WEAK TOPOLOGY ON CAT(0) SPACES
ALEXANDER LYTCHAK AND ANTON PETRUNIN

ABSTRACT. We analyze weak convergence on CAT(0) spaces and
the existence and properties of corresponding weak topologies.

1. INTRODUCTION

Weak convergence and coarse topologies in CAT(0) spaces have ap-
peared in relation to very different problems and settings in the last
years, see [Jos94, Mon06l, [KP0S, Bacl3| [Kell4, [Str16, BDLI17, [GN20]
and the survey [Bacl8] for an overview. On the other hand, some re-
lated fundamental questions have remained open. This note aims to
close some of these gaps.

Definition 1.1. A bounded sequence (x,) in a CAT(0) space X con-
verges weakly to a point x if for any compact geodesic ¢ starting at x,
the closest-point projections Proj.(x,) of x, to ¢ converge to x.

This notion of convergence (also known as A-convergence), intro-
duced in [Jos94], generalizes weak convergence in Hilbert spaces. It
can be defined in many other natural ways and is suitable for questions
concerning the existence of fixed points and gradient flows, see [Bac18§].
The weak convergence generalizes verbatim to convergence of nets and
satisfies natural compactness and separation properties.

We begin by resolving the question asked by William Kirk and Ban-
cha Panyanak in [KP08, Question 1] and discussed, for instance, in
[Bac14l Bacl8, Kell4, [DSTT6]. The question concerns the existence of
a weak topology inducing the weak convergence. Somewhat surpris-
ingly, the answer is different for sequences and for general nets. In
the case of sequences, the answer is always affirmative and the proof is
general nonsense, not involving geometry:

Theorem 1.2. Let X be a CAT(0) space. There exists a unique topol-
ogy Ta on X with the following two properties:

o A sequence (x,) converges in X with respect to Ta to a point x
if and only if the sequence is bounded and converges to x weakly.
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e The topology Ta is sequential.

Recall, that a topology T is called sequential if a subset is T-closed
whenever it contains any 7-limit point of any sequence of its elements.
This topology Ta, which we want to call the weak topology, has the
following additional properties; see Proposition[3.1], Corollary[5.3} 7Ta is
sequentially Hausdorff; any metrically closed, bounded, convex subset
of X is Ta-closed, Ta-sequentially compact and Ta-compact. However,

Proposition 1.3. There exists a bounded, separable, two-dimensional
CAT(0) simplicial complex X such that Ta is not Hausdorff.

Together with Proposition [I.3] the next theorem implies that, in
general, there is no topology on a CAT(0) space which induces the
weak convergence of nets:

Theorem 1.4. Let X be a CAT(0) space and let Ta be the weak topol-
ogy defined in Theorem[1.9. For a topology T on X the following two
conditions are equivalent:

e A bounded net (x,) converges to a point x € X weakly if and
only if (x,) converges to x with respect to T .

e The restriction of T to any closed ball in X is Hausdorff and
coincides with Ta.

We discuss Ta in some examples and relate this topology to another
coarse topology, the coconver topology introduced by Nicolas Monod
in [Mon06]. This coconvex topology 7T, on a CAT(0) space X is defined
as the coarsest topology T on X for which all metrically closed, convex
subsets are T -closed.

Every metrically closed, bounded convex subset of X is 7.,-compact
and T.,-sequentially compact, see Section [6] The weak topology Ta is
finer than the coconvex topology 7, (Proposition ; these topologies
can be different even for bounded CAT(0) spaces X (Lemmal.1)). The
topologies 7., and Ta coincide on all bounded subsets of X if and only
if the topology 7T, is sequential and sequentially Hausdorff on bounded
convex subsets. Whenever 7., is Hausdorff on bounded subsets, the
topologies 7., and Ta coincide on bounded subsets.

Whenever the CAT(0) space X is locally compact, the metric topol-
02V Tmetric coincides with Ta. On the other hand, for smooth 3-
dimensional Riemannian CAT(—1) manifolds or symmetric spaces of
higher rank, the coconvex topology 7., can be non-Hausdorff and not
first countable, as we will observe in Section[6] The failure of the Haus-
dorff property for symmetric spaces has been expected in [Mon06], a

first explicitly confirmed failure of the Hausdorff property for some
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CAT(0) space seems to be the example of the Euclidean cone over a
Hilbert space provided by Martin Kell in [Kell4].

On the other hand, 7., is Hausdorff (and therefore coincides with Ta
and induces the weak convergence of nets) in some geometric cases:

Proposition 1.5. The topology T., is Hausdorff in the following cases:

(1) X is homeomorphic to the plane.
(2) X is a Riemannian manifold with pinched negative curvature.
(3) X is a finite-dimensional cubical complex.

The answer we provide to the second point above is a direct conse-
quence of the construction of convex hulls in manifolds with pinched
negative curvature due to Michael Anderson. While the main construc-
tion of [And83] works without changes in infinite dimensions, it seems
not to be sufficient to answer another question from [Mon06]:

Problem 1.6. Is the coconvex topology T., Hausdorff on the infinite-
dimensional complex projective space X = CH™?

Despite Lemma and the examples by Alano Ancona [Anc94], see
Example [6.4] below, we do not know the answer to the following:

Problem 1.7. Find an example of bounded CAT(0) spaces for which
Ta is Hausdorff but different from Te,.

A natural question is whether for the class of non-locally compact
CAT(0) spaces appearing in most applications, as in [Mon06l, [Str16)
BDLI17, [Clal3l, [CR13], the weak topology is Hausdorff, at least when
restricted to bounded subsets. Most of the examples are subsumed by
or related to the example in the following question (we refer to [Mon06]
for the definition and properties of the spaces of L?-maps):

Problem 1.8. Let Q) be a probability space and X a locally compact
CAT(0) space. What are the separation properties of the weak and the
coconvex topologies on the space of L*-maps L*(Q, X)?

Also, the following question seems to be very natural in view of the
somewhat cumbersome formulation of Theorem [L.4

Problem 1.9. If the restriction of the weak topology Ta on any bounded
subset is Hausdorff, does it have to be a Hausdorff topology on X ?

The paper arose in an attempt to better understand the behavior of
convex subsets and convex hulls in CAT(0) spaces. The non-Hausdorff
properties of 7., should be related to Gromov’s question:

Problem 1.10. Is the closed convex hull of a compact subset of any
CAT(0) space compact?
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The paper is structured as follows. In Section [3| we recall some
basic properties of the weak convergence and provide a rather straight-
forward proof of Theorem In Section |4 we provide the example
verifying Proposition [1.3] In Section [5] we prove Theorem [1.4, The
main technical point in the proof is a CAT(0)-version of the theo-
rem of Eberlein-Smulian in functional analysis, saying that a bounded
subset is weakly closed if and only if it is weakly sequentially closed
(Proposition [5.1]). In the final Section [6] we discuss the relations with
the coconvex topology.
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was partially supported by the DFG grant SPP 2026. Anton Petrunin
was partially supported by NSF grant DMS-2005279.

2. PRELIMINARIES

2.1. CAT(0). We assume familiarity with the geometry of CAT(0)
spaces and refer to [BH99|, [AKP19a], [AKP19b]. All CAT(0) spaces
here are by definition complete and geodesic.

By d(z,y) = dx(z,y) we denote the distance in a metric space X.
By B, (z) we denote the closed ball of radius 7 around the point z.

Any bounded subset A in a CAT(0) space X has a unique circum-
center z € X such that for some r = r(A) € R, the circumradius of A,
we have A C B,.(z) but A ¢ B,(y), for any other point y # = [BH99).

2.2. General topology. We refer to [Eng89] for a detailed explana-
tion of the notions below.

A directed set I is a partially ordered set, such that for any pair
aq, a9 € I there exist a with a > a7 and a > as.

A net (z,) in a set X is given by a map o — x, from a directed
set I to X. We will mostly suppress the directed set I since it will not
play any special role.

In a topological space X, a net (z,) converges to a point x if for any
neighborhood U of x there exists some «q such that, for all a > ay,
the elements z,, are contained in U.

In a topological space, convergence of nets can be used as the right
generalization of convergence of sequences from the theory of metric
spaces. For instance, a topological space is Hausdorff if and only if

any net can converge to at most one point in X. A topological space
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is compact if and only if any net in X has a converging subnet. The
closure of a subset A C X consists of all limit points z of all nets (z,)
with z, € A.

Replacing in the above statement general nets by sequences, we ob-
tain the following properties of spaces which will appear below.

A topological space X is called sequentially Hausdorff if any se-
quence in X has at most one limit point. Any Hausdorff space is
sequentially Hausdorff but the opposite does not hold.

A topological space X is called sequentially compact if any sequence
in X has a convergent subsequence. A compact space does not need
to be sequentially compact and a sequentially compact space does not
need to be compact.

2.3. Basics on weak convergence. Let X be a CAT(0) space. We
stick to the definition of weak convergence given in the introduction
and refer to [Bacl§| for other descriptions and for the explanations
and references of the following properties frequently used below:

Any bounded net in X has at most one weak limit point in X.
Any subnet of a weakly converging net converges weakly to the same
limit point. Any bounded sequence (net) has a weakly converging
subsequence (subnet).

3. WEAK CONVERGENCE OF SEQUENCES

In this section we provide the rather straightforward:

Proof of Theorem[1.2. Define the topology Ta as follows. We say that
a subset A C X is Ta-closed, if, for any bounded sequence z,, € A
weakly converging to a point z € X, we have x € A.

By definition, the empty set and the whole set are Ta-closed. More-
over, any intersection of Ta-closed subsets A, is Ta-closed.

Finally, if Ay, ..., A,, are Ta-closed and (x,,) is a bounded sequence in
AU....UA,, weakly converging to x, then we find a subsequence of (z,,)
contained in one of the A;. This subsequence also weakly converges to
x, therefore z € A;. Hence A; U ... U A,, is Ta-closed.

Altogether, this shows that the family of all Ta-closed sets is the
family of closed sets of a topology, which we will denote by Ta.

We claim that a sequence (x,) in X converges to a point x with
respect to Ta if and only if (x,,) is bounded and converges to = weakly.

Firstly, let (x,) be bounded and weakly converge to z. If (x,) does
not Ta-converge to z, we would find a Ta-open subset U containing

x and a subsequence (z,,,) contained in the complement A := X \ U.
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However, (x,,,) also converges to x weakly, hence, by the definition of
Ta-closed subsets, we infer x € A, a contradiction.

On the other hand, let a sequence (z,,) converge in the Ta-topology to
x. If (x,) is not bounded, we could find a subsequence (z,,, ) such that
d(x1, 2y, ) — oo. Then the countable set {z,,,} is Ta-closed. Hence,
(2, ) does not Ta-converge to x. Therefore, (x,) must be bounded.

Assume that z, does not converge weakly to x. Then we find a
subsequence (,,, ) of (x,) which converges weakly to some point y # x.
Moreover, deleting finitely many elements from the sequence, we may
assume that z,, is not equal to = for all n. Then the union A of
all z,, and the point y is Ta-closed. Thus, the complement of A is
a Ta-open neighborhood of z, which does not contain all but finitely
many elements of the sequence (z,). This contradiction proves that
(x,) weakly converges to x and finishes the proof of the claim.

The claim and the definition of TA imply that a subset A of X is Ta-
closed if every Ta-limit x € X of a sequence of points in A is contained
in A. This means that TA is sequential.

We have verified the required properties of 7Ta. Let T be another
sequential topology on X, for which a sequence (x,) converges to x if
and only if (z,) is bounded and weakly converges to x. Then, for T
and Ta the convergence of sequences coincide. Since both topologies
are sequential, this implies that the properties of being closed with
respect to 7 and Ta coincide. Hence, T = Ta. O

Basic properties of the weak topology Ta are direct consequence of
the definition and the corresponding properties of weak convergence:

Proposition 3.1. The weak topology Ta on a CAT(0) space X is finer
than the coconvex topology and coarser than the metric topology:

720 - TA - Tmetm‘c'

The topology Ta is sequentially Hausdorff. Any metrically closed, bounded,
convex subset C' C X is Ta-sequentially compact.

The less trivial statement that any closed, bounded, convex subset
is Ta-compact will be derived later in Corollary [5.3]

We finish the section with two simple examples. The first example is
a direct consequence of the definition and the theorem of Hopf-Rinow:

Ezample 3.2. Assume that the CAT(0) space X is locally compact.
Then Ta coincides with the metric topology.

The second example is a special case of the fact that the weak con-
vergence as defined above corresponds to the usual weak convergence in

the case of Hilbert spaces, [Bacl8] and Theorem of Eberlien-Smulian,
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[Whi67], in the case of Hilbert spaces, saying that a subset is compact
in the weak topology if and only if it is sequentially compact.

Example 3.3. For a Hilbert space X, the topology Ta coincides with
the weak topology of the Hilbert space and with 7,.

4. EXAMPLE

We are going to show that Ta can be non-Hausdorft:

Proof of Proposition . Let Y7 be a countable family of intervals [0, 7]
glued together at the common boundary point 0. Fix an endpoint b
among the countably many endpoints of the tree Y;. Choose a count-
able family of isometric copies of Y; and glue all of them together by
identifying the chosen ”"endpoints” b with each other.

The arising space Y is a tree with a special point p (the point at
which all subtrees isometric to Y; are glued together). Point p is the
unique circumcenter of the simplicial tree Y. The tree has countably
many branches at p and every point at distance 7 from p. There are
no other branching points in Y; all edges of the tree Y have length 7.

We denote by E the set of endpoints of
the tree Y and by B the set of the branch-
ing points different from p (thus the F-sphere
around p). Any pair of different points of B
lie at distance § from each other. Any pair of
different points in F either are at distance 7
and have p as the midpoint or are at distance
5 and have a point from B as their midpoint.

Let X denote the Euclidean cone over Y.
We identify Y with the unit sphere around the
tip o in X. For a point y € Y and a number
A > 0, we denote by A -y the point in the cone X on the radial ray in
the direction of y at distance A from the vertex o.

For any edge I of Y with endpoints vy, 72 consider the triangle Sy
defined by the points 0,291,295 in X. The union of all such triangles
is a closed convex subset X of X. This subset X is bounded and
contains the unit ball By(0). Moreover, X is a 2-dimensional simplicial
complex with countably many simplices.

We are going to verify that the points o and % - p are not separated
in the weak topology Ta on space X.

Firstly, for any pair of different points in £ C Y C X the unique

geodesic in X connecting them either has its midpoint in o (if the points
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are at distance 7 in Y') or it has its midpoints in \% - b for the unique
midpoint b € B of the corresponding geodesic in Y.

Given any sequence (z,) of elements in £ C Y C X with pairwise
distance 7 in Y, we see that the convex hull of {x,,} is the union of the
geodesic segments [0, x,,], thus a tree with a unique vertex in o. In this
case, the sequence (x,) converges weakly to o.

Given any sequence z,, of pairwise different elements in £ with pair-

wise distance 7 in Y, the convex hull of {z,} is again a tree with a

unique vertex \/Li - b, the common midpoint of any pair of different

points in the sequence (x,). Thus, (z,) weakly converges to \/LE - b.
Similarly, for any sequence of different point b, € B C Y C X, the

sequence (b,) weakly converges in X to the point \/Li - p. Thus, by

rescaling, the sequence \/Li - b, converges weakly to % - .

Assume that o and % - p can be separated in Ta. Thus, we find Ta-
closed subsets C; and Cy such that o ¢ (Y, % ‘p ¢ Cyand C1UC, = X.

By above, ('} cannot contain infinitely many points of E, which have
in Y pairwise distance 7.

Thus, for all but finitely many branch-points b € B C Y all points
in I at distance 7 from b are contained in Cy. By above, for any such
b we must have % -b € B. Since we have infinitely many such points,

we conclude % -p € O, in contradiction to our assumption.
Thus, we have verified that (X, 7a) is not Hausdorff. O
The provided example implies that 7., and Tao may be different:

Lemma 4.1. The weak topology Ta and coconvex topology T., do not
coincide on the bounded CAT(0) space X constructed above.

Proof. Consider the set

A:EU\%-BU{%-p}U{O}
which has appeared above. As explained in the proof of Proposition
[1.3] above, the set A is Ta-closed.

We are going to prove that i - p is contained in the 7, closure of A.
Assuming the contrary, we find finitely many convex, metrically closed
subsets (1, ..., C}, in X which cover A and do not contain i - p.

For any b € B, consider the set E° of points in £ which are at
distance § from b. Then a counting argument implies that at least one
of the sets C; contains at least 2 points in any of the sets £, E®2 for
different by, by € B. Then this convex set C; contains the origin o (as
the midpoint of a point in E® and E2), the points \/LQ -b; and therefore
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their midpoint % -p. Hence, C; also contains the whole geodesic |o, % -]

and, therefore, 411 -p € (, in contradiction to our assumption.
Thus, the set A is not T,-closed, finishing the proof. O

5. COMPACTNESS

The following result can be seen as an analog of the theorem of
Eberlein-Smulian in functional analysis. Unlike Theorem [I.2] here the
CAT(0) geometry plays an important role several times:

Proposition 5.1. Let (z,) be a bounded net in a CAT(0) space X
weakly converging to a point x. Then there exists a sequence To,, Ty, - - -
of elements of the net weakly converging to x.

Proof. Replacing the net by a subnet we may assume that the net
To = d(z, ) of real numbers converges to some r > 0. If r = 0, we find
some x,, such that lim; .., r,, = 0. Thus, the sequence z,, converges
to x in the metric topology, and, therefore, also weakly. Thus, we may
assume r > 0 and, after rescaling, r = 1.

We choose inductively o € I, for k = 1,2,..., starting with an
arbitrary a;. Let the elements a; < ... < ap in [ be already chosen.

For any non-empty subset S C {1,...,k}, denote by mg the unique
circumcenter mg of the finite set {z,,,7 € S}. Since the net (x,)
converges weakly to x and (r,) converges to 1, we find some a1 > oy
with the two following properties, for any a > ayy1:

1) |ro — 1] < 27FL.

2) For all nonempty S C {1,...,k} the projection Proj.(z,) of
onto the geodesic ¢ = [xmyg] has distance at most 275! from .

Note that any subsequence of the sequence (z,,) has also the proper-
ties (1) and (2). We claim that the so-defined sequence (z,,) converges
to x weakly. The proof of the claim relies only on the strict convexity
of the squared distance functions and is rather straightforward. For the
convenience of the reader, we present the somewhat lengthy details.

Assuming the contrary and replacing the sequence by a subsequence
we may assume that the sequence converges weakly to a point z # x.
Set 0 := d(z,x). Choosing yet another subsequence we may assume
that s,, := d(x,,, 2z) converge to some s > 0, for i — oc.

We set ¢ < & and find some iy such that (1 —27071)2 > 1 — ¢ and
such that, for all 7 > 1,

2

r, — 1 <e |sa

9

= <e.



Using the weak convergence of (x,,) to z and CAT(0) comparison, we
may assume in addition, that for all ¢ > 4

d*(Ta,, 1) — d*(24,,2)* > 0% — & = 9e.
For j = 1,2... we consider the point p; := z,, ;. By above, the
circumradius ¢ of the countable set {p;} satisfies
?<1—30"=1-5¢.

Denote by 0 < ¢, < t the circumradius of the set {pi,...,px}. We
claim that there exists some positive p > 0, such that ¢, , — f > p for
all k£ > 1. Since the sequence (tx) is bounded above by ¢, this would
provide a contradiction and finish the proof.

In order to prove the claim, consider the circumcenter my of the
subset p1, ..., pr. Thus, m; is the point at which the 2-convex function,

R 2 )
fly) = gggd (y,pi)

assumes its unique minimum #2. By the 2-convexity, we deduce
f(mesr) > 5 + d2(mg, myia).-
On the other hand, f(my41) < t;.,, hence
ti+1 > 12+ d*(my, Mpg1).-
By construction of the sequence z,,, we have
P (prar,me) > (1—270"12 > 1 —¢.
Thus, by the triangle inequality and the fact
dz(pk+17mk+1) < 75Z+1 <t?<1—5e

we obtain some positive lower bound p > 0 on d*(my,mygy1). This
finishes the proof of the claim and of the proposition. O

As a consequence, we derive:

Lemma 5.2. If a bounded net (x,) in X converges to the point x
weakly then (x,) converges to x with respect to the Ta-topology.

Proof. Assume the contrary. Then, replacing the net by a subnet, we
find a Ta-open neighborhood U of x which does not contain any z,.
Using Proposition we find a sequence z,,, ..., Tq,, ... of elements of
the net converging weakly to x. Then z is contained in the Ta-closed
set X \ U which contains all elements of the sequence. This contradicts
the definition of Ta-closed sets. O

Since any bounded net has weakly convergent subnets, we infer:

Corollary 5.3. Fvery bounded Ta-closed subset A of X is Ta-compact.
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Now we provide:

Proof of Theorem[1.4 Let T be a topology on X, such that a bounded
net (z,) weakly converges to x if and only if this net T-converges to .
Since any net has at most one weak limit point and since the Hausdorff
property can be recognized by the uniqueness of limit points of nets,
we deduce that any bounded subset of X is Hausdorff with respect to
T.

Let A be a bounded subset of X. By definition, A is 7 -closed if and
only if it contains all weak limit points of any net (z,) of elements in A.
From Proposition [5.1} this happens if and only if A contains all weak
limit points of any sequence of elements in A. Thus, if and only if A is
Ta-closed. We infer, that T coincides with TA on bounded subsets.

Assume, on the other hand, that the weak topology Ta is Hausdorff
on any ball in X. We claim that a bounded net (x,) converges weakly
to x if and only if (z,) converges to x with respect to Ta.

Due to Lemma[5.2] the only if conclusion always holds. On the other
hand, assume that (x,) converges to x with respect to Ta but does not
weakly converge to z. Replacing (z,) by a subnet we may assume that
(xq) weakly converges to another point y. Due to Lemma , this
implies that the net (z,) converges to the point y with respect to the
topology Ta. But this contradicts the assumption that T is Hausdorft
on the bounded ball which contains the net (z,,).

This proves the ”if”-direction and finishes the proof of the theorem.

O

Remark 5.4. Using the considerations above, it is not difficult to prove
another form of Theorem Namely, the topology Ta is Hausdorff
on any bounded subset of X (and thus weak convergence of bounded
nets is equivalent to the Ta-convergence) if and only if the topology Ta
is Frechet—Urysohn on any bounded set. Recall, that a topology T is
called Frechet—Urysohn, if the closure of any set A in this topology is
the set of all T-limit points in X of all sequences contained in A.

6. COCONVEX TOPOLOGY

The coconvex topology 7., is coarser than T, Proposition|3.1| Thus,
convergence of sequences (nets) with respect to 7a implies convergence
with respect to 7T.,. This immediately implies that any bounded, 7.,-

closed set is T.,-compact and 7.,-sequentially compact.
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Proposition 6.1. The topologies T., and Ta coincide on all bounded
subsets of a CAT(0) space X if and only if the topology Te, is sequen-
tial and sequentially Hausdorff on every closed ball B,(x) in X. This
happens if B,(x) is Teo-Hausdorff.

Proof. We may replace X by a ball B,.(x) and assume that X is bounded.
The only if statement follows from Proposition 3.1}

On the other hand, assume that 7., is sequential and sequentially
Hausdorff on the bounded CAT(0) space X. Due to Proposition [3.1]
the identity map Id: (X,7a) — (X,7.) is continuous. In order to
prove that the inverse Id: (X,7.,) — (X, 7Ta) is continuous, consider
a Ta-closed subset A and assume that A is not 7,,-closed. Since 7., is
sequential, we find a sequence (x,) in A which T,-converges to a point
x € X \ A. Using that X is Ta-sequentially compact, we may replace
(x,) by a subsequence and assume that (x,) converges to some point
y in X with respect to Ta. Then, by Proposition [B.1], the sequence
converges to y also with respect to 7,,. The assumption that 7, is
sequentially Hausdorff gives us x = y. Since A is Ta-closed, we deduce
x =y € A. This contradiction implies that Id: (X, 7.) — (X, Ta) is
continuous, hence Ta = Teo.

Finally, if 7., is Hausdorff on the bounded CAT(0) space X, then the
compactness of Ta and the continuity of the identity map Id: (X, Ta) —
(X7 7;o> lmply TA - 720' O

In the proof of Proposition below, we assume more knowledge of
non-positive curvature than in the rest of this paper. We refer to [LN19]
for properties of geodesically complete CAT(0) spaces, to [Sch19] for
properties of cubical complexes, and to [And83|] and [Bor92] for mani-
folds of pinched negative curvature.

Proof of Proposition[1.5 Assume first that X is homeomorphic to the
plane R%. Then each geodesic v: [a,b] — X extends to a geodesic
7: R — X, [BH99]. Moreover, by Jordan’s theorem, 4 divides X
into two connected components both having 4 as their boundaries.
The closures of the connected components are convex. Thus, the open
components are 7., open.

In order to prove that 7., is Hausdorff it suffices to find, for any
pair of points z,y, some geodesic v: R — X, such that x and y are in
different components of X \ 7. We connect = and y by a geodesic n
and take the midpoint m of . We find two points p* sufficiently close
to m which lie in different components of X \ 7 for some extension of
7 to an infinite geodesic. Then consider a geodesic v: R — X which

contains p* and p~. The geodesic 7 intersect 17 between x and y. We
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infer that = and y lie in different components of X \ ~. This finishes
the proof if X is homeomorphic to a plane.

Assume now that X is a finite-dimensional cubical complex and
choose x,y € X. Taking a sufficiently fine cubical subdivision, we
may assume that the diameter of all cubes is much smaller than the
distance between x and y. Then the geodesic between x and y intersects
at least one hyperwall in X. Any such hyperwall is a convex subsets
dividing X into two connected and convex components. As above, we
deduce that = and y are separated in 7T,.

Finally, let X be a Riemannian manifold with pinched negative cur-
vature and let z,y € X be arbitrary different points. Fix r > d(z,y)
and set B = B,(z). By Anderson’s construction, [And83|, see also
[Bor92, Theorem 2.1], we find finitely many closed convex subsets C;
in X \ B, such that V := X \ U/, C; is bounded. Then V is a T.,-open
set containing B and contained in some larger closed ball B’.

On the compact ball B’ the topology 7., coincides with the metric
topology, [Mon06, Lemma 17|, hence it is Hausdorff. Thus, we find
Teo-open subsets Uy and Us in X containing = and y, respectively, such
that U; NUy; N B' is empty. Then U; N U and U; N U are disjoint
T.o-neighborhoods of x and y in X. O

Remark 6.2. As the proof and the reference to [Bor92| shows, in condi-
tion (2) one can replace the pinching by the assumption that the quo-
tient of the minimal and maximal curvature in the ball B,.(xy) around
some chosen point z is at most 2" for some A € R. Moreover, a
closer look at the proof shows that under the assumptions (1) or (2),
the topology 7., coincides with the metric topology on all of X.

We discuss finally two examples showing that the coconvex topology
can be quite strange even for rather regular spaces. Below we denote
for a locally compact CAT(0) space X by X its boundary at infinity
with its cone topology, [BH99]. Recall that X is compact.

Lemma 6.3. Let X be a locally compact CAT(0) space. Assume that X
is not bounded and for any closed convex subset A of X different from
X, the boundary at infinity A is nowhere dense in X°°. Then the
coconvex topology T., on X is non-Hausdorff and not first-countable.

Proof. Since X*° is a compact space, it is not a countable union of
nowhere dense subsets, by Baire’s theorem.

Therefore, by our assumption, X is not a finite union of closed convex
subsets different from X. Thus, any finite intersection of non-empty

Teo-open subsets is non-empty. In particular, 7., is not Hausdorff.
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Assume now that 7, is first-countable on X, fix an arbitrary x € X
and a 7T.,-fundamental system of its open neighborhoods Uy, ..., U,, ....
By definition of 7c,, we may assume that each Uj; is the complement of
a finite union of closed convex subsets K7, not containing the point .
Hence, the union of the boundaries at infinity

Um’(Kij)oo C X*®
is not all of X*°. Consider an arbitrary point z € X not contained
in this union and a ray v in X with endpoint z € X, such that x
is not on y. Then X \ v is a T.-open neighborhood of x which does

not contain any of the set U;. This contradiction shows that 7., is not
first-countable. U

The first example directly follows from Lemma above and [Anc94,
Theorem B, Corollary CI:

Example 6.4. There exists a smooth 3-dimensional CAT(—1) Riemann-
ian manifold X for which the coconvex topology 7., is not Hausdorft
and not first-countable.

In the final example, we use some facts about geometry of spherical
buildings arising as the boundary at infinity of symmetric space with
their corresponding Tits-metric, see [KLOG|, [KLI7], [KLP1§]. The
following result might be known to specialists, accordingly to Nicolas
Monod it was known to Bruce Kleiner many years ago.

Proposition 6.5. Let X be an irreducible, non-positively curved sym-
metric space of rank at least two. Then X satisfies the assumptions,
and, therefore, the conclusions of Lemma [6.35,

Proof. Assume the contrary and consider any closed convex subset A of
X such that the boundary at infinity A* of A has non-empty interior
in the (n — 1)-dimensional sphere X°°; here n is the dimension of X.

Thus, in the cone topology, A* has dimension n — 1. Therefore,
there are no totally geodesic symmetric spaces Y C X with A* C Y°.
On the other hand, if A = X* then A = X. Thus, we may assume
A% £ X, Applying [KLOG, Theorem 3.1], we deduce that A* is not
a sub-building of the spherical building X*°.

Since A*° contains an open subset in the cone topology, we find a
non-empty subset O of A, open in the cone topology and consisting
of reqular points only. If, for some p € O, we find an antipode ¢ €
A> (with respect to the Tits-distance) then A> contains a spherical
apartment (the boundary of a maximal flat in X), as the convex hull
in the Tits-metric of ¢ and a Tits-ball around p. By [BL0OG, Theorem

1.1], this would imply that A* is a sub-building, in contradiction to the
14



statements above. Thus, for no p € O and g € A* the Tits-distance
between p and ¢ equals 7.

We are going to construct a pair of antipodes p € O and ¢ € A
and achieve a contradiction. We start with an arbitrary point p € O.

Let G be the isometry group of X (and of X*°) and denote by A the
spherical Coxeter chamber X*°/G of the spherical building X*°. Let
P : X — A be the canonical projection. Denote by I : A — A the
isometry of the Coxeter chamber induced by the action of —Id on any
apartment of X*°. The map [ is an involution, which is the identity
map if and only if the Coxeter group W of X*° has a non-trivial center
(note, that this is the case for all Weyl groups, which are not of type
A, Eg or Doy, i1, see [Hum72, p.71]).

Consider the orbit L := G -p = P~}(P(p)) C X*. Any element
p’ € L is contained in a unique Coxeter chamber A,,. Consider the set
Ls? of all elements p’ in L which are in an opposite Coxeter to p, thus
such that the Coxeter chamber A, through p’ contains an antipode of
p. Then Li? is open and dense in the manifold G - p, see, for instance,
[KLP1§]. Thus, we find an element p' € O N LyP.

If the isometry I : A — A is the identity (see the discussion above),
then p’ is an antipode of p and we are done. If I is not the identity,
then looking at an apartment through p and p’ we deduce that the
Tits-geodesic between p and p’ contains a point ¢ which is projected
by P onto I(p). Then L contains all antipodes of ¢. By convexity,
q € A*. As above, the set LgP N O of elements in O contained in a
chamber opposite to ¢ is not empty. For any such element p" € L?NO,
the distance between ¢ and p’ is .

Thus, in both cases we have found a pair of antipodes p € O and
q € A, finishing the proof. O
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