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Abstract

We give an if-and-only-if condition on five-point metric spaces that
admit isometric embeddings into complete nonnegatively curved Rieman-
nian manifolds.

1 Introduction
Toponogov theorem provides an if-and-only-if condition on a metric on four-
point space that admits an isometric embedding into a complete nonnegatively
curved Riemannian manifold. The only-if part is proved by Victor Toponogov,
and the if part follows from a result of Abraham Wald [14, §7].

We show that the so-called Lang–Schroeder–Sturm inequality is the analo-
gous condition for five-point spaces.

The only-if part is well-known, but the if part is new. It was hard to imagine
some new restrictions on five-point sets, but now we know there are none.

Let us formulate the Lang–Schroeder–Sturm inequality. Consider an (n+1)-
point array (p, x1, . . . xn) in a metric space X. We say that the array satisfies
Lang–Schroeder–Sturm inequality with center p if for any nonnegative values
λ1, . . . , λn we have ∑︂

i,j

aij ·λi ·λj ⩾ 0,

where aij = |p − xi|2X + |p − xj |2X − |xi − xj |2X and we denote by | − |X the
distance between points in X.

Recall that any point array in a complete nonnegatively curved Riemannian
manifold (and, more generally, in any nonnegatively curved Alexandrov space)
meets the Lang–Schroeder–Sturm inequality [4, 12]. In particular, the Lang–
Schroeder–Sturm inequalities for all relabelings of points in a finite metric space
F gives a necessary condition for the existence of isometric embedding of F into
a complete Riemannian manifold with nonnegative curvature. In this note, we
show that this condition is sufficient if F has at most 5 points.

1.1. Theorem. A five-point metric space F admits an isometric embedding
into a complete nonnegatively curved Riemannian manifold if and only if all
Lang–Schroeder–Sturm inequalities hold in F .
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In the next section, we will give a reformulation of the theo-
rem using the so-called (4+1)-point comparison [1, 2] which is also
equivalent to graph comparison [8] for the star graph shown on the
diagram.

Since we know that Lang–Schroeder–Sturm inequalities are necessary, it re-
mains to construct a complete nonnegatively curved Riemannian manifold that
contains an isometric copy of a given 5-point space satisfying the assumptions.

Our proof uses a brute-force search of certain configurations that was origi-
nally done on a computer. We present a hand-made proof that was found later.
It is still based on brute-force search, and we hope that a more conceptual proof
will be found. Our paper is inspired by the note of Vladimir Zolotov and the
first author [9]; the results from this note are discussed briefly in the last section.

Acknowledgments. We want to thank Arseniy Akopyan and Alexander Gil for
helping us with programming. We would also like to thank Tadashi Fujioka and
Tetsu Toyoda for pointing out errors and misprints in the preliminary version of
this paper. The first author was partially supported by Russian Foundation for
Basic Research grant 20-01-00070; the second author was partially supported
by National Science Foundation grant DMS-2005279.

2 LSS(n) and (n+1)-comparison
The (n+1)-comparison is another condition that holds for any (n + 1)-point
array in Alexandrov spaces [1, 2]. It says that given a point array p, x1, . . . , xn

in a nonnegatively curved Alexandrov space A there is an array p̃, x̃1, . . . , x̃n in
a Hilbert space H such that

|p̃− x̃i|H = |p− xi|A and |x̃i − x̃j |H ⩾ |xi − xj |A.

for all i and j. Point p will be called the center of comparison.
Let us denote by Sn the star graph of order n; one central vertex in Sn is

connected to the remaining n. It is easy to see that (n+1)-comparison is equiv-
alent to the Sn-comparison — a particular type of graph comparison introduced
in [8].

For general metric spaces, the (n+1)-comparison implies the Lang–Schroeder–
Sturm inequality, briefly LSS(n). For n ⩾ 5 the converse does not hold [8, Sec-
tion 8]. In this section, we will show that these two conditions are equivalent
for n ⩽ 4.

2.1. Claim. For any 5-point array p, x1, . . . , x4, the LSS(4)-inequality is equiv-
alent to the (4 + 1)-comparison.

Applying the claim, we get the following reformulation of the main theorem.

2.2. Reformulation. A five-point metric space F admits an isometric embed-
ding into a complete Riemannian manifold with nonnegative curvature if and
only if it satisfies (4+1)-comparison for all relabelings.
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The following proof is nearly identical to the proof of Proposition 4.1 in [8].

Proof of 2.1. Suppose p, x1, . . . , x4 satisfies LSS(4); we need to show that it also
meets the (4+1)-comparison.

Choose a smooth function φ : R → R such that φ(x) = 0 if x ⩾ 0 and
φ(x) > 0, φ′(x) < 0 if x < 0. Consider a configuration of points p̃, x̃1, . . . , x̃4 ∈ H
such that

|p̃− x̃i|H = |p− xi|A
and the value

s =
∑︂
i<j

φ(|x̃i − x̃j |H − |xi − xj |A)

is minimal. Note that s ⩾ 0; if s = 0, then we get the required configuration.
Suppose s > 0. Consider the graph Γ with 4 vertices labeled by x̃1, x̃2, x̃3, x̃4

such that (x̃i, x̃j) is an edge if and only if |x̃i − x̃j |H < |xi − xj |A. Assume x̃1

has a single incident edge, say (x̃1, x̃2). Since s takes minimal value, we have

|x̃1 − x̃2|H = |x̃1 − p̃|H + |x̃2 − p̃|H =

= |x1 − p|A + |x2 − p|A ⩾

⩾ |xi − xj |A

— a contradiction. It follows that Γ contains no end-vertices. Therefore it is
isomorphic to one of the four graphs on the diagram.

Without loss of generality, we can assume that p̃ = 0. Note that any point
x̃i cannot lie in an open half-space with all its adjacent points. Indeed, assume
it does, then x̃i and all its adjacent points lie in a finite-dimensional half-space;
denote by Π its boundary plane. Then rotating x̃i slightly around Π will increase
the distances from x̃i to all its adjacent vertices; so the value s will decrease —
a contradiction.

In the 6-edge case, p̃ = 0 lies in the convex hull of {x̃1, x̃2, x̃3, x̃4}. In
particular, 0 = λ1 ·x̃1+· · ·+λ4 ·x̃4 for some λi ⩾ 0 such that λ1+λ2+λ3+λ4 = 1.
The latter contradicts LSS(4).

Similarly, in the 5- and 3-edge cases, we can assume that x̃1x̃2x̃3 is a 3-
cycle of Γ. In this case, 0 = λ1 ·x̃1 + λ2 ·x̃2 + λ3 ·x̃3 for some λi ⩾ 0 such that
λ1 + λ2 + λ3 = 1, and we arrive at a contradiction with LSS(3).

Finally, the 4-edge graph (the 4-cycle) cannot occur. In this case, we may
think that x̃1, x̃2, x̃3, x̃4 is the 4-cycle. Note that the points x̃1, x̃2, x̃3, x̃4 lie in
one plane so that the direction of x̃1 is opposite to x̃3, and the direction of x̃2

is opposite to x̃4. Let us think that this is the horizontal plane in R3. Then
rotating the pair x̃1, x̃3 slightly up and the pair x̃2, x̃4 slightly down, decreases s
— a contradiction.
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3 Associated form
In this section, we recall a construction from [11]. Let x = (x1, . . . , xn) be a
point array in a metric space X.

Choose a simplex △ in Rn−1; for example, we can take the standard simplex
with the first (n − 1) of its vertices v1, . . . , vn−1 form the standard basis on
Rn−1, and vn = 0.

Consider a quadratic form Wx on Rn−1 that is uniquely defined by

Wx(vi − vj) = |xi − xj |2X

for all i and j. It will be called the associated form to the point array x. The
following claim is self-evident:

3.1. Claim. An array x = (x1, . . . , xn) with a (semi)metric is isometric to an
array in a Euclidean space if and only if Wx(v) ⩾ 0 for any v ∈ Rn−1.

In particular, the condition Wx ⩾ 0 for a triple x = (x1, x2, x3) is equivalent
to the three triangle inequalities for the distances between x1, x2, and x3. For
an n-point array, it implies that Wx(v) ⩾ 0 for any vector v in a plane spanned
by a triple of vertices of △.

Lang–Schroeder–Sturm inequalities. Consider lines that connect a point
on a facet of △ with its opposite vertex. The union of these lines forms a cone
in Rn−1; denote it by Kn. Note that K3 = R2, but for n ⩾ 4 the cone Kn is a
proper subset of Rn−1.

The following claim is a reformulation of Lang–Schroeder–Sturm inequalities
for all relabeling of x:

3.2. Claim. Let x = (x1, . . . , xn) be an n-point array in an Alexandrov space
with nonnegative curvature. Then Wx(w) ⩾ 0 for any w ∈ Kn.

4 Tense arrays
Assume (p, x1, . . . , xn) is an array of points with a metric that satisfies LSS(n)
with center at p. Suppose n ⩽ 4; by Claim 2.1, we have a comparison configu-
ration (p̃, x̃1, . . . , x̃n) with center p.

We say that an array (p, x1, . . . , xn) is tense with center p if the comparison
configuration (p̃, x̃1, . . . , x̃n) is unique up to congruence and isometric to the
original array.

Note that if (p, x1, . . . , xn) is tense, then in its comparison configuration p̃
lies in the convex hull of the remaining points x̃1, . . . , x̃n. In particular,

(∗)
∑︂
i

λi ·(x̃i − p̃) = 0

for some nonnegative coefficients λ1, . . . , λn such that λ1+· · ·+λn = 1. If we can
choose all positive λi in (∗), then we say that (p, x1, . . . , xn) is a nondegenerate
tense array. The following statement describes nondegenerate tense arrays.
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4.1. Claim. Assume n ⩽ 4 and (p, x1, . . . , xn) is an array of points with a
metric that satisfies LSS(n) with center p. Suppose we have equality in LSS(n)
for some positive λ-parameters; that is, for some positive values λ1, . . . , λn we
have ∑︂

i,j

aij ·λi ·λj = 0,

where aij = |p−xi|2+|p−xj |2−|p−xj |2. Then (p, x1, . . . , xn) is a nondegenerate
tense array with center p.

Proof. By Claim 2.1, we have a comparison configuration (p̃, x̃1, . . . , x̃n) with
center p. Set

ãij = ⟨x̃i − p̃, x̃j − p̃⟩ = |p̃− x̃i|2 + |p̃− x̃j |2 − |x̃i − x̃j |2.

Since |x̃i − x̃j | ⩾ |xi − xj |, we have ãij ⩽ aij for any i and j. Note that

0 =
∑︂
i,j

aij ·λi ·λj ⩾
∑︂
i,j

ãij ·λi ·λj = 2·

⃓⃓⃓⃓
⃓∑︂

i

λi ·(x̃i − p̃)

⃓⃓⃓⃓
⃓
2

⩾ 0.

It follows that ∑︂
i

λi ·(x̃i − p̃) = 0.

Further, ãij = aij , and, therefore, |x̃i − x̃j | = |xi − xj | for all i and j — hence
the result.

Note that any 2-point array is a degenerate tense array; the center can be
chosen arbitrarily.

A 3-point array (p, x, y) is tense with center p if we have equality

|p− x|+ |p− y| = |x− y|.

Note that any tense 3-point array with distinct points is nondegenerate.
Let (p, x, y, z) be a tense 4-point array. Then there is an isometric compari-

son configuration (p̃, x̃, ỹ, z̃) with p̃ lying in the solid triangle x̃ỹz̃. Suppose all
points p, x, y, and z are distinct. If p̃ lies in the interior of the solid triangle or
the triangle is degenerate, then the array (p̃, x̃, ỹ, z̃) is nondegenerate. Other-
wise, if p̃ lies on a side, say [x̃, ỹ], and the triangle [x̃ỹz̃] is nondegenerate, then
(p̃, x̃, ỹ, z̃) is degenerate. In the latter case, the 3-point array (p̃, x̃, ỹ) is tense
and nondegenerate.

4.2. Claim. Let x = (x1, . . . , x5) be a 5-point array in a metric space that
satisfies all LSS(4)-inequalities. Suppose that x has k three-point tense arrays
and no tense arrays with four and five points. If k ⩽ 4 then there is a 2-
dimensional subspace S of quadratic forms on R4 such that for any form U ∈ S
that is sufficiently close to zero the array with associated form Wx +U satisfies
all LSS(4)-inequalities.
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Proof. Given a tense three-point subarray of x, say (x1, x2, x3), consider the
metrics on x such that the three distances between x1, x2, and x3 are propor-
tional to the original distances, and the remaining distances are arbitrary. This
set defines a subspace of quadratic forms of codimension 2 in the 10-dimensional
space of quadratic forms on R4. Since k ⩽ 4, taking the intersection of all such
subspaces we get a subspace S of dimension at least 2.

It remains to show that S meets the claim — assume not. That is, for
arbitrary small U ∈ S the metric on x defined by the associated quadratic form
Wx + U does not satisfy the LSS(4)-inequality. It means that there is a vector
w ∈ K5 such that

Wx(w) + U(w) < 0.

Choose a positive quadratic form I and minimal t > 0 such that

(∗∗) Wx(w) + U(w) + t·I(w) ⩾ 0

for any w ∈ K5.
Note that for some w ∈ K5, we have equality in (∗∗). The metric on x that

corresponds to the form Wx + U + t·I satisfies all LSS(4) inequalities and by
4.1, it has a tense array with at least 3 points.

Choose an array Q that remains to be tense as U → 0. Note that Q is
isometric to an array in Euclidean space. Since Wx +U + t·I → Wx as U → 0,
the array Q must contain one of the three-point tense arrays for the original
metric. The latter is impossible since t > 0 — a contradiction.

5 Extremal metrics
Denote by A5 the space of metrics on a 5-point set F = {a, b, c, d, e} that admits
an embedding into a Riemannian manifold with nonnegative curvature. The
associated quadratic forms for spaces in A5 form a convex cone in the space
of all quadratic forms on R4. The latter follows since nonnegative curvature
survives after rescaling and passing to a product space.

Denote by B5 the space of metrics on F that satisfies all Lang–Schroeder–
Sturm inequalities for all relabelings. As well as for A5, the associated forms
for spaces in B5 form a convex cone in the space of all quadratic forms on R4.

Since the associated quadratic form describes its metric completely, we may
identify A5 and B5 with subsets in R10 — the space of quadratic forms on R4.
This way we can think that A5 and B5 are convex cones in R10.

The set B5 is a cone so it does not have extremal points except the origin.
The origin corresponds to degenerate metric with all zero distances. But B5 is a
cone over a convex compact set B′

5 in the sphere S9 ⊂ R10. The extremal points
of B′

5 correspond to extremal rays of B5; metrics on extremal rays will be called
extremal. Note that if an extremal metric ρ lies in the interior of a line segment
between metrics ρ′ and ρ′′ in B5, then both metrics ρ′ and ρ′′ are proportional
to ρ.
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Since Lang–Schroeder–Sturm inequalities are necessary for the existence of
isometric embedding into a complete nonnegatively curved Riemannian mani-
fold, we have that

A5 ⊂ B5.

To prove the theorem we need to show that the opposite inclusion holds as well.
Since B5 is the convex hull of its extremal metrics, it is sufficient to prove the
following:

5.1. Proposition. Given an extremal space F in B5, there is a complete non-
negatively curved Riemannian manifold that contains an isometric copy of F .

Proof. Note that any extremal space F contains a tense set. If not, then
an arbitrary slight change of metric keeps it in B5 which is impossible for an
extremal metric.

The remaining part of the proof is broken into cases:
⋄ F contains a 5-point tense set. In this case, F admits an isometric em-

bedding into Euclidean space — the problem is solved.
⋄ F contains a 4-point tense set. This case follows from Proposition 6.1

below.
⋄ F contains only 3-point tense sets. This is the hardest part of the proof;

it follows from Proposition 7.1.

6 Four-point tense set

6.1. Proposition. Suppose that a 5-point metric space F satisfies all Lang–
Schroeder–Sturm inequalities and contains a 4-point tense set. Then F is iso-
metric to a subset of а complete nonnegatively curved Riemannian manifold.

In the following proof, we first construct a nonnegatively curved Alexandrov
space with an isometric copy of F and then smooth it. The space will be a
doubling of a convex polyhedral set in R3.

We use notations
[x y

z ], ∡[x y
z ], and ∡̃(x y

z)

for hinge, its angle measure, and the model angle respectively.

Proof. Let us label the points in F by p, q, x1, x2, and x3 so that the array
(p, x1, x2, x3) is tense with center p.

By the definition of a tense array, we can choose an array (p̃, x̃1, x̃2, x̃3) in
R2 that is isometric to (p, x1, x2, x3). Consider R2 as a plane in R3.

By 2.1, we can apply the (4+1)-comparison. It implies the existence of point
q̃ ∈ R3 such that

(∗) |p̃− q̃|R3 = |p− q|F and |x̃i − q̃|R3 ⩾ |xi − q|F

for any i.
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Further, let us show that there are points q̃1, q̃2, q̃3 in the plane thru p̃, x̃1,
x̃2, and x̃3 such that the following four conditions

(∗∗) |p̃− q̃i|R3 ⩾ |p− q|F , |x̃j − q̃i|R3 ⩾ |xj − q|F , |x̃i − q̃i|R3 = |xi − q|F ,

hold for all i and j.
By these conditions, q̃1 must lie on the circle with the center at x1 and radius

|x1 − q|F . Denote by Γ1 the intersection of this circle with the angle vertical to
the hinge [x̃1

x̃2

x̃3
]. Let us show that q̃1 can be chosen on Γ1. The point q̃1 has to

satisfy additional three conditions:

∡[x̃1
x̃i

q̃1
] ⩾ ∡̃(x1

xi
q ), ∡[x̃1

p̃
q̃1
] ⩾ ∡̃(x1

p
q)

for i ̸= 1. Each condition describes a subarc of Γ1, say X̆1,2, X̆1,3, and P̆ 1.

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

x2x3

p

Γ1
q1

By the construction and comparison we have

∡̃(x1
q
x2
) + ∡̃(x1

q
x3
) + ∡̃(x1

x2
x3
) ⩽ 2·π,

∡̃(x1
q
p) + ∡̃(x1

q
xi
) + ∡̃(x1

p
xi
) ⩽ 2·π,

∡̃(x1
x2
x3
) = ∡[x̃1

x̃2

x̃3
], ∡̃(x1

xi
p ) = ∡[x̃1

x̃i

p̃ ]

for i ̸= 1. These inequalities and identities imply that each
pair of arcs X̆1,2, X̆1,3, and P̆ 1 have a nonempty intersection. By 1-dimensional
Helly’s theorem, all three arcs intersect; so we can choose q̃1 in this intersection.
The same way we construct q̃2 and q̃3.

Now let us show that there is a point s̃ ∈ R2 such that

|p̃− s̃|R3 ⩽ |p− q|F , |x̃i − s̃|R3 ⩽ |xi − q|F .

for all i. In other words, the following four closed balls have a nonempty in-
tersection: B̄[p̃, |p − q|F ] and B̄[x̃i, |xi − q|F ] for all i. Indeed, by the overlap
lemma [2], any 3 of these balls have a nonempty intersection; it remains to apply
Helly’s theorem. Note that we can assume that s̃ lies in the convex hull of x̃1,
x̃2, and x̃3.

The four perpendicular bisectors to [s̃, q̃], [s̃, q̃1], [s̃, q̃2], [s̃, q̃3] cut from R3 a
closed convex set V that contains s̃. (It might be a one-sided infinite triangular
prism or, if q̃ lies in the plane of the triangle, a two-sided infinite quadrangular
prism.) Note that the inequalities (∗) and (∗∗) imply that V contains the points
p̃, x̃1, x̃2, and x̃3.

Consider the doubling W of V with respect to its boundary; it is an Alex-
androv space with nonnegative curvature [10, 5.2]. Denote by ι1 and ι2 the
two isometric embeddings V → W . By construction, the array p̂ = ι1(p̃),
x̂1 = ι1(x̃1), x̂2 = ι1(x̃2), x̂3 = ι1(x̃3), ŝ = ι2(s̃) in W is isometric to the array
(p, q, x1, x2, x3) in F .

Finally, we need to show that the obtained space can be smoothed into
a Riemannian manifold that still has an isometric copy of F . This part is
divided into two steps; first, we show that the construction above can be made
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so that the points s̃, p̃, x̃1, x̃2, x̃3 do not lie on the edges of V . In this case,
there is a compliment, say U , of a neighborhood of the singular set in W that
contains the 5-point set together with all the geodesics between them. After
that, we construct a smooth Riemannian manifold with nonnegative curvature
that contains an isometric copy of U .

p̃̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p̃p
s̃̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s̃s

x1-plane

q̃1

x̃1

x̃2x̃3

P

X1

X2X3

Step 1. Consider the four ellipsoids P , X1, X2, X3 with
the major axes |q−p|, |q−x1|, |q−x2|,|q−x3|, first focus
at s̃, and the second focus at p̃, x̃1, x̃2, x̃3 respectively.

The construction of the facets of V above implies that
each ellipsoid has a tangent plane that contains all the el-
lipsoids on one side — these planes are the perpendicular
bisectors to [s̃, q̃] and [s̃, q̃i] for all i. Note that any choice
of such planes does the trick — they can be used instead of
the perpendicular bisectors discussed above. These planes
will be called p-plane and xi-planes respectively. We need
to choose them so that no pair of these planes pass thru
p̃, x̃1, x̃2, or x̃3. The latter is only possible if the corre-
sponding ellipsoid degenerates to a line segment.

We can assume that one of the ellipsoids is nondegenerate; otherwise, the
array p̃, q̃, x̃1, x̃2, x̃3 is isometric to F ; in this case, F is isometric to a subset
of Euclidean space. Further, if only one ellipsoid, say X1 is degenerate, then we
can move s̃ slightly making this ellipsoid nondegenerate and keeping the rest of
its properties. So we can assume that three or two ellipsoids are degenerate.

Suppose X1, X2, X3 are degenerate (picture on the left), then it is easy to
choose xi-planes tangent to P ; it solves our problem. Another triple of ellipsoids,
say P , X1, X2 might be degenerate only if p̃ ∈ [x̃1, x̃2]. This case is even simpler
— we can choose one plane that contains p̃, x̃1, x̃2, and tangent to X3.

p̃

s̃

x̃1

x̃2x̃3

p̃

s̃

x̃1

x̃2
x̃3

p̃

s̃

x̃1

x̃2
x̃3

Now, suppose exactly two ellipsoids are degenerate; note that in this case
P is nondegenerate. Therefore we can assume that X1 and X2 are degenerate.
Further, we can assume that s̃ ∈ [x̃1, x̃2]; if not we can slightly move s̃ toward
x̃1 and x̃2 making X1 and X2 nondegenerate and keep the rest properties of s̃.
Since a focus of P lies on [x̃1, x̃2], we have that x1-plane cannot be x2-plane and
the other way around.

Suppose that P does not lie in the convex hull of the remaining three ellip-
soids and the same holds for X3 (middle picture). Then it is easy to make the
required choice of planes.

In the remaining case (see picture on the right), either P or X3 lies in the
convex hull of the remaining three ellipsoids. Suppose it is P , draw a p-plane;
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note that it is also an x3-plane; it might be also x1- or x2-plane, but cannot be
both. It remains to add x1-plane and/or x2-plane as needed. Since an x1-plane
cannot be x2-plane and the other way around, we will not get two planes passing
thru x1 or x2.

The case when X3 lies in the convex hull of the rest is identical.

V
V

′

W
′

Step 2. Start with the subset V ′ ⊂ V that lies
on the distance π ·δ from its boundary. Think of
V ′ lying in R4, pass to its 2·δ-neighborhood. The
boundary of the obtained neighborhood is a convex
hypersurface W ′ in R4. For small δ > 0, it meets
all the required conditions, except it is only C1,1-
smooth. It is straightforward to smooth W ′ so that the metric changes only
near the edges of V . In this case, the set F remains isometrically embedded in
the obtained 3-dimensional manifold.

7 Three-point tense sets

7.1. Proposition. Suppose that an extremal 5-point metric space F contains
only 3-point tense sets. Then F is isometric to a subset in a nonnegatively
curved Riemannian manifold L. Moreover, we can assume that L is homeomor-
phic to a circle or а plane.

A three-point tense set {a, b, c} with center b will be briefly denoted by abc.
Observe that F has tense set abc if and only if

|a− b|F + |b− c|F = |a− c|F .
a

b

c

d
e

On the diagrams, we will connect three-point tense sets by a
smooth curve so that the center is in the middle. For example,
the given diagram corresponds to a metric on {a, b, c, d, e} with
five tense sets abc, bcd, cda, dae, aec.

7.2. Classification lemma. Let F be an extremal 5-point metric space; sup-
pose that it has no tense subsets with 4 and 5 points. Then F has one of three
configurations of tense sets shown on the diagram.

In other words, the points in F can be labeled by {a, b, c, d, e} so that it has
one of the following three tense-set configurations:

a

b

c

d

e
a

b

c

d
e

a

b

c

de

abc, bcd, cde, dea, eab;

abc, bcd, cda, aec, bed;

abc, bcd, cda, dab, aec, bed.

In the following proof, we use only a small part of this classification. Namely,
we use that it is either the first case (the cycle) or there are two tense sets with a
shared center (bed and cea). However, the proof of this small part takes nearly
as long as the complete classification. (We could exclude cases 11, 12 and 16 on
page 15, but we decided to keep them.)

10



x1

x2

x3 x4

x5

Proof of 7.1 modulo 7.2. Suppose that F has a tense configura-
tion as on the diagram. In other words, we can label points in
F by {x1, x2, x3, x4, x5} so that

|xi − xi−1|F + |xi+1 − xi|F = |xi+1 − xi−1|F

for any i (mod 5). In this case, F is isometric to a 5-point subset in the circle
of length ℓ = |x1 − x2|F + · · ·+ |x4 − x5|F + |x5 − x1|F .

Now, by the classification lemma, we can assume that two tense triples in F
have a common center. Let us relabel F by x, v1, v2, w1, w2 so that F has tense
triples v1xv2 and w1xw2.

x̂

v̂2v̂1

ŵ1

ŵ2

First, we will construct an Alexandrov space L — a flat
disc with at most four singular points. The disc L will be
triangulated by four triangles with vertices x̂, v̂1, v̂2, ŵ1, ŵ2

as shown on the diagram. Each of the four triangles has at
most one singular point; in other words, each triangle is a
solid geodesic triangle in a cone. The sides of the triangles
are the same as in F .

Note that the metric on the obtained disc is completely determined by the
12 angles of the triangles. It remains to choose these angles in such a way that
L has nonnegative curvature and the map ι : F → L defined by x ↦→ x̂, vi ↦→ v̂i,
wi ↦→ ŵi is distance-preserving. By construction, ι is distance-nonexpanding;
therefore we only need to show that ι is distance-noncontracting.

This part is divided into two steps.

Step 1. In this step, we describe three groups of conditions on these 12 angles;
we show that together they guarantee that L has nonnegative curvature in the
sense of Alexandrov, and ι is distance-noncontracting.

First, we need to assume that the 12 angles of the triangles are at least as
large as the corresponding model angles; that is,

(∗) ∡[x̂ v̂i

ŵj
] ⩾ ∡̃(x vi

wj
), ∡[v̂i

x̂
ŵj

] ⩾ ∡̃(vi
x
wj
), ∡[ŵj

x̂
v̂i
] ⩾ ∡̃(wj

x
vi),

for all i and j.

ṽ1

w̃1

x̃

ṽ2

= ∡[ŵ1
x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]= ∡[ŵ1

x̂

v̂1
]

∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =∡[x̂ v̂2

ŵ1
] =

Further, choose a three-edge path in the triangulation
connecting v1 to v2 (or w1 to w2), say v1w1xv2. Consider
the plane polygonal line ṽ1w̃1x̃ṽ2 with the same angles
and sides as in L such that ṽ1 and ṽ2 lie on the opposite
sides from the line w̃1x̃. Set

Z̃(v1w1xv2) := |ṽ1 − ṽ2|.

The next group of conditions has eight comparisons:

(∗∗)
|v1 − v2| ⩽ Z̃(v1wixv2), |v1 − v2| ⩽ Z̃(v1xwiv2),

|w1 − w2| ⩽ Z̃(w1vixw2), |w1 − w2| ⩽ Z̃(w1xviw2)
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for any i. Finally, we need a group of eight identities:

( ***)
∡[v̂i

x̂
ŵ1

] + ∡[v̂i
x̂
ŵ2

] = ∡̃(vi
w1
w2
), ∡[ŵi

x̂
v̂1
] + ∡[ŵi

x̂
v̂2
] = ∡̃(wi

v1
v2),

∡[x̂ v̂i

ŵ1
] + ∡[x̂ v̂i

ŵ2
] = π, ∡[x̂ ŵi

v̂1
] + ∡[x̂ ŵi

v̂2
] = π

for any i.
Now, let us show that these conditions imply that ι distance-noncontracting.

Suppose γ is a curve from x̂ to v̂i that lies completely in one of the triangles
adjacent to the edge x̂v̂i. Note that the inequalities in (∗) imply that

length γ ⩾ |x− v̂i|F .

The same holds for any pair (x̂, ŵi) and (v̂i, ŵj). It implies that minimizing
geodesic from x to any point on four edges x̂v̂i or x̂ŵi runs in the corresponding
edge; in particular, we have

|x− vi|F = |x̂− v̂i|L and |x− wi|F = |x̂− ŵi|L

for each i. We also get that each of the four edges x̂v̂i or x̂ŵi is a convex set in
L; in particular, each of these edges can be crossed at most once by a shortest
path in L.

Suppose that there is a curve γ from v̂1 to v̂2 that is shorter than |v1−v2|F .
Since two edges v̂1x̂ and x̂v̂2 have total length |v1 − v2|F , we can assume that γ
runs in a pair of two adjacent triangles, say [v̂1x̂ŵ1] and [v̂2x̂ŵ1]. From above,
γ crosses the edge x̂ŵ1 once. Denote by ẑ1 and ẑ2 the singular points in the
triangles [v̂1x̂ŵ1] and [v̂2x̂ŵ1]. We have the following 4 options:

x̂

v̂2v̂1

ŵ1

ẑ1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1ẑ1 ẑ2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2ẑ2

If points z1 and z2 lie on the left from γ, then
we arrive at a contradiction with

∡[x̂ ŵ1

v̂1
] + ∡[x̂ ŵ1

v̂2
] = π

in ( ***).

x̂

v̂2v̂1

ŵ1

ẑ1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1ẑ1 ẑ2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2ẑ2

If points z1 and z2 lie on the right from γ, then
we arrive at a contradiction with

∡[ŵ1
x̂
v̂1
] + ∡[ŵ1

x̂
v̂2
] = ∡̃(w1

v1
v2),

in ( ***).
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x̂

v̂2v̂1

ŵ1

ẑ1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1ẑ1 ẑ2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2ẑ2

If z1 lies on the left side from γ, and z2 lies on
its right side, then we arrive at a contradiction
with

|v1 − v2| ⩽ Z̃(v1xw1v2)

in (∗∗).

x̂

v̂2v̂1

ŵ1

ẑ1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1̂z1ẑ1 ẑ2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2̂z2ẑ2

If z1 lies on the right side from γ, and z2 lies on
its left side, then we arrive at a contradiction
with

|v1 − v2| ⩽ Z̃(v1w1xv2)

in (∗∗).

It shows that ι does not decrease the distance between v1 and v2; the same
argument works for w1 and w2. In addition, we get that two edges v̂1x̂ and x̂v̂2
form a shortest path in L; the same holds for ŵ1x̂ and x̂ŵ2.

Finally, suppose γ is a curve from v̂1 to ŵ1 that is shorter than |v1 − w1|F .
From above it does not lie in the triangle [x̂v̂1ŵ1]. Recall that γ crosses each
of the four edges x̂v̂i or x̂ŵi at most once. Therefore, γ has to cross edge x̂v̂2.
Since v̂1x̂ and x̂v̂2 form a shortest path, we can assume that γ visits x̂ and so

length γ ⩾ |v1 − x|F + |x− w1|F ⩾ |v1 − w1|F

— a contradiction. The same way we show that ι does not increase the distances
for each pair (vi, wj).

It remains to show that L is Alexandrov space with nonnegative curvature.
By ( ***) the total angle around x̂ in L is 2·π. Further, ( ***) implies that

∡[v̂i
x̂
ŵ1

] + ∡[v̂i
x̂
ŵ2

] ⩽ π and ∡[ŵi
x̂
v̂1
] + ∡[ŵi

x̂
v̂2
] ⩽ π.

for any i; that is, L has convex boundary. In particular, L has locally non-
negative curvature. It remains to apply the globalization theorem [2, 8.32].
(Instead, one may also apply the characterization of nonnegatively curved poly-
hedral spaces [2, 12.5].)

Step 2. In this step we show that the 12 angles can be chosen so that they meet
all the conditions (∗), (∗∗), and ( ***). This part is done by means of elementary
geometry.

By 2.1, we can apply (4+1) comparison for the array x, v1, v2, w1, w2. This
way we get points x̃, ṽ1, ṽ2, w̃1, w̃2 such that

|x̃− ṽi|H = |x− vi|A, |x̃− w̃i|H = |x− wi|A, |ṽi − w̃j |H ⩾ |vi − wj |A,
|ṽ1 − ṽ2|H ⩾ |v1 − v2|A, |w̃1 − w̃2|H ⩾ |w1 − w2|A.

Since v1xv2 and w1xw2 are tense, the triangle inequality implies equality in the
last two inequalities; that is, each triple of points (ṽ1, x̃, ṽ2) and (w̃1, x̃, w̃2) lies
on one line. In particular, the whole configuration lies in R2.
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Set
∡[x̂ v̂i

ŵj
] = ∡[x̃ ṽi

w̃j
]

for all i and j. Since |ṽi − w̃j |H ⩾ |vi − wj |A, this choice meets four conditions
in (∗) and the second half of the identities in ( ***).

We still need to choose the remaining 8 angles ∡[v̂i
ŵj

x̂ ] and ∡[ŵj
v̂i

x̂ ] for all i
and j. To do this, we extend the configuration x̃, ṽ1, ṽ2, w̃1, w̃2 by 8 more points
ṽij , w̃ij so that we can set

∡[v̂i
ŵj

x̂ ] = ∡[ṽi
w̃ij

x̃ ], ∡[ŵj
v̂i

x̂ ] = ∡[w̃j
ṽji

x̃ ].

We assume that |ṽi − w̃ij |R2 = |vi − wj | and |w̃i − ṽij |R2 = |wi − vj | for all i
and j. The conditions (∗), and (∗∗) will follow if we could choose the points so
that

|x̃− ṽij | ⩾ |x− vj |, |x̃− w̃ij | ⩾ |x− wj |,
|ṽj′ − ṽij | ⩾ |vj′ − vj |, |w̃j′ − w̃ij | ⩾ |wj′ − wj |,

here we assume that j′ ̸= j, so 2′ = 1 and 1′ = 2.

x̃
ṽ1ṽ2

w̃1

w̃2

w̃21

w̃22

s̃

ℓ

The needed points w̃21 and w̃22 can be chosen to
be reflections of w̃1 and w̃2 respectively across a line
ℓ that we are about to describe. Suppose [s̃w̃1w̃2] is
a model triangle for [v2w1w2] such that s̃ lies on the
opposite side from ṽ2 with respect to the line w̃1w̃2.
Then ℓ is the perpendicular bisector of [ṽ2, s̃]. Since
|w̃i − ṽ2| ⩾ |wi − v2| = |w̃i − s̃| the points w̃1 and
w̃2 lie on the opposite side from ṽ2 with respect to ℓ.
Whence the conditions on w̃21 and w̃22 follow. By construction, we get one of
the identities in ( ***) with base point v2.

Similarly, we construct the remaining 6 points.

Final step. It remains to modify L into a plane with a smooth Riemannian
metric. First, note that L is a convex subset of a flat plane with at most 4 conic
points. Further, the geodesics between the 5-point subset in L do not visit these
conic points. Therefore a slight smoothing around singularities does not create
a problem.

Proof of 7.2. Observe that any pair of points of F must lie in a tense set. If
not, then all LSS(4) inequalities will remain to hold after a slight change of the
distance between the pair. The latter contradicts that F is extreme.

ab

c d

a

b

c

d

a

b

c

d

a

b

c

d
Suppose that two tense triples

share two points. All possible 4 con-
figurations are shown on the diagram;
they will be referred to as C, O, P ,
and Y respectively. Observe that in

the configurations P and Y , the set {a, b, c, d} must be tense with center at b.
Indeed, in the P -case the 4-point space is isometric to a 4-point subset on a
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line with order a, d, b, c. In the Y -case, ∡̃(b a
c) = ∡̃(b d

c) = π, and the com-
parison implies that ∡̃(b d

a) = 0. Without loss of generality we may assume
|a− b| ⩾ |d− b|; so, the 4-point space is also isometric to a 4-point subset on a
line with order a, d, b, c. That is, if P or Y appear in F , then F has a 4-point
tense set. The latter contradicts the assumptions; so P and Y cannot appear
in our configuration.

Let us show that F contains at least 5 tense triples; assume F has at most
4 of them. By 4.2, the space of quadratic forms on R4 contains a subspace S
of dimension at least 2 such that for any form U ∈ S for all t sufficiently close
to zero, the forms W + t·U satisfy all LSS(4). Therefore F is not extremal — a
contradiction.

The remaining part of the proof is a brute-force search of all possible con-
figurations that satisfy the conditions above. This search is sketched on the
following diagram which needs some explanation. We start with a configura-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

tion with one triple marked by a solid line. Choose a pair that is not in any
triple of the configuration; connect it by a dashed line and search for an extra
triple with this pair inside. Each time we need to check up to 9 triples that
contain the pair — 3 choices for extra points and 3 choices for the center in the
obtained triple. Some of them make a P or Y configuration with an existing
triple, so they cannot be added. If some of them can be added, then we draw
a new diagram connected by an arrow and continue. In many cases, symmetry
reduces the number of cases.

If there are no free pairs (these are 12, 13, 15, and 16), then we need to check
all triples, but due to symmetry, the number of triples can be reduced.

Once we did the classification, we need to find all configurations with at
least 5 triples (these start with column 5) such that each pair belongs to one
of the tense triples (those that have no dashed line). So we are left with three
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cases 13, 15, and 16 marked in bold; it proves the lemma.
The following table describes procedures at each node on the diagram. It

uses the following notations. If a candidate triple, say abd violates Y rule with an
existing triple, say abc, then we write ��HHabdY abc. Similarly, if a candidate triple,
say adb violates P rule with an existing triple, say abc, then we write ��HHadbPabc.
Further, assume a candidate, say dbe, does not violate the rules and so it can be
added. Suppose that after adding this triple we get a new configuration, say 4;
in this case, we write dbe→4. Note that the new configuration is relabeled
arbitrarily.

In cases 12, 13, 15, and 16 we check all triples up to symmetry. The used
symmetries are marked in the third column.

1 a
b

c

d

e

a ↔ c
��HHdbaY abc; dbe→4;
dab→2; deb→3;
��HHadbPabc; edb→3.

2
a

b c

d

e
b ↔ c

��HHadbPabc; ade→7;
��HHabdY abc; aed→5;
bad→6; ead→7.

3

a

b

c

d e
��HHdbaY abc; ��HHdbcY abc; dbe→8;
��HHdabY dae; dcb→7; ��HHdebPdae;
��HHadbPabc; ��HHcdbPabc; ��HHedbPdae.

4

a

b

c

d e c ↔ e
��HHadbPabc; adc→8;
��HHabdY abc; ��HHacdPabc;
��HHbadPdbe; ��HHcadPabc.

5
a

b c

de

��HHbeaY aed; ��HHbecPabc; ��HHbedY aed;
bae→9; ��HHbceY bcd; ��HHbdePbcd;
��HHabeY abc; ��HHcbeY abc; ��HHdbePbcd.

6

a

b
c

d

e b ↔ d
cea→10; ��HHcebPabc;
��HHcaePabc; ��HHcbeY abc;
��HHacePabc; ��HHbceY bcd.
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7
a

b c

d e

��HHceaPade; ��HHcebPabc; ��HHcedPbcd;
��HHcaePade; ��HHcbeY abc; ��HHcdeY ade;
��HHacePabc; ��HHbceY bcd; ��HHdceY bcd.

8

a

b

c

d e cda→11; ��HHcdbPabc; ��HHcdePdae;
��HHcadPabc; ��HHcbdY abc; ��HHcedPdae;
��HHacdPabc; ��HHbcdPdbe; ecd→12;

9

a

b

c d

e c ↔ d
��HHbeaY dea; ��HHbecPabc;
bae→13; ��HHbceY bcd;
��HHabeY abc; ��HHcbeY abc.

10

a

b
c

d

e
��HHbeaY aec; ��HHbecY aec; bed→15;
bae→14; ��HHbceY bcd; ��HHbdePbcd;
��HHabeY abc; ��HHcbeY abc; ��HHdbePbcd.

11

a

b

c

de b ↔ c
��HHadbPbed; ��HHadePaec;
��HHabdY abc; ��HHaedY bed;
bad→15; ��HHeadPbed.

12 a

b

c

d

e
a ↔ e
b ↔ d

��HHabcPace; ��HHabdY abe;
��HHbcaY ace; ��HHbdaY ade;
��HHcabPbcd; dab→15.

13

a

b

cd

e
D5

��HHdacPbcd;
��HHacdY bcd.

14

a

b

c

d e

��HHbeaY aec; ��HHbecY aec; ��HHbedPdae;
��HHbaeY dae; ��HHbceY bcd; ��HHbdePdae;
��HHabeY abc; ��HHcbeY abc; ��HHdbePbcd;
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15

a

b
c

d

e b ↔ d
bad→16; ��HHbecY bed; ��HHbeaY bed;
��HHadbPbed; ��HHecbY bcd; ��HHeabPbed;
��HHdbaPbed; ��HHcbeY abc; ��HHabeY abc;

16

a

b

c

d e D4
��HHabeY abc;
��HHbeaPabc.

8 Final remarks
Our theorem provides an affirmative answer to Question 6.2 in [5]. For 6-point
metric spaces, a direct analog of the theorem does not hold, but Question 6.3
in [5] contains the corresponding conjecture.

An analogous problem for 5-point sets in nonpositively curved spaces was
solved by Tetsu Toyoda [13]; another solution is given in [5]. The 6-point case
is open; see [5, Question 6.1] and a partial answer in [7].

The 4-point case is much easier; the classification gives
only two cases on the diagram. Both admit an embedding
into a circle. It can be used to prove the following state-
ment.

8.1. Theorem. Any 4-point space satisfying the nonnegative-curvature com-
parison admits an embedding into a product of a circle and Euclidean space.

The following statement can be proved in a similar manner.

8.2. Theorem. Any 4-point space satisfying the nonpositive-curvature com-
parison admits an embedding into a product of a tripod and Euclidean space.

These two results are analogous to Wald’s theorem mentioned in the in-
troduction; they were obtained in the note by Vladimir Zolotov and the first
author [9].

Most of our arguments can be applied to arbitrary curvature bound; Sec-
tion 5 is the only place where we essentially use that the bound is zero.

It would be interesting to classify 5-point subsets in other classes of spaces;
for example, in products of circles, or complete flat manifolds. Note that the
second and third types of spaces in the classification lemma (7.2) do not admit
an embedding into a product of circles; so the answer must be different. We are
not aware of 5-point spaces that admit an isometric embedding into a complete
nonnegatively curved Riemannian manifold, but not in a complete flat manifold.
Analogous questions can be asked about products of trees [7] and Euclidean
buildings; these are especially nice classes of spaces with nonpositive curvature.
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Our argument can be applied to attack the 6-point case [5, Question 6.3],
except we could no longer use LSS(5). The case of extremal metrics only with 3-
point tense sets seems to be easier. The 5-point tense set can be solved following
our argument in 6.1. At the moment we do not see a way to do the 6- and 4-point
tense sets.

It might be interesting to find conditions on finite subsets of metric spaces
that are related to other curvature bounds as, for example, nonnegative curva-
ture operator or nonnegative isotropic curvature; see [3, 1.19+(e)]. According
to [6], graph comparison can be used to describe conditions that are stronger
than nonnegative or nonpositive in the sense of Alexandrov, but nonnegative
curvature operator has a chance to be described this way.
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