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Abstract

The notion of tail adversarial stability has been proven useful in obtaining limit theorems
for tail dependent time series. Its implication and advantage over the classical strong mixing
framework has been examined for max-linear processes, but not yet studied for additive linear
processes. In this article, we fill this gap by verifying the tail adversarial stability condition for
regularly varying additive linear processes. We in addition consider extensions of the result
to a stochastic volatility generalization and to a max-linear counterpart. We also address
the invariance of tail adversarial stability under monotone transforms. Some implications for

limit theorems in statistical context are also discussed.
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1 Introduction

Compared with the conventional notion of correlation-based dependence that mainly concerns co-
movements around the mean, tail dependence or extremal dependence refers to the dependence
in the joint extremes that mainly concerns the co-occurrence of tail events. In bivariate or

finite-dimensional distributions, the concept of tail dependence and its quantification have been

extensively explored in the literature; see for example Sibuya (1960)), de Haan and Resnick| (1977,
Joe| (1993)), Ledford and Tawn| (1996)), |Coles et al.| (1999), [Embrechts et al.| (2002), Draisma et al.|
(2004), [Poon et al.| (2004), McNeil et al. (2005)), Zhang (2008), Balla et al.| (2014]), Hoga (2018)

and references therein. In the time series setting, Leadbetter et al. (1983), Smith and Weissman|

(1994) and |[Ferro and Segers (2003) considered the use of an extremal index to describe the degree
of tail dependence. proposed to extend the bivariate tail dependence index of
to the time series setting, and [Linton and Whang| (2007) considered a variant that uses
a quantile as the tail threshold; see also the extremogram of Davis and Mikosch| (2009)) and Hill

(2009)), the tail autocorrelation of (2022)), as well as the notion of tail process in
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land Segers| (2009) which characterizes the local tail dependence structure in a stationary regularly

varying time series. We also refer to a recent review paper (2021b) and monograph

land Soulier] (2020) for additional discussions and references.

Although various tail dependence measures have been proposed, most of them focused on
summarizing the degree of tail dependence in observed data and few is useful for developing
limit theorems of tail dependent time series. This is similar to the correlation-based dependence
case, in which the correlation coefficient is prominent in summarizing the underlying degree of

dependence, but generally does not lead to sufficient conditions for limit theorems to be developed.

To achieve the latter, a popular approach is due to the influential work of Rosenblatt| (1956)) which

introduced the notion of strong mixing along with a “big block-small block” argument that have
led to the development of various limit theorems under the strong mixing condition. Although
not being originally developed for handling dependence in the tail, the strong mixing framework
has been applied to the tail setting as a major tool for developing limit theorems; see for example
[Smith and Weissman| (1994])), [Drees (2003), Ferro and Segers| (2003)), (Chernozhukov| (2005, Davis|
land Mikosch! (2009)), |Chernozhukov and Fernandez-Val (2011)), [Davis et al.| (2012)), Mikosch and|
|Zhao (2014)), Kulik and Soulier] (2020), and references therein. To handle tail statistics from time

series data, however, the strong mixing condition often has to be used together with additional
anti-clustering conditions that control more specifically the degree of dependence in the tail;
see for example condition (9.67) of |Chernozhukov| (2005), condition (3.3) of Davis and Mikosch
(2009), Assumption 4 of [Chernozhukov and Ferndndez-Val (2011)), and condition (2.4) of

land Zhao| (2014)), among others. Such conditions may lead to more restrictions on the underlying

dependence than the strong mixing condition itself.

Recently, introduced the notion of tail adversarial stability, which provides an
alternative framework for developing asymptotic theories of analysis of tail dependent time series.
Compared with the traditional strong mixing framework that involves a supremum distance
between two sigma algebras, the tail adversarial stability framework of relies on the
tail adversarial effect of coupled innovations expressed as a conditional probability, which is much
more tractable. It has been shown in Zhang (2021a)) and Zhang| (2022) that the tail adversarial

stability measure can be easily calculated for the max-linear (or say moving-maximum) processes

(see, e.g., Hsing (1986) and [Hall et al.| (2002)), and can lead to cleaner and weaker conditions

than the traditional strong mixing framework. Besides the max-linear process and its variants
covered in the recent review of (2021Db)), the additive autoregressive and moving-average
(ARMA) model with heavy-tailed innovations has also been a popular choice for modeling time

series with tail dependence. The practical meaning of tail adversarial stability for such additively



structured processes, however, has not been addressed so far. This article aims to fill this gap by
verifying the tail adversarial stability condition for regularly varying (additive) linear processes,
or say moving-average processes. Note that the causal ARMA processes are covered due to their
moving-average representations. In particular, we develop probabilistic bounds that are uniform
across all lags at which the underlying process is decoupled (Lemma and Corollary. Based
on these bounds, we then obtain a bound of the tail adversarial stability measure in terms of the
coefficients of the linear process (Theorem [3.9). We hence are able to verify the tail adversarial
stability condition under relatively mild assumptions (Corollary . Parallel results for their
stochastic volatility extensions are presented in Theorem and Corollary We also revisit
the the class of max-linear processes, which extends the additive linear process to its maximal
counterpart.

The remaining of the article is organized as follows. Section [2] reviews the tail adversarial
stability measure. Section [3| provides an explicit calculation of the tail adversarial stability
measure for regularly varying linear processes. Section [4| concerns an extension to stochastic
volatility type models that are driven by regularly varying linear processes. Section [p| revisits the
max-linear process when the innovations are general regularly varying random variables. Section
[6] addresses the invariance of tail adversarial stability under monotone transforms. Section

discusses some implications of our results in statistical context. Section [§| concludes the paper.

2 Tail Adversarial Stability

The notion of tail adversarial stability is formulated for a stationary process X = (X;) of the
following form

Xi:g(ei,ei,l,...,el,eo,e,l,...), i:0,1,2,..., (1)

where g is a measurable function, (e;);ez is a sequence of independent and identically distributed
(ii.d.) random variables, or more generally, random elements such as random vectors. The
framework covers a wide range of common linear and nonlinear time series models. Let ej be

an innovation that has the same distribution as eg but independent of (e;);ez. Then
X =glei,ei—1,...,e1,€5,e-1,...), >0

represents the coupled observation at time ¢ whose innovation at time zero is replaced by an

*
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i.i.d. copy. The difference between X; and the coupled version X, measured through, e.g., the
LP norm || X; — X/||,, leads to the physical or functional dependence measure formulated by

Wul (2005). It has since been applied extensively for establishing various asymptotic results for



analysis of dependent data; see for example Wu/ (2005), [Wu| (2007)), |Liu and Wu| (2010)), |Zhou
and Wu| (2010)), Zhang and Wu| (2011)), Zhang (2013), and [Zhang| (2015), among others.

Let Ux = inf{x e R: P(Xy < z) =1} € (—o0,+00] be the upper end point of the marginal
distribution of X¢y. Now the tail adversarial stability (TAS) measure, first introduced in Zhang
(2021a) (although in a triangular array setting), is given by

0,(i) = 650 (i) = sup P(X] < 2 | X; > 2), y <Ux, (2)

z2y
which quantifies the adversarial effect of a perturbation of the innovation eg has on whether the
observed data at time 7 is an upper-tail observation. Note that if X; does not depend on e, then

X =X, and 0,(i¢) = 0, meaning that ey will not have any tail adversarial effect on X;. Let

Oy =050 = "{0,()}1, ¢>0, (3)
=0

which measures the cumulative tail adversarial effect of ey on all future observations. Then the
process (X;) is said to be tail adversarial g-stable or (X;) € TAS,, if
lei{{r)l( Oy q < 0. (4)

Zhang| (2021a)) obtained the consistency and central limit theorem for high quantile regression
estimators when the underlying process is TASs. |Zhang| (2022) established the consistency and
central limit theorem for sample tail autocorrelations when (X;) € TAS, for some ¢ > 4. We
anticipate that more statistical theories for analysis of tail-dependent time series can be developed
under the TAS framework.

In this article, we shall mostly consider the case where P(Xy > z) > 0 for all z > 0, that is,
the distribution of X; is unbounded on the positive side so that Ux = oo, for which it suffices to
consider y > 0 in .

3 Regularly Varying Linear Processes
3.1 Basic Setup
Let (aj)j>0 be a sequence of real coefficients, we consider the additive linear process

X, = Zajei_j, 1 € 7, (5)
§=0

where (€;);ez is a sequence of i.i.d. innovation random variables. It is also known as a (possibly

infinite-order) moving-average process, which includes finite-order ARMA processes as special



cases due to their moving-average representations. The process is covered by the form in
(1)) when we set the function g to be linear which is measurable (see, e.g., Samorodnitsky, (2016,
Example 2.1.9)), and the random elements e¢; = ¢;, i € Z.

We assume that |ep| is regularly varying with index —v, that is,
P(leo| > ) = 27" {(x), (6)

where the function ¢(-) is slowly varying at oo, namely, ¢(-) is a positive function such that
lim, o0 ¢(A2)/€(2) = 1 for any A > 0. See Bingham et al.| (1989) for more details about regularly
and slowly varying functions. In addition, we assume that the distribution of €y satisfies a tail

balance condition:
P(Eo > ac) .

P Pl > ) ")
for some p € [0,1]. This is equivalent to assuming that lim, ,o, P(eg < —2)/P(leo] > ) =1—p
A distribution of ¢ satisfying both @ and is often known as being balanced reqularly varying,
where p is the tail balance parameter. Note that if €g comes from a positive distribution such as
the Fréchet distribution, then for any = > 0, P(ey > x) = P(]eg| > x) and hence it has p = 1.

On the other hand, for the coefficient sequence (a;) in , we assume that for some € > 0,

o
S a5 < oo, 5)
§=0

Since the exponent ;*5 — e < min(1,v), the random series in converges almost surely and
hence the resulting linear process is well defined; see for example [Samorodnitsky| (2016, Corollary
4.2.12). It is worth noting that as v — oo and £ — 0, the condition (8) approaches 3 7 [a;| < oo,
a well-known condition of short memory for linear processes. The condition is imposed for
establishing Lemma an important uniform estimate for verifying the TAS condition for
general regularly varying linear processes. On the other hand, we shall mention in Remark
below that when (¢;) are v-stable innovations (here v € (0,2)), the restriction (8) can be relaxed.
We also assume without loss of generality that a; # 0 for infinitely many j > 1. The case when
a; # 0 for finitely many j > 1 degenerates to an m-dependent process, for which ©,, < m +1
and the process trivially belongs to TAS, for any g > 0.

Given the assumptions made above, it is known (e.g., Samorodnitsky| (2016}, Corollary 4.2.12))
that each X; is also balanced regularly varying with index —v and

lim L(X0>2) Z {p(a;) + (1 —p)(a;)”} 9)

z~oo0 P(|eo| > z)



as * — 00, where (-)1 and (-)_ stand for positive and negative part respectively.
We make an additional mild assumption: the density f. of €y exists and satisfies for any

0 € (0,v + 1), there exists a constant ¢g > 0, such that
fe(x) < comin(1, |z| 7V~ 1), (10)

Remark 3.1. In view of Karamata’s Theorem (Bingham et al. (1989, Proposition 1.5.8)) and
Potter’s bound (Bingham et al. (1989, Theorem 1.5.6)), all the assumptions made so far on €
are satisfied if fc is bounded, and either both fc(x) and fo(—x) are regularly varying with index
—v —1 as © — oo with lim,_,« fe(x)/fe(—x) existent and positive, or fc(x) is reqularly varying
with index —v — 1 on one side and is of smaller order on the other side (which corresponds
top=20orlin ) These conditions cover a broad family of power-law distributions such
as Pareto, Fréchet, Student-t, F-distributions (with the numerator degree of freedom > 1) and

non-Gaussian stable distributions (including Cauchy).

3.2 Preparations

Throughout the article we use ¢ to denote a generic positive constant whose value may change
from one expression to another. In this section, we collect some important auxiliary results we
need for the rest of the article.

The following lemma collects some variants of the Potter’s bound useful for handling regularly
varying tails. Recall a random variable Z > 0 is said to be regularly varying with index —v, v > 0,
if lim, oo P(Z > A2)/P(Z > z) = A7 for any A > 0.

Lemma 3.2. Suppose random variable Z > 0 is reqularly varying with index —v, v > 0. Given
any fized € > 0 (and in addition e < v for below), zg > 0 and x¢ > 0, there exists a constant
c > 0, such that

P(Z >z)<cz ", 2>0, (11)
P(Z>z)>cz V7, 2>z, (12)

and
m <cx"¢, 2>z, x€]|0,x0] (13)

Proof. The lemma follows readily from Kulik and Soulier| (2020, Propositions 1.4.1 and 1.4.2). O

We also need the following fact on the (truncated) moments of regularly varying random
variables. Below and throughout, we write E[Z; A] = E[Z14] for random variable Z, event A

and indicator 14.



Lemma 3.3. Suppose random wvariable Z > 0 is regularly varying with indexr —v, v > 0. If
B e (0,v), then E[ZP] < oo; if B > v, then
E[Z%; Z < 7] v

li = 0;
500 2PP(Z > 2) B—y> ’

In addition,
. E[zvZ2<2
L R Z > )

for any € > 0.

Proof. The first two claims directly follows from Kulik and Soulier| (2020, Proposition 1.4.6). By
Kulik and Soulier| (2020, Proposition 1.4.6) again, E[Z";Z < z] is slowly varying as z — oo,
and so is z"P(Z > z). Hence the last conclusion follows from Bingham et al.| (1989, Proposition
1.3.6). 0

Following Section |2} let €] be a random variable with the same distribution as €y but inde-

pendent of (€;)jez. Then the coupled version of X is

Xl* =X; - a;€g + (Ziﬁé =ag€ + -+ a;—1€1 + aiea + Q161+ - (14)
Introduce
Y; = Xz — ;€0 = Z Aj€i—j. (15)
Jj=>0,j#i
and hence

X; =Y; + a;ep, )(:< =Y+ aiés.

Below we develop a uniform estimate for the densities of {Y;} which will be the key for estab-
lishing the main results. The condition plays an important role in an infinite-order induction

argument.

Lemma 3.4. Fiz any 6 € (0,v + 1). Suppose that aj # 0 for infinitely many j > 0. Under the
assumptions @, , and . The density f; of each Y;, © > 0, exists, and we have for all
z€R andi >0,

fi(z) < emin(1, ||V 71H0) (16)

for some positive constant ¢ > 0 that does not depend on i or x.

Remark 3.5. Observe that is equivalent to imposing both the uniform boundedness sup; sup,, fi(x) <

oo and the uniform power decay sup; fi(x) = O(|z|™V~179) as |x| — oo for any 6 € (0,v +1).



Proof of Lemma[3.4 We shall assume that a; # 0 for every j > 0. Otherwise, if a; = 0, i > 0,
then Y; = X; with f; being the marginal density of Xy. The proof below with a slight modification
readily covers this case. We also assume that |a;| < 1. Otherwise, apply a proper scaling.

We first prove the existence and the uniform boundedness of f;. Suppose first 7 > 1. Use P; 1
to denote the distribution of Z; := > i1, G€i—j- In view of Fubini’s theorem, the density of

Y; = age; + Z; exists and can be identified with the convolution
@) = [ laol™ flay o = ) Paala)
Hence by (10)), writing ||g||cc = sup,eg |g(z)| for a function g, we have for i > 1,

\MMs/MwWMm&mm—MMWMmsmw%<w

The existence and boundedness for fy can be obtained similarly by replacing the role of age; by
a1€;—1 in the argument above. Hence the uniform boundedness required in follows.
Now we turn to the uniform power decay in . Recall § in can be specified arbitrarily

‘—1/—1—&-5)

small. Since min(1, |z is non-decreasing with respect to § € (0, + 1), it suffices to prove

for any sufficiently (to be specified later) small § € (0,r). We only prove the uniform power

decay on the positive side z > 0, and the case z < 0 follows similarly. Set
hg(z) = cmin(l,|z|™%), k:=v+1-0>1,
where ¢ > 0 is a constant such that (see (L0]))
fe(z) < hy(a). (17)
Now for a function g > 0, we define

MFg =suptty(t).
>0

To prove the uniform power decay in ((16) on the positive side, it suffices to show

sup M" f; < co. (18)
i>0
Suppose first ¢ > 2.

Below we apply an infinite-order induction argument similar to the proof of |Barbe and Mc-

Cormick| (2009, Lemma 6.6.3). For a fixed constant p > 0 to be specified later, let

dj:|aj’p€(071)7 j=>1



Let g; be the density of Zogjgn,j;éi aj€i—j, n > 0, the truncated approximation of Y;. Note that
gio(-) = |ao| " fe(ag*-) since we have supposed i > 2.
If n # i and n > 1, we decompose the convolution g; , = gin—1 * (|an|_1f6(a;1')) as
dnx ) ) (1—dy)z ) .
9in () =/ Jin—1(x —y)lan|"" fe(a, y)dy+/ Jim—1(Y)|an| " fe(a, (x — y))dy. (19)
—0o0 — 0

Note that
sup gin—1(z —y) < ( sup t”) ( sup t”gi,n_1(t)> < —dp) "2 "M gy 1.

y<dnzx t>(1—dp)z t>(1—dn)x

Therefore, since [; |an| ™! fe(a,'y)dy = 1, we have for all z > 0 that
dnx
[ sl = ol kg )y < (1= d) Mg
On the other hand, by the bound and the symmetry of h,, we have supy(1_q,)z fe (e (z—

1)) < Dy e Plan (@~ ) < collan| " ) . Hence using [y ginoi(4)dy = 1, we have
for all z > 0 that

(1=dn) 1 1 1
/ G (Dan o (& — y))dy < clan]""d5 2"

—0o0

Applying the two displayed bounds above to , we conclude that
Mgin < (1 —dp) "M gi 1 + clan|* " d, " (20)

If n=12> 2, then g; , = gin—1, and the bound above trivially follows from monotonicity.

Define for 1 < j 4+ 1 < n that
Bjﬂl = H (1 — dg)fn.
jH1<0<n

Set also B, = 1. Now by an induction based on the recursive bound , it can be verified
that for all n > 1,

n
MPGin < BonMPgio+c | Y Bjnlas|* ' d;"
j=1

Note that Bj, increases as j decreases or as n increases. In view of the monotonicity, we have

o0
MO gin < BMPgio+cB | Y ag|"d;" | (21)
i=1



where B = lim,, By ,,. Now set p = k(1 — p) — 1 which implies

k=1 — v—=9§
k+1 v+2-6

p:

By assumption with § > 0 chosen sufficiently small so that p > ;%5 — €, we have

[o.¢] o0 oo o
Zdj = Z laj|? < oo, and Z |aj|’"€_1dj_"i = Z \aj\“(l_p)_l < 0.
' ' j=1 j=1

7=0 7=0
Note that the summability » 22 d; < oo implies B € (0,00). Recall g;o(-) = lao| ™ fe(ag ), and

hence by and we have

sup M"g;n, < 0. (22)
n>1,>2

Let P; >, denote the distribution of of Z; 2, := Z2§j§n,j7€i aje;i—j, n > 2. The a.s. convergence
of Zion to Zjo = ijz,j# aje;—j implies the weak convergence of P, 2, = P2 as n — oo,
where P; 9 is the distribution of Z; 2. On the other hand, the function g;; (recall i > 2), as
a convolution between two bounded integrable functions |ag|™!fc(ag*) and |a1|~* fe(a!"), is
bounded and continuous (e.g., Bogachev| (2007, Corollary 3.9.6)). Hence for any x € R and
n > 1, we have for all z > 0 that

() = [ @ =) Proa(dn) ~ [ e =) Praldy) = fi(w) (23
as n — 00. So combining with , we conclude that
sup M" f; < oo. (24)
i>2

By a similar argument which uses some other indices to replace the roles of i = 0,1 above,
we can also show that M" f; < oo for i = 0,1. This combined with concludes . O

Remark 3.6. It is possible to further improve the tail decay in the bound . Under additional
assumptions including certain smooth (regular) variation (cf., (Bingham et al., 1989, Section
1.8)) conditions on the distribution of €y, the remarkable work of Barbe and McCormick (2009)
developed uniform asymptotic expansions for the marginal distribution of reqularly varying linear
series. In paticular, their Theorem 2.5.1 implies a sharp uniform bound: there exists yg > 0,

such that for all y > yo,

sup fi(y) < cly| ™" M(y), >0,
i>0

with the slowly varying £(y) as in @ On the other hand, the slightly weaker tail bound in
is verified under less stringent assumptions compared to |Barbe and McCormick (2009), which

suffices for our purposes.

10



Remark 3.7. The summability assumption is imposed for establishing the uniform power de-
cay estimate in . On the other hand, the restriction 1s likely only an artifact of the current
proof. Indeed, consider the case where the innovations (€;) are standard symmetric v-stable (SvS),
v € (0,2), specified by the characteristic function E[e?) = e=1¢1". See, e.g., [Nolan| (2020) for
more details. This special case satisfies the balanced regularly variation assumptions @ and @
In this case, for the linear process to be well-defined, it suffices to assume Y .~ |la; "M < oo

(e.g., |Kokoszka and Taqqu (1995)). In addition, it follows from the sum-stability property of SvS
distributions that Y; < (ijm#i |ai|l’) v €0, where inf;> (ZBOJ# |ai|”> e > 0. This implies
a uniform bound

fily) < emin(L,Jy| ™)
foralli >0 (cf., e.g., Sections 1.4 and 1.5 of Nolan (2020)). The discussion above is generalizable

to non-symmetric stable distributions which for simplicity is omitted.

Corollary 3.8. Fiz any § € (0,v + 1). Under the same assumptions as Lemma for all
—|z|/2<v<u<|z2]|/2, z€ R and i > 0, we have

P(Y; € [z —u, 2 = v]) < ¢(u — v) min (1, ]z]*V*H‘S) )
for some constants ¢ > 0.

Proof. Write

P € s —uz—o) = | T i)y,

—Uu
By Lemma we have the constant bound f;(y) < ¢ and the power-law bound f;(y) < ¢|y| ™V~ 1*9
for all ¢ > 0. The constant bound yields

P(Y; € [z —u,z —v]) < c(u—v).

The power-law bound combined with the restriction on u and v yields

zZ— zZ—
PY; €[z —u,z—v]) < c/ ly| v~ Hody < c/ |2/2| 70y < el 2|7V (uw— ).
z—u z—u
Combining the bounds concludes the proof. O

3.3 Verification of TAS Condition

We shall provide an explicit bound of the TAS measure for the linear process in Theorem
below. The bound enables an immediate verification of TAS, in Corollary below.

Below is the main result.

11



Theorem 3.9. Suppose (X;) is a linear process as in with i.i.d. innovations (€;) satisfying
@, and . Assume the coefficients a; # 0 for infinitely many j > 0, the summability
condition holds, and the right-hand side of @ is nonzero. Fiz an arbitrary n € (0,v) when
v < 1. There exist constants ¢ > 0 and yo > 0, such that for all y > yo and i > 0, the TAS
measure 8, (i) in (2)) satisfies
0,i) < clail, v>1,
clai|”, v <1,
In fact, Theorem follows from Theorem below in the special case where each S; = 1
in ([28]). For convenience, we include a separate and more transparent proof for this special case

below.

Proof. Assume without loss of generality that every a; # 0 and let z > 0. Below yo > 0 is a
constant which does not depend on ¢ > 0, whose value may be increased if necessary each time

when mentioned. Write

— S .
PX: < 2| X; > 2) = LEZ G0 <Y¥i < 2 aigp)

]P)(Xi > Z)
<IP’(z —aijeg < Y; < z—aiel, —2/2 < aiey <aieg < z/2) P (laieg| > z/2)
- P(Xo > Z) ]P)(Xo > Z)

e Suppose v > 1.
Recall that P(Xy > z) is regularly varying with index —v in view of @D Hence by Potter’s
bound , for any chosen ¢ € (0, 1), there exists yo > 0 and constant ¢ > 0 such that

P(Xo > 2) > ¢z V7110

for all z > yg. Then by independence and Corollary with the same ¢ > 0, we have for all

Z > Yo,
P(z—au<Y; <z—av)
A,-z:/ = fe(u) fe(v)dudv
( ) —z/2<a;v<a;u<z/2 P(XO > Z) ( ) ( )
<cla;] / lu — v|fe(u) fe(v)dudv.
laiul,laiv|<z/2

We can bound the integral above as

/ = o] f. () £.(0)dudv < Eleg — €| < 2EJeo|. (25)

la;ul,|aiv|<z/2

12



Hence if v > 1 under which Eleg| < oo, we have
Ai(2) < clail

for z > yp. On the other hand, it follows from @, the restriction v > 1 and Potter’s bound
that for all z > o,
B;(2) < cla;].

e Suppose v € (0,1].
By the Potter’s bound , for any ¢ chosen such that 0 < § < n < v, we have

P(Xo > 2) > ¢z V710

for for all z > yg. Then similarly as above, applying Corollary with the same §, we have for

z > 1o that
) < dlaifz! | o ol fe(w) fe(w)
laiul,la;v|<z/2
For all z > yg, the integral above is bounded by
2\
28l fal < =/ @la] < (5] (26)
(2

The last inequality follows from sup; |a;| < co, Lemma and Potter’s bound (11]). Then for
Z > Yo,
Ai(2) < cla;]".

On the other hand, it follows from @D and Potter’s bound that for all z > yj,

P (lajeo| > 2/2)
P(leo| > 2)

Bi(z) <c¢ < cla;|".

The conclusion follows.
O

Under the conditions of the theorem above, we have for any n € (0,v) arbitrarily close to v,

cYoico ‘ai|1/q v>1,

Oyq = Zey(i)l/q < o /
i=0 > 2o lailt v <1,

Combining this with , we arrive at the following sufficient condition for the TAS, condition.

13



Corollary 3.10. Suppose the assumptions of Theorem holds. Then TAS, condition holds

if for some € > 0,
Z |az|7‘9(y7q76) < OO;
i>0

where

v 1.
o whenu>1andy—+2>a,

V¢, whenv>1and X5 < L
19(1/,(],5) _ v+2 v+2 q
— g, when v € (0,1] and v < q — 2;

Lo —¢e, whenve (0,1 andv >q— 2.

Remark 3.11. As mentioned in Remark the restriction can be relazed when the innova-
tions (€;) are SvS random variables, v € (0,2). In this case, it follows a similar line of argument
as the proof of Theorem @ and the properties of stable distributions that the TAS, condition
holds if 3 la;|?®92) < oo but with (v, q,€) in C’omllary above replaced by

1
q7
(v, q,€) = 1/q—¢e, whenv=1,

when v > 1;

g, when v < 1;

We conjecture that for a large class of regularly varying linear processes, the uniform estimate in

Lemma holds under less stringent conditions than , and that TAS, holds under conditions

close to the one mentioned above for the SvS case.

4 A Stochastic Volatility Extension

4.1 Model Setup

Consider the following model of stochastic volatility type. Let X; = Z]o-io aj€e;—; be the linear
process with innovations €; balanced regularly varying with index —v < 0, which satisfies all the
assumptions in Section Here we allow the right-hand side of @ to be zero (i.e., left tail of

X; dominates instead). In particular, we have
= A, (27)

where Ay = 3722 (p(a;)% + (1 —p)(a;)*) and Ay = >0 (p(a;)” + (1 — p)(a;)4), where either
A1 > 0or Ay > 0 since Ay + Ay = ijo laj|” > 0.
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Let (5;) be i.i.d. random variables independent of (e;). Then consider the model of stochastic
volatility type:
R; = S; Xi. (28)

Note that this follows the causal process form with e; := (S;, ).
We introduce for notational simplicity (.5, X) g (S0, Xo) and set R = SX. Write also
(6,5) 4 (€0, Sp). Below Z; and Z_ denote the positive and negative parts of random variable Z

respectively. We make the following assumption.
Assumption 4.1. Assume either of the following cases holds.
(1) (S has lighter tail than X ) For some > v that
E|S|? < oo, (29)

and
P(A1S+ + A25- > 0) > 0; (30)

(II) (S has heavier tail than X ) S is balanced regularly varying with index —f and tail balance
parameter q :=limy_oo P(S > x)/P(|S| > x) € [0,1], where 8 € (0,v), and

P(¢X++(1—q)X_ >0)>0; (31)
(III) (S has comparable tail as X ) S is balanced regularly varying with index —f and tail balance

parameter q as above, B = v, and

if Ao =0,q¢>0; if Ay =0, qg<1. (32)

Throughout the paper, we write a; ~ b; if a;/b; — 1 as i — 0.

Remark 4.2. Under Case (1), by Breiman’s Lemma (e.g., (Kulik and Soulier, |2020, Lemma
1.4.8)) and @ (i.e., (Samorodnitsky, 2016, Corollary 4.2.12)), one has as z — oo that

P(R > 2) =P(S1 X4 > 2) + P(S_X_ > 2) ~ (A1 ESY + AESY) P(|eo| > 2), (33)

where A1ESY + AsESY > 0 under the assumption and hence P(R > z) is reqularly varying
with index —v as z — 0.
Under (II) when f < v, since E|X|?*t7 < oo for v € (0,v — B) (Lemma , by Breiman’s

Lemma similarly as above, we have as z — oo that

P(R > z) = P(S. X, > 2) + P(S_X_ > 2) ~ (qEX_E +(1- q)ﬂ«:Xé) P(|S| > 2),  (34)
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where qEXf+(1—q)EXE > 0 under the assumption and hence P(R > z) is reqularly varying
with index — B as z — o0.

Under (III) when 8 = v, by (Embrechts and Goldie, |1980, COROLLARY of Theorem 3),
the tail P(|R| > z) is a regularly varying with index —v as z — oco. However, the same result
cannot conclude regular variation of P(R > z) = P(S4 X4 > 2) + P(S_X_ > 2) as z — o0 in
all the possible cases. For example, when Ay, Ay > 0,q = 0, while P(Sy > z) = o(P(S_ > 2)), it
could happen that P(Sy > z) is neither regularly varying nor of smaller order than P(X4+ > z)
as z — oo. In this case, (Embrechts and Goldie, 1980, COROLLARY of Theorem 3) is not
applicable to conclude the regular variation of P(Sy Xy > z), although the regular variation of
P(S_X_ > z) follows.

Note that the condition excludes the special cases Ao =q=0 or Ay =1—q=0. These
two cases introduce some technical difficulty to the current proof. On the other hand, these two
special cases possibly allow R_ = Sy X_+S5_X 4 to have a heavier tail than Ry = Sy X +S5_X_,

which is less relevant since the focus is on the right tail of R.

4.2 Verification of TAS Condition

Let R} be as R; except that ep is replaced by an identically distributed copy ef = (S}, ¢€})

)

independent of (e;). Define as before

0y(i) :=supP(R; <z | R; > 2) (35)

22y
and then

Oy,q = Z Qy(i)l/q

=0

It turns out that the same conclusion as Theorem [3.9 holds for the stochastic volatility extension.

Theorem 4.3. Suppose (R;) is of the form with (X;) specified as a linear process in (9]
with the coefficient a; # 0 for infinitely many i > 0, satisfying @, , and . Suppose
also that Assumption holds. Fix an arbitrary n € (0,v) when v < 1. There exist constants
c >0 and yo > 0, such that for all large y > yo and i > 0, the TAS measure 0,(i) in satisfies

cla;l  v>1,
0, (i) <

cla;|" v <1

Proof. Assume without loss of generality S; # 0 a.s. (otherwise condition on {S; # 0}) and every
aj # 0, j > 0. Recall (5,X) 4 (S;, X;) and R = SX, and write Pg for the distribution of S.
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Suppose z > 0. Below yg > 0 is a constant which does not depend on i, whose value may be
increased if necessary each time when mentioned. We have
P (2 —a;Sieo < S;Y; < z — a;S;i€f)
P(Ri > Z)
<P(z —a;Sieg < SiY; < z —a;Siely, —2/2 < a;Sie} < a;Sieg < 2/2) n P (|a;Se| > z/2)
- P(R > z) P(R > z)
=A;(2) + Bi(2). (36)

PRI <z |Ri>z) =

e Suppose v > 1.
For some 0 € (0,1) to be chosen later, the numerator of A4;(z) above can be bounded using
Corollary [3.8] as

/ Ps(ds)/ P(sY; € (z — a;su, z — a;sv]) fe(u) fe(v)dudv
|s|€(0,00) —z/2<a;sv<a;5u<z/2
< / Ps(ds) / clasllu = vl|2/s| ™" £ (u) £. (v) dudo

|s|€(0,z] la;svl,|aisu|<z/2

+/ Pg(ds)/ clail|u — vl f.(u) f. (v)dudv
|s|€(z,00) la;svl,|a;su|<z/2
<clai|= TR 18] < 2] + clailP(IS] > 2), (37)
where in the last inequality above we have applied
/ 4 vl fo(w) o (0)dudv < Eleg — 5| < 2E]co]. (39)
la;sul,|a;sv|<z/2

We consider the Cases (I)~(III) in Assumption separately.
Case (I).

Suppose that ¢ € (0, 1) is chosen sufficiently close to 1 so that v+1—46 € (0, 8) (recall v < 3).
Then E|S|¥*17% < oo and hence P(|S| > z) < cz7¥~!*9 by Markov inequality. Note that P(R >
2) > cz7V~19 when z > yo, which is a consequence of regular variation of P(R > 2) ~ cP(|¢| > z)
of index —v as z — oo as described in and Potter’s bound . Combining these facts to
we conclude that for z > yq,

Ai(2) < clay].

Next, observe that P (|Se| > z) ~ E|S|"P(|¢|] > z) as z — oo by Breiman’s Lemma. This implies
that for all z > 0 and ¢ > 0, we have P (|a;Se| > z/2) < cP (Jaie| > 2z/2) for some large enough
constant ¢ > 0. Combining this with the aforementioned fact P(R > z) ~ cP(|e| > z) as z — oo,

we have for z > yo that
P (|ae| > 2/2)

Bile) = g >)

< clayl, (39)
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where in the last inequality we have applied Potter’s bound and fact sup;> laj| < oo, as

well as the restriction v > 1. So putting these together we have for all z > yy,
P(R; <z | R; > z) < c|a]. (40)

Case (1II).

In this case, the tail of S is regularly varying with index —f3 > —v, and the choice § € (0,1)
always ensures § < v+ 1 —§. By Lemma the truncated moment in the first term of
satisfies for z > gy that

E[|S["+170: S| < 2] < e2"T10P(|S| > 2). (41)

By (34), we have P(R > z) ~ cP(|S| > z) as z = oo. Combining these facts, one has for z > yo
that

Ai(z) < clay].

On the other hand, by Breiman’s Lemma, P(|Se| > z) ~ E|e|’P(|S| > z) as z — oo. Hence

arguing similarly as Case (I) above, we have for z > yp,

(la;S| > 2z/2)

P
B; < < cla;|,
&)= hsy >y =

So holds in this case as well.
Case (III).

Now 8 = v. We claim that there exists a constant ¢ > 0 such that
P(R > z) > cP(|Se| > z) (42)

for all z > 0. We prove this below. First we consider the case both A1, A2 > 0. In view of ,
for some small enough constant ¢ > 0, we have P(X4 > 2) > cP(l¢] > 2) and P(X_ > z) >
cP(le| > z) for all z > 0. This by independence implies that P(Sy Xy > z) > cP(S1|e] > z) and
P(S_X_ > z) > cP(S_|¢e| > z). So

P(R>z)=P(S+ X4+ > 2)+P(S_X_ > 2) > cP((S+ + S_)|e| > 2) = cP(|Se| > 2).

Now consider the case As = 0 and g > 0. The other case where A1 = 0 and ¢ < 1 is similar and
will be omitted. Since As = 0 implies A; > 0 and ¢ > 0, we have P(X4 > z) > cP(|e| > 2) and
P(S;+ > z) > cP(|S| > z) for some small enough constant ¢ > 0. Hence by independence, we have
P(S+ Xy > z) > cP(St|e| > z) and P(S4|e| > z) > clP(|Se| > z). Therefore, for all z > 0,

P(R > z) > P(S1 X4 > z) > cP(|S¢| > 2).

18



Hence is concluded.
Now in view of , and , for z > yo,

P(|S| > 2)

AZ(Z) S C‘a”W S

clai, (43)

where the last inequality follows from P(|Se| > z) > P(|e] > 1)P(|S| > z). In addition, again by
, for z > 0, we have

P (Ja;Se| > 2/2)

Bi(z) < e—pise =)

(44)

By (Embrechts and Goldie, 1980, COROLLARY of Theorem 3), P (|Se| > z) is regularly varying
with index —v = —f < —1 as z — 00. So by Potter’s bound , when z > yjo,

Bi(z) < cla;].

So holds in Case (III) as well.
e Suppose v < 1.
Start as the case v > 1 until the step before . Note that now may not be applicable

since Ele| is possibly infinite. Instead, applying |u — v| < |u| + |v|, we bound the last two lines

above by

Ei(2) 4+ Fi(z) :=

clailz™ TR [[el ]S JaieS| < 2, |S] < 2| + dlaifE [l laieS| < 2, |S] > 2], (45)

where we fix § € (0,v) to be specified later.
By Lemma Potter’s bound and the fact sup;>¢ |a;| < oo, with fixed n € (0,v), we
have for all |s| € (0,2], ¢ > 0 and z > 0 that

E[lel; le] < z/(slail)] < e(zs™ ag|7H) "
Hence by independence and integrating out the randomness of ¢, for z > 0,
Ei(2) < c]ai]”z*””*"E [\S\”*‘H”; |S] < z} . (46)
On the other hand, by independence, Lemma and Potter’s bound , we have for z > 0,
Fi(2) < clailEllel; |e] < lail "B(S] > 2) < cla B(S]| > 2). (47)
Case (I).
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Now v < (. In this case, choose n € (4, v) but sufficiently close to §, so that v +n— 3§ < .
Then E|S|¥+779 < co. The bound simplifies to

Ei(2) < cla;["z7v o,

Note, on the other hand, that P(R > z) > cz7¥T0~" for z > yo due to the regular variation of
P(R > z) with index —v in and Potter’s bound since 6 —n < 0. Combining these above
with and Markov inequality P(|S| > 2) < ¢z < ¢z when z > yo > 1, we have for
zZ>Y0

Ai(2) < cla;]".
It follows from a similar argument as using Potter’s bound that for z > yq,

Bi(z) < cla;|".

Hence for z > yq,
P(R; <z | R; > z) < cla;|". (48)

The conclusion follows by noting that 6 and n can be chosen arbitrarily close to v.
Case (II).

Now g < v. Choosing again 0 < é < 1 < v, the bound in view of Lemma becomes
for z > ypo,

Ei(z) < cla;|"P(|S] > 2).

This time P(R > z) ~ cP(|S| > z) and P(|Se| > z) ~ cP(|S]| > 2) as z — oo in view of and
Breiman’s Lemma respectively. Combining these with , we can deduce the bound c|a;|" for
A;(z) when z > yg. The same bound for B;(z) follows similarly as the case v > 1. So holds.
Case (III).

For this case we work with a bound different from . Decompose the expectation in F;(z)
in into |e] <1 and |e| > 1 parts. Then drop the restriction |a;eS| < z in the part with e < 1.
Drop the restriction |S| < z and apply the inequality |e| < [e[*T'79 in the part with |¢| > 1. We
then have the bound

Ei(2) < clag|z " TIOR[S)V T |S] < 2] + clagz VT IOR[[eS| 0 (eS| < 2/|adl].

Both P(|S| > z) and P(|eS| > z) (Embrechts and Goldie| (1980)) are regularly varying with index
—v=—-0>-v—1+4+0§as 2z — c0. So by Lemma and Potter’s bound , with a fixed
n € (0,4), we have for any z > yo that
Ei(2) < cai|P(|S| > 2) + cas|° "V P(|eS| > z/|as])
< cla;|P(|S| > z) + clai|P(|eS| > z). (49)
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We have also P(|S]| > 2)P(|e| > 1) < P(|Se| > 2), and P(R > z) > P(|S¢| > z) as in (42), both
of which hold for all z > 0. Combining these with and (choose 1 € (0, min(d,v))), the
bound c|a;|" holds for both A;(z) and B;(z) when z > yg. Hence for z > yjo,

P(R; <z | R; > z) < cla;|".
The conclusion follows since § and 7 can be chosen arbitrarily close to v. O

Corollary 4.4. Suppose the assumptions of Theorem[{.3 holds. Then the conclusion of Corollary
continues to hold for the stochastic volatility extension .

Remark 4.5. Remark on the possibility of relaxing the restriction also applies to the
stochastic volatility type model (R;).

Remark 4.6. The causal representation covers a wide class of nonlinear time series mod-
els beyond the stochastic volatility type models considered in this section, including GARCH,
autoregression with random coefficients, nonlinear autoregression, bilinear models, etc. See, for
instance, Section 3 of Liu and Lin (2009). The verification of the TAS condition for these models

requires nontrivial extensions and is left for future works.

5 The Max-Linear Extension: A Revisit

In this section, we revisit the max-linear extension that replaces the additive structure in by
its maximal counterpart. Davis and Resnick (1989) presented a max-ARMA process that extends
the usual additive ARMA process to its extreme-value counterpart. Hall et al.| (2002)) considered
the class of infinite-order moving-maximum processes, and showed that they are dense in the class
of stationary processes whose finite-dimensional distributions are extreme-value of a given type.
As commented in Zhang (2021b), the additive structure in traditional time series models cannot
describe the extremal clusters and tail dependence satisfactorily in many applications, and it
seems desirable to consider their non-additive extensions such as the max-linear process. |Zhang
(2021a) studied the implication of the TAS, condition on the moving-maximum process of Hall
et al.| (2002)) when the innovation distribution is Fréchet, and we shall here extend their results
to the case when the innovations are from a general non-negative regularly varying distribution.

In particular, let (¢;);cz be i.i.d. non-negative random variables with regularly varying tail:

Pleg > x) = 2~ "4(x) (50)
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for some function ¢ slowly varying at +oo and v > 0. Let {a;};>0 be non-negative coefficients

such that
o0
Z aj < oo, (51)
=0

for some v/ € (0,v). Then as shown in Hsing| (1986)), the moving-maximum process

o
XZ' = \/ Aj€i—j (52)
=0
is a.s. finite and
P(Xo >
lim ——2~ "/ 7) Za (53)

$—>OO]P)€0>.T

Following Section [2 let € be an i.i.d. copy of € whlch is independent of (¢;). Define X' as
X; except that € is replaced by ¢;. Introduce

[e.9]

Yz‘ = \/ ajei_j.

J20, j#i
Then X; = Y; V (ae0) and X = Y; V (a;€)). So by and Potter’s bound , there exists
1o > 0 which does not depend on i, such that for z > yy,
P(Y; < 2)P(aefy < 2)P(ajeq > 2z) _ Plajeg > 2)
P(Xo > 2) P(Xy > 2)
< cal, (54)

— (2

P(X; <z|X;>z2) =

<

where 17 > 0 can be fixed arbitrarily close to v. Hence we have proved the following.

Corollary 5.1. TAS, condition holds for the moving-maximum process (52| if Zz>0 ?/q

oo for somen € (0,v).

Remark 5.2. It is possible to slightly improve for certain slowly varying function (x) in
(50). For example in|Zhang (2021a), the bound (| can be strengthened to ca for Fréchet dis-

v/q

tribution which leads to the sufficient condition Zz>0 a;'" < oo for TAS,. Similar improvements

can also be considered for Theorems[3.9 and[{.3. We do not pursue such a refinement here since

it does not lead to a substantial statistical consequence.

6 Extensions via Monotone Transforms

Recall a process X = (X;) given by satisfies the TAS, condition if limyz, @%) < oo (cf.
(4)). Under the TAS, condition, there exists a real

=inf{y <Ux : OFY) < oo} < Ux.
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Note that @7%) < oo for any y > zj. The following proposition provides sufficient conditions for

TAS, to carry over through monotonic transforms.

Proposition 6.1. Suppose a stationary process X = (X;) is given by the model , whose
marginal distribution has lower and upper end points Lx = sup{x € R: P(Xy > z) = 0} and
Ux =inf{z e R: P(Xo < z) = 1} respectively. Suppose X satisfies the TAS, condition, ¢ > 0.

Let K : [Lx,Ux] — [—00,00] be a non-decreasing function. Suppose the transformed station-
ary process Y = (Y;) = (K(X;)) has marginal upper end point Uy satisfying Uy = K(Ux ). Then
Y satisfies the TAS, condition under either of the following conditions:

(a) The function K is strictly increasing on (xo,Ux] for some xo < Ux;

(b) We have z1 := inf{z € [Lx,Ux] : K(x) = Uy} > x7, and there exists o < w1 such that
P(Xo=2x) =0 for all z € (x0,21).

Remark 6.2. Condition (a) says K is ultimately strictly increasing. In Condition (b), note that
Ty = Ux if K(z) <Uy for all ¥ < Ux, under which x1 > z always holds if X satisfies TAS,.
The second assumption in Condition (b) imposes ultimate continuity of the marginal distribution
Xo.

The assumption Uy = K (Ux) is made without loss of generality. In general, it is possible that
K(Ux) > Uy. But since P(Yy > Uy) = 0, one may modify the definition of K by a truncation
as Klig<yyy + Uy g,y without changing Y almost surely.

In the case where K is only defined on the open interval (Lx,Ux) (similarly for other half-
open-type intervals), one may without loss of generality extend the domain of K to [Lx,Ux] by
setting K(Lx) = limy 2, K(x) and K(Ux) = limy, K(x).

Proof of Proposition[6.1. We follow the notation in Section

(a) Let K~! denote the inverse of K when the latter is restricted to (zo,Ux]. With K (xo,Ux] de-
noting the image of (zg,Ux] under K, observe that inf K (zo,Ux]| < Uy. So with inf K (zo,Ux] <
y < Uy, one has

supP(K(X)) < 2| K(X;) > 2) < sup  P(X; < K7'(2) | Xi > K~\(2))

z>y z€K (z0,Ux]|
< swp o P(XS <ul Xi>u) =070, ).
u>K~—1(z0) 0

The conclusion follows if, without loss of generality, xg is chosen sufficently close to Ux so that
K (xo) > .
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(b) For z € [Ly,Uy], we define I, = {z € [Lx,Ux]: K(z) < z} and J, = {z € [Lx,Ux] :
K(z) > z}, both of which are intervals due to the monotonicity of K. Set b(z) = sup I, = inf J,
which is non-decreasing in z. Assume without loss of generality zo € (zj, 1)

We claim that as z T Uy, we have b(z) 1 z1. Indeed, otherwise, there exists x| < z1 such
that b(z) < z} for any z < Uy. Hence K(z) < Uy implies < 2/, which contradicts with the
definition of 7.

Now with the claim above, we can choose y < Uy sufficiently close to Uy so that z1 > b(y) >
xo > xy. Then applying the assumptions, we have

supP(K(X]) <z | K(X;)>z)=supP(X; €I, | X; € J,) =supP(X; <b(z) | X; > b(2))

2>y 2>y z22y

< sup P(XT <ulXi>w),
u>b(y)

and the conclusion follows.

Example 6.3. Consider a linear process (X;) as in , which satisfies the TAS, condition, ¢ > 0
(cf. Corollary and Remark . Based on the assumptions made, the marginal distribution
of Xo is typically continuous (cf. the Proof of Lemma , and we shall assume so.

To model integer-valued tail-dependent data, one may consider (Y;) = (K(X;)) = (|Xi]),
where K(x) = | x| is the floor function (i.e., greatest integer not exceeding x). Based on Propo-
sition in particular, applying Condition (b) (note that 1 = Ux = oo in this case), the
integer-valued process (Y;) also satisfies TAS,,.

The same consideration applies to the stochastic volatility extension in Section [J] and the

max-linear process in Section [3

7 Application: Limit Theorems in Statistical Context

In this section, we provide implications of the developed results on some limit theorems of tail

quantities with statistical motivations.

7.1 High Quantile Regression

We first consider the high quantile regression problem studied in |Zhang| (2021al). Suppose we

observe the n-th row of a triangular array which consists of response variables Uy ,,...,Uy, € R
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associated with a set of explanatory variables Wi ,,..., W, , € RP according to the quantile

regression model (Koenker and Bassett), [1978)
Ui,n = W'L:rnﬁn + Xi,nv

where T denotes the transpose, 3, € RP is the regression coefficient for the (1 — ay)-th quantile,
and X;,, = Uin — W}, Bn is the auxiliary variable satisfying P(Xi, < 0) = P(Us,, < W;|,8,) =

1—ay,. The quantile regression coefficient 3,, can then be estimated by the high quantile regression

estimator

n
B = argminz A1—an Uim — WZ-,Tnn), (55)
ner? Ty

where ¢1_q, (u) = (1 — ap)ut + a,(—u)™ is the check function with v+ = max(u,0). Compared
with the traditional quantile regression (Koenker and Bassett, 1978, Koenker, [2005), the high
quantile regression in requires the quantile level 1 — o, to approach the unit as the sample
size increases to capture the tail phenomena. Assuming that the auxiliary process (X;,) € TAS,
(a triangular array variant), under some mild conditions on the smoothness of the marginal
distribution and the design matrix, Zhang] (2021a)) obtained the consistency and the central limit
theorem for the high quantile regression estimator ; see Theorems 1 and 2 of Zhang (2021a).

In many applications, one is interested in estimating a high quantile of a given stationary tail
dependent time series, which relates to the situation when W;, = 1. In this case, one observes a
stationary time series (U; ) = (U;) whose marginal distribution is denoted by F'(u) = P(U; < u),
and can still be used to obtain an estimator for the (1 — a,)-th quantile 3,. We make the

following assumption.

(Q) There exists an a € (0,1) such that F(-) is continuously differentiable with uniformly
bounded and strictly positive derivative f(-) in its upper tail {F~1(1 — ), F~1(1)} with
|F~Y(1) = F71(1 - a)| > 0.

Assumption (Q) mostly concerns the smoothness of the underlying distribution F'(-) in the tail
part and is satisfied by many commonly used distributions. Let X;,, = U; — 3, be the associated
auxiliary variable, the following theorem provides the consistency and central limit theorem of
f3n, which follows from Theorems 1 and 2 of Zhang| (2021a)), with some of the conditions simplified

for the current intercept case.

Theorem 7.1 (Zhang, 2021a). Assume (Q), (U;) € TAS2, ay, — 0 and nay, — co. If
fn(0)

_ 1/2
Uy, = (nawy,) T F (0 “F.0) — 00
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and

fn(¢;177) — fn(o)

max su =0
1<i<n \17|§pc fn(O)

for any ¢ < oo, then

~

/Bn - /Bn = Op(lﬁﬁl)
If in addition the limit
pr. = lim cor(lix, >0y 1{x,,,>0})

exists for each k € Z and ) ;. ., px > 0, then

@Z}n(Bn - Bn) - N <07 Zpk) .

keZ
Assumptions concerning F'(-) and f(-) in the above theorem can be verified for a number of
distribution functions, including the uniform, exponential, normal and Pareto distributions; see
for example the discussions in [Zhang| (2021a)). We shall in the following provide a discussion on
the tail adversarial stability condition that (U;) € TASs.
For the linear process () with SvS innovations, v € (0,2), by the discussion in Section
one can show that the TASy condition needed for high quantile regression inference as in [Zhang

(2021al) is satisfied if the coefficients
a; ~ ci_c, 1 — 00,

for some ¢ > max(2,2/v). For more general linear regularly varying process with index —v, v > 0,
satisfying the assumptions of Theorem [3.9, we need ¢ > max(2,1 + 2/v) under the power decay
condition for a; above. By Corollary this will continue to hold for the stochastic volatility
extension given in as well. As a comparison, (Chernozhukov| (2005)) studied high quantile
regression under the strong mixing framework of Rosenblatt| (1956]) and used an additional con-
dition to control the joint probability of nearby tail events. Such a condition can essentially be
interpreted as a negligibility condition on tail dependence, and is generally not expected to hold
for processes exhibiting nonnegligible tail dependence. Therefore, the TAS framework seems to
provide a convenient framework for studying high quantile regression of tail dependent time series

data.

7.2 Tail Autocorrelation Analysis

We in this section consider the problem of tail autocorrelation analysis, which extends the tradi-

tional autocorrelation analysis to the tail setting. For this, let x,, — oo be an extremal threshold,
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then the degree of tail dependence at lag k can be quantified by the conditional probability
P(Xi41x > x, | X1 > 2,) as proposed in [Zhang| (2005)); see also |[Linton and Whang| (2007)) when
the threshold z,, is represented using quantiles. The tail autocorrelation at lag k is then defined
as

P( X141k > on | X1 > xp) — P(X14% > x0)

T k)= ;
Tea () 1—P(X1 > zn)

which standardizes the conditional probability P(Xyr > z,, | X1 > x,,) in the form of a correla-
tion coefficient. |Zhang (2022) established the consistency and a two-phase central limit theorem of
sample tail autocorrelations under the tail adversarial stability framework, where it was assumed

that
(Z1) the underlying process (X;) € TAS, for some ¢ > 4; and
(Z2) the extremal threshold satisfies F(x,,) — 0 and nF'(z,) — oo,

with F(z,) = P(X1 > x,) being the marginal survival function. By Corollary with ¢ > 4,
condition (Z1) holds for the regularly varying linear process if

[e.9]

Z la;|* < oo

i=0
for some ¢ < min(v/4,1/4). Condition (Z2) is very mild as F'(x,) — 0 only requires the threshold
x,, to be in the tail and nF'(z,) — oo essentially requires the amount of the data in the tail goes
to infinity so that we can have the consistency without assuming any parametric assumption on
the tail.

On the other hand, Davis and Mikosch (2009) considered adopting the strong mixing frame-
work and provided a central limit theorem for sample tail autocorrelations in their Corollary 3.4
that aligns with the Phase I result of Zhang| (2022). Let F;; = 0(Xj,? < k < j) be the o-field
generated by Xj,..., X for i < j, it was assumed in Davis and Mikosch| (2009) that

(DM1) the underlying process (X;) is a-mixing and the strong mixing coefficient

ai) = sup IP(AN B) —P(A)P(B)|

k
AeFk , BeF,

satisfies
oo

nh_)rgo my Z a(i) =0

1=Tn

for some my,, r,, = oo with lim, oo m,P(|X1| > x,) = 1, my,/n — 0 and r,/m,, — 0;
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(DM2) for all w > 0,

lim lim sup m,, ZP(|XZ\ > Wy, | Xo| > wr,) = 0;

k—00 n—oo ]
i=k

and

(DM3) nay, /m, — 0 and m,, = o(n'/?), where m,, = o(n'/3) can be replaced by

mi & M1
—”Za(i)%Oand A
n

1=Tn

— 0.

We shall here verify conditions (DM1)—(DM3) for the regularly varying linear process . Davis
and Mikosch| (2009) considered the special case of a finite-order ARMA model, for which the
coefficient a; in its linear representation follows a geometric decay. In this case, the strong mixing
coefficient also follows a geometric decay, which largely simplified the verification of conditions
(DM1)—(DM3). As before, we assume that

a; ~ cifg, 1 — 00,

for some ¢ > 0. For simplicity of illustration, we also assume that the regularly varying innova-
tions in (b)) satisfies

v=1

and {(z) — 1 as ¢ — oo in @ On the other hand, obtaining a sharp estimate of the strong
mixing coefficient is highly nontrivial. The best estimate we can find in literature is Lemma 15.3.1
of Kulik and Soulier| (2020) adapted from the results of Pham and Tran| (1985)). Specifically,

assuming that the index ¢ > 3, the strong mixing coefficient has the bound
a(n) = O{n—(é—l)(l—e)/(Z—s)H}’ (56)

where € € (0,1) is a constant that can be taken arbitrarily small. Note that m, ~ 1/F(x,),
condition (DM1) is satisfied if F(x,) — 0, nF(x,) — oo, r, — 00, and

raF () 4+ r2~ D=/ =€) ) Py ) — 0. (57)

In addition, by a similar argument used in (15.3.33) of Kulik and Soulier| (2020), condition (DM2)

is satisfied if
o0

z:i|ai|< < 00

=0
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for some ¢ € (0,1). Since a; ~ ¢i~¢, there exists a compatible 7, — oo such that (DM1) and
(DM2) are satisfied if ( —1 > 1 and

2 ((—1)(1—e)/(2—¢) < —L.

By choosing € > 0 arbitrarily small, the above indicates that { > 7. In contrast, condition
(Z1) from the tail adversarial stability framework only requires that ¢ > 4. It is remarkable
that the strong mixing framework requires an additional condition (DM3), which typically leads
to more restrictive conditions on how extremal the tail can be. For example, the condition
mn = o(n'/3) in (DM3) requires that n{F(x,)}®> — oo, while in comparison condition (Z2)

from the tail adversarial stability framework only requires that nF(z,) — oco. Note that the

mn
1=rp

condition m,, = o(n'/3) in (DM3) can be replaced by its alternative (m/n) S (i) — 0 and

my 73 /n — 0, for which by and Karamata’s theorem it suffices to have

210/ (2-2) 3
n q_rn .
WPy vad TEy Y

This, together with , make it difficult to work out the actual condition as it depends on
the nontrivial interplay between how extremal the tail can be and how fast the linear coefficients
decay to zero. Since 7, F(z,) — 0 and 7“55_1)(1_6)/(2_6)_21*:'(;10”) — 0o by , it is then necessary,
though probably not sufficient, to have

n{p(xn)}67(471)(175)/(276) s 50 and n{F(mn)}1+3/{(<*l)(1*5)/(2*5)*2} ~ oo,

which is still stronger than condition (Z2) from the tail adversarial stability framework. We also
remark that the condition na,., /m, ~ nF(x,)a,., — 0 in (DM3) prevents F(z,) from going to
zero too slowly, while condition (Z2) only requires that F(z,) — 0. Therefore, in addition to
being more tractable, the tail adversarial stability framework can also lead to cleaner and weaker
conditions on not only how strong the tail dependence can be but also how extremal the tail can
be.

7.3 Tail Empirical Distribution

We in this section consider estimating the tail probability T(x,) := F(x,) = P(X; > z,) by its
empirical version
n
T(x,) = n! Z 1{Xi>mn}
i=1
when the threshold z,, — oo satisfying also E[nT(zy)] = nF (z,) — co. For simplicity we assume

T(x) ~ cx™" as & — oo, and hence the aforementioned condition becomes z,, < n'/" as n — oo
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(recall we write a,, < by, if a,, = 0(by,)). To understand the convergence rate and the associated

asymptotic distribution, it requires a limit theorem on the difference
n
T(l'n) - T($n) = n_l Z[l{Xi>x"} - T(l'n)] (58)
i=1

For this, by the proof of Theorem 2 in|Zhang| (2021a), one can show that the central limit theorem

~

n T(2n) — Tlan)} —a N(0,02)

1/2
(o) {1~ T(am}} t

as n — oo holds for some ¢ > 0 if the process (X;) € TAS; along with some other mild regularity

conditions. |Rootzén (2009) applied the S-mixing condition and obtained a weak convergence
result for the tail empirical process (introducing an additional parameter into ) which implies
the above central limit theorem; see also (Kulik and Soulier, 2020, Chapter 9). We leave a
full development of functional limit theorem for tail empirical process under the tail adversarial
stability framework as a future work, and restrict the discussion on the marginal central limit
theorem.

We shall make a comparison between the TAS framework and the S-mixing framework de-
scribed in (Kulik and Soulier, |2020, Section 9.2.3) for heavy-tailed linear processes . Assume

as before that the linear process coefficients satisfy for some ¢ > 0 that
a; ~ cz'*g, 7 — 00.

Below for simplicity, we focus only on the implications on the exponent ( and the threshold z,
and omit some additional technical assumptions involved. For the TAS framework, as in Section
for a linear process with Sv'S innovations, v € (0,2), the process is TASs if ¢ > max(2,2/v);
for the more general regularly varying linear processes satisfying the assumptions of Theorem
we need the stronger restriction ¢ > max(2,1+ 2/v). On the other hand, to establish the
central limit theorem under the S-mixing framework as described in (Kulik and Soulier] 2020,
Proposition 9.2.5), one needs the conditions denoted as R(ry, xy), B(rn, tn) and S(ry, x,), where
rn, and £, are two sequences tending to infinity such that ¢, < r, < n as n — oo. First, in view
of (Kulik and Soulier}, 2020, Section 15.3), the S-mixing condition is satisfied if ( > 2+ 1/v with
a f-mixing coefficient estimate £, = O(n'~(¢=DW=e)/(+r=¢)y — (1) as n — oo, where € > 0 can

be chosen arbitrarily small. Now the conditions R(ry,x,) and B(ry, {,) respectively require:
iV < a, <’ and el (D@ (tv=e) (59)

According to (Kulik and Soulier, 2020, Section 15.13), the condition S(7y,x,) holds when ¢ >

max(2/v,1). As a summary, the S-mixing framework minimally requires ¢ > max(2/v,2 + 1/v),
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which is more stringent than the TAS requirement for SvS innovations when v € (1/2,2), and
more stringent than the TAS requirement for general regularly varying innovations when v > 1.
The p-mixing framework also introduces a lower boundary rate for the threshold z,, which is not
present in the TAS framework: and £, < r, together imply that x, > n(1+0)/((C=1)v?),

We also consider the moving-maximum process . Assume for simplicity that the innova-

tions are v-Fréchet and again the coefficients
a; ~ cifg, 1 — 00.

In view of Section |5, the process is TASy if ( > 2/v. On the other hand, by (Kulik and Soulier),
2020, Theorems 13.4 and 13.5), the S-mixing condition holds holds if { > 3/v (more stringent
than the TAS requirement) with a beta mixing coefficient estimate 3, = O(n?>~%) = o(1) as
n — oo, and the condition S(ry, ;) mentioned above also follows. The conditions R(ry, x,) and

B(rn, £,) mentioned above respectively require
<z, <0V and w3 <y,

which as above imply a lower rate restriction for the threshold: z, > n'/(¥=2) which is not

present in the TAS case.

8 Conclusion

Although various tail dependence measures have been proposed to summarize the degree of the
underlying tail dependence, few is useful for developing limit theorems of tail dependent time
series. Because of this limitation on available tools, the existing literature to date still largely
relies on the strong mixing condition of Rosenblatt| (1956) to obtain limit theorems of tail depen-
dent time series. However, the strong mixing condition of [Rosenblatt| (1956) was not originally
developed to handle dependence in the tail, and as a result additional conditions that control
more specifically the degree of dependence in the tail are often needed together with the strong
mixing condition. Such conditions can lead to either additional restrictions on the strong mixing
coefficient that cannot be easily made explicit or conditions that cannot be fully captured by the
strong mixing coefficient. In addition, the supreme over two sigma algebras makes it generally a
difficult task to derive a sharp estimate of the strong mixing coefficient. Recently, |Zhang| (20214)
proposed an alternative framework based on a new notion of tail adversarial stability, which has
been shown to be useful in obtaining nontrivial limit theorems of tail dependent time series. The

advantage over the classical strong mixing framework was illustrated in Zhang| (2021a) for the
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moving-maximum process of Hall et al| (2002)). This article studies the tail adversarial stability
for the class of regularly varying additive linear processes, which has also been adopted in mod-
eling extremal clusters and tail dependence in time series. It can be seen from our main results
in Section [3| that the tail adversarial stability condition can be translated into mild conditions
on the linear coefficients, which can be weaker than those under the strong mixing framework;
see for example the discussion in Section [7] Extensions to the stochastic volatility model and the

max-linear processes are also considered.
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