
Lock-based or Lock-less: Which Is Fresh?
Vishakha Ramani, Jiachen Chen, Roy D. Yates

WINLAB, Rutgers University
Email: {vishakha, jiachen, ryates}@winlab.rutgers.edu

Abstract—We examine status updating systems in which time-
stamped status updates are stored/written in shared-memory.
Specifically, we compare Read-Copy-Update (RCU) and Readers-
Writer lock (RWL) as shared-memory synchronization primitives
on the update freshness. To demonstrate the tension between
readers and writers accessing shared-memory, we consider a
network scenario with a pair of coupled updating processes.
Location updates of a mobile terminal are written to a shared-
memory Forwarder Information Base (FIB) at a network for-
warder. An application server sends “app updates” to the mobile
terminal via the forwarder. Arriving app updates at forwarder
are addressed (by reading the FIB) and forwarded to the
mobile terminal. If a FIB read returns an outdated address,
the misaddressed app update is lost in transit. We redesign
these reader and writer processes using preemption mechanisms
that improve the timeliness of updates. We present a Stochastic
Hybrid System (SHS) framework to analyze location and app
update age processes and show how these two age processes are
coupled through synchronization primitives. Our analysis shows
that using a lock-based primitive (RWL) can serve fresher app
updates to the mobile terminal at higher location update rates
while lock-less (RCU) mechanism favors timely delivery of app
updates at lower location update rates.

Index Terms—Network performance analysis, Read Copy Up-
date, Reader Writer Locks, Age-of-Information

I. INTRODUCTION

In a broad range of cyber-physical systems, a source
generates status updates, time-stamped measurements of a
random process of interest, that are sent to one or more
destinations through a network. In addition to requiring low
latency transmission of each update, these applications require
timeliness in the status update process at these destinations.
For example, in robotic telesurgery, a surgeon needs timely
feedback on the robotic arm since stale feedback can lead to
organ injuries and other ramifications [1], [2].

It therefore becomes imperative to scrutinize current net-
work architectures in terms of their feasibility to satisfy strin-
gent real-time and freshness requirements. Delays of tens of
nanoseconds (e.g., a sequential SSD write of 8 kB takes 1ms,
a sequential SSD read of 8kB takes 1µs [3]) can significantly
degrade system performance, particularly when they accu-
mulate across multihop network paths. Hence, understanding
the behaviour of a single network node is crucial in the
development of ultra-low latency networks that deliver timely
information.

On the other hand, advances in high performance computing
have led to realizations of solutions to a range of problems
in engineering, medical sciences, space research etc. that
typically involve performing computationally intensive tasks

in a short amount of time. This is achieved by a mix of tech-
nologies, including shared memory multiprocessor systems
(for parallel computing), and vector processing along with
various algorithms built on such architectures. A plethora of
applications benefit from parallelization of various operations,
including, for example, high throughput transaction processing
in distributed databases [4] and faster training employing
embarrassingly parallel processes in machine learning [5].

Such applications with high inter-processor communication
demands expose synchronization between multiple processors
as a key bottleneck in parallel computation in terms of scal-
ability and computation times. In particular, a critical success
factor in shared memory multiprocessors is synchronization,
namely the coordination of concurrent tasks to ensure data
consistency and correctness. This issue concerning readers-
writer concurrency is manifested in various places. For in-
stance, in a distributed database system, the challenge is to
prevent database updates performed by one user from interfer-
ing with database retrievals and updates performed by another
[6]. In parallel machine learning, wherein there is an equal
partitioning of data points across available processors, each
having access to some global state (for e.g. model parameters),
then an incorrect modification of global state could potentially
conflict with operations on other processors [7].

For shared memory systems, primitives that enforce syn-
chronization among reader threads and writer threads when
accessing a shared resource are a way to avoid race conditions
caused by concurrent manipulation by different writer threads.
Specifically, these primitives allow multiple threads (readers
and writers) to execute concurrently and ensure that results of
reading and writing are predictable.

The existing literature on synchronization techniques fo-
cuses mostly on the algorithm, implementation and throughput
performance (operations per unit time) in the critical sections1

[8]–[10]. However, there has been a lack of study on the impact
of synchronization primitives on the timeliness of the data
accessed from shared memory in real-time IoT systems [11],
[12]. By contrast, there have been many studies addressing the
timeliness of status updates in queues and networks using Age
of Information (AoI) freshness metrics; see the surveys [13],
[14] and references therein.

Age of information is an end-to-end performance metric for
the timeliness of a status updating process. An update with
time-stamp u is said to have age t � u at a time t � u

1Formally, a critical section is a protected section of the shared resource
that is protected against multiple concurrent accesses



and the freshness of an update is decreasing with its age.
A monitor receiving a stream of updates has an age process
�(t) = t � u(t) when u(t) is the time-stamp of the freshest
received update. The recent AoI literature has focused on
high-level systems such as sensor networks, wireless multiple
access channels, and networks of queues in which delays are
typically measured in milliseconds.

In this study, we employ AoI freshness metrics to com-
pare the performance of status updating systems employing
Read-Copy-Update (RCU) and Readers-Writer lock (RWL)
synchronization primitives to disseminate information using
shared memory. While sub-microsecond delays may be typical
in shared memory reads and writes, the frequency of such
operations contribute to latency in network switches and
routers. Furthermore, due to advances in both link and radio
access network technologies, the transmission time of packets
is often negligible. We contend that in many applications
the bottleneck in status updating systems has shifted from
data communication over links to data storage, processing and
retrieval in network nodes. It is therefore imperative to analyse
how network devices affect the freshness of updates. With
this motivation, we analyze two fundamental synchronization
primitives — Read-Copy-Update (RCU) and Readers-Writer
Lock (RWL) — to aid both network engineers and software
developers in designing architectures and software libraries for
applications requiring timely status updates.

II. SYSTEM MODEL

In this work, we focus on a class of system in which a
source generates time-stamped updates (i.e., measurements of
a random process of interest) and a concurrent/shared data
structure stores these updates2. While the system will have
many sources, our focus will be on the shared data structure
that tracks the status of a single process of interest. Going
forward, we refer to the shared data structure as shared
memory, or simply as memory. Hence, a writer is responsible
for recording the fresh source/sensor measurements as updates
in the memory. A reader fulfills clients’ requests for these
measurements by reading from the memory.

A. Timely Update Forwarding
To demonstrate the effect of concurrency constructs on

timeliness, we consider an example of packet forwarding in a
mobile user environment, as shown in Fig. 1. An application
server in the network is sending “app updates” regarding a
process of interest to a mobile terminal. The application sends
its update packets to a forwarding node in the network. This
forwarder maintains a Forwarder Information Base (FIB) that
tracks the location (i.e. point of attachment network address)
of the mobile terminal. At the forwarder, app updates are
addressed using the FIB and forwarded to the mobile terminal.

This system has two update processes that we will track.
First, we will track the age �(t) of the app update process
at the mobile. Second, the mobile terminal sends “location

2The concurrent data structures usually reside in shared memory that is an
abstract storage environment.

Fig. 1: Packet forwarding application with mobile users

updates” to the forwarder that get written in the FIB. For this
process, we wish to track the age �̂(t) of location updates in
the FIB.

These two age processes are coupled through the FIB. At
the forwarder, a writer receives location updates from the
mobile and writes them to the FIB while a reader receives
app updates from the application server and needs to read the
FIB in order to address the app updates for forwarding to the
mobile terminal. In short, location updates are written to the
FIB and the app updates are client requests to read the FIB.

If the mobile terminal has moved and the FIB holds the
wrong address, the misaddressed app updates are assumed to
be lost and such packet losses will be reflected in increased
age in the app updates at the mobile terminal. Misaddressed
packets can arise in RCU if the reader reads the FIB while the
write of a fresh location update is in progress. Misaddressed
packets occur in RWL when a read lock prevents the writer
from writing a fresh location update.

The app updates in a router’s queue are read/service re-
quests to readers. The key idea here is that when the read
returns with an address, the queue entity should keep the
most recent/freshest read request and forwards that update
using the value of returned read. This results in the mobile
client receiving the freshest app update. To highlight, the
freshness of app updates received at mobile client depends
upon two factors: first, if the update was addressed correctly,
and second, only the freshest app updates are served at the
router. Notice that both these factors are inherently affected
by the synchronization mechanism being used.

B. Model Assumptions

There is no apparent consensus in the literature on modeling
random variables associated with the time needed for the
execution of a read or write operation. This is indeed the
time needed for a software function call that depends upon
the underlying hardware and operating system used. In this
work, we will assume exponential distributions for both write
and read times. If the time of an operation (read or write)
has an exponential (µ) distribution, then the average time of
the operation is 1/µ and we refer to µ as the speed of the
operation. While exponential models are decidedly too simple,
they enable (with a manageable number of parameters) an



analytic characterization of update age performance induced
by the complex RCU and RWL synchronization primitives.

We assume the source submits fresh location updates as rate
�̂ Poisson process to the network and that these updates arrive
fresh at the FIB writer, i.e. with age 0. The write operations
to unlocked memory locations have independent exponential
(µ̂) service times. We further assume a preemption in service
model; if the writer is busy writing a location update and a new
location update arrives then the update in service is preempted
and writer starts serving this fresher update. Specifically, the
writer discards the location update in service and starts writing
the fresh update.

We similarly model the arrivals of client requests (app
updates) to the FIB reader as a rate � Poisson process, and
assume each read request’s service/read time is an independent
exponential (µ) random variable. At the FIB reader, we allow
the client requests to be preempted while waiting for the read
to return. Specifically, after the read returns, only the fresher
app update is addressed with the FIB read and any previous
old update waiting for the read value is preempted.

We note that modeling and simulation settings are necessar-
ily simplified to facilitate getting some insight into understand-
ing the system. It is possible to extend our approach with more
detailed models where a writer takes multiple stages to finish
a write, where each stage takes an exponential time, then the
total write time PDF is the convolution of these exponential
PDFs. However, without the simplified exponential models, the
age analysis is intractable, and the alternative is to simulate.

C. Paper Outline and Contributions
In section III, we provide an overview of the RCU and

RWL synchronization primitives. In Section IV, we introduce
the Stochastic Hybrid Systems (SHS) method for AoI evalu-
ation. We use SHS to compare RCU and RWL in terms of
the average age of location and app updates in the update
forwarding system introduced in Section II-A. We show how
the app update age process and location update age process are
coupled through the FIB. In section V we perform numerical
evaluations to understand and compare RCU and RWL and
their effect on location and app update age process. This
includes a comparison of preemptive and non-preemptive RCU
and RWL models. While one may speculate that the lock-
less RCU approach that enables writing to the FIB without
delay should outperform the delay-inducing locks of RWL, our
results show that RCU is superior in some operating regimes
but worse in others. While these conclusions are specific to
our update forwarding example, the approach we develop here
can guide the construction of similar comparisons for other
distributed updating applications employing shared memory.

III. OVERVIEW OF SYNCHRONIZATION PRIMITIVES

A. Read-Copy-Update (RCU)
While conventional locking techniques such as Readers-

Writer Locks (RWL) enforce strict mutual exclusion between
readers and writers in order to prevent destructive modifica-
tions, they fall short on concurrent computations by virtue of

mutual exclusion. Replacing expensive conventional locking
techniques, Read-Copy-Update (RCU) is a synchronization
primitive that allows concurrent forward progress for both
writers and readers [15]. RCU can be broadly described in
two steps [16]: 1) To publish a newer version of a data item3,
the writer creates a copy of the RCU protected data item,
modifies this copy with the newer version of this data item,
and atomically replaces the old reference with a reference to
this newer version. This publishing process runs concurrently
with ongoing read processes that continue to read the old
copy/version using the old reference. However, new read
requests read the most recent version. 2) Since some readers
in progress hold reference to “stale” data, the system defers
memory reclamation of old data until after each reader in
progress has finished executing its read-side critical section.
Therefore, at any point of time, RCU can maintain multiple
time-stamped versions of a data item that are concurrently read
by readers in the system.

Every reader that enters a read-side critical section prior to
any modification from the writer is able to finish executing
its respective critical section. A “grace period” starts at the
moment the writer publishes the modified data item and
enables all RCU read-side critical sections in existence at the
beginning of a given grace period to complete [17]. Thus,
the end of grace period ensures that it is safe to reclaim the
memory and delete the stale copy.

B. Readers-Writer Lock (RWL)
RWL is a synchronization primitive that enforces mutual

exclusion between readers and writers; multiple readers are
allowed to read the shared data structure concurrently, while
a writer requires exclusive access or a “lock”4 to that data
structure. The focus of most RWL implementations is that no
thread should be allowed to starve. Therefore, with just one
writer, RWL implementations are mostly write preferring [18].
In this writer priority RWL, once the writer starts waiting in a
queue to acquire the lock, the RWL mechanism prevents new
readers from acquiring the lock. The writer’s acquisition of
the lock occurs once all readers already holding the read lock
have finished reading. During the write lock, new read lock
requests are queued until the writer has released its lock.

C. RCU and RWL Background
RCU has been used in a multitude of places in both user-

space and the Linux kernel. For example, in the networking
protocol stack, LC Tries employs locking via RCU to en-
able efficient IP address lookups [19], [20]. User-space RCU
[21] is used in high-performance DNS servers [22], in the
Linux networking toolkit [23], in distributed object storage
systems [24]. Most recently, RCU protected data structures
have been employed to ensure wait-free access to machine
learning models by inference threads [25]. One drawback of
a classical RCU mechanism is the wait-for-readers (using

3A writer has published an update when it exits its write critical section
4In shared-memory multiprocessor architectures, a lock is a mechanism that

restricts the access to a shared data structure among multiple processors



synchronize rcu()) primitive where updaters wait for all pre-
existing readers to complete their read-side critical sections.
Various RCU variants have been proposed (Predicate RCU
[26], [27], read-log update [28]) that address the wait-for-
readers problem. Apart from this, [29] introduced a real-time
variant of RCU that allows preemption of read-side critical
sections.

A caveat of RCU is that it doesn’t support multiple
concurrent updates. A body of research focuses and design
of algorithms that support concurrent updates and multi-
versioning [28], [30], [31]. Further, RCU implementation and
verification is non-trivial and several attempts have been made
to systematically check the RCU design and code [32]–[35].

Readers-Writer locks are ubiquitous in today’s system and
are found to support concurrency in virtual file systems, large
key-value stores, database systems, software transactional
memory implementations [36]. Conventional implementation
of Readers-Writer lock suffers from reader-reader scalability
and different designs have been proposed for scalable Readers-
Writer locks [37], [38]. Authors in [39] present the design of
a family of RW locks to leverage NUMA features and deliver
better performance.

IV. AOI EVALUATION OF APP UPDATES USING SHS

A. Stochastic Hybrid Systems (SHS) Overview
To evaluate AoI of app updates, we use a Stochastic Hybrid

Systems (SHS) [40] approach, a technique introduced for AoI
evaluation in [41] and since employed in AoI evaluation of
a variety of status updating systems [42]–[49]. A stochastic
hybrid system has a state-space with two components – a
discrete component q(t) 2 Q = {0, 2, . . . ,M} that is a
continuous-time finite state Markov Chain and a continuous
component x(t) = [x0(t), . . . , xn(t)] 2 Rn+1. In AoI analyses
using SHS, each xj(t) 2 x(t) describes an age process of
interest. Each transition l 2 L is a directed edge (ql, q0l) with
a transition rate �(l) in the Markov chain. The age process
vector evolves at a unit rate in each discrete state q 2 Q, i.e.,
dx
dt = ẋ(t) = 1n. A transition l causes a system to jump from
discrete state ql to q0l and resets the continuous state from x to
x0 using a linear transition reset map Al 2 {0, 1}(n⇥n) such
that x0 = xAl. For simple queues, examples of transition reset
mappings {Al} can be found in [41].

For a discrete state q̄ 2 Q, let Lq̄ and L0
q̄ be sets of incoming

and outgoing transitions, i.e.

Lq̄ = {l 2 L : q0l = q̄}, L0
q̄ = {l 2 L : ql = q̄}. (1)

Age analysis using SHS is based on the expected value
processes {vq(t) : q 2 Q} such that

vq(t) = E[x(t)�q,q(t)]

= [E[x1(t)�q,q(t)] · · · E[xn(t)�q,q(t)]], (2)

with �i,j denoting the Kronecker delta function. For the SHS
models of age processes considered here, each vq(t) will
converge to a fixed point v̄q . The fixed points {v̄q : q 2 Q}
are the solution to a set of age balance equations. Specifically,

4

0 1

23

�̂

µ̂ �̂

�

�̂

�

�

µ

µ�

�
�̂

µ

�̂

µ̂

4

0 1

23

�̂

µ̂ �̂

�̂

�

� µ

�̂

�

µ

�

�

�̂

µ̂

(a) RCU (b) RWL

Fig. 2: SHS Markov chain for (a) RCU mechanism and for
(b) RWL mechanism.

the following theorem provides a simple way to calculate the
age balance fixed point and then the average age in an ergodic
queueing system.

Theorem 1: [41, Theorem 4] If the discrete-state Markov
chain q(t) 2 Q = {0, . . . ,M} is ergodic with stationary
distribution ⇡̄ = [⇡̄0 · · · ⇡̄M ] > 0 and there exists a non-
negative vector v̄ = [v̄0 · · · v̄M ] such that

v̄q̄

X

l2Lq̄

�(l) = 1⇡̄q̄ +
X

l2L0
q̄

�(l)v̄qlAl, q̄ 2 Q, (3)

then the average age vector is E[x] = limt!1 E[x(t)] =P
q̄2Q v̄q̄ .

B. RCU and RWL: SHS framework
We now describe the SHS framework for RCU and RWL

considering the packet forwarding example. We consider two
age vectors: 1) the age state of the location update process
is x̂(t) = [x̂0(t) x̂1(t)], where x̂0(t) is the age of the
location update seen by the writer and x̂1(t) is the age of
the current location update in memory; 2) the age state of the
application update process that initiates client read requests is
x(t) = [x0(t) x1(t)], where x0(t) and x1(t) are the ages of
the most recent application updates at the reader and at the
mobile terminal (i.e. the destination monitor) respectively.

Since RWL and RCU are fundamentally two different
mechanisms for accessing shared memory, the discrete states
Q = {0, 1, 2, 3, 4} are similar albeit different:
State 0 The idle state
State 1 The writer is writing fresh update (with a write lock

in RWL)
State 2 The writer is writing a fresh update (with a write lock

in RWL) but the reader action is different for RCU and
RWL. For RCU, the reader is reading a stale address,
but in RWL, the reader has requested a read lock and is
waiting for the lock to become active.

State 3 The reader reading fresh/correct update from memory
(with a read lock in RWL)

State 4 The reader is reading a stale update (with read lock
active in RWL) but the writer state is different. For RCU,
the writer has finished writing the update and this new
update is published. For RWL, the writer has requested



a write lock and is waiting for the in-progress read to
finish.

The discrete-state Markov chains for RCU and RWL are
shown in Fig. 2(a) and 2(b) respectively. The SHS transition
reset maps for RCU and RWL are shown in Tables I(a) and
I(b). In each table, a transition l from state ql to q0l occurs at
rate �(l) with age reset maps

x0 = xAl, x̂0 = x̂Âl. (4)

Equation (4) highlights how the the app update process x(t)
and location update process x̂(t) are coupled only through
the changes in the Markov chain at the forwarder. In each
transition l, either the app update process x(t) changes or the
location update process x̂(t) changes, but not both. That is,
either Al or Âl is an identity matrix for each transition l.

C. RCU and RWL: SHS Transitions
Here we describe the SHS transitions for both RCU and

RWL that are enumerated in Tables I(a) and I(b). For each
collection of transitions, we focus on the age state process
(x(t) or x̂(t)) that changes. In particular, we first describe
what is common to both RCU and RWL. This is followed by
details specific to RCU and RWL respectively.

• l = 1, . . . , 5: In each state 0, . . . , 4, the writer receives a
fresh location update and initiates the write mechanism.
Since the location update is fresh, x̂0

0 = 0 whereas
x̂0
1 = x̂1 is unchanged as the location update has not yet

been written to the FIB. In transitions l = 2, 3, the writer
preempts an in-progress write with an updated location.
RCU Following transition l = 5, the in-progress read

will now be returning an outdated address.
RWL In transition l = 1, the writer acquires a write-

lock. In transitions l = 2, 3, the writer already holds the
write-lock. In transitions l = 4, 5, the writer requests
a write lock but the request is queued as the reader is
in a critical section.

• l = 6, 7: The writer finishes writing to the FIB and
publishes a new location update; x̂0

0 = x̂0 is unchanged
since no new location update arrives at the writer but
x̂0
1 = x̂0 as the age at the FIB is reset to the age of the

just-written update. In transition l = 6, the system goes
to the idle state.
RCU In transition l = 7, the system goes to state 4

because a grace period starts with a read in progress.
RWL For transition, l = 7, there is a pending read

request and so the reader acquires the read lock and
enters a read-side critical section.

• l = 8, . . . , 12: In each discrete state 0, . . . , 4, an app
update arrives, initiating a read request; x0

0 = 0 as the app
update is fresh at the reader but x0

1 = x1 since the app
update has not yet been delivered to the mobile terminal.
RCU In transitions l = 9, 10, the system enters state 2

in which the writer is simultaneously writing a fresh
location update. Consequently, the reader will read a
stale address from the FIB in state 2. For transitions

l = 11, 12, a read was already in-progress; when that
read completes, the address returned by the FIB is used
to address this most recent app update. Effectively, the
arriving app update preempts the prior update that had
been held by the reader.

RWL In transition l = 8, the reader immediately ac-
quires a read-lock on the FIB and initiates the read.
In transition l = 9, the app update arrives in a write-
lock state, the reader requests a read lock on the FIB
that is denied and the system transitions to state 2,
the write-lock with read pending state. In transition
l = 10, the fresh app update arrives in state 2 and the
system stays in the write-lock with read-pending state.
In transitions l = 11, 12, the fresh app update arrives
in a state with the read-lock already active. Hence,
in transitions l = 10, 11, 12, the system remains in
its same state but the fresh app update preempts the
prior app update at the reader that was waiting to be
addressed and sent. We note that following transition
l = 10 or l = 11, there is the chance that the app
update will eventually be correctly delivered to the
mobile. However, in the case of transition l = 12, the
app update, if not preempted, will eventually read an
outdated address and go misaddressed.

• l = 13: The reader retrieves a location address from the
FIB and exits the critical section; x0

0 = x0 but x0
1 = x0

as the age at mobile terminal is reset to the age of the
app update that was just addressed and delivered to the
mobile. In both RCU and RWL, the system returns to the
idle state.

• l = 14: The reader retrieves a stale location address from
the FIB, exits the critical section and attempts to forward
the app update to the mobile; x0

0 = x0 but x0
1 = x1 is

unchanged, i.e. the age at mobile is not reset since the
address read is outdated and the misaddressed app update
is lost in transit.
RCU When this transition occurs, the writer is idle,

having already finished writing its location update to
the FIB. However, the reader is fetching the prior copy
holding the outdated location.

RWL When this transition occurs, the writer has re-
ceived the location update, but is in a write-pending
state waiting for the read-lock to be released.

• l = 15: When this transition occurs, an RCU read
finishes while an in-progress RCU write is updating
the FIB with a location update that occurred while the
read was in progress. (This transition is exclusive to
RCU since RWL locking prohibits simultaneous reading
and writing.) Similar to transition l = 14, the reader
retrieves the stale (prior) location address and attempts to
forward the app update to the mobile. Since this address
is outdated, the misaddressed app update is lost in transit;
x0
0 = x0 and x0

1 = x1 are unchanged.



l ql ! q0l �(l) x̂Âl Âl xAl Al

1 0 ! 1 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

2 1 ! 1 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

3 2 ! 2 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

4 3 ! 2 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

5 4 ! 2 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

6 1 ! 0 µ̂ [x̂0 x̂0]
⇥
1 1
0 0

⇤
[x0 x1]

⇥
1 0
0 1

⇤

7 2 ! 4 µ̂ [x̂0 x̂0]
⇥
1 1
0 0

⇤
[x0 x1]

⇥
1 0
0 1

⇤

8 0 ! 3 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

9 1 ! 2 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

10 2 ! 2 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

11 3 ! 3 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

12 4 ! 4 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

13 3 ! 0 µ [x̂0 x̂1]
⇥
1 0
0 1

⇤
[x0 x0]

⇥
1 1
0 0

⇤

14 4 ! 0 µ [x̂0 x̂1]
⇥
1 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

15 2 ! 1 µ [x̂0 x̂1]
⇥
1 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

l ql ! q0l �(l) x̂Âl Âl xAl Al

1 0 ! 1 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

2 1 ! 1 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

3 2 ! 2 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

4 3 ! 4 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

5 4 ! 4 �̂ [0 x̂1]
⇥
0 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

6 1 ! 0 µ̂ [x̂0 x̂0]
⇥
1 1
0 0

⇤
[x0 x1]

⇥
1 0
0 1

⇤

7 2 ! 3 µ̂ [x̂0 x̂0]
⇥
1 1
0 0

⇤
[x0 x1]

⇥
1 0
0 1

⇤

8 0 ! 3 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

9 1 ! 2 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

10 2 ! 2 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

11 3 ! 3 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

12 4 ! 4 � [x̂0 x̂1]
⇥
1 0
0 1

⇤
[0 x1]

⇥
0 0
0 1

⇤

13 3 ! 0 µ [x̂0 x̂1]
⇥
1 0
0 1

⇤
[x0 x0]

⇥
1 1
0 0

⇤

14 4 ! 1 µ [x̂0 x̂1]
⇥
1 0
0 1

⇤
[x0 x1]

⇥
1 0
0 1

⇤

(a) RCU (b) RWL

TABLE I: SHS transitions for tracking age in Markov chains of Fig. 2 for (a) RCU and (b) RWL.

D. RCU: SHS Age Analysis
For the SHS analysis, we employ the normalized rates

⇢̂ = �̂/µ̂, � = �/µ̂, � = µ/µ̂. (5)

We note that ⇢̂ is the offered load of location updates being
written to the FIB. Similarly, � is the normalized arrival
rate of FIB read requests. For RCU, the Fig. 2(a) Markov
chain has stationary probabilities ⇡ = [⇡0 ⇡1 ⇡2 ⇡3 ⇡4] with
normalization constant C⇡ given by

⇡ = C�1
⇡ [� ⇢̂� �⇢̂ ��

⇢̂+�
�⇢̂
⇢̂+� ], (6a)

C⇡ = (1 + ⇢̂)(� + �). (6b)

We now apply Theorem 1 to the SHS reset maps in
Table I(a). With the shorthand notations

�⇤ = �+ �̂, µ⇤ = µ+ µ̂, (7)

From Theorem 1, the RCU location update age process x̂(t)
has age balance fixed points v̂q = [v̂q0 v̂q1] satisfying

�⇤v̂0 = 1⇡̄0 + µ̂v̂1Â6 + µv̂3Â13 + µv̂4Â14, (8a)

(�⇤ + µ̂)v̂1 = 1⇡̄1 + �̂v̂0Â1 + �̂v̂1Â2 + µv̂2Â15, (8b)

(�⇤ + µ⇤)v̂2 = 1⇡̄2 + �̂v̂2Â3 + �̂v̂3Â4 + �̂v̂4Â5

+ �v̂1Â9 + �v̂2Â10, (8c)

(�⇤ + µ)v̂3 = 1⇡̄3 + �v̂0Â8 + �v̂3Â11, (8d)

(�⇤ + µ)v̂4 = 1⇡̄4 + µ̂v̂2Â7 + �v̂4Â12. (8e)

From Table I(a) we see that Â8, Â9, . . . , Â15 are all identity
matrices. It follows that (8) simplifies to

�⇤v̂0 = 1⇡̄0 + µ̂v̂1Â6 + µv̂3 + µv̂4, (9a)
(�⇤ + µ̂)v̂1 = 1⇡̄1 + �̂v̂0Â1 + �̂v̂1Â2 + µv̂2, (9b)
(�̂+ µ⇤)v̂2 = 1⇡̄2 + �̂v̂2Â3 + �̂v̂3Â4 + �̂v̂4Â5 + �v̂1, (9c)
(�⇤ + µ)v̂3 = 1⇡̄3 + �v̂0 + �v̂3, (9d)
(�⇤ + µ)v̂4 = 1⇡̄4 + µ̂v̂2Â7 + �v̂4. (9e)

Because the RCU app updates employ the same discrete
state Markov chain as the RCU location updates, the RCU
age balance equations for the app updates are identical to (8)
with v̂0, . . . , v̂4 and Â1, . . . , Â15 replaced by v̄0, . . . , v̄4 and
A1, . . . ,A15 respectively:

�⇤v̄0 = 1⇡̄0 + µ̂v̄1A6 + µv̄3A13 + µv̄4A14, (10a)

(�⇤ + µ̂)v̄1 = 1⇡̄1 + �̂v̄0A1 + �̂v̄1A2 + µv̄2A15, (10b)

(�⇤ + µ⇤)v̄2 = 1⇡̄2 + �̂v̄2A3 + �̂v̄3A4 + �̂v̄4A5

+ �v̄1A9 + �v̄2A10, (10c)
(�⇤ + µ)v̄3 = 1⇡̄3 + �v̄0A8 + �v̄3A11, (10d)
(�⇤ + µ)v̄4 = 1⇡̄4 + µ̂v̄2A7 + �v̄4A12. (10e)

For these equations, we note from Table I(b) that A1, . . . ,A7

and A14,A15 are all identity matrices and this will lead to a
set of simplified age balance equations, equivalent to (9) for
the RCU location updates. Numerical evaluation of v̂0, . . . , v̂4

and v̄0, . . . , v̄4 using (9) and the simplified version of (10)
respectively is straightforward. It follows from Theorem 1 that
average age E[�̂] of a location update in the FIB and the
average age E[�] of an app update at the mobile terminal are

E[�̂] =
4X

q=0

v̂q1, E[�] =
4X

q=0

v̄q1. (11)

E. RWL: SHS Age Analysis

The RWL Markov chain in Fig. 2(b) has stationary proba-
bilities ⇡ with normalization constant C⇡ given by

⇡ = [⇡0 ⇡1 ⇡2 ⇡3 ⇡4] = C�1
⇡

2

66664

�(⇢̂+ � + ��)
⇢̂�(� + ⇢̂+ �)
�⇢̂�(� + ⇢̂+ �)
��(1 + � + ⇢̂)
�⇢̂(1 + � + ⇢̂)

3

77775

>

(12a)

C⇡ = �⇢̂(1 + � + ⇢̂) + �(1 + �)(1 + ⇢̂)(� + � + ⇢̂). (12b)



The age balance equations based on the SHS reset maps shown
in Table I(b) for RWL location updates are:

�⇤v̂0 = 1⇡̄0 + µ̂v̂1Â6 + µv̂3Â13, (13a)

(�⇤ + µ̂)v̂1 = 1⇡̄1 + �̂v̂0Â1 + �̂v̂1Â2 + µv̂4Â14, (13b)

(�⇤ + µ̂)v̂2 = 1⇡̄2 + �̂v̂2Â3 + �v̂1Â9 + �v̂2Â10, (13c)

(�⇤ + µ)v̂3 = 1⇡̄3 + µ̂v̂2Â7 + �v̂0Â8 + �v̂3Â11, (13d)

(�⇤ + µ)v̂4 = 1⇡̄4 + �̂v̄3Â4 + �̂v̄4Â5 + �v̄4Â12. (13e)

For the app updates described by the age process x(t), there
is a set of SHS equations identical to (13), but with transition
reset maps Al in place of Âl and variables vq = [vq0 vq1] in
place of v̂q = [v̂q0 v̂q1]. Once again, we solve these equations
numerically and it follows from Theorem 1 that average age
E[�] of the RWL app update process is given by (11).

The SHS analysis of RCU and RWL corresponding to
Equations (6) through (13) incorporate preemption of updates
at the FIB reader and writer. We will also consider non-
preemptive versions of RCU and RWL. In these systems, app
updates arriving during the reader’s busy state are discarded.
Consequently, when a read returns with an address, it ad-
dresses the app update that initiated the read request.

In SHS models of these non-preemptive systems, the states
of Markov chains in Fig. 2 remain unchanged. However, the
self transitions of rate � are absent. In particular, the SHS
transition tables of the non-preemptive RCU and RWL systems
are given in Table I except transitions l = 10, 11, 12 in both
Table I(a) and Table I(b) are deleted. The age balance equa-
tions then can be obtained from Theorem 1 in the same way
that we derived (8). We don’t explicitly enumerate these age
balance equations here; however, in section V, we numerically
compare the performance of preemptive and non-preemptive
systems.

V. NUMERICAL RESULTS

We note that while RCU writes are lock-less, they can be
still heavy as the writer tracks the start and end of a grace
period, and is also responsible for memory reclamation of stale
copies. On the other hand, RWL writes use locks to update
the data structure. Locking requires expensive atomic opera-
tions such as compare-and-swap and thus the corresponding
software functionality tends to run slow [50]. We characterize
the RCU and RWL write speeds by the exponential rate
parameters µ̂RCU and µ̂RWL; however, it is ambiguous whether
µ̂RCU > µ̂RWL or vice-versa. Thus, in order to focus on the
effects of other system parameters, our numerical evaluations
assume

µ̂RWL = µ̂RCU = µ̂. (14)

In contrast to the ambiguity associated with relative write
speeds, reads in RCU are typically fast, sometimes an order
of magnitude faster than uncontended locking [17]. In our
SHS models, read rates are characterized by parameter µ and
since read side primitives are lighter (i.e. faster) in RCU, this
corresponds to µRCU > µRWL.

With the definition of the normalized rates

⇢̂ =
�̂

µ̂
, � =

�

µ̂
, �RWL =

µRWL

µ̂
, �RCU =

µRCU

µ̂
, (15)

we now present some results from numerically evaluating (9),
(10), (13) with µ̂ = 1. Hence age will be measured in the units
of 1/µ̂, the average shared memory write time. As explained,
our numerical evaluations consider cases with �RWL < �RCU,
along with the further assumption �RCU = 10, corresponding
to RCU reads being 10⇥ faster than RCU writes.

In addition, our evaluations will vary ⇢̂ over the interval
[0, 0.1]. At ⇢̂ = 0, the mobile terminal is stationary and never
changes its network address. On the other hand, the upper
limit ⇢̂ = 0.1 represents an extreme value in that the average
time between location changes 1/�̂ is only 10⇥ longer than
the average time 1/µ̂ to write to shared memory. For example,
very slow memory writes requiring time 1/µ̂ = 1 ms would
correspond to �̂ = 0.1 location changes per millisecond, or
100 location changes per second. While this would be an
extreme level of user mobility in a traditional wireless network
environment, there may be other network scenarios in which
the mobile user is perhaps a software agent, for which this
is appropriate. With these constraints, we aim to provide an
informative comparison between RCU and RWL systems.

In Fig. 3, we plot the average app age E[�] as a function
of ⇢̂. A larger ⇢̂ means that the mobile is moving faster and
changing its location more frequently, and so more app update
packets are misaddressed, resulting in increased app age at the
mobile terminal. In the same figure, we notice the effect of
slower reads in RWL on app age. The app age at the mobile
client increases in proportion to the service time of the app
updates at the forwarder. Additionally, a slower read with a
read lock activated corresponds to the writer being locked out
without being able to write a fresher location update.

On the other hand, timely updating is achieved with RCU’s
fast read-side primitives and shown in Fig. 3(a). We also note
that an RWL system with fast reads, say �RWL = 10, performs
better than RCU with �RCU = 10, especially at higher values of
⇢̂; see Fig. 3(b). In this case, larger ⇢̂ corresponds to a greater
likelihood that the FIB address is outdated, but an exclusive
write lock prevents the reader from reading a stale address.
The lock-less operation of RCU enables the reader to read
the outdated FIB. We note that our analysis and numerical
evaluations align with RCU literature that RCU is not suitable
for update heavy scenarios.

From the Markov chains in Fig. 2, it is also instructive
to evaluate the probability an app update is delivered. For
RCU, an app update arriving in state 0 or state 3 is delivered
with probability µ/(�⇤ + µ), which is the probability that
the address read required by the app update finishes before
a location update occurs or gets preempted by a fresher app
update. App updates arriving in states 1, 2, and 4 are discarded
primarily because the read request initiated by the updates will
return a stale address as the writer is writing a fresher update



0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

E
[

]

(a)

0 0.02 0.04 0.06 0.08 0.1
0.2

0.25

0.3

0.35

0.4

E
[

]

(b)

Fig. 3: AoI at mobile client when using RCU preemption (rcu
-p) and RWL preemption (rwl-p) as a function of normalized
write request rate ⇢̂ = �̂/µ̂, against different values of
normalized read rate � = �/µ̂ and �RCU = 10 with (a)
�RWL = 1, and (b) �RWL = 10.

in each of these states. Thus, the probability that an app update
is delivered under RCU is

PRCU = (⇡0 + ⇡3)
µ

�⇤ + µ
. (16)

For RWL, app updates arriving in state 0 or state 3 are
delivered with same probability as RCU, i.e. µ/(�⇤+µ). App
updates arriving in state 1 or state 2 are delivered with prob-
ability [µ̂/(µ̂+ �)][µ/(�⇤ + µ)]. Thus, the probability that an
app update is delivered is

PRWL = (⇡0 + ⇡1
µ̂

µ̂+ �
+ ⇡2

µ̂

µ̂+ �
+ ⇡3)

µ

�⇤ + µ
. (17)

Fig. 4 shows that PRCU and PRWL in (16) and (17) decrease
as a function of normalized write request rate. In comparing
Figs 3 and 4, we see that for both RCU and RWL that the
average age E[�] becomes worse as the delivery probability
decreases.

Fig. 5 demonstrates the timeliness gain achieved by em-
ploying preemption of app updates held by the reader. For
�RCU = 10, �RWL = 1, and � = 10, this gain is almost
15% for RCU and 45% for RWL. From the AoI perspective,
preemption helps more in RWL as it allows a slower read to
service the most recent app update. Nevertheless, we note from
Fig. 5 that preemption mechanisms generally reduce AoI.

In Fig. 6, we observe that the age of location updates
in the memory is E[�̂] ⇡ 1/⇢̂ for both RCU and RWL.
This demonstrates that essentially all location updates are

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

P
(a

p
p
 u

p
d
a
te

 d
e
liv

e
ry

)

(a)

0 0.02 0.04 0.06 0.08 0.1
0.4

0.5

0.6

0.7

P
(a

p
p
 u

p
d
a
te

 d
e
liv

e
ry

)

(b)

Fig. 4: Probability that an app update arriving at router is
delivered correctly when �RCU = 10 and when (a) �RWL = 1
and (b) �RWL = 10.

promptly stored in memory and that E[�̂] is dominated by the
relatively low frequency of location changes. This is the ex-
ception to the customary assumption that system performance
improves with decreasing age. In this case, increasing the rate
of location changes reduces the age of location updates in
memory, but it also increases the probability that app updates
go misaddressed. In this system, the timeliness of location
updates would be better described using metrics such as Age
of Incorrect Information [51] or Age of Synchronization [52],
[53] that account for whether the current update is correct.

VI. CONCLUSION

This work has explored the impact of synchronization prim-
itives on timely updating. We modeled and developed a packet
forwarding scenario in which location updates from a mobile
terminal are written to a forwarding table and application
updates need to read the forwarding table in order to ensure
their correct addressing for delivery to a mobile terminal. In
this system, we saw the tension between writer and reader,
both in the analytic models and in the corresponding numerical
evaluations. While timeliness of the location updates in the
table is desirable, excessive updating can be at the expense of
timely reading of the table. We now discuss some of the many
open questions and issues related to this work.

In this work, we considered only a tightly-coupled source
and writer in which fresh (zero age) updates are delivered
to the writer. However, there are many physical situations
in which a loosely coupled source and writer would be
appropriate. For example, when the source is a camera sensor
and the update is an image, both image processing at the



0 0.02 0.04 0.06 0.08 0.1
0.2

0.3

0.4

0.5

E
[

]

(a)

0 0.02 0.04 0.06 0.08 0.1
1

1.5

2

2.5

E
[

]

(b)

Fig. 5: AoI performance with and without preemption for (a)
RCU with �RCU = 10, and (b) RWL with �RWL = 1.

sensor and transmission of the image to the writer would
contribute to the update preparation time. It is obvious that
this additional latency would contribute directly to the age
of updates written to memory. What is perhaps less obvious
is that this should prompt the writer to be parsimonious in
writing. In the AoI literature, there is evidence [54], [55] that
delaying new updates when the current update is relatively
fresh can be age-optimal. The insight is that one should not
commit system resources to producing a new update when it
offers only a small age reduction relative to the current update.
While the setting here is different, it seems likely that similar
ideas would also be age-reducing in writing to shared memory.

We have also assumed in this work that a reader does not
maintain a local cache copy of its most recent read. With
a local cache, the reader can fulfill a read request by either
returning the cached update or by requesting a new read lock
to return a potentially fresher read from shared memory. While
this optimization may improve timeliness of the delivered read,
it also highlights a fundamental difference between age and
latency. In responding to a client with a local copy, latency,
as measured by the turnaround time, is reduced since the
reader has unrestricted access to its local cache. On the other
hand, a response that reads the shared memory is likely to
be fresher. However, by virtue of mutual-exclusion, the reader
may wait to complete its read of the shared memory, thus
increasing the turnaround time to the client. In fact, the reader
can optimize its decision making, possibly with age-dependent
policies, and this will induce an age-latency tradeoff that needs
to be explored.

We observe that RWL and synchronization primitives in
general admit a combinatorial explosion of system models

0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

Fig. 6: AoI at memory when �RCU = 10 and �RWL = 1.

in specifying the behaviour of readers and writers. We have
already described how the source-writer may be loosely or
tightly coupled, how the reader may or may not maintain
a local cache, and how both reader and writer may or
may not employ update preemption mechanisms. Furthermore,
conclusions of this work are tightly coupled to our update
forwarding scenario. There is considerable work to be done
in the exploring timeliness in other applications and systems
employing shared memory.

REFERENCES

[1] H. Laaki, Y. Miche, and K. Tammi, “Prototyping a digital twin for
real time remote control over mobile networks: Application of remote
surgery,” IEEE Access, vol. 7, pp. 20 325–20 336, 2019.

[2] R. K. Orosco, B. Lurie, T. Matsuzaki, E. K. Funk, V. Divi, F. C.
Holsinger, S. Hong, F. Richter, N. Das, and M. Yip, “Compensatory
motion scaling for time-delayed robotic surgery,” Surgical endoscopy,
vol. 35, pp. 2613–2618, 2021.

[3] S. Eskildsen, [Online]. Available from: https://github.com/sirupsen/
napkin-math##numbers, 2020.

[4] D. DeWitt and J. Gray, “Parallel database systems: The future of high
performance database systems,” Commun. ACM, vol. 35, no. 6, pp.
85–98, Jun. 1992. [Online]. Available: https://doi.org/10.1145/129888.
129894

[5] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput.
Surv., vol. 52, no. 4, Aug. 2019. [Online]. Available: https:
//doi.org/10.1145/3320060

[6] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Comput. Surv., vol. 13, no. 2, pp. 185–221,
Jun. 1981. [Online]. Available: https://doi.org/10.1145/356842.356846

[7] X. Pan, J. Gonzalez, S. Jegelka, T. Broderick, and M. I. Jordan, “Op-
timistic concurrency control for distributed unsupervised learning,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1, ser. NIPS’13. Red Hook, NY, USA:
Curran Associates Inc., 2013, pp. 1403–1411.

[8] V. Gramoli, “More than you ever wanted to know about synchronization:
Synchrobench, measuring the impact of the synchronization on
concurrent algorithms,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 2015. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 1–10. [Online]. Available: https://doi.org/10.1145/
2688500.2688501

[9] T. David, R. Guerraoui, and V. Trigonakis, “Asynchronized concurrency:
The secret to scaling concurrent search data structures,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 1, pp. 631–644, 2015.

[10] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Scalable address
spaces using rcu balanced trees,” ACM SIGPLAN Notices, vol. 47, no. 4,
pp. 199–210, 2012.

[11] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age of
information in the internet of things,” IEEE Communications Magazine,
vol. 57, no. 12, pp. 72–77, 2019.

[12] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspective
at the centennial,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1287–1308, 2012.



[13] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,” Foundations and Trends in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[14] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[15] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger, R. Rus-
sell, D. Sarma, and M. Soni, “Read-copy update,” in In Ottawa Linux
Symposium, 2001, pp. 338–367.

[16] P. E. McKenney, [Online]. Available from: https://www.kernel.org/doc/
html/latest/RCU/whatisRCU.html.

[17] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE
Trans. Parallel Distributed Syst., vol. 23, no. 2, pp. 375–382, 2012.
[Online]. Available: https://doi.org/10.1109/TPDS.2011.159

[18] P.-J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent control with
“readers” and “writers”,” Communications of the ACM, vol. 14, no. 10,
pp. 667–668, 1971.

[19] S. Nilsson and G. Karlsson, “Ip-address lookup using lc-tries,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 1083–
1092, 1999.

[20] L. trie implementation notes the linux kernel documentation, “Lc-trie
implementation notes.” [Online]. Available: https://www.kernel.org/doc/
html/latest/networking/fib trie.html

[21] “Userspace rcu,” [Online]. Available from: https://liburcu.org/, 2021.
[22] “Knotdns,” [Online]. Available from: https://www.knot-dns.cz/, 2021.
[23] “netsniff-ng,” [Online]. Available from: http://netsniff-ng.org/, 2021.
[24] “Sheepdog project,” [Online]. Available from: https://sheepdog.github.

io/sheepdog, 2015.
[25] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li,

V. Rajashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving:
Flexible, high-performance ML serving,” CoRR, vol. abs/1712.06139,
2017. [Online]. Available: http://arxiv.org/abs/1712.06139

[26] M. Arbel and A. Morrison, “Predicate rcu: An rcu for scalable
concurrent updates,” SIGPLAN Not., vol. 50, no. 8, pp. 21–30, jan
2015. [Online]. Available: https://doi.org/10.1145/2858788.2688518

[27] I. Gelado and M. Garland, “Throughput-oriented gpu memory
allocation,” in Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 27–37.
[Online]. Available: https://doi.org/10.1145/3293883.3295727

[28] A. Matveev, N. Shavit, P. Felber, and P. Marlier, “Read-log-update: a
lightweight synchronization mechanism for concurrent programming,” in
Proceedings of the 25th Symposium on Operating Systems Principles,
2015, pp. 168–183.

[29] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole, “The read-
copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with linux,” IBM Systems Journal,
vol. 47, no. 2, pp. 221–236, 2008.

[30] M. Arbel and H. Attiya, “Concurrent updates with rcu: Search tree
as an example,” in Proceedings of the 2014 ACM Symposium on
Principles of Distributed Computing, ser. PODC ’14. New York,
NY, USA: Association for Computing Machinery, 2014, pp. 196–205.
[Online]. Available: https://doi.org/10.1145/2611462.2611471

[31] J. Kim, A. Mathew, S. Kashyap, M. K. Ramanathan, and C. Min, “Mv-
rlu: Scaling read-log-update with multi-versioning,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
779–792. [Online]. Available: https://doi.org/10.1145/3297858.3304040

[32] M. Kokologiannakis and K. Sagonas, “Stateless model checking of
the linux kernel’s read–copy update (rcu),” International Journal on
Software Tools for Technology Transfer, vol. 21, no. 3, pp. 287–306,
2019.

[33] ——, “Stateless model checking of the linux kernel’s hierarchical
read-copy-update (tree rcu),” in Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of
Software, ser. SPIN 2017. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 172–181. [Online]. Available:
https://doi.org/10.1145/3092282.3092287

[34] L. Liang, P. E. McKenney, D. Kroening, and T. Melham, “Verification
of tree-based hierarchical read-copy update in the linux kernel,” in 2018

Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 61–66.

[35] J. Tassarotti, D. Dreyer, and V. Vafeiadis, “Verifying read-copy-update
in a logic for weak memory,” ACM SIGPLAN Notices, vol. 50, no. 6,
pp. 110–120, 2015.

[36] D. Dice and N. Shavit, “Tlrw: Return of the read-write lock,”
in Proceedings of the Twenty-Second Annual ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp.
284–293. [Online]. Available: https://doi.org/10.1145/1810479.1810531

[37] D. Dice and A. Kogan, “Bravo—biased locking for reader-writer locks,”
in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19), 2019, pp. 315–328.

[38] R. Liu, H. Zhang, and H. Chen, “Scalable read-mostly synchronization
using passive Reader-Writer locks,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 219–230. [Online]. Available: https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/liu

[39] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit,
“Numa-aware reader-writer locks,” in Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
2013, pp. 157–166.

[40] J. P. Hespanha, “Modelling and analysis of stochastic hybrid systems,”
IEE Proceedings-Control Theory and Applications, vol. 153, no. 5, pp.
520–535, 2006.

[41] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1807–1827, 2018.

[42] R. D. Yates, “Age of information in a network of preemptive servers,”
in IEEE Conference on Computer Communications (INFOCOM) Work-
shops, Apr. 2018, pp. 118–123, arXiv preprint arXiv:1803.07993.

[43] S. Farazi, A. G. Klein, and D. R. Brown, “Average age of information
for status update systems with an energy harvesting server,” in IEEE
Conference on Computer Communications (INFOCOM) Workshops,
April 2018, pp. 112–117.

[44] A. Maatouk, M. Assaad, and A. Ephremides, “Minimizing the age
of information: NOMA or OMA?” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2019, pp. 102–108.

[45] S. Kaul and R. Yates, “Age of information: Updates with priority,” in
Proc. IEEE Int’l. Symp. Info. Theory (ISIT), Jun. 2018, pp. 2644–2648.

[46] A. Maatouk, M. Assaad, and A. Ephremides, “On the age of information
in a CSMA environment,” IEEE/ACM Transactions on Networking, pp.
1–14, 2020.

[47] R. D. Yates, “The age of information in networks: Moments, distribu-
tions, and sampling,” IEEE Transactions on Information Theory, vol. 66,
no. 9, pp. 5712–5728, 2020.

[48] M. Moltafet, M. Leinonen, and M. Codreanu, “Moment generating
function of the AoI in a two-source system with packet management,”
IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 882–886,
2021.

[49] ——, “Source-aware packet management for computation-intensive sta-
tus updating: MGF of the AoI,” in 2021 17th International Symposium
on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.

[50] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole,
“Performance of memory reclamation for lockless synchronization,” J.
Parallel Distrib. Comput., vol. 67, no. 12, pp. 1270–1285, dec 2007.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2007.04.010

[51] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228,
2020.

[52] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web
crawlers,” ACM Transactions on Database Systems (TODS), vol. 28,
no. 4, pp. 390–426, 2003.

[53] J. Zhong, R. Yates, and E. Soljanin, “Two freshness metrics for local
cache refresh,” in Proc. IEEE Int’l. Symp. Info. Theory (ISIT), Jun. 2018,
pp. 1924–1928.

[54] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” IEEE Trans.
Info. Theory, vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[55] R. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int’l. Symp. Info. Theory (ISIT), June 2015, pp.
3008–3012.


