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This article builds on recentwork of the first three authorswhere a notion of congruence
modules in higher codimension is introduced. The main results are a criterion for
detecting regularity of local rings in terms of congruence modules, and a more refined
version of a result tracking the change of congruence modules under deformation.
Number theoretic applications include the construction of canonical lines in certain
Galois cohomology groups arising from adjoint motives of Hilbert modular forms.
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1. Introduction

Let p be a prime number, O the ring of integers of a finite extension of Qp, and R a
complete noetherian local O-algebras with an O-algebra morphism � : R → O such
that the local ring Rp, where p := Ker(�), is regular. Let c denote the codimension of �,
namely, the height of p. We denote the category of such pairs (R, �) by CO(c).

In ref. 1, we develop an analog of the Wiles–Lenstra–Diamond numerical criterion
in arbitrary codimension, with the original criterion (see refs. 2 and 3) corresponding to
the codimension 0 case. This gives a criterion for a finitely generated R-module M to
have a free direct summand and for R to be a complete intersection ring. This involves
two invariants associated to �: the torsion Φ�(R) of the cotangent space of �, and the
congruence module Ψ�(M) of M . When c = 0 one has p/p2 = Φ�(R).

Wiles uses the criterion in his work on the modularity of elliptic curves over Q to go
from modularity lifting theorems in the minimal case to those in the nonminimal case.
In ref. 1, the numerical criterion in higher codimension is used along the same lines
to prove integral modularity lifting results for nonminimal lifts in situations of positive
defect which arise in considering Galois representations over imaginary quadratic fields.
In this work, we explore the meaning of the invariants Φ�(R) and Ψ�(M) in certain
number theoretic situations, relating them to the index of zeta elements in global Galois
cohomology groups.

To begin with, we focus on one of the key ideas of ref. 1, namely the definition and
properties of congruence modules, and congruence ideals, associated to an augmentation
� in arbitrary codimension. This is the content of Section 2. The highlights are a
characterization, Theorem 2.6, of regularity of rings (A, �) in our category CO(c) in
terms of vanishing of the invariants Φ�(A) and Ψ�(A); a more transparent description,
in Section 2.10, of the connection between duality and our congruence modules than
in the earlier paper, and a refinement, Theorem 2.39, of a result about deformation
invariance of Wiles defect.

Section 3 focuses on number theoretic applications, and concerns the congruence

ideal attached to an augmentation of Hida’s ordinary Hecke algebra Tord, or ordinary

deformation ring Rord, arising from cohomological Hilbert modular forms f over totally
real fields F . The functorial properties of the congruence ideal are used to relate it to lines
(that is to say, freeO-modules of rank one) in the Galois cohomology with coefficients in
ad �f ; see Theorem 3.9. The index of their image under global-to-local restrictionmaps to

singular local Galois cohomologyH1
ord/f (Gp, ad �f ) is related to the classical congruence

module of f , and to special values of adjoint L-function Lalg(1, ad �f ), by work of Hida
(4) and its generalization by Dimitrov (5). This is connected to the “zeta elements” of (6,
Theorem 1.1). The terminology is due to Kato (7), who used it for elements of Galois
cohomology he constructs in a related context, arising from Beilinson–Flach classes.

In ref. 6, exact sequences of Selmer groups are used while the proof of Theorem 3.9
uses in addition congruence modules in higher codimension. This allows us to bypass
local complete intersection results on the corresponding Hecke ring used in ref. 6, and
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the argument does not require any R = T theorems. This connection arises from the following circumstance.
Let t := t1, . . . , tc be indeterminates, Λc := O[[t]] the power-series ring, and Λc → O the natural augmentation. Fix (A, �) in

CO(c) equipped with a finite flat map � : Λc → A of O-algebras over O, so that composite map Λc
�
−→ A

�
−→ O is the augmentation.

For A0 = A/(t) one has a map ExtcA(O, A)(= A0[ker �])→
∧c

O Hom(p/p2,O), whose cokernel is Ψ�(A). Abstractly both domain
and range are simply O’s. In applications when A is a nearly ordinary deformation ring and � arises from the classical form f , the
range is a Selmer group as Hom(p/p2,O) = H1

L
(GF,S , ad �f ), with local conditions L = (Lv) such that Lv ⊂ H1(Gv, ad �f ) for

v ∈ S and Lv is the unramified subspace H1
unr(Gv, ad �f ) for v not in S. When A is a nearly ordinary Hecke algebra Hom(p/p2,O) is

a subspace of H1(GF,S , ad �f ). This gives a “pure thought” construction of canonical lines in Galois cohomology; see Theorem 3.9.

2. Higher Congruence Modules and Wiles Defects

We begin by recalling the setup of ref. 1. This section complements the material presented in (1, Part 1). The highlights are
Theorems 2.6 and 2.39, and Proposition 2.25. Along the way, we provide a different perspective and proofs of some key results from
ref. 1.

2.1. Let O be a complete discrete valuation ring, with valuation ord(−) and uniformizer $. Throughout we fix a complete local
O-algebra A and a finitely generated A-module M . Given a map � : A→ O of O-algebras, set

p� := Ker � and c := height p�.

For any finitely generated A-module M , set Fi
�
(M) := ExtiA(O,M)

tf
, the torsion-free quotient of the O-module ExtiA(O,M). Here

O is viewed as an A-module via �. The congruence module of M at � is the O-module

Ψ�(M) := coker

(
Fc�(M)

Fc
�
(�⊗M)

−−−−−−→ Fc�(M/p�M)

)
.

We have also to consider O-module Φ�(A) := tors(p�/p
2
�
), the torsion part of the cotangent module p�/p

2
�
of �.

We say an A-module M has a certain property at � if the Ap�
-module Mp�

has the stated property. For instance, A is regular at �
means the local ring Ap�

is regular. The starting point is the result below; see (1, Theorem 2.5 and Lemma 2.6).

Theorem 2.2. With � : A→ O as above, the following conditions are equivalent:

1. The local ring A is regular at �.
2. The rank of the O-module p�/p

2
�
is height p�.

3. The O-module Ψ�(A) is torsion.
4. The O-module Ψ�(M) is torsion for each finitely generated A-module M.

Moreover, when these conditions hold the O-module Ψ�(A) is cyclic. �

Condition (2) is that the embedding dimension of the ring Ap�
equals its Krull dimension, so (1)⇔(2) is one definition of regularity;

see (8, Definition 2.2.1). The key input in proving (1)⇔(3) is the following result due to Lescot (9); see also ref. 10.

2.3. A noetherian local ring R is regular if and only if the map ExtR(k, R) −→ ExtR(k, k) induced by the canonical surjection R→ k
to the residue field of R, is nonzero. When this is the case, the map above is nonzero in (upper) degree dimR.

The result below is implicit in the proof of (1)⇒(4) in Theorem 2.2, in ref. 1. We make it explicit, for it is used also in proving
Lemma 2.5 and Theorem 2.6 below; the proof is standard.

Lemma 2.4. Let " : R → S be a surjective map of noetherian rings where the ideal Ker(") is generated by a regular sequence, and set
c := dimR − dim S. For any R-module M the map ExtcR(S, "⊗R M) : ExtcR(S,M)→ ExtcR(S, S ⊗R M) is bijective. �

We denote CO the category whose objects are pairs (A, �) satisfying the equivalent conditions in Theorem 2.2. A morphism
' : (A, �)→ (A′, �′) in this category is a map of O-algebras ' : A→ A′ over O; that is to say, with �′ ◦ ' = �. We write CO(c) for
the subcategory of CO consists of pairs (A, �) such that height p� = c.

Lemma 2.5. For (A, �) in CO(c) and finitely generated A-module M the map Fc
�
(�⊗A M) is one-to-one.

Proof: Set R := Ap�
and let " : R → E be the map obtained by localizing � at p�; here E is the residue field of R, which is also the

field of fractions of O. Since injectivity of a map of torsion-free O-modules can be detected after passing to the field of fractions, it
suffices to check that the map Fc

�
(�⊗A M)p�

∼= ExtcR(E, "⊗R M) is one-to-one. Since R is regular the ideal Ker(") is generated by a
regular sequence of length c; see (8, Proposition 2.2.4). It remains to apply Lemma 2.4. �

In the work of Hida (4) and Ribet (11) congruence modules (for codimension c = 0) are attached to augmentations T → O of
Hecke algebras T that act faithfully on certain localized Betti cohomology groups H1(X1(N ),O)m. They measure the complexity of
T and their vanishing is equivalent to T being smooth, namely justO. Analogously we show in the result below that for rings A ∈ CO

the vanishing of either the congruence module Ψ�(A) or Φ�(A), the torsion part of the cotangent module, at any augmentation
� : A→ O implies A is smooth.
Unlike most results in (1, Part 1), the following theorem does not make assumptions on the depth of the ring A.
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Theorem 2.6. For (A, �) in CO, the local ring A is regular if and only if Φ�(A) = 0, if and only if Ψ�(A) = 0.

Proof: We first verify that A is regular if and only if Φ�(A) = 0. As A is a complete O-algebra, one has A ∼= P/I where
P := O[[t1, . . . , tn]], a ring of formal power series over O, the ideal I ⊆ ($)(t) + (t)2, and � : A→ O is quotient by (t).
Let f := f1, . . . , fm be a minimal generating set for I . The cotangent module p�/p

2
�
depends only on n and the linear part of the fi,

in the following sense: By our assumption on I , each fi has an unique expression of the form

fi :=

n∑

j=1

uijtj + gi with uij ∈ ($)O and gi ∈ (t)2. [2.7]

Then one has a presentation Om
(uij)
−−→ On → p�/p

2
�
→ 0. The torsion part of p�/p

2
�
is zero if and only if (uij) = 0, that is to say,

(f ) ⊆ (t)2. Since A is regular at � this condition is equivalent to f = 0, as desired.
Next, we verify the claim that A is regular if and only if Ψ�(A) = 0.
When A is regular, Ker(� : A → O) is generated by a regular sequence of length c := height(Ker �); see (8, Proposition 2.2.4).

Thus Lemma 2.4 yields that the map ExtcA(O, �) is one-to-one so Ψ�(A) = 0.
Assume Ψ�(A) = 0. To verify that A is regular it suffices to verify that the map

ExtA(k, ") : ExtA(k, A)→ ExtA(k, k),

induced by the quotient map " : A→ k, is nonzero, for then Lescot’s result 2.3 gives the desired conclusion.
LetM be a finitely generated A-module. The exact sequence

0 −→ O
$
−−→ O −→ k −→ 0 [2.8]

of A-modules induces exact sequences of k-modules 0→ k ⊗O ExtiA(O,M)
ði+1(M)
−−−−−→ ExtiA(k,M)→ Exti+1

A (O,M)[$]→ 0. For

what follows the relevant point is that the maps ði(M) are inclusions. Set c := height(p�) and consider the following commutative
diagram of k-vector spaces:

The map in the top row is induced by � : A→ O and the ones in the lower row are induced by A→ O→ k. That the map in the
lower right is one-to-one follows by considering the long exact sequence in cohomology that arises by applying HomA(k,−) to the
exact sequence Eq. 2.8. It is easy to verify that the hypothesis Ψ�(A) = 0 implies the map in the top row is nonzero, and hence so is

the diagonal map. It then follows from the commutative diagram that the map Extc+1
A (k, ") is nonzero. �

Remark 2.9: Consider the ordinaryHidaHecke algebraTord of tame levelN . It is finite flat overΛ := O[[t]], with t the weight variable,

and Tord/(t) = T is a classical Hecke algebra, acting faithfully on H1(X1(Np),O)m. Consider an augmentation � : Tord→ T→ O

arising from a (p-stabilized) newform f ∈ S1(Γ1(Np
r)). The vanishing of the congruence module of T for the augmentation T→ O

implies T = O and Tord = Λ while the vanishing of the congruence module for Tord→ O implies that Tord is smooth, while T may

not be smooth. In other words Ψ�(T
ord) = 0 implies Tord = O[[x]], furthermore x can be taken to be the weight variable t if and only

if the classical congruence module Ψ�(T) = 0 also vanishes.

Next, we describe a pairing associated with the definition of congruence modules. This too appears in ref. 1, but does not play a
major role in the development there. The presentation below is more transparent.

2.10. For any finitely generated A-moduleM , one has natural isomorphisms

ExtcA(O,M/p�M)tf ∼= ExtcA(O,O)tf ⊗O (M/p�M)tf ∼= HomO(HomO(M,O),ExtcA(O,O)tf ).

Thus, the map Fc
�
(�⊗M) : ExtcA(O,M)→ ExtcA(O,M/p�M)tf , whose cokernel is the congruence module of M , is adjoint to

〈−,−〉M : ExtcA(O,M)tf ⊗O HomA(M,O) −→ ExtcA(O,O)tf .

The congruence ideal of M , with respect to the augmentation �, is the image of this pairing: ��(M) := Image〈−,−〉M . It is easy to
check that the free O-modules Fc

�
(M) and HomA(M,O) have the same rank and that Fc

�
(O) has rank one, so

length
O

(O/��(M)) ≤ length
O
Ψ�(M) ≤ rank�(M) · length

O
(O/��(M)).

Here rank�(M) denotes the rank ofM at �, that is to say, the rank of the A�-moduleMp�
. In particular, when this rank equals 1, the

length of the congruence module can be computed from the pairing.
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The pairing above is induced–by passage to torsion-free quotients–by the natural pairing given by composition of morphisms:

〈−,−〉M : ExtcA(O,M)⊗O HomA(M,O) −→ ExtcA(O,O). [2.11]

Namely, ExtcA(O,M) can be realized as HomD(O,M [c]), the morphisms in the derived category of A from O to M [c], and given
such a morphism f and a map g : M → O, the pairing above is

〈f, g〉 := g ◦ f : O→ O[c].

In the Yoneda interpretation of ExtcA(O,M) as equivalence classes of exact sequences 0→ M → Xc−1→ · · · → X0→ O→ 0, the
pairing is given by taking push-out along g : M → O.
2.11.1. Cohen–Macaulay modules.WhenM is Cohen–Macaulay of dimension c + 1, local duality yields an identification

HomA(O,M) ∼= ExtcA(O,M∨) whereM∨ ∼= Hc+1(RHomA(M,!A)).

Here !A is the dualizing complex of A, normalized as in ref. 12; see ref. 1, §4 for details. With this identification, the pairing Eq. 2.11
takes the form

〈−,−〉 : ExtcA(O,M)⊗O ExtcA(O,M∨) −→ ExtcA(O,O). [2.12]

See ref. 1, Proposition 4.7. The pairing Eq. 2.11 can be described concretely when c ≤ 1. One simplification that occurs then is that
Ext1A(O,O) is already torsion-free, as is explained below. To that end, consider the exact sequence

0 −→ p� −→ A −→ O −→ 0. [2.13]

Applying HomA(−,M) yields the exact sequence M ∼= HomA(A,M) → HomA(p�,M) → Ext1A(O,M) −→ Ext1A(A,M) = 0.
This justifies the following result.

Lemma 2.14. For any c ≥ 0, and any A-module M, there is a natural isomorphism of O-modules

Ext1A(O,M) ∼= coker(M → Hom(p�,M)). �

The isomorphism assigns an A-linear map f : p�→ M to the exact sequence obtained by push-out of the exact sequence in Eq. 2.13
along f . The natural map O→ HomA(p�,O) is zero, so for M := O the isomorphism in Lemma 2.14 becomes

Ext1A(O,O) ∼= HomA(p�,O) ∼= HomO(p�/p
2
�,O) [2.15]

which is already torsion-free. Now we return to the pairing Eq. 2.11.

2.16. The Case c = 0. Since HomA(O,M) = M [p�], the p�-torsion submodule of M , the pairing Eq. 2.11 becomes

M [p�]⊗O HomA(M,O) −→ O where m⊗ f 7→ f (m).

When depthAM ≥ 1, one has M∨ ∼= HomO(M,O) this pairing is equivalent to the one given by the composition

M [p�]⊗O M∨[p�] −→ M ⊗O M∨ −→ O,

where the map on the right is the obvious one.

2.17. The Case c = 1.With this description, for c = 1 the pairing Eq. 2.11 is induced by the obvious pairing given by composition:

HomA(p,M)⊗A HomA(M,O) −→ HomA(p,O) ∼= HomO(p/p2,O).

Since Ext1A(O,O) is torsion-free, as in the case c = 0 the ideal ��(M) is just the image of the pairing above.

2.18. Structure of F∗A(O). A key input in the development of the commutative algebraic properties of the congruence module is
a structure theorem for F∗A(O). The Yoneda product gives Ext∗A(O,O) the structure of a graded O-algebra, and this is inherited
by its torsion-free quotient, F∗�(O). The remarkable fact (1, Theorem 6.8) is that although the Ext-algebra itself can be highly

noncommutative, and infinite, F∗�(O) is just an exterior algebra generated by its degree one component F1
�
(O) ∼= HomO(p�/p

2
�
,O);

see Eq. 2.15. As explained in ref. 1, Introduction, this may be seen as an integral version of a result, due to Serre, on the structure of
the Ext algebra of a regular local ring. The proof of this structure theorem for F∗�(O) uses ideas from the theory of differential graded
algebras. An important takeaway is that there is a natural isomorphism of O-modules

c∧
HomO(p�/p

2
�,O)

∼=
−−→ Fc�(O). [2.19]

The naturality of this isomorphism leads to an invariance of domain property for congruence modules; see ref. 1, Theorem 7.4.

Theorem 2.20. Given a surjective map ' : (A, �)→ (A′, �′) in CO(c), and an A′-module M ′ with depthA′ M
′ ≥ c, there is a natural

isomorphism of O-modules Ψ�′(M
′) ∼= Ψ�(M

′). �

Since ' is surjective, p� · A
′ = Ker �′. The hypotheses in the statement above imply that 'p�

: Ap�
→ A′p�

is surjective map of
regular local rings of dimension c and hence an isomorphism.
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2.21. Freeness Criterion. Fix (A, �) in CO and a finitely generated A-moduleM . For any A-module X one has a map

ExtcA(O, X )⊗O (M/p�M) ∼= ExtcA(O, X )⊗A M −→ ExtcA(O, X ⊗A M),

where the one on the right is a Künneth map. This is functorial in X , and one gets the commutative diagram below:

The horizontal maps are one-to-one, by Lemma 2.5. Moreover, the one on the right is an isomorphism, as can be verified easily. It
follows that the map on the left is one-to-one. This justifies the following result.

Lemma 2.22. The diagram above induces a natural surjective map of O-modules a�(M) : Ψ�(A)� � Ψ�(M), where � := rank�(M).
In particular there is an equality length

O
Ψ�(M) = � · length

O
Ψ�(A)− length

O
Ker(a�(M)).

When A is Gorenstein and M is maximal Cohen–Macaulay, Ker(a�(M)) can be interpreted as a“stable” cohomology module of
the pair (A,M). This identification leads to the criterion below for detecting free summands ofM ; see ref. 1, Theorem 9.2.

Theorem 2.23. When A Gorenstein and M is maximal Cohen–Macaulay, length
O
Ψ�(M) = � · length

O
Ψ�(A) if and only if

M ∼= A� ⊕W and Wp�
= 0, as A-modules. In this case, when � 6= 0 the A-module M is faithful. �

2.24. Isomorphism Criteria. The preceding results leads to criteria for detecting isomorphisms between rings.

Proposition 2.25. Let ' : A→ B be a surjective map of complete local O-algebra. Assume there exists an augmentation � : B→ O such
that (A, �') and (B, �) are in CO(c) for some c ≥ 0, and either of the following conditions hold:

1. The ring A is Gorenstein, B is Cohen–Macaulay, and length
O
Ψ�'(A) = length

O
Ψ�(B);

2. The ring B is complete intersection and length
O
Φ�'(A) = length

O
Φ�(B).

Then the map ' is an isomorphism.

Proof: (1) The hypotheses imply that ' is an isomorphism at �' so rank�' B = 1. Thus Theorem 2.23 implies that B is a faithful A-
module, so Ker' = (0). As to (2), it follows by a simple argument using the Jacobi-Zariski sequence arising from maps A→ B→ O

and Nakayama’s Lemma; see ref. 1, Lemma 5.10 for details. �

The isomorphism Eq. 2.19 is also a critical input in tracking the behavior of congruence modules under deformations.

2.26. Deformations. Fix (A, �) in CO(c) and elements f := f1, . . . , fn in p� such that their residue classes in the O-module p�/p
2
�

form a linearly independent set. Set A := A/f A. The augmentation � : A→ O factors through A so we an augmentation � : A→ O.

The hypotheses on f is equivalent to saying that the pair (A, �) is in CO(c − n); see ref. 1, §8. A straightforward computation yields
an equality

length
O
Φ�(A) = length

O
Φ�(A) +

∑

i

ord(fi), [2.27]

where ord(fi) is the order of fi in p�/p
2
�
, defined by ($ord(fi))O = {�(fi)|� ∈ HomO(p�/p

2
�
,O)}; see ref. 1, §8.5.

Theorem 2.28. In the context above, let M be a finitely generated A-module with depthAM ≥ c + 1 and set M := M/f M. If f is

M-regular, then length
O
Ψ�(M) = length

O
Ψ�(M) + (rank�M)

∑
i ord(fi).

Sketch of proof: It is enough to consider the case when n = 1. One first reduces to the case when f is not a zerodivisor on A as well;
this uses the invariance of domain property for congruence modules, Theorem 2.20. See ref. 1, Proof of Theorem 8.2 for details. The
essence of the argument is captured c = 1, so we sketch the proof in that context. Since f is in p�, and it is not a zerodivisor on A nor
on M one gets the isomorphism on the right:

coker(M → Hom(p�,M))
∼=
−→ Ext1A(O,M)

∼=
−−→ HomA0(O,M0).

The one on the left is from Lemma 2.14. It is straightforward to check that the composite map is induced by the assignment
� 7→ −�(f ) mod fM for � ∈ HomA(p�,M). Consider the commutative diagram

The image of the vertical map on the right is precisely the order ideal of f , that is to say, ($ord(f )). Since Ψ�(M) and Ψ�(M) are
cokernel of the maps adjoint to the top and bottom row, respectively, the desired equality follows.

The case c ≥ 2 is tackled by a reduction to the c = 1 case, using (8, Lemma 1.2.4), and the isomorphism Eq. 2.19. �
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2.29. Wiles Defect. Fix a pair (A, �) in CO and a finitely generated A-moduleM . Since A is regular at p�, and in particular a domain,
the Ap�

-module Mp�
has a rank. The Wiles defect of M at � is the integer

��(M) := rank�(M) · length
O
Φ�(A)− length

O
Ψ�(M).

In particular the Wiles defect of A at � is length
O
Φ�(A) − length

O
Ψ�(A). We refer to ref. 1, Introduction for a discussion on

precedents to this definition. Theorem 2.28 and Eq. 2.27 give the following result, which is (1, Theorem 8.2):

Theorem 2.30. One has ��(M/f M) = ��(M) for M, f as in Theorem 2.28. �

Also, Theorem 2.20 implies the following (which is ref. 1, Theorem 7.4):

Lemma 2.31. If ' : (A′, �′) → (A, �) is a surjective map in CO(c), then ��′(M) ≥ ��(M), with equality if and only if Φ�′(A
′) ∼=

Φ�(A) holds. �

With a�(M) as in Eq. 2.32, one gets a “defect formula”:

��(M) = rank�(M) · ��(A) + length
O
Ker(a�(M)). [2.32]

In particular ��(M) ≥ 0 for allM if and only if ��(A) ≥ 0.
The result below extends to modules; see ref. 1, Theorem 9.6.

Theorem 2.33. For (A, �) ∈ CO(c) with depthA > c one has ��(A) ≥ 0; equality holds if and only if A is complete intersection.

In ref. 1 this result was proved by reduction to the case c = 0, using Theorem 2.28. Here is an alternative argument, under the
slightly more restrictive case where A is Cohen–Macaulay (so dimA = c + 1), that argues by “going up” to a regular ring.

Proof: First, we verify that ��(A) = 0 when A ∈ CO(c) is complete intersection, that is to say, isomorphic to

O[[t1, . . . , tn]]/(f1, . . . , fm)

for some regular sequence f := f1, . . . , fm in (t). Since A is in CO(c) it follows that n− m = c and that f satisfies the hypothesis of
Theorem 2.28, so we get the first equality in: ��(A) = ��"(O[[t]]) = 0. The second one is by Theorem 2.6.
Next, we verify that whenA is Cohen–Macaulay ��(A) ≥ 0, and that if equality holdsA is complete intersection. Since dimA = c+1

one can find a surjection " : C → A where C is a complete intersection in CO(c) and " induces an isomorphism Φ�"(C) ∼= Φ�(A);
see (1, Theorem 5.6). Thus ��(A) = ��"(A) ≥ 0, where the equality is by Lemma 2.31 and the inequality follows from Eq. 2.32 and
the fact that ��"(C) = 0 as C is complete intersection. Moreover we get that if ��"(A) = 0, then Ker(a�"(A)) = 0, so A is faithful as
a C -module, hence " is an isomorphism. �

2.34. �-Structures.Motivated by number theory, we consider a setting where the algebra A in CO has additional structure, and give a
variant of the computation of change of congruence modules in Section 2 on going modulo regular sequences.

Let t := t1, . . . , tc be indeterminates, Λc := O[[t]] the power-series ring, and Λc → O the natural augmentation. Fix (A, �) in
CO(c) equipped with a finite flat map � : Λc → A of O-algebras over O, so that composite map

Λc
�
−→ A

�
−→ O,

is the augmentation (that is, so that � is a morphism in CO(c)). Since � is flat the sequence �(t1), . . . , �(tc) is A-regular. We assume
also that the residue classes of t in p�/p

2
�
form a linearly independent set. Thus, setting A0 := A/tA, the map � factors through A0,

yielding an augmentation �0 : A0→ O, and (A0, �0) is in CO(0). One gets a commutative diagram of O-algebras

[2.35]

all augmented to O, via �0. We wish to track the change in cotangent modules and congruence modules along �, and we do that
by using the diagram above, to reducing the problem to one about the map ", where it is trivial, and the map �, where it is easier to
handle.

In the rest of this discussion we write p and p0 instead of p� and p�0 , respectively.
We first discuss the change in cotangent modules in passing from � to �0. Since A0 is regular at �0, the O-module D2(O/A0,O),

the second André-Quillen homology of the map A0→ O, is torsion. Moreover one has

D1(A0/A,O) ∼= D1(O/Λc ,O) ∼= m/m2 where m := (t)Λc .

In particular, this is a free O-module, of rank c. Thus the Jacobi-Zariski sequence arising from the maps A → A0 → O yields an
exact sequence of O-modules

0 −→ m/m2 �
−→ p/p2 −→ p0/p

2
0 −→ 0,
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where we use � also to denote the map induced on cotangent modules by the ring map �. One gets that Φ�(A) is a submodule of
Φ�0(A0), and an exact sequence

0 −→ m/m2 �
−→ (p/p2)

tf
−→ Φ�0(A0)/Φ�(A) −→ 0.

From a number theory perspective, it is more natural to consider the exact sequence obtained by applying (−)∗ := HomO(−,O),
namely the sequence

0 −→ (p/p2)∗
�∗

−→ (m/m2)∗ −→ Ext1
O

(Φ�0(A0)/Φ�(A),O) −→ 0. [2.36]

On the subcategory of torsionO-modules one has an isomorphism of functors Ext1
O

(−,O) ∼= HomO(−, E/O), where E is the field
of fractions of O. Since the functor on the right preserves lengths, the computations above yield

length
O
Φ�0(A0)− length

O
Φ�(A) = length

O
(Φ�0(A0)/Φ�(A)) = length

O
coker(�∗) = length

O
coker(∧c�∗). [2.37]

The third equality holds because �∗ is a map between free O-modules of rank c.
Now wemove on to the congruence modules. Given commutative diagram Eq. 2.35 of algebras overO and the functorial properties

of F−−(O) one gets a commutative diagram of O-modules

The isomorphism in the lower row is clear from the definitions; the vertical isomorphism is by a direct computation. The identity
map onO is a canonical generator for F0B(O) = HomB(O,O), for any B in CO; this is why we write equalities in the last row. Using
the commutative diagram above and the functoriality of the map Eq. 2.19, one gets a commutative diagram

Consider a finitely generated A-module M such that t is also regular on M and depthAM ≥ c + 1. Setting M0 := M/(t)M and
using the identifications above, one gets a commutative diagram like so:

[2.38]

All these lead to the following structural refinement of Theorem 2.28.

Theorem 2.39. Viewing ��(M) and ��0(M0) as submodules of ∧
c(p/p2)∗ and ∧c(m/m2)∗, respectively, there is an equality

��0(M0) = (∧c�∗)(��(M)).

Moreover, with � := rank�M there are equalities

length
O
Ψ�0(M0)− length

O
Ψ�(M) = � · length

O
coker(∧c�∗) = � · (length

O
Φ�0(A0)− length

O
Φ�(A)).

Proof: The first part is immediate from the commutative diagram Eq. 2.38. The second part follows, given also Eq. 2.37. �

3. Zeta Lines and Congruence Modules

We focus on number theory applications of the results in Section 2, notably the exact sequence Eq. 2.36 and Theorem 2.39. The
main result is Theorem 3.9. We begin with Proposition 3.2, which is a simple consequence of the Poitou-Tate exact sequence and is
used to prove Proposition 3.13.
Let F be a number field, S a finite set of places of F , and GF,S the Galois group of FS/F , the maximal extension of F unramified

outside the places above S in an algebraic closure of F . Fix a prime number p, a finite extension E/Qp, and let O denote the ring of
integers of E . Let A be a O-module, which is finitely or cofinitely generated, with an action of GF,S . The Pontryagin dual and the
twisted Pontryagin dual of A, respectively, are the GF,S-modules A∨ := HomO(A, E/O) and A′ = A∨(1) = HomO(A, E/O(1)). A
Selmer datum for S and A is a collection L = {Lv}v, where Lv is an O-submodule of H1(Gv, A) for each v ∈ S. The corresponding
Selmer group,H1

L
(F, A) is the kernel of the mapH1(GF,S , A)→

∏
v∈S H

1(Gv, A)/Lv. Local Tate-duality induces the perfect pairing

H1(Gv, A)×H1(Gv, A
′)→ H2(Gv, E/O(1)) ∼= E/O.

The dual Selmer datum L⊥ (for S and A′) is defined with L⊥v ⊂ H1(Gv, A
′) the annihilator of Lv under this pairing. The dual

Selmer group of A isH1
L⊥

(F, A′). For i = 1, 2, setXi
S(F, A) := Ker

(
H i(GF,S , A)→

∏
v∈S H

i(Gv, A)
)
. The result below is standard;

see ref. 13, 8.7.9.
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Lemma 3.1. One has an exact sequence

0→ H1
L
(F, A)→ H1(GF,S , A)→

∏

v∈S

H1(Gv, A)

Lv
→ H1

L⊥
(F, A′)∨→X

2
S(F, A)→ 0.

If A is finite, then

#H1
L
(F, A)

#H1
L⊥

(F, A′)
=

#H0(F, A)

#H0(F, A′)
·
∏

v∈S

#Lv

#H0(Fv, A)
. �

Given Selmer datum L and L̃ for S and A, we write L ⊆ L̃ if Lv ⊆ L̃v for all v.

Proposition 3.2. Assume A is compact or cocompact and that L ⊆ L̃ are Selmer data. Then one has a natural exact sequence

0 −→
H1

L̃
(S, A)

H1
L
(S, A)

−→
∏

v∈S

L̃v

Lv
−→

(
H1
L⊥

(S, A′)

H1

L̃⊥
(S, A′)

)∨
−→ 0.

Proof: From the definitions one gets that natural maps H1
L
(S, A) −→ H1

L̃
(S, A) and H1

L̃⊥
(S, A′) −→ H1

L⊥
(S, A′) are injective.

Setting K := Ker(H1
L⊥

(F, A′)∨ → X
2
S(F, A)) and similarly K̃ with L̃ in place of L, the naturality of the exact sequence in

Lemma 3.1 yields the commutative diagram

The Snake Lemma yields the exact sequence

0 −→
H1

L̃
(F, A)

H1
L
(F, A)

−→
∏

v∈S

L̃v

Lv
−→ K −→ K̃ −→ 0.

By applying the Snake Lemma to the commutative diagram

and using Pontryagin duality, we obtain isomorphisms

Ker(K → K̃ ) ∼= Ker(H1
L⊥

(F, A′)∨→ H1

L̃⊥
(F, A′)∨) ∼=

(
H1
L⊥

(F, A′)

H1

L̃⊥
(F, A′)

)∨
,

concluding the proof of the proposition. �

3.3. Nearly Ordinary Hilbert Modular Forms.We specialize to a situation which corresponds to that of ref. 6. Thus, F is a totally real
number field, p an odd prime, and f a nearly ordinary at p, holomorphic and cohomological cuspidal Hilbert modular newform for
GL2(AF ). Our coefficients A as in the section above arise from ad �f (and ad(�f ⊗O E/O)) the trace 0 submodule of the adjoint of
(an) integral Galois representation

�f : GF,S → GL2(O)

associated to f and an embedding of Q ↪→ Qp. We assume the residual representation �f : GF,S → GL2(k) is irreducible (which
implies that it is absolutely irreducible as �f is totally odd and p > 2), and thus there is a unique integral representation �f associated
to f (by a well-known result of Carayol).

We apply the results of the previous section to study the Galois cohomology of the adjoint representation of �f with several local
conditions at places dividing p. For each v|p, we fix a decomposition subgroup Dv at v. We call Iv ⊂ Dv the inertia subgroup, Fv
the completion of F at v, and dv its degree over Qp. By nearly ordinarity of f , for each v|p there exists gv ∈ GL2(O) such that the

restriction to the decomposition subgroup Dv at v of gv�f g
−1
v is upper triangular. We also assume that it is v-distinguished (that is,
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the characters appearing on the diagonal are distinct modulo the uniformizer $ of O) and indecomposable. We then consider the
following summands:

F
+
v := {gv

(
0 ∗
0 0

)
g−1v } ⊂ F

0
v := {gv

(
∗ ∗
0 ∗

)
g−1v } ⊂ ad �f .

We denote Gr0v := F0
v /F+

v and fix an isomorphism of Dv-modules Gr0v
∼= O. Let B be a O-module. The ordinary condition

H1
ord(Fv, ad �f ⊗ B) at v is given by the image of H1(Fv,F

0
v ⊗ B) in H1(Fv, ad �f ⊗ B), and (in the terminology of Wiles (3)) the

Selmer condition H1
Sel(Fv, ad �f ⊗ B) at v is given by the image of

Ker(H1(Fv,F
+
v ⊗ B) −→ H1(Iv, Gr

0
v ⊗ B))

in H1
ord(Fv, ad �f ⊗ B). Since the representation �f is v-distinguished, we get an exact sequence:

0→ H1
Sel(Fv, ad �f ⊗ B)→ H1

ord(Fv, ad �f ⊗ B)→ H1(Iv, B)
Dv
Iv → 0.

The orthogonal of the finite Selmer condition H1
Sel⊥

(Fv, ad �f ⊗ B(1)) and of the ordinary condition H1
ord⊥

(Fv, ad �f ⊗ B(1)) are

respectively given by the images of H1(Fv,F
0
v ⊗ B(1)) and of H1(Fv,F

+
v ⊗ B(1)) in H1(Fv, ad �f ⊗ B(1)).

Remark 3.4: Assume that the action ofDv onF
+
v is distinct from the cyclotomic character and that the Hodge-Tate weights of ad �f

belong to an interval of length ≤ p− 2. Then an extension

0 −→ ad �f ⊗O/$n
O −→ E −→ O/$n

O −→ 0

is crystalline if and only if it is the reduction of an ordinary crystalline representation. Since the finite Bloch-Kato condition classifies
the extensions which are reduction of crystalline extension, the finite Selmer condition is nothing else but the finite Bloch-Kato
condition in that case. In other words, one has

H1
Sel(Fv, ad �f ⊗ B) = H1

f (Fv, ad �f ⊗ B)

H1
Sel⊥

(Fv, ad �f ⊗ B(1)) = H1
f (Fv, ad �f ⊗ B(1)).

Next, we interpret some higher congruence modules in terms of Galois cohomology (local and global) and by applying Theorem
2.39 in the situation described below.

3.5. Congruence Modules and Galois Cohomology.We recall some ingredients of the setup of ref. 6; the notation is borrowed from it.
Let � := (

∑
� k� .�,

∑
� l� .�, ) ∈ Z[ΣF ]2 be the weight of the cohomological Hilbert modular cusp form f . We have k� ≥ 2 for

all � ∈ ΣF and w = k� + 2l� is independent of �. For such a weight and a OF ′ -algebra S with F ′ the normal closure of F , we consider
the algebraic representation of GL2(OF ):

L(�, S) :=
⊗

�

Symk�−2(S2)⊗ detl� .

For each neat open compact subgroup K ⊂ GL2(Af ⊗ F ), this defines a local system L(�,C) on the Hilbert modular variety

X (K ) := GL2(F )\GL2(A⊗ F )/KK 0
∞Z(F ⊗ R),

where Z is the center of GL2 and K 0
∞ is the special orthogonal subgroup of GL2(R ⊗ F ). In particular, we have an action of the

group of connected components of the maximal compact K∞/K 0
∞ on the cohomology of X (K ). Since its group of characters can be

naturally identified with {±1}ΣF , for each � ∈ {±1}ΣF , we can define the �-part of the cohomology of X (K ).

Let n ⊂ OF be the tame conductor of f . It is a nonzero integral ideal of OF prime to p. Let K
p
11(n) ⊂ GL2(Ẑ

p ⊗ OF ) be the

subgroup of matrices which are upper unipotent modulo n and where we have written Ẑp for the prime-to-p part of the profinite

completion of Z. We will assume that K
p
11(n) is neat. Let ! be the central character of the cuspidal representation attached to f . It is

an idèle class character of conductor dividing np∞ and infinity type | · |w.
For each positive integer n, we denote K0(p

n) the subgroup of GL2(OF ⊗ Zp) of matrices which are upper triangular modulo
pn and by K1(p

n) its subgroup of those such that the diagonal entries are congruent modulo pn. We identify K0(p
n)/K1(p

n) with

(OF/pnOF )× via the map

(
a b
c d

)
7→ a−1d .

Let hord� (npn,!) be the nearly ordinary Hecke algebra of level K
p
11(n)K1(p

n), weight � and central character !. We then consider
the universal nearly ordinary Hecke algebra of weight � and tame level K p and action of the center given by !.

hord = hord� (n) := lim
←
n

hord� (npn).
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The Hecke ring hord� (npn) has a natural structure of O[(OF/pnOF )×]-algebra, inducing a structure of ΛF -algebra on hord with

ΛF := O[[O1
F,p]]
∼= O[[t1, . . . , td ]]

and O1
F,p
∼= Zd

p the subgroup of O
×
F,p of local units congruent to 1 modulo p. Let m be the kernel of the map ΛF → O corresponding

to the trivial character of O1
F,p.

The Hecke eigensystem attached to our nearly ordinary Hilbert modular form f gives us an homomorphism:

�f : hord→ hord� (npr)→ O.

with r the smallest integer so that f is K1(p
r)-invariant.

We denote Tord (resp. T0) the localization of h
ord (resp. hord� (npr)) at its maximal ideal mf containing ker �f . By work of Hida (14,

Corollary 4.3) one gets that Tord is free of finite rank over ΛF . Moreover, we have a canonical isomorphism

Tord ⊗ΛF O ∼= T0.

However, we will not need these facts. We now construct a Tord-module which is free over ΛF and interpolates the nearly ordinary
cohomology of the Hilbert modular variety localized at the maximal ideal associated to f . For any p-adically complete O-algebra A
and n ≥ r, let

Cn(�, A) := Ind
K1(pr)
K1(pn)

L(�, A)

and write C(�, A) for the direct limit of the Cn(�, A) for the obvious transition maps, and C(�,O) for the inverse limit of the
C(�,O/pmO) as m varies. It is clearly a ΛF [K1(p

r)]-module.
Let ��f (M) be the congruence ideal ofM with respect to �f introduced in Section 2.10. For any ideal b ⊂ OF , we denote K11(b)

the open compact subgroup of GL2(OF ⊗ Ẑ) of upper triangular matrices which are unipotent modulo b.

Proposition 3.6. Assume the image of �̄f is not solvable. Then for any � in {±1}ΣF , the Tord-module

M� := H d (X (K11(np
r), C(�,O))�mf

is free of finite rank over ΛF , and M
�/mM� = M�

0 := H d (X (K11(np
r),L(�,O))�mf

. Moreover ��f (M
�
0) = (��f ), where

��f :=
Γ(ad �f , 1)L

Sf (ad �f , 1)

Ω
�
f Ω
−�
f

,

where Sf is the set of finite places where �f is ramified and (Ω�
f )�∈{±1}ΣF are the canonical complex periods attached to the Hilbert modular

form f in* (5, §7.1).

Proof: This is a classical exercise in Hida theory since the localization at mf captures a direct factor of the nearly ordinary part of the
cohomology. The fact that the module is free over ΛF follows from a control theorem and the vanishing Theorem 7.1.1 of Caraiani
and Tamiozzo (15). The last part of the proposition follows from a computation of Dimitrov in sections 7.2 and 7.3 of ref. 5, and in
particular its equations (50) and (51). �

We use the inclusion ��f (M
�) ⊂ F d

�f
(O) =

∧d
O(p/p2)∗ to define the zeta O-module associated to f .

3.7. Construction of Zeta Lines.Given an O-module A we set A∗ := HomO(A,O). Let Rord (resp. R0) be the universal deformation
ring of �̄f with fixed determinant equal to det �f and with nearly ordinary conditions (resp. with ordinary condition of weight �) at
places dividing p and the unramified condition at finite places away from those dividing np∞.

We have a canonical surjective map Rord→ Tord. Set p := Ker(Tord→ O) and pR := Ker(Rord→ O). One has isomorphisms

H1
full,ord(F, ad �f ⊗ E/O)∨ ∼= pR/p2R and H1

full,ord(F, ad �f )
∼= (pR/p2R)∗;

see for example refs. 16 or 17, Section 2.5. The subscript full means that no local conditions are required at places dividing n. From
the natural surjection

H1
full,ord(F, ad �f ⊗ E/O)∨ ∼= pR/p2R � p/p2 .

one gets maps

F d
�f

(O) =

d∧

O

(p/p2)∗ −→

d∧

O

(pR/p2R)∗ ∼=

d∧

O

H1
full,ord(F, ad �f ).

*In (5), the �-parts of the cohomology and the periods are indexed by the subsets J ⊂ ΣF corresponding to the character �J .
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Definition 3.8: The image of the submodule ��f (M
�) ⊂

∧d (p/p2)∗ under the composition of maps above is a cyclicO-submodule;

we write it as (z�f ) and call it the zeta line. Thus z�f is well defined only up to multiplication by a unit in O.

For each v, the quotient map F0
v → Gr0v induces the map

H1(Fv,F
0
v ) −→ H1(Fv, Gr

0
v ) −→ H1(Iv, Gr

0
v )

Dv/Iv ∼= O
dv .

Since
∑

v|p dv = [F : Q] = d these induce the map

d∧
(
∏

v|p

H1(Fv,F
0
v )) −→

⊗

v|p

dv∧

O

H1(Iv, Gr
0
v )

Dv/Iv ∼= O.

Precomposing this with the d th exterior power of the restriction map resp : H
1
full,ord(F, ad �f )→

∏
v|pH

1(Fv,F
0
v ) yields

d∧
resp :

d∧
H1

full,ord(F, ad �f ) −→
⊗

v|p

dv∧

O

H1(Iv, Gr
0
v )

Dv/Iv .

The following theorem is the main result of this section.

Theorem 3.9. Assume that the residual representation �̄f has nonsolvable image and choose � ∈ {±1}
ΣF . Then

(

d∧
resp)(z

�
f ) = (��f ) where as before ��f :=

Γ(ad �f , 1)L
Sf (ad �f , 1)

Ω
�
f Ω
−�
f

.

Proof: Let R0 be the universal deformation ring of �̄f with fixed determinant equal to det �f and with ordinary condition of weight
� at places dividing p and the unramified condition at finite places away from those dividing np∞, and R0 → T0 the canonical
surjection. The restriction of the universal deformations to the decomposition subgroups at places dividing p gives an homomorphism

ΛF → Rord making the map Rord → Tord an ΛF -algebra homomorphim and a canonical isomorphism Rord ⊗ΛF O ∼= Rord
0 . Setting

p0 := Ker(Tord
0 → O) = p/m and pR,0 := Ker(Rord

0 → O) = pR/m, the isomorphism and surjective maps induces the following
commutative diagram of Kähler differentials.

Here H1
full,Sel(F, ad �f ⊗

E
O

) means no condition at primes dividing n, and the Selmer condition at places of F above p. The exactness

on the left in the top row follows fromHida’s theorem that Tord is unramified over the weight spaceΛF at the augmentation �f arising

from the holomorphic cohomological newform f . The vertical arrows are surjective and that the O-module p0/p
2
0
∼= ΩT0/O ⊗�f O

is torsion, and therefore both m/m2 and (p/p2)tf are free of rank d over O. The diagram above yields the commutative diagram

Given this diagram, Proposition 3.6, and Theorem 2.39, it follows that the image of z�f under the local restriction map at p is ��f ,

fixing an isomorphism with O. �

Remark 3.10: As explained in ref. 6, (z�f ) is the bottom class of an Euler system of rank d . We have shown that (z�f ) is related to the

L-value �f . It would be interesting to extend our method to construct the other classes using higher congruence modules for the base

change of f to abelian extensions of F , for we would be able to construct the p-adic L-function L
Sf
p (ad �f , s).

Remark 3.11: By Eq. 2.36, length
O
coker((p/p2)∗ → (m/m2)∗) = length

O
(Φ�f (T)) − length

O
(Φ�f (T

ord)). Thus the classical

Selmer group Φ�(R) “factors” into a part coming from Φ�(R
ord) and a part coming from the cokernel of (p/p2)∗→ (m/m2)∗.
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3.12. The Cotorsion in Galois Cohomology. In this section, we assume that �f is a minimal deformation of �̄f as in ref. 5, §4.2.

We replace the rings Rord and R0 by their minimal deformation analogues. Then it is known that the maps Rord
min → Tord and

R0,min → T0 are isomorphisms of complete intersection rings thanks to the works of Fujiwara (18) and Dimitrov (5). Note that we
can and do replace the big image assumption of Dimitrov for �̄f by the much weaker one of ref. 15 of being nonsolvable, which
implies the Taylor-Wiles hypothesis that �̄f restricted to GF(�p) is irreducible. In addition, we make the following hypothesis justified

by the Remark 3.4. For all v|p, we assume that the action of Dv on F+
v is distinct from the cyclotomic character. By our minimality

assumption, the local conditions at places away from p are the finite Bloch-Kato conditions for all the Galois cohomology groups
considered in this section, so that we can now make the following identifications:

• Hom(p/p2,O) = H1
ord(F, ad �f )

• Hom(m/m2,O) = H1
ord /f (Fp, ad �f ) = ⊕v|pH

1(Iv,O)
Dv
Iv

• H1
f (F, ad �f ⊗O E/O)∨ = p0/p

2
0 := Φ�f since T0 is finite over O,

• cotors(H1
Lord(Q, ad �f ⊗O E/O)) = tors(p/p2) = Φ

ord
�f

:= Φ�f (T
ord).

We abbreviate ��f (T0) and ��f (T
ord) to ��f and �ord

�f
, respectively, and view them as ideals of O. Since we have assumed that the

Hecke rings are complete intersection we have ��f = FittO(Φ�f ) ⊂ �ord
�f

= FittO(Φord
�f

).

Here is an interpretation of the invariants Φord
�f

and Ψ
ord
�f

.

Proposition 3.13. With the minimality assumptions as above, the following statements hold.

1. There are isomorphisms Φord
�f
∼= cotors(H1

ord(F, ad �f ⊗O E/O)), and an equality

length
O

(Φord
�f

) = length
O

(H1
ord⊥

(F, ad �f ⊗O E/O(1))).

2. There is an isomorphism Ψ
ord
�f
∼= (

∧d H1
ord(F, ad �f ))/(z

�
f ).

Proof: From Eq. 2.36 we get the exact sequence 0→ (p/p2)∗→ (m/m2)∗→
(
Φ�f /Φ

ord
�f

)∨
→ 0. Comparing with the following

Poitou-Tate duality exact sequence

0→ H1
ord(F, ad �f )→ H1

ord /f (Fp, ad �f )→

(
H1

f (F, ad �f ⊗O E/O(1))

H1
ord⊥

(F, ad �f ⊗O E/O(1))

)∨
→ 0

from Proposition 3.2 and the identifications recalled above, we get

Φ�f

Φ
ord
�f

∼=
H1

f (F, ad �f ⊗O E/O(1))

H1
ord⊥

(F, ad �f ⊗O E/O(1))
.

On the other hand, we have a canonical isomorphismΦ�f
∼= H1

f (F, ad �f ⊗E/O)∨. It remains to note that by the balanced properties

of Bloch-Kato Selmer groups and Lemma 3.1, the O-module above has finite length, equal to length
O

(H1
f (F, ad �f ⊗ E/O(1))).

(2): From Theorem 2.39 one gets an exact sequence 0→ ∧d (p/p2)∗→ ∧d (m/m2)∗→ Ψ�f /Ψ
ord
�f
→ 0, and therefore

0 −→

∧d (p/p2)∗

(z�f )
−→

∧d (m/m2)∗

(
∧d resp)(z

�
f )
−→

Ψ�f

Ψ
ord
�f

−→ 0.

The desired isomorphism follows since after identification of ∧d (m/m2)∗ with O, we have
∧d resp(z

�
f ) = (��f ) which is the same as

the ideal ��f by construction. �

The next result is immediate from Proposition 3.13 and Theorem 2.6. It is an analog of the well-known fact that the p-part of the
class group of Q(�p)

+ being trivial (Vandiver’s conjecture is that this is always the case) is equivalent to the group of cyclotomic units
having index prime to p inside the global units of Q(�p).

Corollary 3.14. With previous assumptions, Tord is regular ⇐⇒ H1
ord⊥

(F, ad �̄f (1)) = 0 ⇐⇒ (z�f ) =
∧d H1

ord(F, ad �f ). �
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