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Abstract. We analyze weak convergence on CAT(0) spaces and
the existence and properties of corresponding weak topologies.

1. Introduction

Weak convergence and coarse topologies in CAT(0) spaces have ap-
peared in relation to very different problems and settings in the last
years, see [Jos94, Mon06, KP08, Bac13, Kel14, Str16, BDL17, GN20]
and the survey [Bac18] for an overview. On the other hand, some re-
lated fundamental questions have remained open. This note aims to
close some of these gaps.

Definition 1.1. A bounded sequence (xn) in a CAT(0) space X con-
verges weakly to a point x if for any compact geodesic c starting at x,
the closest-point projections Projc(xn) of xn to c converge to x.

This notion of convergence (also known as ∆-convergence), intro-
duced in [Jos94], generalizes weak convergence in Hilbert spaces. It
can be defined in many other natural ways and is suitable for questions
concerning the existence of fixed points and gradient flows, see [Bac18].
The weak convergence generalizes verbatim to convergence of nets and
satisfies natural compactness and separation properties.

We begin by resolving the question asked by William Kirk and Ban-
cha Panyanak in [KP08, Question 1] and discussed, for instance, in
[Bac14, Bac18, Kel14, DST16]. The question concerns the existence of
a weak topology inducing the weak convergence. Somewhat surpris-
ingly, the answer is different for sequences and for general nets. In
the case of sequences, the answer is always affirmative and the proof is
general nonsense, not involving geometry:

Theorem 1.2. Let X be a CAT(0) space. There exists a unique topol-
ogy T∆ on X with the following two properties:

• A sequence (xn) converges in X with respect to T∆ to a point x
if and only if the sequence is bounded and converges to x weakly.
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• The topology T∆ is sequential.

Recall, that a topology T is called sequential if a subset is T -closed
whenever it contains any T -limit point of any sequence of its elements.
This topology T∆, which we want to call the weak topology, has the

following additional properties; see Proposition 3.1, Corollary 5.3: T∆ is
sequentially Hausdorff; any metrically closed, bounded, convex subset
of X is T∆-closed, T∆-sequentially compact and T∆-compact. However,

Proposition 1.3. There exists a bounded, separable, two-dimensional
CAT(0) simplicial complex X such that T∆ is not Hausdorff.

Together with Proposition 1.3, the next theorem implies that, in
general, there is no topology on a CAT(0) space which induces the
weak convergence of nets :

Theorem 1.4. Let X be a CAT(0) space and let T∆ be the weak topol-
ogy defined in Theorem 1.2. For a topology T on X the following two
conditions are equivalent:

• A bounded net (xα) converges to a point x ∈ X weakly if and
only if (xα) converges to x with respect to T .

• The restriction of T to any closed ball in X is Hausdorff and
coincides with T∆.

We discuss T∆ in some examples and relate this topology to another
coarse topology, the coconvex topology introduced by Nicolas Monod
in [Mon06]. This coconvex topology Tco on a CAT(0) spaceX is defined
as the coarsest topology T on X for which all metrically closed, convex
subsets are T -closed.

Every metrically closed, bounded convex subset of X is Tco-compact
and Tco-sequentially compact, see Section 6. The weak topology T∆ is
finer than the coconvex topology Tco (Proposition 3.1); these topologies
can be different even for bounded CAT(0) spaces X (Lemma 4.1). The
topologies Tco and T∆ coincide on all bounded subsets of X if and only
if the topology Tco is sequential and sequentially Hausdorff on bounded
convex subsets. Whenever Tco is Hausdorff on bounded subsets, the
topologies Tco and T∆ coincide on bounded subsets.
Whenever the CAT(0) space X is locally compact, the metric topol-

ogy Tmetric coincides with T∆. On the other hand, for smooth 3-
dimensional Riemannian CAT(−1) manifolds or symmetric spaces of
higher rank, the coconvex topology Tco can be non-Hausdorff and not
first countable, as we will observe in Section 6. The failure of the Haus-
dorff property for symmetric spaces has been expected in [Mon06], a
first explicitly confirmed failure of the Hausdorff property for some
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CAT(0) space seems to be the example of the Euclidean cone over a
Hilbert space provided by Martin Kell in [Kel14].

On the other hand, Tco is Hausdorff (and therefore coincides with T∆

and induces the weak convergence of nets) in some geometric cases:

Proposition 1.5. The topology Tco is Hausdorff in the following cases:

(1) X is homeomorphic to the plane.
(2) X is a Riemannian manifold with pinched negative curvature.
(3) X is a finite-dimensional cubical complex.

The answer we provide to the second point above is a direct conse-
quence of the construction of convex hulls in manifolds with pinched
negative curvature due to Michael Anderson. While the main construc-
tion of [And83] works without changes in infinite dimensions, it seems
not to be sufficient to answer another question from [Mon06]:

Problem 1.6. Is the coconvex topology Tco Hausdorff on the infinite-
dimensional complex projective space X = CH∞?

Despite Lemma 4.1 and the examples by Alano Ancona [Anc94], see
Example 6.4 below, we do not know the answer to the following:

Problem 1.7. Find an example of bounded CAT(0) spaces for which
T∆ is Hausdorff but different from Tco.

A natural question is whether for the class of non-locally compact
CAT(0) spaces appearing in most applications, as in [Mon06, Str16,
BDL17, Cla13, CR13], the weak topology is Hausdorff, at least when
restricted to bounded subsets. Most of the examples are subsumed by
or related to the example in the following question (we refer to [Mon06]
for the definition and properties of the spaces of L2-maps):

Problem 1.8. Let Ω be a probability space and X a locally compact
CAT(0) space. What are the separation properties of the weak and the
coconvex topologies on the space of L2-maps L2(Ω, X)?

Also, the following question seems to be very natural in view of the
somewhat cumbersome formulation of Theorem 1.4:

Problem 1.9. If the restriction of the weak topology T∆ on any bounded
subset is Hausdorff, does it have to be a Hausdorff topology on X?

The paper arose in an attempt to better understand the behavior of
convex subsets and convex hulls in CAT(0) spaces. The non-Hausdorff
properties of Tco should be related to Gromov’s question:

Problem 1.10. Is the closed convex hull of a compact subset of any
CAT(0) space compact?
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The paper is structured as follows. In Section 3 we recall some
basic properties of the weak convergence and provide a rather straight-
forward proof of Theorem 1.2. In Section 4 we provide the example
verifying Proposition 1.3. In Section 5 we prove Theorem 1.4. The
main technical point in the proof is a CAT(0)-version of the theo-
rem of Eberlein–Smulian in functional analysis, saying that a bounded
subset is weakly closed if and only if it is weakly sequentially closed
(Proposition 5.1). In the final Section 6, we discuss the relations with
the coconvex topology.

Acknowledgments. We would like to thank Tamas Darvas for ex-
plaining to us the problem of the existence of the weak topology on
CAT(0) spaces, to Nicolas Monod for his interest and helpful exchange
about convex subsets of CAT(0) spaces and to Miroslav Bačák for help-
ful comments on a preliminary version of the paper. Alexander Lytchak
was partially supported by the DFG grant SPP 2026. Anton Petrunin
was partially supported by NSF grant DMS-2005279.

2. Preliminaries

2.1. CAT(0). We assume familiarity with the geometry of CAT(0)
spaces and refer to [BH99], [AKP19a], [AKP19b]. All CAT(0) spaces
here are by definition complete and geodesic.

By d(x, y) = dX(x, y) we denote the distance in a metric space X.
By Br(x) we denote the closed ball of radius r around the point x.

Any bounded subset A in a CAT(0) space X has a unique circum-
center x ∈ X such that for some r = r(A) ∈ R, the circumradius of A,
we have A ⊂ Br(x) but A ̸⊂ Br(y), for any other point y ̸= x [BH99].

2.2. General topology. We refer to [Eng89] for a detailed explana-
tion of the notions below.

A directed set I is a partially ordered set, such that for any pair
α1, α2 ∈ I there exist α with α ≥ α1 and α ≥ α2.
A net (xα) in a set X is given by a map α → xα from a directed

set I to X. We will mostly suppress the directed set I since it will not
play any special role.

In a topological space X, a net (xα) converges to a point x if for any
neighborhood U of x there exists some α0 such that, for all α ≥ α0,
the elements xα are contained in U .

In a topological space, convergence of nets can be used as the right
generalization of convergence of sequences from the theory of metric
spaces. For instance, a topological space is Hausdorff if and only if
any net can converge to at most one point in X. A topological space
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is compact if and only if any net in X has a converging subnet. The
closure of a subset A ⊂ X consists of all limit points x of all nets (xα)
with xα ∈ A.

Replacing in the above statement general nets by sequences, we ob-
tain the following properties of spaces which will appear below.

A topological space X is called sequentially Hausdorff if any se-
quence in X has at most one limit point. Any Hausdorff space is
sequentially Hausdorff but the opposite does not hold.

A topological space X is called sequentially compact if any sequence
in X has a convergent subsequence. A compact space does not need
to be sequentially compact and a sequentially compact space does not
need to be compact.

2.3. Basics on weak convergence. Let X be a CAT(0) space. We
stick to the definition of weak convergence given in the introduction
and refer to [Bac18] for other descriptions and for the explanations
and references of the following properties frequently used below:

Any bounded net in X has at most one weak limit point in X.
Any subnet of a weakly converging net converges weakly to the same
limit point. Any bounded sequence (net) has a weakly converging
subsequence (subnet).

3. Weak convergence of sequences

In this section we provide the rather straightforward:

Proof of Theorem 1.2. Define the topology T∆ as follows. We say that
a subset A ⊂ X is T∆-closed, if, for any bounded sequence xn ∈ A
weakly converging to a point x ∈ X, we have x ∈ A.

By definition, the empty set and the whole set are T∆-closed. More-
over, any intersection of T∆-closed subsets Aα is T∆-closed.
Finally, if A1, ..., Am are T∆-closed and (xn) is a bounded sequence in

A1∪....∪Am weakly converging to x, then we find a subsequence of (xn)
contained in one of the Ai. This subsequence also weakly converges to
x, therefore x ∈ Ai. Hence A1 ∪ ... ∪ Am is T∆-closed.

Altogether, this shows that the family of all T∆-closed sets is the
family of closed sets of a topology, which we will denote by T∆.
We claim that a sequence (xn) in X converges to a point x with

respect to T∆ if and only if (xn) is bounded and converges to x weakly.
Firstly, let (xn) be bounded and weakly converge to x. If (xn) does

not T∆-converge to x, we would find a T∆-open subset U containing
x and a subsequence (xmn) contained in the complement A := X \ U .
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However, (xmn) also converges to x weakly, hence, by the definition of
T∆-closed subsets, we infer x ∈ A, a contradiction.

On the other hand, let a sequence (xn) converge in the T∆-topology to
x. If (xn) is not bounded, we could find a subsequence (xmn) such that
d(x1, xmn) → ∞. Then the countable set {xmn} is T∆-closed. Hence,
(xmn) does not T∆-converge to x. Therefore, (xn) must be bounded.

Assume that xn does not converge weakly to x. Then we find a
subsequence (xmn) of (xn) which converges weakly to some point y ̸= x.
Moreover, deleting finitely many elements from the sequence, we may
assume that xmn is not equal to x for all n. Then the union A of
all xmn and the point y is T∆-closed. Thus, the complement of A is
a T∆-open neighborhood of x, which does not contain all but finitely
many elements of the sequence (xn). This contradiction proves that
(xn) weakly converges to x and finishes the proof of the claim.
The claim and the definition of T∆ imply that a subset A of X is T∆-

closed if every T∆-limit x ∈ X of a sequence of points in A is contained
in A. This means that T∆ is sequential.
We have verified the required properties of T∆. Let T be another

sequential topology on X, for which a sequence (xn) converges to x if
and only if (xn) is bounded and weakly converges to x. Then, for T
and T∆ the convergence of sequences coincide. Since both topologies
are sequential, this implies that the properties of being closed with
respect to T and T∆ coincide. Hence, T = T∆. □

Basic properties of the weak topology T∆ are direct consequence of
the definition and the corresponding properties of weak convergence:

Proposition 3.1. The weak topology T∆ on a CAT(0) space X is finer
than the coconvex topology and coarser than the metric topology:

Tco ⊂ T∆ ⊂ Tmetric.

The topology T∆ is sequentially Hausdorff. Any metrically closed, bounded,
convex subset C ⊂ X is T∆-sequentially compact.

The less trivial statement that any closed, bounded, convex subset
is T∆-compact will be derived later in Corollary 5.3.
We finish the section with two simple examples. The first example is

a direct consequence of the definition and the theorem of Hopf–Rinow:

Example 3.2. Assume that the CAT(0) space X is locally compact.
Then T∆ coincides with the metric topology.

The second example is a special case of the fact that the weak con-
vergence as defined above corresponds to the usual weak convergence in
the case of Hilbert spaces, [Bac18] and Theorem of Eberlien-Smulian,
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[Whi67], in the case of Hilbert spaces, saying that a subset is compact
in the weak topology if and only if it is sequentially compact.

Example 3.3. For a Hilbert space X, the topology T∆ coincides with
the weak topology of the Hilbert space and with Tco.

4. Example

We are going to show that T∆ can be non-Hausdorff:

Proof of Proposition 1.3. Let Y1 be a countable family of intervals [0, π
4
]

glued together at the common boundary point 0. Fix an endpoint b
among the countably many endpoints of the tree Y1. Choose a count-
able family of isometric copies of Y1 and glue all of them together by
identifying the chosen ”endpoints” b with each other.

The arising space Y is a tree with a special point p (the point at
which all subtrees isometric to Y1 are glued together). Point p is the
unique circumcenter of the simplicial tree Y . The tree has countably
many branches at p and every point at distance π

4
from p. There are

no other branching points in Y ; all edges of the tree Y have length π
4
.

...

p

B

E

We denote by E the set of endpoints of
the tree Y and by B the set of the branch-
ing points different from p (thus the π

4
-sphere

around p). Any pair of different points of B
lie at distance π

2
from each other. Any pair of

different points in E either are at distance π
and have p as the midpoint or are at distance
π
2
and have a point from B as their midpoint.

Let X̂ denote the Euclidean cone over Y .
We identify Y with the unit sphere around the
tip o in X̂. For a point y ∈ Y and a number
λ ≥ 0, we denote by λ · y the point in the cone X̂ on the radial ray in
the direction of y at distance λ from the vertex o.

For any edge I of Y with endpoints y1, y2 consider the triangle SI

defined by the points o, 2 ·y1, 2 ·y2 in X̂. The union of all such triangles
is a closed convex subset X of X̂. This subset X is bounded and
contains the unit ball B1(o). Moreover, X is a 2-dimensional simplicial
complex with countably many simplices.

We are going to verify that the points o and 1
2
· p are not separated

in the weak topology T∆ on space X.
Firstly, for any pair of different points in E ⊂ Y ⊂ X the unique

geodesic inX connecting them either has its midpoint in o (if the points
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are at distance π in Y ) or it has its midpoints in 1√
2
· b for the unique

midpoint b ∈ B of the corresponding geodesic in Y .
Given any sequence (xn) of elements in E ⊂ Y ⊂ X with pairwise

distance π in Y , we see that the convex hull of {xn} is the union of the
geodesic segments [o, xn], thus a tree with a unique vertex in o. In this
case, the sequence (xn) converges weakly to o.

Given any sequence xn of pairwise different elements in E with pair-
wise distance π

2
in Y , the convex hull of {xn} is again a tree with a

unique vertex 1√
2
· b, the common midpoint of any pair of different

points in the sequence (xn). Thus, (xn) weakly converges to 1√
2
· b.

Similarly, for any sequence of different point bn ∈ B ⊂ Y ⊂ X, the
sequence (bn) weakly converges in X to the point 1√

2
· p. Thus, by

rescaling, the sequence 1√
2
· bn converges weakly to 1

2
· p.

Assume that o and 1
2
· p can be separated in T∆. Thus, we find T∆-

closed subsets C1 and C2 such that o /∈ C1,
1
2
·p /∈ C2 and C1∪C2 = X.

By above, C1 cannot contain infinitely many points of E, which have
in Y pairwise distance π.

Thus, for all but finitely many branch-points b ∈ B ⊂ Y all points
in E at distance π

4
from b are contained in C2. By above, for any such

b we must have 1√
2
· b ∈ B. Since we have infinitely many such points,

we conclude 1
2
· p ∈ C2, in contradiction to our assumption.

Thus, we have verified that (X, T∆) is not Hausdorff. □
The provided example implies that Tco and T∆ may be different:

Lemma 4.1. The weak topology T∆ and coconvex topology Tco do not
coincide on the bounded CAT(0) space X constructed above.

Proof. Consider the set

A = E ∪ 1√
2
·B ∪ {1

2
· p} ∪ {o}

which has appeared above. As explained in the proof of Proposition
1.3 above, the set A is T∆-closed.
We are going to prove that 1

4
· p is contained in the Tco closure of A.

Assuming the contrary, we find finitely many convex, metrically closed
subsets C1, ..., Cn in X which cover A and do not contain 1

4
· p.

For any b ∈ B, consider the set Eb of points in E which are at
distance π

4
from b. Then a counting argument implies that at least one

of the sets Ci contains at least 2 points in any of the sets Eb1 , Eb2 , for
different b1, b2 ∈ B. Then this convex set Ci contains the origin o (as
the midpoint of a point in Eb1 and Eb2), the points 1√

2
·bi and therefore
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their midpoint 1
2
·p. Hence, Ci also contains the whole geodesic [o, 1

2
·p]

and, therefore, 1
4
· p ∈ Ci, in contradiction to our assumption.

Thus, the set A is not Tco-closed, finishing the proof. □

5. Compactness

The following result can be seen as an analog of the theorem of
Eberlein–Smulian in functional analysis. Unlike Theorem 1.2, here the
CAT(0) geometry plays an important role several times:

Proposition 5.1. Let (xα) be a bounded net in a CAT(0) space X
weakly converging to a point x. Then there exists a sequence xα1 , xα2 , . . .
of elements of the net weakly converging to x.

Proof. Replacing the net by a subnet we may assume that the net
rα := d(xα, x) of real numbers converges to some r ≥ 0. If r = 0, we find
some xαi

such that limi→∞ rαi
= 0. Thus, the sequence xαi

converges
to x in the metric topology, and, therefore, also weakly. Thus, we may
assume r > 0 and, after rescaling, r = 1.
We choose inductively αk ∈ I, for k = 1, 2, ..., starting with an

arbitrary α1. Let the elements α1 ≤ ... ≤ αk in I be already chosen.
For any non-empty subset S ⊂ {1, ..., k}, denote by mS the unique

circumcenter mS of the finite set {xαi
, i ∈ S}. Since the net (xα)

converges weakly to x and (rα) converges to 1, we find some αk+1 ≥ αk

with the two following properties, for any α ≥ αk+1:
1) |rα − 1| ≤ 2−k−1.
2) For all nonempty S ⊂ {1, ..., k} the projection Projc(xα) of xα

onto the geodesic c = [xmS] has distance at most 2−k−1 from x.
Note that any subsequence of the sequence (xαi

) has also the proper-
ties (1) and (2). We claim that the so-defined sequence (xαi

) converges
to x weakly. The proof of the claim relies only on the strict convexity
of the squared distance functions and is rather straightforward. For the
convenience of the reader, we present the somewhat lengthy details.
Assuming the contrary and replacing the sequence by a subsequence

we may assume that the sequence converges weakly to a point z ̸= x.
Set δ := d(z, x). Choosing yet another subsequence we may assume
that sαi

:= d(xαi
, z) converge to some s ≥ 0, for i → ∞.

We set ε ≤ δ2

10
and find some i0 such that (1− 2−i0−1)2 > 1− ε and

such that, for all i ≥ i0,

|r2αi
− 1| < ε ; |s2αi

− s2| < ε.
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Using the weak convergence of (xαi
) to z and CAT(0) comparison, we

may assume in addition, that for all i ≥ i0

d2(xαi
, x)− d2(xαi

, z)2 ≥ δ2 − ε = 9ε.

For j = 1, 2... we consider the point pj := xαi0+j
. By above, the

circumradius t of the countable set {pj} satisfies

t2 < 1− 1
2
δ2 = 1− 5ε .

Denote by 0 ≤ tk ≤ t the circumradius of the set {p1, ..., pk}. We
claim that there exists some positive ρ > 0, such that t2k+1 − t2k > ρ for
all k ≥ 1. Since the sequence (tk) is bounded above by t, this would
provide a contradiction and finish the proof.

In order to prove the claim, consider the circumcenter mk of the
subset p1, ..., pk. Thus, mk is the point at which the 2-convex function,

f(y) := max
1≤i≤k

d2(y, pi)

assumes its unique minimum t2k. By the 2-convexity, we deduce

f(mk+1) ≥ t2k + d2(mk,mk+1).

On the other hand, f(mk+1) ≤ t2k+1, hence

t2k+1 ≥ t2k + d2(mk,mk+1).

By construction of the sequence xαi
, we have

d2(pk+1,mk) ≥ (1− 2−i0−1)2 > 1− ε.

Thus, by the triangle inequality and the fact

d2(pk+1,mk+1) ≤ t2k+1 ≤ t2 ≤ 1− 5ε

we obtain some positive lower bound ρ > 0 on d2(mk,mk+1). This
finishes the proof of the claim and of the proposition. □

As a consequence, we derive:

Lemma 5.2. If a bounded net (xα) in X converges to the point x
weakly then (xα) converges to x with respect to the T∆-topology.

Proof. Assume the contrary. Then, replacing the net by a subnet, we
find a T∆-open neighborhood U of x which does not contain any xα.
Using Proposition 5.1 we find a sequence xα1 , ...., xαk

, ... of elements of
the net converging weakly to x. Then x is contained in the T∆-closed
set X \U which contains all elements of the sequence. This contradicts
the definition of T∆-closed sets. □

Since any bounded net has weakly convergent subnets, we infer:

Corollary 5.3. Every bounded T∆-closed subset A of X is T∆-compact.
10



Now we provide:

Proof of Theorem 1.4. Let T be a topology on X, such that a bounded
net (xα) weakly converges to x if and only if this net T -converges to x.
Since any net has at most one weak limit point and since the Hausdorff
property can be recognized by the uniqueness of limit points of nets,
we deduce that any bounded subset of X is Hausdorff with respect to
T .

Let A be a bounded subset of X. By definition, A is T -closed if and
only if it contains all weak limit points of any net (xα) of elements in A.
From Proposition 5.1, this happens if and only if A contains all weak
limit points of any sequence of elements in A. Thus, if and only if A is
T∆-closed. We infer, that T coincides with T∆ on bounded subsets.

Assume, on the other hand, that the weak topology T∆ is Hausdorff
on any ball in X. We claim that a bounded net (xα) converges weakly
to x if and only if (xα) converges to x with respect to T∆.

Due to Lemma 5.2, the only if conclusion always holds. On the other
hand, assume that (xα) converges to x with respect to T∆ but does not
weakly converge to x. Replacing (xα) by a subnet we may assume that
(xα) weakly converges to another point y. Due to Lemma 5.2, this
implies that the net (xα) converges to the point y with respect to the
topology T∆. But this contradicts the assumption that T∆ is Hausdorff
on the bounded ball which contains the net (xα).
This proves the ”if”-direction and finishes the proof of the theorem.

□

Remark 5.4. Using the considerations above, it is not difficult to prove
another form of Theorem 1.4. Namely, the topology T∆ is Hausdorff
on any bounded subset of X (and thus weak convergence of bounded
nets is equivalent to the T∆-convergence) if and only if the topology T∆

is Frechet–Urysohn on any bounded set. Recall, that a topology T is
called Frechet–Urysohn, if the closure of any set A in this topology is
the set of all T -limit points in X of all sequences contained in A.

6. Coconvex topology

The coconvex topology Tco is coarser than T∆, Proposition 3.1. Thus,
convergence of sequences (nets) with respect to T∆ implies convergence
with respect to Tco. This immediately implies that any bounded, Tco-
closed set is Tco-compact and Tco-sequentially compact.
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Proposition 6.1. The topologies Tco and T∆ coincide on all bounded
subsets of a CAT(0) space X if and only if the topology Tco is sequen-
tial and sequentially Hausdorff on every closed ball Br(x) in X. This
happens if Br(x) is Tco-Hausdorff.

Proof. Wemay replaceX by a ballBr(x) and assume thatX is bounded.
The only if statement follows from Proposition 3.1.

On the other hand, assume that Tco is sequential and sequentially
Hausdorff on the bounded CAT(0) space X. Due to Proposition 3.1,
the identity map Id : (X, T∆) → (X, Tco) is continuous. In order to
prove that the inverse Id : (X, Tco) → (X, T∆) is continuous, consider
a T∆-closed subset A and assume that A is not Tco-closed. Since Tco is
sequential, we find a sequence (xn) in A which Tco-converges to a point
x ∈ X \ A. Using that X is T∆-sequentially compact, we may replace
(xn) by a subsequence and assume that (xn) converges to some point
y in X with respect to T∆. Then, by Proposition 3.1, the sequence
converges to y also with respect to Tco. The assumption that Tco is
sequentially Hausdorff gives us x = y. Since A is T∆-closed, we deduce
x = y ∈ A. This contradiction implies that Id : (X, Tco) → (X, T∆) is
continuous, hence T∆ = Tco.

Finally, if Tco is Hausdorff on the bounded CAT(0) space X, then the
compactness of T∆ and the continuity of the identity map Id : (X, T∆) →
(X, Tco) imply T∆ = Tco. □

In the proof of Proposition 1.5 below, we assume more knowledge of
non-positive curvature than in the rest of this paper. We refer to [LN19]
for properties of geodesically complete CAT(0) spaces, to [Sch19] for
properties of cubical complexes, and to [And83] and [Bor92] for mani-
folds of pinched negative curvature.

Proof of Proposition 1.5. Assume first that X is homeomorphic to the
plane R2. Then each geodesic γ : [a, b] → X extends to a geodesic
γ̂ : R → X, [BH99]. Moreover, by Jordan’s theorem, γ̂ divides X
into two connected components both having γ̂ as their boundaries.
The closures of the connected components are convex. Thus, the open
components are Tco open.

In order to prove that Tco is Hausdorff it suffices to find, for any
pair of points x, y, some geodesic γ : R → X, such that x and y are in
different components of X \ γ. We connect x and y by a geodesic η
and take the midpoint m of η. We find two points p± sufficiently close
to m which lie in different components of X \ η̂ for some extension of
η to an infinite geodesic. Then consider a geodesic γ : R → X which
contains p+ and p−. The geodesic γ intersect η between x and y. We
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infer that x and y lie in different components of X \ γ. This finishes
the proof if X is homeomorphic to a plane.

Assume now that X is a finite-dimensional cubical complex and
choose x, y ∈ X. Taking a sufficiently fine cubical subdivision, we
may assume that the diameter of all cubes is much smaller than the
distance between x and y. Then the geodesic between x and y intersects
at least one hyperwall in X. Any such hyperwall is a convex subsets
dividing X into two connected and convex components. As above, we
deduce that x and y are separated in Tco.

Finally, let X be a Riemannian manifold with pinched negative cur-
vature and let x, y ∈ X be arbitrary different points. Fix r > d(x, y)
and set B = Br(x). By Anderson’s construction, [And83], see also
[Bor92, Theorem 2.1], we find finitely many closed convex subsets Ci

in X \B, such that V := X \∪m
i=1Ci is bounded. Then V is a Tco-open

set containing B and contained in some larger closed ball B′.
On the compact ball B′ the topology Tco coincides with the metric

topology, [Mon06, Lemma 17], hence it is Hausdorff. Thus, we find
Tco-open subsets U1 and U2 in X containing x and y, respectively, such
that U1 ∩ U2 ∩ B′ is empty. Then U1 ∩ U and U2 ∩ U are disjoint
Tco-neighborhoods of x and y in X. □

Remark 6.2. As the proof and the reference to [Bor92] shows, in condi-
tion (2) one can replace the pinching by the assumption that the quo-
tient of the minimal and maximal curvature in the ball Br(x0) around
some chosen point x0 is at most 2λr for some λ ∈ R. Moreover, a
closer look at the proof shows that under the assumptions (1) or (2),
the topology Tco coincides with the metric topology on all of X.

We discuss finally two examples showing that the coconvex topology
can be quite strange even for rather regular spaces. Below we denote
for a locally compact CAT(0) space X by X∞ its boundary at infinity
with its cone topology, [BH99]. Recall that X∞ is compact.

Lemma 6.3. Let X be a locally compact CAT(0) space. Assume that X
is not bounded and for any closed convex subset A of X different from
X, the boundary at infinity A∞ is nowhere dense in X∞. Then the
coconvex topology Tco on X is non-Hausdorff and not first-countable.

Proof. Since X∞ is a compact space, it is not a countable union of
nowhere dense subsets, by Baire’s theorem.
Therefore, by our assumption, X is not a finite union of closed convex

subsets different from X. Thus, any finite intersection of non-empty
Tco-open subsets is non-empty. In particular, Tco is not Hausdorff.
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Assume now that Tco is first-countable on X, fix an arbitrary x ∈ X
and a Tco-fundamental system of its open neighborhoods U1, ..., Un, ....
By definition of Tco, we may assume that each Ui is the complement of
a finite union of closed convex subsets Kj

i , not containing the point x.
Hence, the union of the boundaries at infinity

∪i,j(K
j
i )

∞ ⊂ X∞

is not all of X∞. Consider an arbitrary point z ∈ X∞ not contained
in this union and a ray γ in X with endpoint z ∈ X∞, such that x
is not on γ. Then X \ γ is a Tco-open neighborhood of x which does
not contain any of the set Ui. This contradiction shows that Tco is not
first-countable. □

The first example directly follows from Lemma 6.3 above and [Anc94,
Theorem B, Corollary C]:

Example 6.4. There exists a smooth 3-dimensional CAT(−1) Riemann-
ian manifold X for which the coconvex topology Tco is not Hausdorff
and not first-countable.

In the final example, we use some facts about geometry of spherical
buildings arising as the boundary at infinity of symmetric space with
their corresponding Tits-metric, see [KL06], [KL97], [KLP18]. The
following result might be known to specialists, accordingly to Nicolas
Monod it was known to Bruce Kleiner many years ago.

Proposition 6.5. Let X be an irreducible, non-positively curved sym-
metric space of rank at least two. Then X satisfies the assumptions,
and, therefore, the conclusions of Lemma 6.3.

Proof. Assume the contrary and consider any closed convex subset A of
X such that the boundary at infinity A∞ of A has non-empty interior
in the (n− 1)-dimensional sphere X∞; here n is the dimension of X.

Thus, in the cone topology, A∞ has dimension n − 1. Therefore,
there are no totally geodesic symmetric spaces Y ⊊ X with A∞ ⊂ Y ∞.
On the other hand, if A∞ = X∞ then A = X. Thus, we may assume
A∞ ̸= X∞. Applying [KL06, Theorem 3.1], we deduce that A∞ is not
a sub-building of the spherical building X∞.

Since A∞ contains an open subset in the cone topology, we find a
non-empty subset O of A∞, open in the cone topology and consisting
of regular points only. If, for some p ∈ O, we find an antipode q ∈
A∞ (with respect to the Tits-distance) then A∞ contains a spherical
apartment (the boundary of a maximal flat in X), as the convex hull
in the Tits-metric of q and a Tits-ball around p. By [BL06, Theorem
1.1], this would imply that A∞ is a sub-building, in contradiction to the
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statements above. Thus, for no p ∈ O and q ∈ A∞ the Tits-distance
between p and q equals π.

We are going to construct a pair of antipodes p ∈ O and q ∈ A∞

and achieve a contradiction. We start with an arbitrary point p ∈ O.
Let G be the isometry group of X (and of X∞) and denote by ∆ the

spherical Coxeter chamber X∞/G of the spherical building X∞. Let
P : X∞ → ∆ be the canonical projection. Denote by I : ∆ → ∆ the
isometry of the Coxeter chamber induced by the action of −Id on any
apartment of X∞. The map I is an involution, which is the identity
map if and only if the Coxeter group W of X∞ has a non-trivial center
(note, that this is the case for all Weyl groups, which are not of type
Am, E6 or D2m+1, see [Hum72, p.71]).

Consider the orbit L := G · p = P−1(P(p)) ⊂ X∞. Any element
p′ ∈ L is contained in a unique Coxeter chamber ∆p′ . Consider the set
Lop
p of all elements p′ in L which are in an opposite Coxeter to p, thus

such that the Coxeter chamber ∆p′ through p′ contains an antipode of
p. Then Lop

p is open and dense in the manifold G · p, see, for instance,
[KLP18]. Thus, we find an element p′ ∈ O ∩ Lop

p .
If the isometry I : ∆ → ∆ is the identity (see the discussion above),

then p′ is an antipode of p and we are done. If I is not the identity,
then looking at an apartment through p and p′ we deduce that the
Tits-geodesic between p and p′ contains a point q which is projected
by P onto I(p). Then L contains all antipodes of q. By convexity,
q ∈ A∞. As above, the set Lop

q ∩ O of elements in O contained in a
chamber opposite to q is not empty. For any such element p′ ∈ Lop

q ∩O,
the distance between q and p′ is π.

Thus, in both cases we have found a pair of antipodes p ∈ O and
q ∈ A∞, finishing the proof. □
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[Bor92] A. Borbély. A note on the Dirichlet problem at infinity for manifolds of
negative curvature. Proc. Amer. Math. Soc., 114(3):865–872, 1992.

[Cla13] B. Clarke. The completion of the manifold of Riemannian metrics. J.
Differential Geom., 93(2):203–268, 2013.

[CR13] B. Clarke and Y. Rubinstein. Conformal deformations of the Ebin metric
and a generalized Calabi metric on the space of Riemannian metrics.
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