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This article builds on recent work of the first three authors where a notion of congruence
modules in higher codimension is introduced. The main results are a criterion for
detecting regularity of local rings in terms of congruence modules, and a more refined
version of a result tracking the change of congruence modules under deformation.
Number theoretic applications include the construction of canonical lines in certain
Galois cohomology groups arising from adjoint motives of Hilbert modular forms.
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1. Introduction

Let p be a prime number, O the ring of integers of a finite extension of Qp, and R a
complete noetherian local O-algebras with an O-algebra morphism A: R — O such
that the local ring Ry, where p := Ker(A), is regular. Let ¢ denote the codimension of 4,
namely, the height of p. We denote the category of such pairs (R, 1) by Co ().

In ref. 1, we develop an analog of the Wiles—Lenstra—Diamond numerical criterion
in arbitrary codimension, with the original criterion (see refs. 2 and 3) corresponding to
the codimension 0 case. This gives a criterion for a finitely generated R-module M to
have a free direct summand and for R to be a complete intersection ring. This involves
two invariants associated to A: the torsion @, (R) of the cotangent space of 4, and the
congruence module ¥ (M) of M. When ¢ = 0 one has p/p*> = @,(R).

Wiiles uses the criterion in his work on the modularity of elliptic curves over Q to go
from modularity lifting theorems in the minimal case to those in the nonminimal case.
In ref. 1, the numerical criterion in higher codimension is used along the same lines
to prove integral modularity lifting results for nonminimal lifts in situations of positive
defect which arise in considering Galois representations over imaginary quadratic fields.
In this work, we explore the meaning of the invariants ®,(R) and ¥ (M) in certain
number theoretic situations, relating them to the index of zeta elements in global Galois
cohomology groups.

To begin with, we focus on one of the key ideas of ref. 1, namely the definition and
properties of congruence modules, and congruence ideals, associated to an augmentation
A in arbitrary codimension. This is the content of Section 2. The highlights are a
characterization, Theorem 2.6, of regularity of rings (4, 4) in our category Cp(c) in
terms of vanishing of the invariants ®;(A4) and ¥, (A); a more transparent description,
in Section 2.10, of the connection between duality and our congruence modules than
in the eatlier paper, and a refinement, Theorem 2.39, of a result about deformation
invariance of Wiles defect.

Section 3 focuses on number theoretic applications, and concerns the congruence
ideal attached to an augmentation of Hida’s ordinary Hecke algebra T, or ordinary
deformation ring R°'d, arising from cohomological Hilbert modular forms f over totally
real fields F. The functorial properties of the congruence ideal are used to relate it to lines
(that is to say, free O-modules of rank one) in the Galois cohomology with coefficients in
ad py; see Theorem 3.9. The index of their image under global-to-local restriction maps to

singular local Galois cohomology Holr 4/ f(GP’ ad py) is related to the classical congruence

module of £, and to special values of adjoint Z-function Z8(1, ad p¢), by work of Hida
(4) and its generalization by Dimitrov (5). This is connected to the “zeta elements” of (6,
Theorem 1.1). The terminology is due to Kato (7), who used it for elements of Galois
cohomology he constructs in a related context, arising from Beilinson—Flach classes.

In ref. 6, exact sequences of Selmer groups are used while the proof of Theorem 3.9
uses in addition congruence modules in higher codimension. This allows us to bypass
local complete intersection results on the corresponding Hecke ring used in ref. 6, and
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the argument does not require any R = T theorems. This connection arises from the following circumstance.
Let £ := 1,..., ¢ be indeterminates, A, := O[¢] the power-series ring, and A, — O the natural augmentation. Fix (4, 4) in

Co(c) equipped with a finite flat map 1: A, — A of O-algebras over O, so that composite map A, L AL Ois the augmentation.
For Ay = A/(t) one has a map Ext’;(O, A)(= Aolker ]) = Ay Hom(p/p?, O), whose cokernel is W5 (A4). Abstractly both domain
and range are simply O’s. In applications when A is a nearly ordinary deformation ring and A arises from the classical form f, the
range is a Selmer group as Hom(p/p%, O) = H}.(GFs, ad py), with local conditions £ = (£,) such that £, C H'(G,,ad py) for
v € Sand L, is the unramified subspace H,},,.(G,, ad py) for v not in S. When A4 is a nearly ordinary Hecke algebra Hom(p/p?, O) is
a subspace of H'(Gs, ad pr)- This gives a “pure thought” construction of canonical lines in Galois cohomology; see Theorem 3.9.

2. Higher Congruence Modules and Wiles Defects

We begin by recalling the setup of ref. 1. This section complements the material presented in (1, Part 1). The highlights are
Theorems 2.6 and 2.39, and Proposition 2.25. Along the way, we provide a different perspective and proofs of some key results from
ref. 1.

2.1. Let O be a complete discrete valuation ring, with valuation ord(—) and uniformizer w. Throughout we fix a complete local
O-algebra A and a finitely generated A-module M. Given a map A: A — O of O-algebras, set

pi:=Kerd and c¢:= heightp,.

For any finitely generated A-module M, set F; (M) := Ext},(O, M )tf, the torsion-free quotient of the O-module Ext; (O, M). Here
O is viewed as an A-module via A. The congruence module of M at 4 is the O-module

FS (1@M)

W, (M) := coker <F2(M) Fj(M/p,lM)> .

We have also to consider O-module @ (A4) := tors(p;/p3), the torsion part of the cotangent module p;/p? of 4.

We say an A-module M has a certain property at 4 if the Ap,-module M}, has the stated property. For instance, 4 is regular at 4
means the local ring Ay, is regular. The starting point is the result below; see (1, Theorem 2.5 and Lemma 2.6).

Theorem 2.2. With A: A — O as above, the following conditions are equivalent:

1. The local ring A is regular at A.

2. The rank of the O-module p /| pi is heightp .

3. The O-module ¥ ;(A) is torsion.

4. The O-module ¥ ;(M) is torsion for each finitely generated A-module M.

Moreover, when these conditions hold the O-module ¥ 5 (A) is cyclic. O

Condition (2) is that the embedding dimension of the ring Ay, equals its Krull dimension, so (1)<>(2) is one definition of regularity;
see (8, Definition 2.2.1). The key input in proving (1)<>(3) is the following result due to Lescot (9); see also ref. 10.

2.3. A noetherian local ring R is regular if and only if the map Extz(k, R) —> Extg(%, £) induced by the canonical surjection R — #
to the residue field of R, is nonzero. When this is the case, the map above is nonzero in (upper) degree dim R.

The result below is implicit in the proof of (1)=>(4) in Theorem 2.2, in ref. 1. We make it explicit, for it is used also in proving
Lemma 2.5 and Theorem 2.6 below; the proof is standard.

Lemma 2.4. Let €: R — S be a surjective map of noetherian rings where the ideal Ker(e) is generated by a regular sequence, and set
c:=dim R — dim S. For any R-module M the map Extje(S, EQrM): Extje(S, M) — Extje(S, S @r M) is bijective. O

We denote Cp the category whose objects are pairs (4, A) satisfying the equivalent conditions in Theorem 2.2. A morphism
@: (4 4) = (A, 2') in this category is a map of O-algebras ¢: A — A’ over O; that is to say, with ' o0 ¢ = 1. We write Cp(c) for
the subcategory of Cp consists of pairs (4, 4) such that heightp,; = c.

Lemma 2.5. For (4, A) in Co(c) and finitely generated A-module M the map ¥ (A @4 M) is one-to-one.

Proof: Set R := Ay, and let £: R — E be the map obtained by localizing 4 at p,; here £ is the residue field of R, which is also the
field of fractions of O. Since injectivity of a map of torsion-free O-modules can be detected after passing to the field of fractions, it
suffices to check that the map F (4 ®4 M),, = Ext%(E € ®g M) is one-to-one. Since R is regular the ideal Ker(¢) is generated by a
regular sequence of length ¢; see (8, Proposition 2.2.4). It remains to apply Lemma 2.4. O

In the work of Hida (4) and Ribet (11) congruence modules (for codimension ¢ = 0) are attached to augmentations T — O of
Hecke algebras T that act faithfully on certain localized Betti cohomology groups H' (X1 (N), O) . They measure the complexity of
T and their vanishing is equivalent to T being smooth, namely just O. Analogously we show in the result below that for rings 4 € Cp
the vanishing of either the congruence module ¥ ,(A4) or ®,(A), the torsion part of the cotangent module, at any augmentation
A: A — O implies A is smooth.

Unlike most results in (1, Part 1), the following theorem does not make assumptions on the depth of the ring A.
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Theorem 2.6. For (4, A) in Co, the local ring A is regular if and only if ®,(A) = 0, if and only if ¥ ;(A) = 0.

Proof: We first verify that A is regular if and only if ®(4) = 0. As 4 is a complete O-algebra, one has A = P/I where
P:=O[n,..., 1], aring of formal power series over O, the ideal I C (w)(¢) + (£)?, and 1: A — O is quotient by (¢).

Letf :=f1, ..., fm be a minimal generating set for /. The cotangent module p;/ pi depends only on 7 and the linear part of the f;,
in the following sense: By our assumption on /, each f; has an unique expression of the form

fi= Z wiit; + gi with ; € (w)O and g; € (). [2.7]
j=1

(137)

Then one has a presentation O” —> O” — p,/p% — 0. The torsion part of p,/p3 is zero if and only if (u;) = 0, that is to say,

(f) € (¢)%. Since 4 is regular at A this condition is equivalent to f = 0, as desired.

Next, we verify the claim that A is regular if and only if ¥;(4) = 0.

When A is regular, Ker(A: A — O) is generated by a regular sequence of length ¢ := height(Ker 4); see (8, Proposition 2.2.4).
Thus Lemma 2.4 yields that the map Ext§(O, 1) is one-to-one so ¥;(A4) = 0.

Assume ¥ (A4) = 0. To verify that 4 is regular it suffices to verify that the map

EXtA(k, 6): EXtA(k, A) — EXtA(/e, /e),

induced by the quotient map £: A — £, is nonzero, for then Lescot’s result 2.3 gives the desired conclusion.
Let M be a finitely generated A-module. The exact sequence

0—0-"50—k—0 [2.8]
. ot (M . .
of A-modules induces exact sequences of £-modules 0 — £ @ Ext);(O, M) #) Ext) (b, M) — Extjﬂl—H (O, M)[w] — 0. For
what follows the relevant point is that the maps &’ (M) are inclusions. Set ¢ := height(p;) and consider the following commutative
diagram of 4-vector spaces:

k @0 Ext4 (0, A) —— k ®0 Ext4 (0, 0)

6<A>£ e £6<0>
S-3

Ext4 (k, A) ———— Ext" (k, 0) ——— Ext5™ (k, k)

The map in the top row is induced by A: A — O and the ones in the lower row are induced by A — O — k. That the map in the
lower right is one-to-one follows by considering the long exact sequence in cohomology that arises by applying Homy(#, —) to the
exact sequence Eq. 2.8. It is easy to verify that the hypothesis ¥, (A4) = 0 implies the map in the top row is nonzero, and hence so is

the diagonal map. It then follows from the commutative diagram that the map E)(tjlJrl (k, €) is nonzero. O

Remark 2.9: Consider the ordinary Hida Hecke algebra T°™ of tame level V. It s finite flat over A := O[#], with # the weight variable,

and T /(#) = T is a classical Hecke algebra, acting faithfully on H'(X;(Np), O)n. Consider an augmentation A: T4 — T — O
arising from a (p-stabilized) newform £ € 81 (I'1(Np")). The vanishing of the congruence module of T for the augmentation T — O

implies T = O and T = A while the vanishing of the congruence module for T — @ implies that T4 is smooth, while T may

not be smooth. In other words ¥, (T°) = 0 implies T = O[], furthermore x can be taken to be the weight variable # if and only
if the classical congruence module W, (T) = 0 also vanishes.

Next, we describe a pairing associated with the definition of congruence modules. This too appears in ref. 1, but does not play a
major role in the development there. The presentation below is more transparent.

2.10. For any finitely generated A-module M, one has natural isomorphisms
Ext’, (O, M/p,M)" = Ext,(0, 0)f @ (M /p;M)F = Homp (Home (M, O), ExtS, (O, O)Y).
Thus, the map F{ (A ® M): Ext%(O, M) — Ext(O, M/p,M)%, whose cokernel is the congruence module of M, is adjoint to
(— —)ar: Ext5(O0, M)¥ @ Homy(M, O) — Ext’, (0, O)*.

The congruence ideal of M, with respect to the augmentation 4, is the image of this pairing: #,(M) := Image(—, —) . It is easy to
check that the free O-modules F; (M) and Homy(M, O) have the same rank and that F$(O) has rank one, so

lengthiy (O/n;(M)) < lengthy, W4 (M) < rank, (M) - length, (O/ni(M)).

Here rank; (M) denotes the rank of M at A, that is to say, the rank of the A;-module My, . In particular, when this rank equals 1, the
length of the congruence module can be computed from the pairing.
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The pairing above is induced-by passage to torsion-free quotients—by the natural pairing given by composition of morphisms:
(— —)m: Ext3(O, M) ® 0 Homy(M, O) — Ext5(O, O). [2.11]

Namely, Ext} (O, M) can be realized as Homp (O, M[c]), the morphisms in the derived category of A from O to M[c|, and given
such a morphism f and a map g: M — O, the pairing above is

(fg):=gof: 0 — Ol

In the Yoneda interpretation of Ext}; (O, M) as equivalence classes of exact sequences 0 - M — X,_; — -+ = Xy = O — 0, the
pairing is given by taking push-out along g: M — O.
2.11.1. Cohen-Macaulay modules. When M is Cohen—Macaulay of dimension ¢ + 1, local duality yields an identification

Homy (O, M) = Ext} (O, M") where MY = H,41(RHomyu(M, wy)).

Here w4 is the dualizing complex of A4, normalized as in ref. 12; see ref. 1, §4 for details. With this identification, the pairing Eq. 2.11
takes the form

(= —): Ext5(0, M) ® 0 Ext4(0, M") — Ext5(0, O). [2.12]
See ref. 1, Proposition 4.7. The pairing Eq. 2.11 can be described concretely when ¢ < 1. One simplification that occurs then is that
Ext), (O, O) is already torsion-free, as is explained below. To that end, consider the exact sequence

0—p),—A— O —0. [2.13]

Applying Homy(—, M) yields the exact sequence M = Homy(A4, M) — Homy(p,, M) — Ext}(O, M) — Ext}(4, M) = 0.
This justifies the following result.

Lemma 2.14. For any ¢ > 0, and any A-module M, there is a natural isomorphism of O-modules
Exty (O, M) = coker(M — Hom(p;, M)). O

The isomorphism assigns an A-linear map f: p; — M to the exact sequence obtained by push-out of the exact sequence in Eq. 2.13
along £. The natural map O — Homy(p;, O) is zero, so for M := O the isomorphism in Lemma 2.14 becomes

Ext} (0, 0) = Homy(p;, O) = Homp (p,/p3, O) [2.15]

which is already torsion-free. Now we return to the pairing Eq. 2.11.

2.16. The Case ¢ = 0. Since Homy4(O, M) = M[p,], the p,-torsion submodule of M, the pairing Eq. 2.11 becomes
M[p,] ® Homy(M, O) — O where mQf — f(m).
When depth; M > 1, one has MY = Homg (M, O) this pairing is equivalent to the one given by the composition
Mlpsl ®0 M [ps] — M@0 M* —> O,

where the map on the right is the obvious one.

2.17. The Case ¢ = 1. With this description, for ¢ = 1 the pairing Eq. 2.11 is induced by the obvious pairing given by composition:
Homy(p, M) ® 4 Homy (M, ©) — Homy(p, O) = Homp (p/p?, O).

Since Ext}, (O, O) is torsion-free, as in the case ¢ = 0 the ideal #,() is just the image of the pairing above.

2.18. Structure of F;(0). A key input in the development of the commutative algebraic properties of the congruence module is
a structure theorem for F4(O). The Yoneda product gives Ext}(O, O) the structure of a graded O-algebra, and this is inherited
by its torsion-free quotient, F%(O). The remarkable fact (1, Theorem 6.8) is that although the Ext-algebra itself can be highly

noncommutative, and infinite, F(O) is just an exterior algebra generated by its degree one component F}(0) = Homo (p4/p3, O);
see Eq. 2.15. As explained in ref. 1, Introduction, this may be seen as an integral version of a result, due to Serre, on the structure of
the Ext algebra of a regular local ring. The proof of this structure theorem for F;(O) uses ideas from the theory of differential graded
algebras. An important takeaway is that there is a natural isomorphism of O-modules

c
/\ Homo (pa/p3, ©) — F4(0). [2.19]
The naturality of this isomorphism leads to an invariance of domain property for congruence modules; see ref. 1, Theorem 7.4.

Theorem 2.20. Given a surjective map @: (A, A) — (A, A') in Co(c), and an A'-module M' with depth , M’ > ¢, there is a natural
isomorphism of O-modules ¥ (M') = W (M"). O

Since @ is surjective, p; - A" = Ker A". The hypotheses in the statement above imply that @y, : Ay, — A, is surjective map of
regular local rings of dimension ¢ and hence an isomorphism.

4of 13 https://doi.org/10.1073/pnas.2320608121 pnas.org



Downloaded from https://www.pnas.org by Srikanth B. Iyengar on April 19, 2024 from IP address 173.239.64.5.

2.21. Freeness Criterion. Fix (4, 4) in Cp and a finitely generated A-module M. For any A-module X one has a map
Ext$(0, X) ®0 (M/p,M) = Exty (O, X) @4 M —> Exty(O, X @4 M),
where the one on the right is a Kiinneth map. This is functorial in X, and one gets the commutative diagram below:

Ext4 (0, A)F @0 (M/pr M) —— Ext(0,0)" @0 (M/prM)™

| !

ExtS (O, M) — & Ext4 (O, M/paM)**
The horizontal maps are one-to-one, by Lemma 2.5. Moreover, the one on the right is an isomorphism, as can be verified easily. It
follows that the map on the left is one-to-one. This justifies the following result.

Lemma 2.22. The diagram above induces a natural surjective map of O-modules a;(M): ¥ )(A)* — ¥, (M), where p = rank,(M).
In particular there is an equality lengthy W, (M) = u - lengthy ¥, (A) — length, Ker(a;(M)).

When A is Gorenstein and M is maximal Cohen—Macaulay, Ker(2;(M)) can be interpreted as a“stable” cohomology module of
the pair (4, M). This identification leads to the criterion below for detecting free summands of A see ref. 1, Theorem 9.2.

Theorem 2.23. When A Gorenstein and M is maximal Cohen—Macaulay, length, W53 (M) = u - lengthy, W1(A) if and only if
M =AY © W and Wy, = 0, as A-modules. In this case, when u # 0 the A-module M is faithful. O

2.24. Isomorphism Criteria. The preceding results leads to criteria for detecting isomorphisms between rings.

Proposition 2.25. Ler ¢: A — B be a surjective map of complete local O-algebra. Assume there exists an augmentation A: B — O such
that (A, Ap) and (B, A) are in Co(c) for some ¢ > 0, and either of the following conditions hold:

1. The ring A is Gorenstein, B is Cohen—Macaulay, and length ¥ 34 (A) = length, ¥, (B);
2. The ring B is complete intersection and lengthn ®,,(A) = length, ®;(B).

Then the map @ is an isomorphism.

Proof: (1) The hypotheses imply that @ is an isomorphism at A@ so rank 4, B = 1. Thus Theorem 2.23 implies that B s a faithful A-
module, so Ker ¢ = (0). As to (2), it follows by a simple argument using the Jacobi-Zariski sequence arising from maps 4 — B — O
and Nakayama’s Lemma; see ref. 1, Lemma 5.10 for details. O

The isomorphism Eq. 2.19 is also a critical input in tracking the behavior of congruence modules under deformations.

2.26. Deformations. Fix (4, A) in Cp(c) and elements f := fi, ..., f, in p; such that their residue classes in the O-module p;t/p/1
form a linearly independent set. Set 4 := A/fA. The augmentation 1: A — O factors through 4 so we an augmentation 4: A — O.

The hypotheses on f is equivalent to saying that the pair (4, 4) is in Co (¢ — 7); see ref. 1, §8. A straightforward computation yields
an equality

length, @7(A) = lengthyy @, (A4) + Z ord(ff), [2.27]

where ord(f;) is the order of £; in p;/p?, defined by (= ord(f)y O = {a(f;)la € Homp (pa/p3, O)}; see ref. 1, §8.5.

Theorem 2.28. [n the context above, let M be a finitely generated A-module with depthy M > ¢ + 1 and set M:=M [fM.Iff is
M-regular, then length ‘PI(M) = lengthy W3 (M) + (rank, M) Y, ord(f).

Sketch of proof: 1t is enough to consider the case when 7z = 1. One first reduces to the case when f is not a zerodivisor on A as well;
this uses the invariance of domain property for congruence modules, Theorem 2.20. See ref. 1, Proof of Theorem 8.2 for details. The

essence of the argument is captured ¢ = 1, so we sketch the proof in that context. Since f is in p, and it is not a zerodivisor on A nor
on M one gets the isomorphism on the right:

coker(M — Hom(p,, M)) =N Ext} (0, M) =, Homy, (O, My).

The one on the left is from Lemma 2.14. It is straightforward to check that the composite map is induced by the assignment
a+— —a(f) mod fM for a € Homy(ps, M). Consider the commutative diagram

HOmA(p;,]W ®Ra HOmA(]W O) E— HOIno(p,\/)J)\7 )

a»—)a(f)J/ J/E lﬁ’—*ﬁ(f)

MIp,] ®4 Hom—(M,0) ——— O

The image of the vertical map on the right is precisely the order ideal of f, that is to say, (‘word(f)). Since ¥, (M) and ‘I‘I(M) are
cokernel of the maps adjoint to the top and bottom row, respectively, the desired equality follows.
The case ¢ > 2 is tackled by a reduction to the ¢ = 1 case, using (8, Lemma 1.2.4), and the isomorphism Eq. 2.19. O
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2.29. Wiles Defect. Fix a pair (4, 4) in Cp and a finitely generated A-module M. Since A is regular at p, and in particular a domain,
the Ap,-module Mp,, has a rank. The Wiles defect of M at 4 is the integer

6,(M) := ranky (M) - lengthy @;(A) — lengthy, W, (M).

In particular the Wiles defect of 4 at A is lengthy, ®,(A4) — lengthy, W4(A). We refer to ref. 1, Introduction for a discussion on
precedents to this definition. Theorem 2.28 and Eq. 2.27 give the following result, which is (1, Theorem 8.2):

Theorem 2.30. One has 5,(M[fM) = 6,(M) for M, f as in Theorem 2.28.
Also, Theorem 2.20 implies the following (which is ref. 1, Theorem 7.4):

O

Lemma2.31. [f@: (A, X) — (A A) is a surjective map in Co(c), then 5, (M) > 65,(M), with equality if and only if ®y(A') =
D (A) holds. O

With 2, (M) as in Eq. 2.32, one gets a “defect formula”:
8,(M) = rank; (M) - 6,(A) + length, Ker(a,(M)). [2.32]

In particular §; (M) > 0 for all M if and only if 5,(A4) > 0.
The result below extends to modules; see ref. 1, Theorem 9.6.

Theorem 2.33. For (4, A) € Co(c) with depth A > ¢ one has 5,(A) = O; equality holds if and only if A is complete intersection.

In ref. 1 this result was proved by reduction to the case ¢ = 0, using Theorem 2.28. Here is an alternative argument, under the
slightly more restrictive case where A is Cohen—Macaulay (so dim A = ¢ + 1), that argues by “going up” to a regular ring.

Proof: First, we verify that §;(4) = 0 when A € Cp(¢) is complete intersection, that is to say, isomorphic to

Oltr, .t/ (fis - - oo fon)

for some regular sequence f := fi, ..., fn in (2). Since A is in Cp(¢) it follows that # — m = ¢ and that f satisfies the hypothesis of
Theorem 2.28, so we get the first equality in: §4(A4) = 6,¢(O[¢]) = 0. The second one is by Theorem 2.6.

Next, we verify that when A4 is Cohen—Macaulay 6,(A4) > 0, and that if equality holds A is complete intersection. Since dim A4 = ¢+1
one can find a surjection £: C — A where C is a complete intersection in Cp(¢) and € induces an isomorphism @ ;. (C) = ®@,(A);
see (1, Theorem 5.6). Thus §;(A4) = 6,¢(A) > 0, where the equality is by Lemma 2.31 and the inequality follows from Eq. 2.32 and
the fact that §;:(C) = 0 as C is complete intersection. Moreover we get that if §,:(A4) = 0, then Ker(a,¢(4)) = 0, so 4 is faithful as
a C-module, hence € is an isomorphism. O

2.34. A-Structures. Motivated by number theory, we consider a setting where the algebra 4 in Cp has additional structure, and give a
variant of the computation of change of congruence modules in Section 2 on going modulo regular sequences.

Let ¢ := #,..., %, be indeterminates, A, := O[¢] the power-series ring, and A, — O the natural augmentation. Fix (4, 1) in
Co(c) equipped with a finite flat map 1: A, — A of O-algebras over O, so that composite map

A5 AL 0,

is the augmentation (that is, so that 7 is a morphism in Co(c)). Since 1 is flat the sequence (%), ..., 1(#.) is A-regular. We assume
also that the residue classes of £ in p,/ pﬁ form a linearly independent set. Thus, setting Ay := A/2A, the map 4 factors through Ay,
yielding an augmentation 49 : A9 — O, and (Ao, 4¢) is in Co(0). One gets a commutative diagram of O-algebras

Ae —— A

l l‘* [2.35]

(9—>Aoi>(9

all augmented to O, via Ag. We wish to track the change in cotangent modules and congruence modules along a, and we do that
by using the diagram above, to reducing the problem to one about the map &, where it is trivial, and the map 1, where it is easier to
handle.

In the rest of this discussion we write p and pg instead of p, and p ), respectively.

We first discuss the change in cotangent modules in passing from 4 to Ag. Since Ay is regular at g, the O-module D,(O/Ay, O),
the second André-Quillen homology of the map Ay — O, is torsion. Moreover one has

D;(Ag/A O) = Di(O/A., O) = m/m?>  where m := (2)A,.

In particular, this is a free O-module, of rank ¢. Thus the Jacobi-Zariski sequence arising from the maps 4 — Ay — O yields an
exact sequence of O-modules

0 — m/m?> = p/p*> —> po/pi —> 0,
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where we use 1 also to denote the map induced on cotangent modules by the ring map 1. One gets that ®;(A4) is a submodule of
®,,(Ap), and an exact sequence

0 —> m/m? 5 (p/p2)" —> @3 (Ag)/®;(4) —> .
From a number theory perspective, it is more natural to consider the exact sequence obtained by applying (—)* := Homp(—, O),
namely the sequence

0 —> (p/p2)* ~=> (m/m2)* —> Extl (@, (Ao)/®4(A), O) —> 0. [2.36]

On the subcategory of torsion O-modules one has an isomorphism of functors Ext}o (=, O) 2 Homp(—, £/0O), where E is the field
of fractions of O. Since the functor on the right preserves lengths, the computations above yield

length, @, (Ao) — lengthy ®;(A) = lengthy, (P4, (Ao)/P;(A)) = lengthy coker(i*) = length, coker(A“r). [2.37]

The third equality holds because 1* is a map between free O-modules of rank c.
Now we move on to the congruence modules. Given commutative diagram Eq. 2.35 of algebras over O and the functorial properties

of FZ(O) one gets a commutative diagram of O-modules

F5.(0) «———— FX(0)

=

0 =Fjy(0) ==TF3,(0)=0

The isomorphism in the lower row is clear from the definitions; the vertical isomorphism is by a direct computation. The identity
map on O is a canonical generator for F(O0) = Homp(O, O), for any B in Cp; this is why we write equalities in the last row. Using
the commutative diagram above and the functoriality of the map Eq. 2.19, one gets a commutative diagram

A (p/p*) —— F5(0)

]

A" (m/m*)* —— F3 (0)

Consider a finitely generated A-module M such that # is also regular on M and depth, M > ¢ + 1. Setting My := M /(¢)M and

using the identifications above, one gets a commutative diagram like so:

Ext$ (0, M) ®o Homa (M, 0) —— A“(p/p*)*

I I Lree [2.38]

}33)(t?40((’)7 My) ®o Homa, (Mo, O) —— /\C(m/mQ)*

All these lead to the following structural refinement of Theorem 2.28.
Theorem 2.39. Viewing ny(M) and ny,(Mo) as submodules of A°(p/p2)* and A°(m/m>)*, respectively, there is an equality
Mao(Mo) = (AT) (na(M)).
Moreover, with p = rank; M there are equalities
lengthy, W5, (Mo) — lengthyy WA (M) = p - lengthy coker(AT*) = p - (lengthy @4, (Ao) — lengthy @, (A)).

Proof: The first part is immediate from the commutative diagram Eq. 2.38. The second part follows, given also Eq. 2.37. O

3. Zeta Lines and Congruence Modules

We focus on number theory applications of the results in Section 2, notably the exact sequence Eq. 2.36 and Theorem 2.39. The
main result is Theorem 3.9. We begin with Proposition 3.2, which is a simple consequence of the Poitou-Tate exact sequence and is
used to prove Proposition 3.13.

Let F be a number field, S a finite set of places of F, and Grs the Galois group of Fs/F, the maximal extension of F unramified
outside the places above S in an algebraic closure of 7. Fix a prime number p, a finite extension £/Q,, and let O denote the ring of
integers of E. Let A be a O-module, which is finitely or cofinitely generated, with an action of Ggs. The Pontryagin dual and the
twisted Pontryagin dual of 4, respectively, are the Ggs-modules AY := Homp (4, £/O) and A’ = A¥(1) = Homp (4, E/O(1)). A
Selmer datum for S and A is a collection £ = {L£,},, where L, is an O-submodule of H'(G,, A) for each » € S. The corresponding
Selmer group, Hll: (F, A) is the kernel of the map H'(Grs, A) = [1,cs H' (G, A)/L,. Local Tate-duality induces the perfect pairing
HY(Gy, A) x H (G, A) — H(G,, E/O(1)) = E/O.

The dual Selmer datum £+ (for S and A') is defined with Eﬁ‘ Cc H'(G,, A') the annihilator of £, under this pairing. The dual
Selmer group of A is HLI:l (FA).Fori=1,2,set II§(F, A) := Ker (H'(Gps, A) = [1,e5 H (G A)). The result below is standard;
see ref. 13, 8.7.9.
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Lemma 3.1. One has an exact sequence

GD,A
0— H}(EA) — H'(Grs, A ]_[ — H}. (FA)Y — II3(EA) — 0.

ves

If A is finite, then

#HL(EA)  #H(FA) [T
HHL (FA)  #HOEA) | #HO(F, A)

Given Selmer datum £ and £ for S and A, we write £ C L if L, C Z,, for all ».

Proposition 3.2. Assume A is compact or cocompact and that L C L are Selmer data. Then one has a natural exact sequence

o, iS4 HI(SA l_[ (HEL(S,A’))V_H)
HI (S, A) L, HL (§A4) '
ves
Proof: From the definitions one gets that natural maps H}.(S, 4) —> HE(S, A) and HE (§4) — Hé (8§, A') are injective.

Setting K := KCY(HLI;L (FA)Y — IIZ(F A)) and similarly K with £ in place of £, the naturality of the exact sequence in
Lemma 3.1 yields the commutative diagram

H'(Gps, A) H' (G, A)
0 HL(E, A) Moes =, K 0
. ! |
H'(Grs,A) H'Y (G, A) ~
: HL(F, ) Moes =7, 0

The Snake Lemma yields the exact sequence

HL(F A) ; ~
——>]—[ﬁ—>1(—>1(—>0.
ves Y

By applying the Snake Lemma to the commutative diagram

0 —— K —— Hj, (FA")Y —— IIZ(F,A) — 0

" ¢ I

0 —— K — H., (F,A")Y —— I%(F,A) — 0

and using Pontryagin duality, we obtain isomorphisms
T 1 A\ 1 Vv HLIZL (F’ A/) v
Ker(K — K) = Ker(H,, (FA) —>H£~L(F,A) )2(—> ,

concluding the proof of the proposition. O

3.3. Nearly Ordinary Hilbert Modular Forms. We specialize to a situation which corresponds to that of ref. 6. Thus, F is a totally real
number field, p an odd prime, and f a nearly ordinary at p, holomorphic and cohomological cuspidal Hilbert modular newform for
GL2(AF). Our coefficients A as in the section above arise from ad py (and ad(pr ® E/O)) the trace 0 submodule of the adjoint of
(an) integral Galois representation

Pr: GF,S — GLQ(O)

associated to £ and an embedding of Q < @p. We assume the residual representation ps: Grs — GLa(k) is irreducible (which
implies that it is absolutely irreducible as py is totally odd and p > 2), and thus there is a unique integral representation py associated
to f (by a well-known result of Carayol).

We apply the results of the previous section to study the Galois cohomology of the adjoint representation of ps with several local
conditions at places dividing p. For each v|p, we fix a decomposition subgroup D, at ». We call 7, C D, the inertia subgroup, F,
the completion of F at v, and 4, its degree over Q,. By nearly ordinarity of £, for each v|p there exists g, € GL2(O) such that the

restriction to the decomposition subgroup D, at v of g,prg,” U is upper triangular. We also assume that it is v-distinguished (that is,
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the characters appearing on the diagonal are distinct modulo the uniformizer @ of O) and indecomposable. We then consider the
following summands:

0 - -
FF :—{gy<0 g>gyl}cfvoz—{gy<; Z)gvl}Cadpf.

We denote G0 := FO/F, and fix an isomorphism of D,-modules Gr0 = O. Let B be a O-module. The ordinary condition
H! \(F,,ad ps ® B) at v is given by the image of H'(F,, Y ® B) in H'(F,,ad ps ® B), and (in the terminology of Wiles (3)) the
Selmer condition Hslel(FV’ ad pr ® B) at v is given by the image of

Ker(H'(F,, F,” ® B) — H'(I,, G'* ® B))

in H(}r d (F,,ad pr® B). Since the representation py is v-distinguished, we get an exact sequence:

Dy
0 — Hiy(F,,adps ® B) - H, (F,adpf ® B) > H'(1,, B) " — 0.

o

The orthogonal of the finite Selmer condition Hsleli (Fy,ad pr ® B(1)) and of the ordinary condition Hc:rdi (Fy»ad pr ® B(1)) are

respectively given by the images of H' (F,, ¢ ® B(1)) and of H'(F,, 7,7 ® B(1)) in H'(F,, ad py ® B(1)).

Remark 3.4: Assume that the action of D, on F, is distinct from the cyclotomic character and that the Hodge-Tate weights of ad ps
belong to an interval of length < p — 2. Then an extension

0—adpr®O0/@"0 — E— O/w"0 — 0

is crystalline if and only if it is the reduction of an ordinary crystalline representation. Since the finite Bloch-Kato condition classifies
the extensions which are reduction of crystalline extension, the finite Selmer condition is nothing else but the finite Bloch-Kato
condition in that case. In other words, one has

Hy(F,yad pp ® B) = H} (F, ad pr @ B)

H.,\ (Foad pp ® B(1)) = H}(F, ad py ® B(1)).

Next, we interpret some higher congruence modules in terms of Galois cohomology (local and global) and by applying Theorem
2.39 in the situation described below.

3.5. Congruence Modules and Galois Cohomology. We recall some ingredients of the setup of ref. 6; the notation is borrowed from it.

Let k == (Y., k5.0, Y 5 ls.0,) € Z[ZF]? be the weight of the cohomological Hilbert modular cusp form £. We have k; > 2 for
allo € pand w = ks + 2/; is independent of o. For such a weight and a Or-algebra S with F’ the normal closure of F, we consider
the algebraic representation of GL,(OF):

Lk, S):= ® Sym** 2(8?) ® det.
o
For each neat open compact subgroup K C GL2(Af ® F), this defines a local system L(k, C) on the Hilbert modular variety
X(K) := GLy(F)\GLy(A ® F)/KK2Z(F @ R),

where Z is the center of GL, and K2, is the special orthogonal subgroup of GLy(R ® F). In particular, we have an action of the
group of connected components of the maximal compact Koo /K2, on the cohomology of X (K). Since its group of characters can be
naturally identified with {1}*#, for each € € {#1}**, we can define the e-part of the cohomology of X(K).

Let n C Of be the tame conductor of f. It is a nonzero integral ideal of OF prime to p. Let Kfl (n) C GL, (ZP ® Or) be the
subgroup of matrices which are upper unipotent modulo n and where we have written 77 for the prime-to-p part of the profinite
completion of Z. We will assume that Klp 1 (n) is neat. Let @ be the central character of the cuspidal representation attached to . It is
an idéle class character of conductor dividing np°° and infinity type | - |“.

For each positive integer 7, we denote Ko(p”) the subgroup of GLy(Ofr ® Z,) of matrices which are upper triangular modulo
" and by K (p”) its subgroup of those such that the diagonal entries are congruent modulo p”. We identify Ky(p”)/K1(p") with
(Or/p"OF)* via the map i Z > a”d.

Let /2'4(np”, @) be the nearly ordinary Hecke algebra of level K7, (n)K; (p"), weight k and central character w. We then consider
the universal nearly ordinary Hecke algebra of weight x and tame level K7 and action of the center given by w.

hotd — hzrd(n) = llin hird(n])”).

n
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The Hecke ring #2"4(np”) has a natural structure of O[(Or/p” OF)*]-algebra, inducing a structure of A z-algebra on hod with
AF = O[[O};)p]] = O[[tl, e td]]

and 011,-, » = Z;f the subgroup of Of A of local units congruent to 1 modulo p. Let m be the kernel of the map A — O corresponding
to the trivial character of O}p’ b
The Hecke eigensystem attached to our nearly ordinary Hilbert modular form £ gives us an homomorphism:

Af: hod = () — 0.

with 7 the smallest integer so that £ is K (p”)-invariant.
We denote Tod (resp. Tp) the localization of herd (resp. /erd(npr)) at its maximal ideal my containing ker A¢. By work of Hida (14,

Corollary 4.3) one gets that T is free of finite rank over Az. Moreover, we have a canonical isomorphism
T @p, O = T.

However, we will not need these facts. We now construct a T°"4-module which is free over Az and interpolates the nearly ordinary
cohomology of the Hilbert modular variety localized at the maximal ideal associated to f. For any p-adically complete O-algebra A
and 7 > r, let

Cu(k, 4) = Indy g;))L(K,A)

and write C(k, A) for the direct limit of the C,(k, A) for the obvious transition maps, and C(k, O) for the inverse limit of the

C(k, O/p™O) as m varies. It is clearly a Ar[K;(p”)]-module.
Let n,, (M) be the congruence ideal of M with respect to 4 introduced in Section 2.10. For any ideal b C Of, we denote K1 (b)

the open compact subgroup of GLy(Or ® Z) of upper triangular matrices which are unipotent modulo b.

Proposition 3.6. Assume the image of py is not solvable. Then for any € in {£1)%F, the T module
M* = HY(X (K1 (np"), C(x, 0))g,
is free of finite rank over A, and M€ /mM€ = M§ := H? (X (Ki1(np"), L(k, (’)));f. Moreover n;, (M) = (5;), where

['(ad py, 1)L (ad pp 1)
S

where Sy is the set of finite places where py is ramified and (jS) ce(£1)ZF are the canonical complex periods attached to the Hilbert modular
Jorm [ in* (5, §7.1).

Proof: This is a classical exercise in Hida theory since the localization at my captures a direct factor of the nearly ordinary part of the
cohomology. The fact that the module is free over Ar follows from a control theorem and the vanishing Theorem 7.1.1 of Caraiani
and Tamiozzo (15). The last part of the proposition follows from a computation of Dimitrov in sections 7.2 and 7.3 of ref. 5, and in
particular its equations (50) and (51). O

>

& =

We use the inclusion 77, (M?) C F/‘é (0) = /\do (p/p?)* to define the zeta O-module associated to f.

3.7. Construction of Zeta Lines. Given an O-module A we set A* := Homp (4, O). Let R (resp. Ry) be the universal deformation
ring of ps with fixed determinant equal to det py and with nearly ordinary conditions (resp. with ordinary condition of weight x) at
places dividing p and the unramified condition at finite places away from those dividing npoo.

We have a canonical surjective map R4 — T4, Set p := Ker(T" — ) and pp := Ker(R"d — ). One has isomorphisms

Hiyorg(Fad pp ® E/O)Y = pr/py and  Hyy q(Fadpr) = (pr/p2)™;

see for example refs. 16 or 17, Section 2.5. The subscript full means that no local conditions are required at places dividing n. From
the natural surjection

Hflull,ord(E adpf ® E/O)v = pR/pizQ - p/p2 .

one gets maps
d

d d
F’?’f(o) = /\(p/pz)* - /\(pR/p%?)* = /\Hflull,ord(E adpf)
@] @] (@

*In (5), the e-parts of the cohomology and the periods are indexed by the subsets / ¢ ¢ corresponding to the character €.

10 of 13 https://doi.org/10.1073/pnas.2320608121 pnas.org



Downloaded from https://www.pnas.org by Srikanth B. Iyengar on April 19, 2024 from IP address 173.239.64.5.

Definition 3.8: The image of the submodule 77, (M¢) C /\d(p/pz)* under the composition of maps above is a cyclic O-submodule;
we write it as (z;) and call it the zeta line. Thus z; is well defined only up to multiplication by a unit in O.

For each v, the quotient map .7:”0 — Grg induces the map
H'(F,, FY) — H'(F,, G*°) — H'(1,, G0/l = O,
Since 3, dy = [F : Q] = d these induce the map

d d,
AJT#' E 7)) — Q@ N\ H' (1, )P/ = 0.

vlp vp O

Precomposing this with the Zth exterior power of the restriction map res,: Hflull,or J(Fadpr) > 1, »H L(F,, F0) yields

d d d,
Nresy: N\ HipoaBad o) — Q) N\ H' (1, Gr)) P/
vp O

The following theorem is the main result of this section.

Theorem 3.9. Assume that the residual representation py has nonsolvable image and choose € € {£1 VEE . Then

d S
= T(ad py, 1)L (ad py, 1
(/\ 7€5p)(zji) (f;) where as before 5; — (a Py J)Sr ;(Ea o )

Proof: Let Ry be the universal deformation ring of p¢ with fixed determinant equal to det py and with ordinary condition of weight
k at places dividing p and the unramified condition at finite places away from those dividing npoo, and Ry — T the canonical
surjection. The restriction of the universal deformations to the decomposition subgroups at places dividing p gives an homomorphism

Ap — R making the map Rerd s Tord 5 Afp-algebra homomorphim and a canonical isomorphism Rerd ®pr O = Rgrd. Setting

po = Ker(Tgrd — 0) = p/mand ppo := Ker(R(‘)’rd — O) = pp/m, the isomorphism and surjective maps induces the following
commutative diagram of Kihler differentials.

0 —— m/m? p/p? po/pj ———— 0
| T T
PR/PE ———————— PRO/PRo — 0

D, ; .
0- @mp(Hl(]m %) )Y Hflull,ord(F7 adps ® %)V - Hflull,Scl(Fvadpf @ %)v >0

Here Hflull,sel(F’ adpr ® %) means no condition at primes dividing 1, and the Selmer condition at places of F above p. The exactness

on the left in the top row follows from Hida’s theorem that Tod is unramified over the weight space Af at the augmentation Ar arising

from the holomorphic cohomological newform f'. The vertical arrows are surjective and that the O-module po/ p% = Qry 0 @y O
is torsion, and therefore both m/m? and (p/ pz)tf are free of rank & over O. The diagram above yields the commutative diagram
A’ (m/m?)* ——— \*(p/p*)"
I 1
A’ (m/m?)* ———— A" (pr/pR)"
I [

Dy
®U‘p /\dv H'(I,,0)Tv + /\d Hiora(Fyad py)

Given this diagram, Proposition 3.6, and Theorem 2.39, it follows that the image of z; under the local restriction map at p is f;,

fixing an isomorphism with O. 0

Remark 3.10: As explained in ref. 6, (z;) is the bottom class of an Euler system of rank . We have shown that (z;) is related to the
L-value &r. It would be interesting to extend our method to construct the other classes using higher congruence modules for the base

N
change of f to abelian extensions of F, for we would be able to construct the p-adic L-function Lpf (ad pr, 5).

Remark 3.11: By Eq. 2.36, length, coker((p/p?)* — (m/m?)*) = length ) (@, (T)) — length (P, (T°)). Thus the classical
Selmer group @ ;(R) “factors” into a part coming from ®;(R°") and a part coming from the cokernel of (p/p?)* — (m/m?)*.
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3.12. The Cotorsion in Galois Cohomology. In this section, we assume that py is a minimal deformation of py as in ref. 5, §4.2.

We replace the rings R and R by their minimal deformation analogues. Then it is known that the maps Rﬁ:i — Tod 3nd
Ro,min = T are isomorphisms of complete intersection rings thanks to the works of Fujiwara (18) and Dimitrov (5). Note that we
can and do replace the big image assumption of Dimitrov for ps by the much weaker one of ref. 15 of being nonsolvable, which
implies the Taylor-Wiles hypothesis that py restricted to G( uy) 8 irreducible. In addition, we make the following hypothesis justified

by the Remark 3.4. For all v|p, we assume that the action of D, on F,I is distinct from the cyclotomic character. By our minimality
assumption, the local conditions at places away from p are the finite Bloch-Kato conditions for all the Galois cohomology groups
considered in this section, so that we can now make the following identifications:

Hom(p/p?, O) = H, 4(F ad py)

* Hom(m/m?, O) = H! , s (Fpad pp) = Do H' (1, O)
Hf1 (Eadpr @0 E/O)Y = po/pj = @;, since Ty is finite over O,

* cotors(H .,y (Q ad py ®0 E/0)) = tors(p/p?) = @ 1= @5 (T).

Dy
Iy

We abbreviate 1, (To) and 77, (T°d) 1o 1, » and nj;d, respectively, and view them as ideals of O. Since we have assumed that the
Hecke rings are complete intersection we have 3, = Fitto(®4,) C njfrd = Fittp (@j}d)
Here is an interpretation of the invariants (I)j;d and ‘Pj;d

Proposition 3.13. With the minimality assumptions as above, the following statements hold.

1. There are isomorphisms (Dj;d = cotors(H y(F ad pr ® E/O)), and an equality
length,, (<I>3;d) = length, (HolrdL (Fadpr ®0 £/0(1))).
. , . ord ~ d €
2. There is an isomorphism ‘I‘Afd = (A\"H]} (Fad pf))/(zf).

v
Prooft From Eq. 2.36 we get the exact sequence 0 — (p/p?)* — (m/m?)* — <d>,1f/q)j}d) — 0. Comparing with the following

Poitou-Tate duality exact sequence

H} (Fad py ®0 E/O(1) )v
)

0 — Hog(F ad pp) = Hopg jp(Fp ad py) —
d f d/f\Tp ACRf H! . (Fadpr ®0 E/O(1)

from Proposition 3.2 and the identifications recalled above, we get

®;, _ Hi(Fadpr @0 E/O(1))

o3¢ H) i (Fadpy @0 £/0(1))

On the other hand, we have a canonical isomorphism @, = / J} (F ad pf ® E/O)" . It remains to note that by the balanced properties
of Bloch-Kato Selmer groups and Lemma 3.1, the O-module above has finite length, equal to length (HJ} (Fadpr ® E/O(1))).
(2): From Theorem 2.39 one gets an exact sequence 0 — A% (p/p2)* — A?(m/m?)* — ‘Pif/‘Pj;d — 0, and therefore

AN TE 5 AN V4.5 M 2 A
(27) 4 res,) (28 pord '
f (A p)( f) Ar

00—

The desired isomorphism follows since after identification of AZ(m/m?)* with O, we have /\d resp(zfe) = (é‘;) which is the same as
the ideal 7, p by construction. O

The next result is immediate from Proposition 3.13 and Theorem 2.6. It is an analog of the well-known fact that the p-part of the
class group of Q(&,) ™ being trivial (Vandiver’s conjecture is that this is always the case) is equivalent to the group of cyclotomic units
having index prime to p inside the global units of Q(£,).

Corollary 3.14. With previous assumptions, T4 is regular <= H(}rdl (Fadpr(1)) =0 < (zfe) = /\d ngd(F, ad pr). 0

12 of 13 https://doi.org/10.1073/pnas.2320608121 pnas.org



Downloaded from https://www.pnas.org by Srikanth B. Iyengar on April 19, 2024 from IP address 173.239.64.5.

Data, Materials, and Software Availability. There are no data underlying this work.

ACKNOWLEDGMENTS. This work is partly supported by NSF grants DMS-200985 (S.B.1.) and DMS-2200390(C.B.K.), and by a Simons Fellowship (C.B.K.). C.B.K. and
E.U. thank TIFR, and the J.M. received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme
(grant agreement No. 884596). The paper has its origins in conversations between C.B.K. and E.U. in New York and Mumbai, during visits to Columbia University
and TIFR. C.B.K. thanks Gebhard Boeckle and Chris Skinner for helpful discussions. We thank the referee for helpful comments.

S.B. lyengar, C. B. Khare, J. Manning, Congruence modules and the wiles-lenstra-diamond numerical criterion in higher codimensions. arXiv [Preprint] (2022). https://arxiv.org/abs/2206.08212 (Accessed 12

November 2022).

F. Diamond, The Taylor-Wiles construction and multiplicity one. Invent. Math. 128, 379-391(1997).

A. Wiles, Modular elliptic curves and Fermat's last theorem. Ann. Math. 2, 443-551 (1995).

H. Hida, Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63, 225-261(1981).

M. Dimitrov, On Ihara's lemma for Hilbert modular varieties. Compos. Math. 145, 1114-1146(2009).

E. Urban, On Euler systems for adjoint Hilbert modular Galois representations. J. Théor. Nombres Bordeaux 33, 1115-1141(2021).

K. Kato, p-adic hodge theory and values of zeta functions of modular forms. No. 295, pp. ix, 117-290, 2004. Cohomologies p-adiques et applications arithmétiques. Ill.

W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, ed. 2, 1998), vol. 39, p. xii+403.

J. Lescot, "La série de Bass d'un produit fibré d'anneaux locaux” in Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 35th year (Paris, 1982), Lecture Notes in Mathematics (Springer, Berlin, 1983),

vol. 1029, pp. 218-239.

10. L. L. Avramov, S. B. lyengar, Bass numbers over local rings via stable cohomology. J. Commut. Algebra 5, 5-15 (2013).

11. K. A.Ribet, Mod p Hecke operators and congruences between modular forms. Invent. Math. 71, 193-205 (1983).

12. The Stacks Project Authors, Stacks project (2024). https://stacks.math.columbia.edu/ (Accessed 22 November 2023).

13. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, ed. 2, 2008),
vol. 323, p. xvi+825.

14. H. Hida, Control theorems of coherent sheaves on Shimura varieties of PEL type. J. Inst. Math. Jussieu 1, 1-76 (2002).

15. A. Caraiani, M. Tamiozzo, On the étale cohomology of Hilbert modular varieties with torsion coefficients. Compos. Math. 159, 2279-2325 (2023).

16. B. Mazur, "An introduction to the deformation theory of Galois representations” in Modular Forms and Fermat's Last Theorem (Boston, MA, 1995)(Springer, New York, 1997), pp. 243-311.

17. H. Hida, "Adjoint Selmer groups as Iwasawa modules” in Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), vol. 120, pp. 361-427 (2000).
https://doi.org/10.1007/BF02834845.

18. K. Fujiwara, "Galois deformations and arithmetic geometry of Shimura varieties” in International Congress of Mathematicians (Eur. Math. Soc., Ziirich, 2006), vol. II, pp. 347-371.

O ® N AW

PNAS 2024 Vol. 121 No. 17 e2320608121 https://doi.org/10.1073/pnas.2320608121 13 of 13



	Introduction
	Higher Congruence Modules and Wiles Defects
	Zeta Lines and Congruence Modules

