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Abstract

We give an optimal bound on normal curvatures of immersed n-torus
in a Euclidean ball of large dimension.

1 Introduction

Let us denote by B the closed unit ball in R? centered at the origin. Further,
T™ will denote the n-dimensional torus — the smooth manifold diffeomorphic
to the product of n circles.

This note is inspired by examples of embeddings T™ < B? for large ¢ with
constant normal curvatures K, = y/3-n/(n + 2). In other words, any geodesic
in the torus has constant curvature K, as a curve in R9. These examples were
found by Michael Gromov among geodesic subtori in Clifford’s tori [5, 2.A], [4,
1.1.A.]. In particular, Gromov’s tori have flat induced metrics. (Recall that
Clifford’s torus is a product of m circles of radius 1/y/m in R*™; its normal
curvatures lie in the range [1,/m].)

Gromov’s examples lead to the following surprising facts: any closed smooth
manifold L admits a smooth embedding into B? for large q with normal cur-
vatures less than /3; moreover, the induced Riemannian metric on L can be
chosen to be proportional to any given metric g; see [5, 1.D] and [4, 1.1.C].

The next theorem implies that Gromov’s tori have the best upper bound on
normal curvatures; in particular, the v/3-bound is optimal.

1.1. Theorem. Suppose T™ is smoothly immersed in BY. Then its mazimal

normal curvature is at least
3._n_
n+2°

To make the statement more exact, we need one more notation. Assume that
L is a smooth n-dimensional manifold immersed in R?; we will always assume
that L is equipped with the induced Riemannian metric. Let us denote by T,
and N, the tangent and normal spaces of L at x.

Recall that the second fundamental form 1 at x is a symmetric quadratic
form on T, with values in N,. It is uniquely defined by the identity (v, V) =
= 7(0), where v € T, and ~, is an L-geodesic that starts at x with initial
velocity vector V.

Given z € L, denote by 2K(x) the average value of [I(U, U)|? for U € T, such
that |u| = 1. Since K(U) = |[I(u, V)| is the normal curvature in the direction
U, we have that 2K(z) is the average value K?(U). (The Cyrillic zhe 2K is used
since it resembles K2.)



1.2. Theorem. Suppose T" is smoothly immersed in Be. Let us equip T"
with the induced Riemannian metric; so we can take average values with respect
to the induced volume.

(a) If n =2, then the average value of 2K is at least 3.

(b) If the metric on T™ is flat, then the average value of 2K is at least 3- R

(c) If the image of T™ lies in OB?, then 2K > 3.5 at some point of T".

(d) If n < 4, then 2K > 3- 15 at some point of T".

(e) If the normal curvatures of T do not exceed 2, then 2K > 3- 5 at some

point of T™.

Note that part (e) is a stronger version of 1.1. The remaining statements
(a)—(d) are stronger versions of 1.1 in some partial cases. All this follows since
the normal curvature in some direction at z is at least /2K(x).

All proofs use our version of the Gauss formula; see below. The proofs of
(c)-(e) use in addition that the torus does not admit a metric with positive
scalar curvature [7, Corollary Al.

1.3. Open question. Is it true that for any smooth immersion T™ ¢ BY the
inequality 2K > 3- 5 holds at some point?

1.4. Open question. Suppose RP™ 3~ BY is a smooth immersion. Is it true
that its normal curvature is at least \/2-n/(n+ 1) in some direction?

The last question asks if the Veronese embedding is optimal. Recall that the
Veronese embedding RP™ < B? has all normal curvatures y/2-n/(n + 1); here
q=3%-(n+1)-(n+2). An analogous question for immersions into unit spheres
is open as well [9]. You may also ask for the optimal constant for your favorite
closed manifold.

2 Gauss formula

Recall that L is a smooth n-dimensional manifold immersed in R?. Given p € L,
denote by Sc(p) and H(p) the scalar curvature and the mean curvature vector
at p.

The following version of the Gauss formula plays a central role in all proofs;
it is used instead of the formula in [6, 5.B].

2.1. Gauss formula. The following identity
(n42
Sc=3.|H|* - %}K
holds for any smooth n-dimensional immersed manifold in a Euclidean space.

Proof. Choose a point p € L.

Assume codim L = 1. Denote by ki, ..., k, the principal curvatures of L at
p. Note that
H? =kl +2-> kick;.
i i<j
Further,

ne(n+2)2K=3> kI +2-) ki-k;.

1<j



The last identity follows since 2K is the average value of (Zl k; xf)Q on the unit
sphere S"~1 c R" = T,; here (x1,...,x,) are the standard coordinates in R”™.
One has to take into account that the following functions have unit average
values: 3-n-(n+2)-z} and n-(n+ 2)-27-27 for i # j.

By the standard Gauss formula,

Sc =2 ki-k;.

i<j

It remains to rewrite the right-hand side using the expressions for |H|? and 2K.
If codim L = k > 1, then the second fundamental form at p can be presented
as a direct sum of k real-valued quadratic forms II; & - - - @ Il; that is,

T=e I 4+ + eI,

where ey, ..., ey is an orthonormal basis of N,,. Denote by Sc;, H;, and 2K; the
values associated with I[;. From above, we get

Se; = 3| H[? — 2K,

for each 1.
Note that
Se=> Sc;, |H’ =) |H* and K=Y K.
Hence the general case follows. O

Remark. A more direct proof of this formula can be obtained using the so-called
extrinsic curvature tensor which is defined by ®(X, v, v, w) := (I(X, Y), I(v, W));
the necessary properties of this tensor are discussed in [8]. As a bonus, one gets
an explicit expression for the second fundamental forms of all Gromov’s tori.

3 Special cases

The following statement appears in the book of Yuri Burago and Viktor Zal-
galler [2, Theorem 28.2.5]; it generalizes the result of Istvdn Fary about average
curvature of a curve in the unit ball [3, 12|, but the proof is essentially the same.

3.1. Lemma. Let L be a closed n-dimensional manifold that is smoothly im-
mersed in BY. Then the average value of |H| on L is at least n.

Proof. Consider the function u:  + 1-|z* on L. Note that
(Au)(z) =n+ (H(x),z).

It follows that the average value of (H(z),z) is —n. Since |z| < 1, we get the
result. O

Proof of 1.2a. By 3.1, the average value of |H|? is at least 4. Further, by the
Gauss—-Bonnet formula, the scalar curvature (which is twice the Gauss curvature
in this case) has zero average. Therefore 2.1 implies the statement. O



Proof of 1.2b. By 3.1, the average value of |[H|? is at least n?. Since Sc = 0, it
remains to apply 2.1. O

Proof of 1.2c. Since the image lies in the unit sphere, we have that |H|? is at
least n? at each point. Since T™ does not admit a metric with positive scalar
curvature [7, Corollary A|, we have Sc(z) < 0 at some point z. It remains to
apply 2.1 at x. O

4 Main case

The following lemma is an easy corollary of the bow lemma of Axel Schur [10,
11]. Tt explains how we use the assumption on normal curvatures in 1.2e. If
n < 4, then the proof works without this assumption.

4.1. Lemma. Let L be a complete smooth manifold smoothly immersed in B?.
Suppose its normal curvatures are at most 2. Given x € L, denote by = (x)
the angle between vector x and the normal space N,.. Then |z| < cos 3.

Proof. Let & be a tangent direction at = such that
£(x,§) = § — . In the plane spanned by x and &,
choose a unit-speed circle arc o from 0 to x that
comes to x in the direction opposite to &; extend o
after x by a unit-speed semicircle 4 with curvature 2
in such a way that the concatenation ¢ * 7 is an arc
of a C'-smooth convex plane curve; see the figure.

Observe that if |z| > cosf, then 4 leaves BY;
that is, |¥(t9)| > 1 for some to.

Let « be the unit-speed geodesic in L that runs from z in the direction &.
Note that curvatures of o * v do not exceed the curvatures of o * 4 at the
corresponding points. Applying the bow lemma for o x v and o * 4, we get
[v(to)| = |7(to)|. It follows that L does not lie in B¢ — a contradiction. O

Let g be a Riemannian metric on T". Suppose n > 3, and u: T — R is a
smooth positive function. Recall that

(Sc-u - 4~Z—:%~Au) unTs

is the scalar curvature of the metric w72 - g; see for example [1, 6.3]. Since any
Riemannian metric on T™ has nonpositive scalar curvature at some point |7,
Corollary A], we get the following.

4.2. Claim. For any Riemannian metric on T" and any positive smooth func-
tion u: T™ — R, the function

— . 771_1 .
Scru —4-7=5-Au
returns a nonpositive value at some point.

Proof of 1.2d and 1.2e. The case n = 2 follows from 1.2a; so we can assume
that n > 3. Consider the function u: z + exp(—%-|z|?) on the torus.



We will apply the following formula
Alpof)=(¢ o f)Af + ("o f)IVf]?

to fr x> 3-|z|? and ¢: y — exp(—k-y); so u=po f.
Set r(z) = |z|, a(x) = L(H(x),x), and B(x) as in 4.1. Note that

(1) B<asT—p.
Observe that
Af =|H|-r-cosa+n, |Vfl=rsing, ¢ =—ko, ¢ =k’

Therefore
Au = u-[~k-|H|-7- cosa — k-n + k*-r?-sin? f].

Recall that Sc = 7%'%4’ 3.|H|?; see 2.1. By 4.2, the function

Scru—4-2=L. Au = u- fWQKJr 3.H|*+4-2=L .k |H|-r cosa+

+4-2=L (k'n — k*-r?- sin® B)

n—
n—

returns a nonpositive value at some point x € T".
Choose

=2 S0 nsz—lk

k=

w00
7

—

3

)

At the point x, we have

242 3K > 3.(|H| 4 n-r-cosa)? — .01 cos? a+

2_9.n=2_2 2 .2 3.2
+3n° — 3-2=n7rSsin® f > 5on”.

(2]

Indeed, by @, cos? a +sin? 3 < 1. If n < 4, then % > %Z—j; therefore the
last inequality follows, and it proves 1.2d.

Further, if n > 5, then for the last inequality in ® we need to use in addition
that 72 + sin® 8 < 1 which follows from 4.1. Hence 1.2¢ follows. O
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