a GPU si-
multaneously, can increase GPU utilization. Ideally, multiple GPU
kernels would run concurrently, leaving little to no idle GPU stream-
ing multiprocessors (SMs). However, in practice, there are multiple
methods to multiplex a GPU. Table 1 summarizes different ways of
multiplexing NVIDIA GPUs as well as their drawbacks and benefits.
From the Table we can infer that there is no one-size-fits-all solution
for GPU multiplexing; the final choice will ultimately depend on ap-
plication and user requirements. Among the different multiplexing
choices, CUDA MPS and Multi-Instance GPU provide both higher
GPU utilization and ease of use while running multiple applications
together. We will explore these two options in combination with
the Globus Compute/Parsl framework described later in the paper.

3 APPLICATIONS
We profiled a few applications from different domains to under-
stand if they would benefit from multiplexing the accelerators. We
describe our findings below.

3.1 Molecular-Design
We used a molecular-design application [1] that implements an
active ML strategy following sequence of tasks: (1) generate an
initial pool of molecules from the MOSES dataset [22]; (2) use
quantum chemistry simulations to calculate molecular properties
of the generated molecules, e.g., ionization potentials (IPs); (3) use
the data from the previous steps to train an ML model that acts
as an emulator of the simulations; (4) use the trained emulator to
estimate the IPs of a larger pool of newly generated molecules;
(5) perform quantum simulations on those molecules with higher
emulator-estimated IPs; (6) enrich the ML training dataset with the
results of the last simulations; (7) train a new emulator and so on.
The output of this workflow are molecules with optimized physical
properties. These calculations were performed using the Colmena
framework [31] in an implementation backed by Globus Compute
and Parsl.

3.2 LLaMa2
LLaMa2 is a recent Large Language Model (LLM) that is used for
creating text-based AI assistants [29]. LLaMa2’s basic use is simple;

users submit textual prompts (questions, instructions, etc.) and the
model generates a corresponding response. The model’s ability to
produce a sensible reply primarily depends on the training data, as
well as the number of parameters and architecture of the model.
LLaMa2 provides six different models that range in their intended
use case (text or chat) and the number of parameters (7, 13 and 70
billion). LLaMa2’s architecture is mostly based on the predecessor
LLaMa1 which is based on the transformer architecture [29, 30].
LLaMa2’s use cases depend on the deployedmodel where the LLaMa
text is used for processing a single request-response situations
and LLaMa2-Chat is a fine-tuned version targeting dialogues. The
difference is crucial to the expected runtime behavior (i.e., execution
latency and resource usage) due to the expected varying length of
interaction time and input. Having two separate models covering
different use cases already can ease the deployment in large scale
settings, however, it is yet unclear how they behave in scenarios
where large GPUs are shared for different applications.

3.3 Imagenet Models
The creation and enrichment of the Imagenet dataset was instru-
mental for the surge and democratization of deep learning re-
search [8]. Specifically, the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) has provided a benchmark of labeled
images organized in 1000 categories [27]. These images are used
by competing research teams during these challenges. Indeed in
2015, a well known breakthrough was achieved when Imagenet
models finally exceeded human capabilities [15]. In this paper, we
use ResNet-50 and ResNet-101 for evaluation [14]. These models
employ an architecture known as deep residual networks that uses
convolution layers extensively.

3.4 GPU utilization of the applications
Current data center GPUs (e.g., NVIDIA A100, H100, AMD MI210,
MI250, etc.) host a large amount of computing power. A100 features
108 streaming multiprocessors (SMs) with theoretical 19.5 teraflops,
while the comparable AMD MI210 with its 104 compute unit (CU)
attains up to 22.6 teraflops for single precision (32-bit) computation.
The newer generation of GPUs has an even higher theoretical
peak. To saturate the GPU SMs/CUs, a large amount of optimized
calculations like the multiplication of large matrices or the training
of a deep neural network using large data batches, is usually needed.
Indeed, many workloads are not able to fully utilize the GPUs and
are therefore, wasting these resources. Here we briefly describe two
scenarios where an ML or scientific computing application makes
a poor use of GPU resources.

Difference in compute requirements within one workload:
Deep neural network often present a software architecturewhere an
input is processed by numerous layers, each processing the output
of the previous layer. In convolution neural networks (CNNs) the
dimension of output of each layer depends on the input as well as
the filter size of each layer. Here, we present the floating points
operations required in each layer of CNN and see how the compute
requirement vary.

Fig. 1 shows the number of floating point multiplication and
addition of each convolution layer of few popular DNNs available
in Torchvision repository. With Fig. 1, we want to convey that

1608

SC-W 2023, November 12–17, 2023, Denver, CO, USA A. Dhakal, P. Raith, L. Ward, R. Hong Enriquez, G. Rattihalli, K. Chard, I. Foster, D. Milojicic

Table 1: Comparison of GPU multiplexing techniques for NVIDIA GPUs

Multiplexing
Technique

Description GPU Utilization AMD Equivalent GPU Resource
reconfiguration

Software
required

Drawbacks

Time-sharing Every kernel
gets an exclusive
access to the
GPU for a time.

Low None No None Low hardware
utilization when
an application
cannot saturate
the GPU.

Default CUDA
MPS
(Multi-process
Service)

Kernels from
different
applications run
concurrently
when possible.

Highest Default
Multiplexing
method in AMD
ROCM

No nvidia-cuda-
mps-control

Some
applications can
be resource
starved due to
contention.

CUDA MPS
with GPU
Percentage

Applications are
restricted to the
maximum
numbers of SMs
they can utilize

High Compute unit
(CU) masking

App. process
restart to
reconfigure GPU
resources

nvidia-cuda-
mps-control

Application
restart for GPU
resource
reallocation. No
memory
isolation.

Multi-Instance
GPUs (MIGs)

GPUs are
divided into
multiple smaller
instances.
Compute and
memory
isolation.

High (lower than
CUDA MPS)

None Requires GPU
reset

nvidia-smi Requires GPU
reset and
application
restart to change
resource
allocation.

vGPU Designed for
sharing GPU via
VMs

High (But
multiplexes in
VM level rather
than process
level)

MxGPU Requires
restarting a VM

NVIDIA vGPU
driver

Homogeneous
resource division.
Requires
proprietary
drivers to run.

0 20 40 60 80 100 120 140 160
Convolution layer

0

100

200

300

400

M
illi

on
 m

ul
tip

lic
at

io
n

an
d

ad
di

tio
ns

DenseNet-161
ResNet-50
ResNext-101

Figure 1: Variation of compute requirement per image for few
convolution neural network performing image classification

different models have widely varying compute requirements at
different points of their execution. Different layers’ computation

6 16 28 38 50 60 70 82 92 102
Number of Streaming Multiprocessors per GPU

0

2

4

6

8

10

12

14

In
fe

re
nc

e
tim

e
(s

ec
)

llama-2-7b
llama-2-13b

Figure 2: Inference run-time (seconds) of llama2 7 billion
and 13 billion parameters using A100 GPUs. For llama 2 7b
parameters, only 1 A100 GPU was used while for llama2 13
billion parameters 2 A100 GPUs were used for inference. In-
ference was conducted using 32 bit floating point parameters

changes very rapidly. Even with different batch sizes, this variability
remains.

1609

Fine-grained accelerator partitioning for Machine Learning and Scientific Computing in Function as a Service Platform SC-W 2023, November 12–17, 2023, Denver, CO, USA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Walltime (hr)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

s R
un

ni
ng

Inference
Training
Simulation

Figure 3: Time Spent on simulation, training and inference
tasks during molecular-design workload

Small compute requirement: Many applications use GPU for
acceleration, but they do not require a large amount of GPU. For
instance, the large language model LLaMa-2 has both large mem-
ory requirements and low GPU utilization. We evaluated LLaMa-2
inference performing text completion tasks for 20-word sentences.
Specifically, we used LLaMa-2 models with 7 and 13 billion pa-
rameters on a single NVIDIA A100 GPUs and 2 NVIDIA A100s,
respectively. We limited the number of GPU SMs by using CUDA
MultiProcess service (MPS). We present the inference time vs. num-
ber of SMs in Fig. 2. LLaMa-2 greatly benefits fromGPU acceleration.
Indeed, the same inference with CPU takes 180 and 360 seconds for
the models with 7 and 13 billion of parameters, respectively; this is
approximately 40 times slower than the GPU calculations.

We can also see that increasing the GPU processing i.e., number
of SMs only decreases the inference latency quite a bit but the
latency does not decrease when we use more than 20 SMs. This
indicates that the neural network model can only properly utilize
about 20 SMs and does not benefit from more SMs even if they
are available. This indicates that although the model is large, the
compute requirement for this task is small. This kind of application
is well-suited to be used in multiplexing setting.

Large GPU idle time: We profiled the Molecular-design appli-
cation to see the hardware utilization. This application identifies
the molecules that have certain desirable properties. The progress
of the applications displays three main phases of computation, sim-
ulation, training, and inference. Among these phases simulation only
utilizes CPU. There are times when the GPUs are idle as they are
waiting for simulation results. Fig. 3 shows the total amount of
time simulation, training and inference were running. We can see
from the plot that there are many white lines between inference
instances. There, the GPU is idle. Pipe-lining this application will
yield higher accelerator utilization.

4 TECHNICAL DESIGN
Wehave described the original Parsl/Globus ComputeHighThrough-
put executor architecture in § 2.2. Here we describe how we have
enhanced it to enable GPU multiplexing.

4.1 Multiplexing with Parsl and MPS
To partition a GPU with CUDA MPS, users must specify the GPU%
i.e., the maximum percentage of SMs that an application is al-
lowed to use. This is done by setting the environment variable
CUDA_MPS_ACTIVE_GPU_PERCENTAGE to an integer value be-
tween 0 and 100 before the process starts. For example, setting the
environment variable to 50% for an A100 GPU allows the process
to use half i.e., 54 out of total 108 SMs.

In Parsl, we modified the executor configuration to accept GPU
percentage for each GPU. Specifically, we added a GPU percentage
option that accepts a list containing the GPU percentage for each
accelerator in the system. We present an example code listing in
Listing 2. This code shows that the first three GPUs (GPU 1, 2 and
4) listed in available_accelerators field are indeed available to the
executor but are limited to only 50%, 25% and 30% of those GPUs.
When we want to multiplex a GPU by making it available to 2 func-
tions, we can list the GPU twice as seen in Listing 2 and provide a
GPU% for each instance of the function.

Source Code 2: HighThroughputExecutor MPS Resources

Highthroughput executor with GPU percentage example
HighThroughputExecutor(

address='localhost',
label="gpu",
available_accelerators=[1,2,4,0,0],
gpu_percentage=[50,25,30,40,40],

),

These GPU percentages are enforced by updating the environ-
ment variable CUDA_MPS _ACTIVE_THREAD_PERCENTAGE
before a new process executing the function is started. In Parsl,
we modified the executor to also update the aforementioned en-
vironment variable. We need to make sure that the application
nvidia-cuda-mps-control is launched in the compute node before
any function with GPU code runs. Parsl also allows launching
nvidia-cuda-mps-control with bash operations.

4.2 Multiplexing with Parsl and MIG
Multi-Instance GPU (or MIG) are smaller instances created out of
ampere or newer generation GPUs. To create a new MIG instance,
the user must put the GPU in MIG mode, and specify how the GPU
should be partitioned in terms of memory and process by choosing
a pre-defined configuration. e.g., we can specify a configuration
of 1g.10gb, which will provide a MIG instance with 1

7
𝑡ℎ fraction

of SMs and 10 GB of GPU memory. Other configurations such as
2g.20gb, 3g.40gb, 4g.40gb and 7g.80gb are also available.

Each MIG instance is given a UUID, which can be provided to
the functions so they launch their GPU kernel in that particular
instance. We can then modify the Parsl configuration by specifying
the MIG ID instead of the GPU ID in place of an available accel-
erator. Our configuration while working with MIG is shown in
Listing 3.

Source Code 3: HighThroughputExecutor with MIG

Highthroughput executor with MIG Instances
HighThroughputExecutor(

1610

SC-W 2023, November 12–17, 2023, Denver, CO, USA A. Dhakal, P. Raith, L. Ward, R. Hong Enriquez, G. Rattihalli, K. Chard, I. Foster, D. Milojicic

1 Process 2 Processes 3 Processes 4 Processes
0

50

100

150

200

250

Ta
sk

 c
om

pl
et

io
n

tim
e

(s
ec

)

275

192 188 185

278

144 149

123

275

145

112 108

Timesharing (Default)
Equal Partition with MIG
Equal Partition with MPS

Figure 4: Time taken to complete a paragraph of text 100
times on LLaMa2. Work was divided equally across number
of processes. e.g., in 4 process experiment, each process will
complete 25 text completion tasks.

address='localhost',
label="gpu",
available_accelerators=[MIG-1-UUID,
MIG-2-UUID, MIG-3-UUID],

),

The Parsl executor launches a function with MIG-ID as CUDA_
VISIBLE_DEVICES environmental variable, thus, causing the func-
tion to only run in the particular MIG.

5 EVALUATION
In this section we present the evaluation of GPU multiplexing with
use of Parsl in our testbed.

5.1 Testbed
Our primary testbed is a virtual machine with 2 A100-SXM4 GPUs
with 40 GB of memory each. Our testbed has 24 Intel Xeon CPUs
with 2.20 GHz frequency. We are running Ubuntu 20.04 together
withNVIDIACUDAversion 11.8 and Toolkit driver version 520.61.05.
We have used PyTorch to run LLaMa2 and ResNet models while
the molecular-design workload uses Tensorflow 2.8.0.

5.2 Multiplexed vs. Non-Multiplexed Execution
We ran experiments to understand the effect of GPUmultiplexing on
the memory-intensive application LLaMa2. We envision a scenario
in which multiple LLaMa2 chatbots from different clients run in a
serverless setting using Parsl/Globus Compute.

However, due to memory constraints, we could fit only four
concurrent instances of LLaMa2 (7 billion parameter version) in an
80 GB NVIDIA A100 GPU.

We evaluated the time taken to complete 100 text completions
and the latency of each completion when multiple chat models are
running concurrently in the GPU. Fig. 4 shows the task completion
time with LLaMa2 when running up to 4 models with timesharing,

1 Process 2 Processes 3 Processes 4 Processes
0

1

2

3

4

5

6

7

8

In
fe

re
nc

e
la

te
nc

y
(s

ec
)

Timesharing (Default)
Equal partition with MIG
Equal partition with MPS

Figure 5: Average LLaMA2 inference latency with default
timesharing, MPS, and MIG multiplexing

the default for NVIDIA GPUs. In another experiment, we partition
the GPU equally with MPS, i.e., when running 2 LLaMa2 processes
we give each of them 50% GPU and so on. With MIG, we provide
3/7th of the GPU compute to eachmodel when running two LLaMa2
models. We provide 2/7th of the GPU when running 3 models
concurrently and 1/7th of the GPU to each model when running 4
models concurrently.

Fig. 4 shows that any form of multiplexing, even time sharing
decreases total task completion time. However, we can clearly see
that spatial multiplexing can yield even more parallelism from the
GPU hardware and reduce the time to perform inference by up
to 60% when compared to running only one inference process on
the GPU, which is the default setting for several FaaS platforms.
In terms of throughput, we can compute that spatially sharing 4
processes with MPS can lead to 2.5 times higher throughput than
running 1 model at a time in GPU.

Spatial sharing with MPS or MIG leads to much higher GPU uti-
lization and therefore gets a higher overall throughput and lower
total task completion time compared to default time sharing. We
should also see the difference between MPS and MIG. Both MPS
and MIG take a similar time to infer 100 requests when 2 inferences
processes share the GPU. However, MPS is much better when 3
processes are running on the GPU at the same time. This is due
to the fact that MPS can divide GPU in a much more fine-grained
way than MIG which must use pre-defined configuration. In the 3
process experiment, MPS gives about 1/3rd of GPU to each appli-
cation while, MIG can only provide 2/7th of the GPU compute for
each instance, thus, the difference in compute time. Similarly, in
the case of 4 applications MIG can only provide 1/7th of a GPU for
each application, while, MPS can provide 1/4th, therefore, running
slightly faster.

We present the average inference latency in Fig. 5. Here also we
see that increasing the number of processes in timesharing mode
increases the latency rapidly. This is due to the fact that kernels
from different models are interleaved in the timesharing mode,
thus, adding more applications will increase latency for all running

1611

Fine-grained accelerator partitioning for Machine Learning and Scientific Computing in Function as a Service Platform SC-W 2023, November 12–17, 2023, Denver, CO, USA

applications. However, with MPS and MIG, we see a slower increase
in latency. Moreover, MPS and MIG’s inference latency is 44% lower
compared to just timesharing when running 4 LLaMa processes in
the GPU. MPS and MIG spatially share the GPU. An application
running on one partition of MPS or MIG does not affect another
application running in another partition.

6 DISCUSSION: EXECUTION OVERHEAD
Cold startup times are a major challenge for serverless platforms—
they significantly degrade response times and can possibly render
responses unusable. For example, low latency applications, such as
Real-Time Object Detection, may be expected to produce results in
less than a hundred milliseconds [24]. Considering that serverless
functions are created and removed on demand, cold starts may
happen frequently. Therefore, reducing cold startup time is an im-
portant research topic and one that can make serverless computing
a viable option for variable workloads and time-sensitive tasks.
Specifically in GPU workloads, we identify three parts causing
overhead: (1) function initialization (including download, decom-
pression), (2) GPU context initialization, and (3) application loading
(e.g., loading AI model into video memory). Our results have shown
that the loading time of LLaMa 2 13B can take up to 10 seconds—a
significant overhead to the execution.

Moreover, using MIG and MPS-like techniques to partition GPU
also has drawbacks. Once the GPU% is allocated for a process with
MPS, the GPU% cannot be changed while the process is still alive,
necessitating process restart to change the allocation [9, 10]. For
LLMs like LLaMa, it results in 10-20 seconds of setup time before
the model is ready to be used for inference. To reallocate MIG, we
must shut down all the applications that are running on the GPU
and re-configure the MIG with higher resources. Re-configuring
MIG adds even more (1-2 seconds) overhead than MPS as well as
interferes with other applications running on the GPU. However,
as MIG guarantees memory and compute isolation, MIG might be
preferable for spatially multiplexing the GPU for many users.

7 FUTURE WORK
With our understanding from analysis and evaluation, we are in-
vestigating on the following future research directions.

Re-configuring GPU resources Faster: We are working on
an apparatus to lower the time to reconfigure GPU resources with
MPS. As we have noted before, changing the GPU% for a DNN
application with MPS requires restarting the application process.
Restart will cause the application to reload the large DNN models
to GPU again. Future work revolves around the reduction of model
loading time. Different approaches have been explored by using
shared CPU memory to enable access to models across function
instances [16, 19] or pre-warming function instances by proactively
initializing them to avoid any delays [26]. Memory sharing has been
mostly done on CPU memory and not considering the possibility
of sharing GPU-loaded models [7]. Improving the loading time of
AI models into GPUs can have a positive impact for serverless and
at the same time can improve pre-warming approaches.

We are working on an approach to share the model weights
across different function instances. When a new instance of the
DNN model is needed, the model code can refer to cached weights

in the GPU and proceed with inference. When we are able to reduce
the model loading time, which is a very big slice of DNN inference
process startup time, we will be also able to re-load the model with
different GPU% quicker than today.

Understanding GPU resource requirement: Another future
direction we are pursuing is to understand the amount of GPU
resources necessary for an application to complete running at a
certain time as well as the approximation of runtime based on
GPU resources. This challenge becomes crucial as we multiplex
the applications and aim to change GPU resources depending on
demand. We aim to create a tool that will give hints on what the
expected GPU compute resources would be based on static analysis
of applications.

8 CONCLUSION
In this paper, we presented different techniques for multiplexing
the GPU. We analyzed some DNN applications and saw that only
some DNN applications fully use GPU during inference. These ap-
plications can be multiplexed in GPU, increasing GPU utilization
and overall throughput. We picked a FaaS framework, Parsl, and
extended it to take arguments for GPU partitions. We evaluated
inference with a large language model LLaMa 2. We showed that
multiplexing GPU with resource partitioning lets us run multiple
instances of LLaMa 2 concurrently and decreases the time to com-
plete 100 inferences by 60% compared to running only 1 LLaMa
model per GPU. Similarly, LLaMa 2’s inference throughput by 250%
when 4 LLaMa 2 models are spatially multiplexed in a single GPU
compared to the default 1 LLaMa model per GPU.

ACKNOWLEDGMENTS
LW and IF acknowledge support by the ExaLearn Co-design Cen-
ter of Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. KC was supported by
NSF Grant 1550588.

REFERENCES
[1] 2023. Multi-Site Active Learning for IP Optimization. https://github.

com/exalearn/multi-site-campaigns/tree/main/molecular-design. Accessed:
16/08/2023.

[2] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/
3307681.3325400

[3] Sathwika Bavikadi, Abhijitt Dhavlle, Amlan Ganguly, Anand Haridass, Hagar
Hendy, Cory Merkel, Vijay Janapa Reddi, Purab Ranjan Sutradhar, Arun Joseph,
and Sai Manoj Pudukotai Dinakarrao. 2022. A Survey on Machine Learning
Accelerators and Evolutionary Hardware Platforms. IEEE Design & Test 39, 3
(2022), 91–116. https://doi.org/10.1109/MDAT.2022.3161126

[4] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
’20). Association for Computing Machinery, New York, NY, USA, 65–76. https:
//doi.org/10.1145/3369583.3392683

[5] Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma. 2022. SLA-
Driven ML INFERENCE FRAMEWORK FOR CLOUDSWITHHETEROGENEOUS
ACCELERATORS. In Proceedings of Machine Learning and Systems, D. Marculescu,
Y. Chi, and C. Wu (Eds.), Vol. 4. 20–32. https://proceedings.mlsys.org/paper_
files/paper/2022/file/bcf9bef61a534d0ce4a3c55f09dfcc29-Paper.pdf

1612

https://github.com/exalearn/multi-site-campaigns/tree/main/molecular-design
https://github.com/exalearn/multi-site-campaigns/tree/main/molecular-design
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1109/MDAT.2022.3161126
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://proceedings.mlsys.org/paper_files/paper/2022/file/bcf9bef61a534d0ce4a3c55f09dfcc29-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/bcf9bef61a534d0ce4a3c55f09dfcc29-Paper.pdf

SC-W 2023, November 12–17, 2023, Denver, CO, USA A. Dhakal, P. Raith, L. Ward, R. Hong Enriquez, G. Rattihalli, K. Chard, I. Foster, D. Milojicic

[6] Gregor Daiß, Patrick Diehl, Dominic Marcello, Alireza Kheirkhahan, Hartmut
Kaiser, and Dirk Pflüger. 2022. From Task-Based GPUWork Aggregation to Stellar
Mergers: Turning Fine-Grained CPU Tasks into Portable GPU Kernels. In 2022
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). 89–99. https://doi.org/10.1109/P3HPC56579.2022.00014

[7] Abdul Dakkak, Cheng Li, Simon Garcia De Gonzalo, Jinjun Xiong, and Wen-
mei Hwu. 2019. Trims: Transparent and isolated model sharing for low latency
deep learning inference in function-as-a-service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, 372–382.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[9] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. Gslice: con-
trolled spatial sharing of gpus for a scalable inference platform. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 492–506.

[10] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2023. D-STACK:
High Throughput DNN Inference by Effective Multiplexing and Spatio-Temporal
Scheduling of GPUs. arXiv preprint arXiv:2304.13541 (2023).

[11] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020. ECML:
Improving Efficiency of Machine Learning in Edge Clouds. In 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet). 1–6. https://doi.org/10.
1109/CloudNet51028.2020.9335804

[12] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020. Machine
Learning at the Edge: Efficient Utilization of Limited CPU/GPU Resources by
Multiplexing. In 2020 IEEE 28th International Conference on Network Protocols
(ICNP). 1–6. https://doi.org/10.1109/ICNP49622.2020.9259361

[13] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, and Emmett Witchel.
[n. d.]. DGSF: Disaggregated GPUs for Serverless Functions. IEEE International
Parallel and Distributed Processing Symposium ([n. d.]). https://doi.org/10.1109/
IPDPS53621.2022.00077

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv preprint arXiv:1512.03385 (2015).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv:1502.01852 [cs.CV]

[16] Myung-Hyun Kim, Jaehak Lee, Heonchang Yu, and Eunyoung Lee. 2023. Improv-
ing Memory Utilization by Sharing DNN Models for Serverless Inference. In 2023
IEEE International Conference on Consumer Electronics (ICCE). IEEE, 1–6.

[17] Cheng Li, Abdul Dakkak, Jinjun Xiong, Wei Wei, Lingjie Xu, and Wen-mei Hwu.
2020. XSP: Across-Stack Profiling and Analysis of Machine Learning Models on
GPUs. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 326–327. https://doi.org/10.1109/IPDPS47924.2020.00042

[18] Jie Li, George Michelogiannakis, Brandon Cook, Dulanya Cooray, and Yong
Chen. 2023. Analyzing Resource Utilization in an HPC System: A Case Study
of NERSC’s Perlmutter. In High Performance Computing, Abhinav Bhatele, Jeff
Hammond, Marc Baboulin, and Carola Kruse (Eds.). Springer Nature Switzerland,
Cham, 297–316.

[19] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022. Tetris: Memory-
efficient serverless inference through tensor sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22).

[20] NVIDIA. 2023. Multiprocess Service. https://docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_Overview.pdf. Accessed: 15/08/2023.

[21] Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini. 2022. A
survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives.
Journal of Systems Architecture 129 (2022), 102561. https://doi.org/10.1016/j.
sysarc.2022.102561

[22] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey
Golovanov, Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Arta-
monov, Vladimir Aladinskiy, Mark Veselov, Artur Kadurin, Simon Johansson,
Hongming Chen, Sergey Nikolenko, Alan Aspuru-Guzik, and Alex Zhavoronkov.
2020. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Genera-
tion Models. Frontiers in Pharmacology (2020).

[23] Philipp Raith, Stefan Nastic, and Schahram Dustdar. 2023. Serverless Edge
Computing—Where We Are and What Lies Ahead. IEEE Internet Computing 27,
3 (2023), 50–64.

[24] Philipp Raith, Thomas Rausch, Schahram Dustdar, Fabiana Rossi, Valeria
Cardellini, and Rajiv Ranjan. 2022. Mobility-aware serverless function adap-
tations across the edge-cloud continuum. In 2022 IEEE/ACM 15th International
Conference on Utility and Cloud Computing (UCC). IEEE, 123–132.

[25] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2022.
Mashup: making serverless computing useful for hpc workflows via hybrid
execution. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 46–60.

[26] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. Icebreaker: Warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 753–767.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[28] Lukas Tobler. 2022. GPUless – Serverless GPU Functions. Master’s thesis. ETH.
[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[31] Logan Ward, Ganesh Sivaraman, J. Gregory Pauloski, Yadu Babuji, Ryan Chard,
Naveen Dandu, Paul C. Redfern, Rajeev S. Assary, Kyle Chard, Larry A. Curtiss,
Rajeev Thakur, and Ian Foster. 2021. Colmena: Scalable Machine-Learning-
Based Steering of Ensemble Simulations for High Performance Computing. In
2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing
Environments (MLHPC). 9–20. https://doi.org/10.1109/MLHPC54614.2021.00007

[32] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Transpar-
ent {GPU} Sharing in Container Clouds for Deep Learning Workloads. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
69–85.

1613

https://doi.org/10.1109/P3HPC56579.2022.00014
https://doi.org/10.1109/CloudNet51028.2020.9335804
https://doi.org/10.1109/CloudNet51028.2020.9335804
https://doi.org/10.1109/ICNP49622.2020.9259361
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1109/IPDPS53621.2022.00077
https://arxiv.org/abs/1502.01852
https://doi.org/10.1109/IPDPS47924.2020.00042
 https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
 https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/MLHPC54614.2021.00007

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Function-as-a-Service
	2.2 Globus Compute/Parsl
	2.3 GPU Multiplexing

	3 Applications
	3.1 Molecular-Design
	3.2 LLaMa2
	3.3 Imagenet Models
	3.4 GPU utilization of the applications

	4 Technical Design
	4.1 Multiplexing with Parsl and MPS
	4.2 Multiplexing with Parsl and MIG

	5 Evaluation
	5.1 Testbed
	5.2 Multiplexed vs. Non-Multiplexed Execution

	6 Discussion: Execution Overhead
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

