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Abstract

The notion of tail adversarial stability has been proven useful in obtaining limit theorems

for tail dependent time series. Its implication and advantage over the classical strong mixing

framework has been examined for max-linear processes, but not yet studied for additive linear

processes. In this article, we fill this gap by verifying the tail adversarial stability condition for

regularly varying additive linear processes. We in addition consider extensions of the result

to a stochastic volatility generalization and to a max-linear counterpart. We also address

the invariance of tail adversarial stability under monotone transforms. Some implications for

limit theorems in statistical context are also discussed.
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1 Introduction

Compared with the conventional notion of correlation-based dependence that mainly concerns co-

movements around the mean, tail dependence or extremal dependence refers to the dependence

in the joint extremes that mainly concerns the co-occurrence of tail events. In bivariate or

finite-dimensional distributions, the concept of tail dependence and its quantification have been

extensively explored in the literature; see for example Sibuya (1960), de Haan and Resnick (1977),

Joe (1993), Ledford and Tawn (1996), Coles et al. (1999), Embrechts et al. (2002), Draisma et al.

(2004), Poon et al. (2004), McNeil et al. (2005), Zhang (2008), Balla et al. (2014), Hoga (2018)

and references therein. In the time series setting, Leadbetter et al. (1983), Smith and Weissman

(1994) and Ferro and Segers (2003) considered the use of an extremal index to describe the degree

of tail dependence. Zhang (2005) proposed to extend the bivariate tail dependence index of Sibuya

(1960) to the time series setting, and Linton and Whang (2007) considered a variant that uses

a quantile as the tail threshold; see also the extremogram of Davis and Mikosch (2009) and Hill

(2009), the tail autocorrelation of Zhang (2022), as well as the notion of tail process in Basrak
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and Segers (2009) which characterizes the local tail dependence structure in a stationary regularly

varying time series. We also refer to a recent review paper Zhang (2021b) and monograph Kulik

and Soulier (2020) for additional discussions and references.

Although various tail dependence measures have been proposed, most of them focused on

summarizing the degree of tail dependence in observed data and few is useful for developing

limit theorems of tail dependent time series. This is similar to the correlation-based dependence

case, in which the correlation coefficient is prominent in summarizing the underlying degree of

dependence, but generally does not lead to sufficient conditions for limit theorems to be developed.

To achieve the latter, a popular approach is due to the influential work of Rosenblatt (1956) which

introduced the notion of strong mixing along with a “big block-small block” argument that have

led to the development of various limit theorems under the strong mixing condition. Although

not being originally developed for handling dependence in the tail, the strong mixing framework

has been applied to the tail setting as a major tool for developing limit theorems; see for example

Smith and Weissman (1994), Drees (2003), Ferro and Segers (2003), Chernozhukov (2005), Davis

and Mikosch (2009), Chernozhukov and Fernández-Val (2011), Davis et al. (2012), Mikosch and

Zhao (2014), Kulik and Soulier (2020), and references therein. To handle tail statistics from time

series data, however, the strong mixing condition often has to be used together with additional

anti-clustering conditions that control more specifically the degree of dependence in the tail;

see for example condition (9.67) of Chernozhukov (2005), condition (3.3) of Davis and Mikosch

(2009), Assumption 4 of Chernozhukov and Fernández-Val (2011), and condition (2.4) of Mikosch

and Zhao (2014), among others. Such conditions may lead to more restrictions on the underlying

dependence than the strong mixing condition itself.

Recently, Zhang (2021a) introduced the notion of tail adversarial stability, which provides an

alternative framework for developing asymptotic theories of analysis of tail dependent time series.

Compared with the traditional strong mixing framework that involves a supremum distance

between two sigma algebras, the tail adversarial stability framework of Zhang (2021a) relies on the

tail adversarial effect of coupled innovations expressed as a conditional probability, which is much

more tractable. It has been shown in Zhang (2021a) and Zhang (2022) that the tail adversarial

stability measure can be easily calculated for the max-linear (or say moving-maximum) processes

(see, e.g., Hsing (1986) and Hall et al. (2002)), and can lead to cleaner and weaker conditions

than the traditional strong mixing framework. Besides the max-linear process and its variants

covered in the recent review of Zhang (2021b), the additive autoregressive and moving-average

(ARMA) model with heavy-tailed innovations has also been a popular choice for modeling time

series with tail dependence. The practical meaning of tail adversarial stability for such additively
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structured processes, however, has not been addressed so far. This article aims to fill this gap by

verifying the tail adversarial stability condition for regularly varying (additive) linear processes,

or say moving-average processes. Note that the causal ARMA processes are covered due to their

moving-average representations. In particular, we develop probabilistic bounds that are uniform

across all lags at which the underlying process is decoupled (Lemma 3.4 and Corollary 3.8). Based

on these bounds, we then obtain a bound of the tail adversarial stability measure in terms of the

coefficients of the linear process (Theorem 3.9). We hence are able to verify the tail adversarial

stability condition under relatively mild assumptions (Corollary 3.10). Parallel results for their

stochastic volatility extensions are presented in Theorem 4.3 and Corollary 4.4. We also revisit

the the class of max-linear processes, which extends the additive linear process to its maximal

counterpart.

The remaining of the article is organized as follows. Section 2 reviews the tail adversarial

stability measure. Section 3 provides an explicit calculation of the tail adversarial stability

measure for regularly varying linear processes. Section 4 concerns an extension to stochastic

volatility type models that are driven by regularly varying linear processes. Section 5 revisits the

max-linear process when the innovations are general regularly varying random variables. Section

6 addresses the invariance of tail adversarial stability under monotone transforms. Section 7

discusses some implications of our results in statistical context. Section 8 concludes the paper.

2 Tail Adversarial Stability

The notion of tail adversarial stability is formulated for a stationary process X = (Xi) of the

following form

Xi = g(ei, ei−1, . . . , e1, e0, e−1, . . .), i = 0, 1, 2, . . . , (1)

where g is a measurable function, (ej)j∈Z is a sequence of independent and identically distributed

(i.i.d.) random variables, or more generally, random elements such as random vectors. The

framework (1) covers a wide range of common linear and nonlinear time series models. Let e∗0 be

an innovation that has the same distribution as e0 but independent of (ej)j∈Z. Then

X∗
i = g(ei, ei−1, . . . , e1, e

∗
0, e−1, . . .), i ≥ 0

represents the coupled observation at time i whose innovation at time zero is replaced by an

i.i.d. copy. The difference between Xi and the coupled version X∗
i , measured through, e.g., the

Lp norm ∥Xi − X∗
i ∥p, leads to the physical or functional dependence measure formulated by

Wu (2005). It has since been applied extensively for establishing various asymptotic results for
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analysis of dependent data; see for example Wu (2005), Wu (2007), Liu and Wu (2010), Zhou

and Wu (2010), Zhang and Wu (2011), Zhang (2013), and Zhang (2015), among others.

Let UX = inf{x ∈ R : P(X0 ≤ x) = 1} ∈ (−∞,+∞] be the upper end point of the marginal

distribution of X0. Now the tail adversarial stability (TAS) measure, first introduced in Zhang

(2021a) (although in a triangular array setting), is given by

θy(i) = θ(X)
y (i) = sup

z≥y
P(X∗

i ≤ z | Xi > z), y < UX , (2)

which quantifies the adversarial effect of a perturbation of the innovation e0 has on whether the

observed data at time i is an upper-tail observation. Note that if Xi does not depend on e0, then

X∗
i = Xi and θy(i) = 0, meaning that e0 will not have any tail adversarial effect on Xi. Let

Θy,q = Θ(X)
y,q =

∞∑
i=0

{θy(i)}1/q, q > 0, (3)

which measures the cumulative tail adversarial effect of e0 on all future observations. Then the

process (Xi) is said to be tail adversarial q-stable or (Xi) ∈ TASq, if

lim
y↑UX

Θy,q <∞. (4)

Zhang (2021a) obtained the consistency and central limit theorem for high quantile regression

estimators when the underlying process is TAS2. Zhang (2022) established the consistency and

central limit theorem for sample tail autocorrelations when (Xi) ∈ TASq for some q > 4. We

anticipate that more statistical theories for analysis of tail-dependent time series can be developed

under the TAS framework.

In this article, we shall mostly consider the case where P(X0 > z) > 0 for all z > 0, that is,

the distribution of Xi is unbounded on the positive side so that UX = ∞, for which it suffices to

consider y > 0 in (2).

3 Regularly Varying Linear Processes

3.1 Basic Setup

Let (aj)j≥0 be a sequence of real coefficients, we consider the additive linear process

Xi =
∞∑
j=0

ajϵi−j , i ∈ Z, (5)

where (ϵj)j∈Z is a sequence of i.i.d. innovation random variables. It is also known as a (possibly

infinite-order) moving-average process, which includes finite-order ARMA processes as special
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cases due to their moving-average representations. The process (5) is covered by the form in

(1) when we set the function g to be linear which is measurable (see, e.g., Samorodnitsky (2016,

Example 2.1.9)), and the random elements ei = ϵi, i ∈ Z.
We assume that |ϵ0| is regularly varying with index −ν, that is,

P(|ϵ0| > x) = x−νℓ(x), (6)

where the function ℓ(·) is slowly varying at ∞, namely, ℓ(·) is a positive function such that

limz→∞ ℓ(λz)/ℓ(z) = 1 for any λ > 0. See Bingham et al. (1989) for more details about regularly

and slowly varying functions. In addition, we assume that the distribution of ϵ0 satisfies a tail

balance condition:

lim
x→∞

P(ϵ0 > x)

P(|ϵ0| > x)
= p (7)

for some p ∈ [0, 1]. This is equivalent to assuming that limx→∞ P(ϵ0 < −x)/P(|ϵ0| > x) = 1− p.

A distribution of ϵ0 satisfying both (6) and (7) is often known as being balanced regularly varying,

where p is the tail balance parameter. Note that if ϵ0 comes from a positive distribution such as

the Fréchet distribution, then for any x > 0, P(ϵ0 > x) = P(|ϵ0| > x) and hence it has p = 1.

On the other hand, for the coefficient sequence (aj) in (5), we assume that for some ε > 0,

∞∑
j=0

|aj |
ν

ν+2
−ε <∞. (8)

Since the exponent ν
ν+2 − ε < min(1, ν), the random series in (5) converges almost surely and

hence the resulting linear process is well defined; see for example Samorodnitsky (2016, Corollary

4.2.12). It is worth noting that as ν → ∞ and ε→ 0, the condition (8) approaches
∑∞

j=0 |aj | <∞,

a well-known condition of short memory for linear processes. The condition (8) is imposed for

establishing Lemma 3.4, an important uniform estimate for verifying the TAS condition for

general regularly varying linear processes. On the other hand, we shall mention in Remark 3.7

below that when (ϵj) are ν-stable innovations (here ν ∈ (0, 2)), the restriction (8) can be relaxed.

We also assume without loss of generality that aj ̸= 0 for infinitely many j ≥ 1. The case when

aj ̸= 0 for finitely many j ≥ 1 degenerates to an m-dependent process, for which Θy,q ≤ m + 1

and the process trivially belongs to TASq for any q > 0.

Given the assumptions made above, it is known (e.g., Samorodnitsky (2016, Corollary 4.2.12))

that each Xi is also balanced regularly varying with index −ν and

lim
x→∞

P(X0 > x)

P(|ϵ0| > x)
=
∑
j≥0

{
p(aj)

ν
+ + (1− p)(aj)

ν
−
}

(9)
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as x→ ∞, where (·)+ and (·)− stand for positive and negative part respectively.

We make an additional mild assumption: the density fϵ of ϵ0 exists and satisfies for any

δ ∈ (0, ν + 1), there exists a constant c0 > 0, such that

fϵ(x) ≤ c0min(1, |x|−ν−1+δ). (10)

Remark 3.1. In view of Karamata’s Theorem (Bingham et al. (1989, Proposition 1.5.8)) and

Potter’s bound (Bingham et al. (1989, Theorem 1.5.6)), all the assumptions made so far on ϵ0

are satisfied if fϵ is bounded, and either both fϵ(x) and fϵ(−x) are regularly varying with index

−ν − 1 as x → ∞ with limx→∞ fϵ(x)/fϵ(−x) existent and positive, or fϵ(x) is regularly varying

with index −ν − 1 on one side and is of smaller order on the other side (which corresponds

to p = 0 or 1 in (7)). These conditions cover a broad family of power-law distributions such

as Pareto, Fréchet, Student-t, F-distributions (with the numerator degree of freedom ≥ 1) and

non-Gaussian stable distributions (including Cauchy).

3.2 Preparations

Throughout the article we use c to denote a generic positive constant whose value may change

from one expression to another. In this section, we collect some important auxiliary results we

need for the rest of the article.

The following lemma collects some variants of the Potter’s bound useful for handling regularly

varying tails. Recall a random variable Z ≥ 0 is said to be regularly varying with index −ν, ν > 0,

if limz→∞ P(Z > λz)/P(Z > z) = λ−ν for any λ > 0.

Lemma 3.2. Suppose random variable Z ≥ 0 is regularly varying with index −ν, ν > 0. Given

any fixed ε > 0 (and in addition ε < ν for (11) below), z0 > 0 and x0 > 0, there exists a constant

c > 0, such that

P(Z > z) ≤ cz−ν+ε, z > 0, (11)

P(Z > z) ≥ cz−ν−ε, z > z0, (12)

and
P(xZ > z)

P(Z > z)
≤ cxν−ε, z > z0, x ∈ [0, x0]. (13)

Proof. The lemma follows readily from Kulik and Soulier (2020, Propositions 1.4.1 and 1.4.2).

We also need the following fact on the (truncated) moments of regularly varying random

variables. Below and throughout, we write E[Z;A] = E[Z1A] for random variable Z, event A

and indicator 1A.
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Lemma 3.3. Suppose random variable Z ≥ 0 is regularly varying with index −ν, ν > 0. If

β ∈ (0, ν), then E[Zβ] <∞; if β > ν, then

lim
z→∞

E[Zβ;Z ≤ z]

zβP(Z > z)
=

ν

β − ν
> 0;

In addition,

lim
z→∞

E[Zν ;Z ≤ z]

zν+εP(Z > z)
= 0

for any ε > 0.

Proof. The first two claims directly follows from Kulik and Soulier (2020, Proposition 1.4.6). By

Kulik and Soulier (2020, Proposition 1.4.6) again, E[Zν ;Z ≤ z] is slowly varying as z → ∞,

and so is zνP(Z > z). Hence the last conclusion follows from Bingham et al. (1989, Proposition

1.3.6).

Following Section 2, let ϵ∗0 be a random variable with the same distribution as ϵ0 but inde-

pendent of (ϵj)j∈Z. Then the coupled version of Xi is

X∗
i = Xi − aiϵ0 + aiϵ

∗
0 = a0ϵi + · · ·+ ai−1ϵ1 + aiϵ

∗
0 + ai+1ϵ−1 + · · · (14)

Introduce

Yi = Xi − aiϵ0 =
∑

j≥0, j ̸=i

ajϵi−j . (15)

and hence

Xi = Yi + aiϵ0, X∗
i = Yi + aiϵ

∗
0.

Below we develop a uniform estimate for the densities of {Yi} which will be the key for estab-

lishing the main results. The condition (8) plays an important role in an infinite-order induction

argument.

Lemma 3.4. Fix any δ ∈ (0, ν + 1). Suppose that aj ̸= 0 for infinitely many j ≥ 0. Under the

assumptions (6), (7), (8) and (10). The density fi of each Yi, i ≥ 0, exists, and we have for all

x ∈ R and i ≥ 0,

fi(x) ≤ cmin(1, |x|−ν−1+δ) (16)

for some positive constant c > 0 that does not depend on i or x.

Remark 3.5. Observe that (16) is equivalent to imposing both the uniform boundedness supi supx fi(x) <

∞ and the uniform power decay supi fi(x) = O(|x|−ν−1+δ) as |x| → ∞ for any δ ∈ (0, ν + 1).
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Proof of Lemma 3.4. We shall assume that aj ̸= 0 for every j ≥ 0. Otherwise, if ai = 0, i ≥ 0,

then Yi = Xi with fi being the marginal density of X0. The proof below with a slight modification

readily covers this case. We also assume that |aj | < 1. Otherwise, apply a proper scaling.

We first prove the existence and the uniform boundedness of fi. Suppose first i ≥ 1. Use Pi,1

to denote the distribution of Zi :=
∑

j≥1,j ̸=i ajϵi−j . In view of Fubini’s theorem, the density of

Yi = a0ϵi + Zi exists and can be identified with the convolution

fi(x) :=

∫
R
|a0|−1fϵ(a

−1
0 (x− y))Pi,1(dy).

Hence by (10), writing ∥g∥∞ = supx∈R |g(x)| for a function g, we have for i ≥ 1,

∥fi∥∞ ≤
∫

|a0|−1∥fϵ∥∞Pi,1(dy) = |a0|−1∥fϵ∥∞ ≤ |a0|−1c0 <∞.

The existence and boundedness for f0 can be obtained similarly by replacing the role of a0ϵi by

a1ϵi−1 in the argument above. Hence the uniform boundedness required in (16) follows.

Now we turn to the uniform power decay in (16). Recall δ in (10) can be specified arbitrarily

small. Since min(1, |x|−ν−1+δ) is non-decreasing with respect to δ ∈ (0, ν+1), it suffices to prove

(16) for any sufficiently (to be specified later) small δ ∈ (0, ν). We only prove the uniform power

decay on the positive side x > 0, and the case x < 0 follows similarly. Set

hκ(x) = cmin(1, |x|−κ), κ := ν + 1− δ > 1,

where c > 0 is a constant such that (see (10))

fϵ(x) ≤ hκ(x). (17)

Now for a function g ≥ 0, we define

Mκg = sup
t>0

tκg(t).

To prove the uniform power decay in (16) on the positive side, it suffices to show

sup
i≥0

Mκfi <∞. (18)

Suppose first i ≥ 2.

Below we apply an infinite-order induction argument similar to the proof of Barbe and Mc-

Cormick (2009, Lemma 6.6.3). For a fixed constant ρ > 0 to be specified later, let

dj = |aj |ρ ∈ (0, 1) , j ≥ 1.
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Let gi,n be the density of
∑

0≤j≤n,j ̸=i ajϵi−j , n ≥ 0, the truncated approximation of Yi. Note that

gi,0(·) = |a0|−1fϵ(a
−1
0 ·) since we have supposed i ≥ 2.

If n ̸= i and n ≥ 1, we decompose the convolution gi,n = gi,n−1 ∗
(
|an|−1fϵ(a

−1
n ·)

)
as

gi,n(x) =

∫ dnx

−∞
gi,n−1(x− y)|an|−1fϵ(a

−1
n y)dy +

∫ (1−dn)x

−∞
gi,n−1(y)|an|−1fϵ(a

−1
n (x− y))dy. (19)

Note that

sup
y<dnx

gi,n−1(x− y) ≤

(
sup

t>(1−dn)x
t−κ

)(
sup

t>(1−dn)x
tκgi,n−1(t)

)
≤ (1− dn)

−κx−κMκgi,n−1.

Therefore, since
∫
R |an|−1fϵ(a

−1
n y)dy = 1, we have for all x > 0 that∫ dnx

−∞
gi,n−1(x− y)|an|−1fϵ(a

−1
n y)dy ≤ (1− dn)

−κx−κMκgi,n−1.

On the other hand, by the bound (17) and the symmetry of hκ, we have supy<(1−dn)x fϵ(a
−1
n (x−

y)) ≤ supy<(1−dn)x hκ(|an|
−1(x−y)) ≤ c0(|an|−1dnx)

−κ. Hence using
∫
R gi,n−1(y)dy = 1, we have

for all x > 0 that ∫ (1−dn)x

−∞
gi,n−1(y)|an|−1fϵ(a

−1
n (x− y))dy ≤ c|an|κ−1d−κ

n x−κ.

Applying the two displayed bounds above to (19), we conclude that

Mκgi,n ≤ (1− dn)
−κMκgi,n−1 + c|an|κ−1d−κ

n . (20)

If n = i ≥ 2, then gi,n = gi,n−1, and the bound above trivially follows from monotonicity.

Define for 1 ≤ j + 1 ≤ n that

Bj,n =
∏

j+1≤ℓ≤n

(1− dℓ)
−κ.

Set also Bn,n = 1. Now by an induction based on the recursive bound (20), it can be verified

that for all n ≥ 1,

Mκgi,n ≤ B0,nMκgi,0 + c

 n∑
j=1

Bj,n|aj |κ−1d−κ
j

 .

Note that Bj,n increases as j decreases or as n increases. In view of the monotonicity, we have

Mκgi,n ≤ BMκgi,0 + cB

 ∞∑
j=1

|aj |κ−1d−κ
j

 , (21)
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where B = limnB0,n. Now set ρ = κ(1− ρ)− 1 which implies

ρ =
κ− 1

κ+ 1
=

ν − δ

ν + 2− δ
.

By assumption (8) with δ > 0 chosen sufficiently small so that ρ ≥ ν
ν+2 − ε, we have

∞∑
j=0

dj =
∞∑
j=0

|aj |ρ <∞, and
∞∑
j=1

|aj |κ−1d−κ
j =

∞∑
j=1

|aj |κ(1−ρ)−1 <∞.

Note that the summability
∑∞

j=0 dj <∞ implies B ∈ (0,∞). Recall gi,0(·) = |a0|−1fϵ(a
−1
0 ·), and

hence by (17) and (21) we have

sup
n≥1,i≥2

Mκgi,n <∞. (22)

Let Pi,2,n denote the distribution of of Zi,2,n :=
∑

2≤j≤n, j ̸=i ajϵi−j , n ≥ 2. The a.s. convergence

of Zi,2,n to Zi,2 :=
∑

j≥2, j ̸=i ajϵi−j implies the weak convergence of Pi,2,n ⇒ Pi,2 as n → ∞,

where Pi,2 is the distribution of Zi,2. On the other hand, the function gi,1 (recall i ≥ 2), as

a convolution between two bounded integrable functions |a0|−1fϵ(a
−1
0 ·) and |a1|−1fϵ(a

−1
1 ·), is

bounded and continuous (e.g., Bogachev (2007, Corollary 3.9.6)). Hence for any x ∈ R and

n ≥ 1, we have for all x > 0 that

gi,n(x) =

∫
R
gi,1(x− y)Pi,2,n(dy) →

∫
R
gi,1(x− y)Pi,2(dy) = fi(x) (23)

as n→ ∞. So combining (23) with (22), we conclude that

sup
i≥2

Mκfi <∞. (24)

By a similar argument which uses some other indices to replace the roles of i = 0, 1 above,

we can also show that Mκfi <∞ for i = 0, 1. This combined with (24) concludes (18).

Remark 3.6. It is possible to further improve the tail decay in the bound (16). Under additional

assumptions including certain smooth (regular) variation (cf., (Bingham et al., 1989, Section

1.8)) conditions on the distribution of ϵ0, the remarkable work of Barbe and McCormick (2009)

developed uniform asymptotic expansions for the marginal distribution of regularly varying linear

series. In paticular, their Theorem 2.5.1 implies a sharp uniform bound: there exists y0 > 0,

such that for all y > y0,

sup
i≥0

fi(y) ≤ c|y|−ν−1ℓ(y), i ≥ 0,

with the slowly varying ℓ(y) as in (6). On the other hand, the slightly weaker tail bound in (16)

is verified under less stringent assumptions compared to Barbe and McCormick (2009), which

suffices for our purposes.
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Remark 3.7. The summability assumption (8) is imposed for establishing the uniform power de-

cay estimate in (16). On the other hand, the restriction (8) is likely only an artifact of the current

proof. Indeed, consider the case where the innovations (ϵi) are standard symmetric ν-stable (SνS),

ν ∈ (0, 2), specified by the characteristic function E[eiθϵ0 ] = e−|θ|ν . See, e.g., Nolan (2020) for

more details. This special case satisfies the balanced regularly variation assumptions (6) and (7).

In this case, for the linear process (5) to be well-defined, it suffices to assume
∑∞

i=0 |ai|ν∧1 < ∞
(e.g., Kokoszka and Taqqu (1995)). In addition, it follows from the sum-stability property of SνS

distributions that Yi
d
=
(∑

j≥0,j ̸=i |ai|ν
)1/ν

ϵ0, where infi≥0

(∑
j≥0,j ̸=i |ai|ν

)1/ν
> 0. This implies

a uniform bound

fi(y) ≤ cmin(1, |y|−ν−1)

for all i ≥ 0 (cf., e.g., Sections 1.4 and 1.5 of Nolan (2020)). The discussion above is generalizable

to non-symmetric stable distributions which for simplicity is omitted.

Corollary 3.8. Fix any δ ∈ (0, ν + 1). Under the same assumptions as Lemma 3.4, for all

−|z|/2 ≤ v ≤ u ≤ |z|/2, z ∈ R and i ≥ 0, we have

P(Yi ∈ [z − u, z − v]) ≤ c(u− v)min
(
1, |z|−ν−1+δ

)
.

for some constants c > 0.

Proof. Write

P(Yi ∈ [z − u, z − v]) =

∫ z−v

z−u
fi(y)dy.

By Lemma 3.4, we have the constant bound fi(y) ≤ c and the power-law bound fi(y) ≤ c|y|−ν−1+δ

for all i ≥ 0. The constant bound yields

P(Yi ∈ [z − u, z − v]) ≤ c(u− v).

The power-law bound combined with the restriction on u and v yields

P(Yi ∈ [z − u, z − v]) ≤ c

∫ z−v

z−u
|y|−ν−1+δdy ≤ c

∫ z−v

z−u
|z/2|−ν−1+δdy ≤ c|z|−ν−1+δ(u− v).

Combining the bounds concludes the proof.

3.3 Verification of TAS Condition

We shall provide an explicit bound of the TAS measure (2) for the linear process (5) in Theorem

3.9 below. The bound enables an immediate verification of TASq in Corollary 3.10 below.

Below is the main result.
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Theorem 3.9. Suppose (Xi) is a linear process as in (5) with i.i.d. innovations (ϵi) satisfying

(6), (7) and (10). Assume the coefficients ai ̸= 0 for infinitely many j ≥ 0, the summability

condition (8) holds, and the right-hand side of (9) is nonzero. Fix an arbitrary η ∈ (0, ν) when

ν ≤ 1. There exist constants c > 0 and y0 > 0, such that for all y > y0 and i ≥ 0, the TAS

measure θy(i) in (2) satisfies

θy(i) ≤

c|ai|, ν > 1,

c |ai|η , ν ≤ 1,

In fact, Theorem 3.9 follows from Theorem 4.3 below in the special case where each Si = 1

in (28). For convenience, we include a separate and more transparent proof for this special case

below.

Proof. Assume without loss of generality that every aj ̸= 0 and let z > 0. Below y0 > 0 is a

constant which does not depend on i ≥ 0, whose value may be increased if necessary each time

when mentioned. Write

P(X∗
i ≤ z | Xi > z) =

P (z − aiϵ0 < Yi ≤ z − aiϵ
∗
0)

P(Xi > z)

≤P (z − aiϵ0 < Yi ≤ z − aiϵ
∗
0, −z/2 ≤ aiϵ

∗
0 < aiϵ0 ≤ z/2)

P(X0 > z)
+
P (|aiϵ0| > z/2)

P(X0 > z)

= : Ai(z) +Bi(z).

• Suppose ν > 1.

Recall that P(X0 > z) is regularly varying with index −ν in view of (9). Hence by Potter’s

bound (12), for any chosen δ ∈ (0, 1), there exists y0 > 0 and constant c > 0 such that

P(X0 > z) ≥ cz−ν−1+δ

for all z > y0. Then by independence and Corollary 3.8 with the same δ > 0, we have for all

z > y0,

Ai(z) =

∫
−z/2≤aiv<aiu≤z/2

P (z − aiu ≤ Yi ≤ z − aiv)

P(X0 > z)
fϵ(u)fϵ(v)dudv

≤c|ai|
∫
|aiu|,|aiv|≤z/2

|u− v|fϵ(u)fϵ(v)dudv.

We can bound the integral above as∫
|aiu|,|aiv|≤z/2

|u− v|fϵ(u)fϵ(v)dudv ≤ E|ϵ0 − ϵ∗0| ≤ 2E|ϵ0|. (25)

12



Hence if ν > 1 under which E|ϵ0| <∞, we have

Ai(z) ≤ c|ai|

for z > y0. On the other hand, it follows from (9), the restriction ν > 1 and Potter’s bound (13)

that for all z > y0,

Bi(z) ≤ c|ai|.

• Suppose ν ∈ (0, 1].

By the Potter’s bound (12), for any δ chosen such that 0 < δ < η < ν, we have

P(X0 > z) ≥ cz−ν−η+δ

for for all z > y0. Then similarly as above, applying Corollary 3.8 with the same δ, we have for

z > y0 that

Ai(z) ≤ c|ai|zη−1

∫
|aiu|,|aiv|≤z/2

|u− v|fϵ(u)fϵ(v)dudv.

For all z > y0, the integral above is bounded by

2E[|ϵ0|; |ϵ0| ≤ z/(2|ai|)] ≤ c

(
z

|ai|

)1−η

. (26)

The last inequality follows from supj |aj | < ∞, Lemma 3.3 and Potter’s bound (11). Then for

z > y0,

Ai(z) ≤ c|ai|η.

On the other hand, it follows from (9) and Potter’s bound (13) that for all z > y0,

Bi(z) ≤ c
P (|aiϵ0| > z/2)

P(|ϵ0| > z)
≤ c|ai|η.

The conclusion follows.

Under the conditions of the theorem above, we have for any η ∈ (0, ν) arbitrarily close to ν,

Θy,q =
∞∑
i=0

θy(i)
1/q ≤

c
∑∞

i=0 |ai|1/q ν > 1,

c
∑∞

i=0 |ai|η/q ν ≤ 1.

Combining this with (8), we arrive at the following sufficient condition for the TASq condition.
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Corollary 3.10. Suppose the assumptions of Theorem 3.9 holds. Then TASq condition (4) holds

if for some ε > 0, ∑
i≥0

|ai|ϑ(ν,q,ε) <∞;

where

ϑ(ν, q, ε) =



1
q , when ν > 1 and ν

ν+2 >
1
q ;

ν
ν+2 − ε, when ν > 1 and ν

ν+2 ≤ 1
q ;

ν
q − ε, when ν ∈ (0, 1] and ν < q − 2;

ν
ν+2 − ε, when ν ∈ (0, 1] and ν ≥ q − 2.

Remark 3.11. As mentioned in Remark 3.7, the restriction (8) can be relaxed when the innova-

tions (ϵi) are SνS random variables, ν ∈ (0, 2). In this case, it follows a similar line of argument

as the proof of Theorem 3.9 and the properties of stable distributions that the TASq condition

holds if
∑

i≥0 |ai|ϑ(ν,q,ε) <∞ but with ϑ(ν, q, ε) in Corollary 3.10 above replaced by

ϑ(ν, q, ε) =


1
q , when ν > 1;

1/q − ε, when ν = 1;

ν
q , when ν < 1;

We conjecture that for a large class of regularly varying linear processes, the uniform estimate in

Lemma 3.4 holds under less stringent conditions than (8), and that TASq holds under conditions

close to the one mentioned above for the SνS case.

4 A Stochastic Volatility Extension

4.1 Model Setup

Consider the following model of stochastic volatility type. Let Xi =
∑∞

j=0 ajϵi−j be the linear

process with innovations ϵj balanced regularly varying with index −ν < 0, which satisfies all the

assumptions in Section 3.1. Here we allow the right-hand side of (9) to be zero (i.e., left tail of

Xi dominates instead). In particular, we have

lim
x→∞

P(X0 > x)

P(|ϵ0| > x)
= A1, lim

x→∞

P(X0 < −x)
P(|ϵ0| > x)

= A2 (27)

where A1 =
∑∞

j=0

(
p(aj)

ν
+ + (1− p)(aj)

ν
−
)
and A2 =

∑∞
j=0

(
p(aj)

ν
− + (1− p)(aj)

ν
+

)
, where either

A1 > 0 or A2 > 0 since A1 +A2 =
∑

j≥0 |aj |ν > 0.
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Let (Si) be i.i.d. random variables independent of (ϵj). Then consider the model of stochastic

volatility type:

Ri = SiXi. (28)

Note that this follows the causal process form (1) with ei := (Si, ϵi).

We introduce for notational simplicity (S,X)
d
= (S0, X0) and set R = SX. Write also

(ϵ, S)
d
= (ϵ0, S0). Below Z+ and Z− denote the positive and negative parts of random variable Z

respectively. We make the following assumption.

Assumption 4.1. Assume either of the following cases holds.

(I) (S has lighter tail than X) For some β > ν that

E|S|β <∞, (29)

and

P(A1S+ +A2S− > 0) > 0; (30)

(II) (S has heavier tail than X) S is balanced regularly varying with index −β and tail balance

parameter q := limx→∞ P(S > x)/P(|S| > x) ∈ [0, 1], where β ∈ (0, ν), and

P(qX+ + (1− q)X− > 0) > 0; (31)

(III) (S has comparable tail as X) S is balanced regularly varying with index −β and tail balance

parameter q as above, β = ν, and

if A2 = 0, q > 0; if A1 = 0, q < 1. (32)

Throughout the paper, we write ai ∼ bi if ai/bi → 1 as i→ ∞.

Remark 4.2. Under Case (I), by Breiman’s Lemma (e.g., (Kulik and Soulier, 2020, Lemma

1.4.3)) and (9) (i.e., (Samorodnitsky, 2016, Corollary 4.2.12)), one has as z → ∞ that

P(R > z) = P(S+X+ > z) + P(S−X− > z) ∼
(
A1ESν

+ +A2ESν
−
)
P(|ϵ0| > z), (33)

where A1ESν
+ + A2ESν

− > 0 under the assumption (30) and hence P(R > z) is regularly varying

with index −ν as z → ∞.

Under (II) when β < ν, since E|X|β+γ < ∞ for γ ∈ (0, ν − β) (Lemma 3.3), by Breiman’s

Lemma similarly as above, we have as z → ∞ that

P(R > z) = P(S+X+ > z) + P(S−X− > z) ∼
(
qEXβ

+ + (1− q)EXβ
−

)
P(|S| > z), (34)
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where qEXβ
++(1−q)EXβ

− > 0 under the assumption (31) and hence P(R > z) is regularly varying

with index −β as z → ∞.

Under (III) when β = ν, by (Embrechts and Goldie, 1980, COROLLARY of Theorem 3),

the tail P(|R| > z) is a regularly varying with index −ν as z → ∞. However, the same result

cannot conclude regular variation of P(R > z) = P(S+X+ > z) + P(S−X− > z) as z → ∞ in

all the possible cases. For example, when A1, A2 > 0, q = 0, while P(S+ > z) = o(P(S− > z)), it

could happen that P(S+ > z) is neither regularly varying nor of smaller order than P(X+ > z)

as z → ∞. In this case, (Embrechts and Goldie, 1980, COROLLARY of Theorem 3) is not

applicable to conclude the regular variation of P(S+X+ > z), although the regular variation of

P(S−X− > z) follows.

Note that the condition (32) excludes the special cases A2 = q = 0 or A1 = 1− q = 0. These

two cases introduce some technical difficulty to the current proof. On the other hand, these two

special cases possibly allow R− = S+X−+S−X+ to have a heavier tail than R+ = S+X++S−X−,

which is less relevant since the focus is on the right tail of R.

4.2 Verification of TAS Condition

Let R∗
i be as Ri except that e0 is replaced by an identically distributed copy e∗0 = (S∗

i , ϵ
∗
i )

independent of (ei). Define as before

θy(i) := sup
z≥y

P(R∗
i ≤ z | Ri > z) (35)

and then

Θy,q :=

∞∑
i=0

θy(i)
1/q

It turns out that the same conclusion as Theorem 3.9 holds for the stochastic volatility extension.

Theorem 4.3. Suppose (Ri) is of the form (28) with (Xi) specified as a linear process in (5)

with the coefficient ai ̸= 0 for infinitely many i ≥ 0, satisfying (6), (7), (8) and (10). Suppose

also that Assumption 4.1 holds. Fix an arbitrary η ∈ (0, ν) when ν ≤ 1. There exist constants

c > 0 and y0 > 0, such that for all large y ≥ y0 and i ≥ 0, the TAS measure θy(i) in (35) satisfies

θy(i) ≤

c|ai| ν > 1,

c |ai|η ν ≤ 1.

Proof. Assume without loss of generality Si ̸= 0 a.s. (otherwise condition on {Si ̸= 0}) and every

aj ̸= 0, j ≥ 0. Recall (S,X)
d
= (Si, Xi) and R = SX, and write PS for the distribution of S.
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Suppose z > 0. Below y0 > 0 is a constant which does not depend on i, whose value may be

increased if necessary each time when mentioned. We have

P(R∗
i ≤ z | Ri > z) =

P (z − aiSiϵ0 < SiYi ≤ z − aiSiϵ
∗
0)

P(Ri > z)

≤P (z − aiSiϵ0 < SiYi ≤ z − aiSiϵ
∗
0 , − z/2 ≤ aiSiϵ

∗
0 < aiSiϵ0 ≤ z/2)

P(R > z)
+

P (|aiSϵ| > z/2)

P(R > z)

=Ai(z) +Bi(z). (36)

• Suppose ν > 1.

For some δ ∈ (0, 1) to be chosen later, the numerator of Ai(z) above can be bounded using

Corollary 3.8 as∫
|s|∈(0,∞)

PS(ds)

∫
−z/2≤aisv<aisu≤z/2

P(sYi ∈ (z − aisu, z − aisv])fϵ(u)fϵ(v)dudv

≤
∫
|s|∈(0,z]

PS(ds)

∫
|aisv|,|aisu|≤z/2

c|ai||u− v||z/s|−ν−1+δfϵ(u)fϵ(v)dudv

+

∫
|s|∈(z,∞)

PS(ds)

∫
|aisv|,|aisu|≤z/2

c|ai||u− v|fϵ(u)fϵ(v)dudv

≤c|ai|z−ν−1+δE[|S|ν+1−δ; |S| ≤ z] + c|ai|P(|S| > z), (37)

where in the last inequality above we have applied∫
|aisu|,|aisv|≤z/2

|u− v|fϵ(u)fϵ(v)dudv ≤ E|ϵ0 − ϵ∗0| ≤ 2E|ϵ0|. (38)

We consider the Cases (I)∼(III) in Assumption 4.1 separately.

Case (I).

Suppose that δ ∈ (0, 1) is chosen sufficiently close to 1 so that ν+1−δ ∈ (0, β) (recall ν < β).

Then E|S|ν+1−δ < ∞ and hence P(|S| > z) ≤ cz−ν−1+δ by Markov inequality. Note that P(R >

z) ≥ cz−ν−1+δ when z > y0, which is a consequence of regular variation of P(R > z) ∼ cP(|ϵ| > z)

of index −ν as z → ∞ as described in (33) and Potter’s bound (12). Combining these facts to

(37) we conclude that for z > y0,

Ai(z) ≤ c|ai|.

Next, observe that P (|Sϵ| > z) ∼ E|S|νP(|ϵ| > z) as z → ∞ by Breiman’s Lemma. This implies

that for all z > 0 and i ≥ 0, we have P (|aiSϵ| > z/2) ≤ cP (|aiϵ| > z/2) for some large enough

constant c > 0. Combining this with the aforementioned fact P(R > z) ∼ cP(|ϵ| > z) as z → ∞,

we have for z > y0 that

Bi(z) ≤ c
P (|aiϵ| > z/2)

P(|ϵ| > z)
≤ c|ai|, (39)
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where in the last inequality we have applied Potter’s bound (13) and fact supj≥0 |aj | < ∞, as

well as the restriction ν > 1. So putting these together we have for all z > y0,

P(R∗
i ≤ z | Ri > z) ≤ c|ai|. (40)

Case (II).

In this case, the tail of S is regularly varying with index −β > −ν, and the choice δ ∈ (0, 1)

always ensures β < ν + 1 − δ. By Lemma 3.3, the truncated moment in the first term of (37)

satisfies for z > y0 that

E[|S|ν+1−δ; |S| ≤ z] ≤ czν+1−δP(|S| > z). (41)

By (34), we have P(R > z) ∼ cP(|S| > z) as z → ∞. Combining these facts, one has for z > y0

that

Ai(z) ≤ c|ai|.

On the other hand, by Breiman’s Lemma, P(|Sϵ| > z) ∼ E|ϵ|βP(|S| > z) as z → ∞. Hence

arguing similarly as Case (I) above, we have for z > y0,

Bi(z) ≤ c
P (|aiS| > z/2)

P(|S| > z)
≤ c|ai|,

So (40) holds in this case as well.

Case (III).

Now β = ν. We claim that there exists a constant c > 0 such that

P(R > z) ≥ cP(|Sϵ| > z) (42)

for all z > 0. We prove this below. First we consider the case both A1, A2 > 0. In view of (27),

for some small enough constant c > 0, we have P(X+ > z) ≥ cP(|ϵ| > z) and P(X− > z) ≥
cP(|ϵ| > z) for all z > 0. This by independence implies that P(S+X+ > z) ≥ cP(S+|ϵ| > z) and

P(S−X− > z) ≥ cP(S−|ϵ| > z). So

P(R > z) = P(S+X+ > z) + P(S−X− > z) ≥ cP((S+ + S−)|ϵ| > z) = cP(|Sϵ| > z).

Now consider the case A2 = 0 and q > 0. The other case where A1 = 0 and q < 1 is similar and

will be omitted. Since A2 = 0 implies A1 > 0 and q > 0, we have P(X+ > z) ≥ cP(|ϵ| > z) and

P(S+ > z) ≥ cP(|S| > z) for some small enough constant c > 0. Hence by independence, we have

P(S+X+ > z) ≥ cP(S+|ϵ| > z) and P(S+|ϵ| > z) ≥ cP(|Sϵ| > z). Therefore, for all z > 0,

P(R > z) ≥ P(S+X+ > z) ≥ cP(|Sϵ| > z).
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Hence (42) is concluded.

Now in view of (37), (41) and (42), for z > y0,

Ai(z) ≤ c|ai|
P(|S| > z)

P(|Sϵ| > z)
≤ c|ai|, (43)

where the last inequality follows from P(|Sϵ| > z) ≥ P(|ϵ| ≥ 1)P(|S| > z). In addition, again by

(42), for z > 0, we have

Bi(z) ≤ c
P (|aiSϵ| > z/2)

P (|Sϵ| > z)
. (44)

By (Embrechts and Goldie, 1980, COROLLARY of Theorem 3), P (|Sϵ| > z) is regularly varying

with index −ν = −β < −1 as z → ∞. So by Potter’s bound (13), when z > y0,

Bi(z) ≤ c|ai|.

So (40) holds in Case (III) as well.

• Suppose ν ≤ 1.

Start as the case ν > 1 until the step before (37). Note that now (38) may not be applicable

since E|ϵ| is possibly infinite. Instead, applying |u − v| ≤ |u| + |v|, we bound the last two lines

above (37) by

Ei(z) + Fi(z) :=

c|ai|z−ν−1+δE
[
|ϵ||S|ν+1−δ; |aiϵS| ≤ z, |S| ≤ z

]
+ c|ai|E [|ϵ|; |aiϵS| ≤ z, |S| > z] , (45)

where we fix δ ∈ (0, ν) to be specified later.

By Lemma 3.3, Potter’s bound (11) and the fact supj≥0 |aj | < ∞, with fixed η ∈ (0, ν), we

have for all |s| ∈ (0, z], i ≥ 0 and z > 0 that

E [|ϵ|; |ϵ| ≤ z/(s|ai|)] ≤ c(zs−1|ai|−1)1−η.

Hence by independence and integrating out the randomness of ϵ, for z > 0,

Ei(z) ≤ c|ai|ηz−ν+δ−ηE
[
|S|ν−δ+η; |S| ≤ z

]
. (46)

On the other hand, by independence, Lemma 3.3 and Potter’s bound (11), we have for z > 0,

Fi(z) ≤ c|ai|E[|ϵ|; |ϵ| ≤ |ai|−1]P(|S| > z) ≤ c|ai|ηP(|S| > z). (47)

Case (I).
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Now ν < β. In this case, choose η ∈ (δ, ν) but sufficiently close to δ, so that ν + η − δ ≤ β.

Then E|S|ν+η−δ <∞. The bound (46) simplifies to

Ei(z) ≤ c|ai|ηz−ν+δ−η.

Note, on the other hand, that P(R > z) ≥ cz−ν+δ−η for z > y0 due to the regular variation of

P(R > z) with index −ν in (33) and Potter’s bound (12) since δ− η < 0. Combining these above

with (47) and Markov inequality P(|S| > z) ≤ cz−β ≤ cz−ν+δ−η when z > y0 > 1, we have for

z > y0

Ai(z) ≤ c|ai|η.

It follows from a similar argument as (39) using Potter’s bound (13) that for z > y0,

Bi(z) ≤ c|ai|η.

Hence for z > y0,

P(R∗
i ≤ z | Ri > z) ≤ c|ai|η. (48)

The conclusion follows by noting that δ and η can be chosen arbitrarily close to ν.

Case (II).

Now β < ν. Choosing again 0 < δ < η < ν, the bound (46) in view of Lemma 3.3 becomes

for z > y0,

Ei(z) ≤ c|ai|ηP(|S| > z).

This time P(R > z) ∼ cP(|S| > z) and P(|Sϵ| > z) ∼ cP(|S| > z) as z → ∞ in view of (34) and

Breiman’s Lemma respectively. Combining these with (47), we can deduce the bound c|ai|η for

Ai(z) when z > y0. The same bound for Bi(z) follows similarly as the case ν > 1. So (48) holds.

Case (III).

For this case we work with a bound different from (46). Decompose the expectation in Ei(z)

in (45) into |ϵ| ≤ 1 and |ϵ| > 1 parts. Then drop the restriction |aiϵS| ≤ z in the part with ϵ ≤ 1.

Drop the restriction |S| ≤ z and apply the inequality |ϵ| ≤ |ϵ|ν+1−δ in the part with |ϵ| > 1. We

then have the bound

Ei(z) ≤ c|ai|z−ν−1+δE[|S|ν+1−δ; |S| ≤ z] + c|ai|z−ν−1+δE[|ϵS|ν+1−δ; |ϵS| ≤ z/|ai|].

Both P(|S| > z) and P(|ϵS| > z) (Embrechts and Goldie (1980)) are regularly varying with index

−ν = −β > −ν − 1 + δ as z → ∞. So by Lemma 3.3 and Potter’s bound (13), with a fixed

η ∈ (0, δ), we have for any z > y0 that

Ei(z) ≤ c|ai|P(|S| > z) + c|ai|δ−νP(|ϵS| > z/|ai|)

≤ c|ai|P(|S| > z) + c|ai|ηP(|ϵS| > z). (49)
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We have also P(|S| > z)P(|ϵ| ≥ 1) ≤ P(|Sϵ| > z), and P(R > z) ≥ cP(|Sϵ| > z) as in (42), both

of which hold for all z > 0. Combining these with (49) and (47) (choose η ∈ (0,min(δ, ν))), the

bound c|ai|η holds for both Ai(z) and Bi(z) when z > y0. Hence for z > y0,

P(R∗
i ≤ z | Ri > z) ≤ c|ai|η.

The conclusion follows since δ and η can be chosen arbitrarily close to ν.

Corollary 4.4. Suppose the assumptions of Theorem 4.3 holds. Then the conclusion of Corollary

3.10 continues to hold for the stochastic volatility extension (28).

Remark 4.5. Remark 3.11 on the possibility of relaxing the restriction (8) also applies to the

stochastic volatility type model (Ri).

Remark 4.6. The causal representation (1) covers a wide class of nonlinear time series mod-

els beyond the stochastic volatility type models considered in this section, including GARCH,

autoregression with random coefficients, nonlinear autoregression, bilinear models, etc. See, for

instance, Section 3 of Liu and Lin (2009). The verification of the TAS condition for these models

requires nontrivial extensions and is left for future works.

5 The Max-Linear Extension: A Revisit

In this section, we revisit the max-linear extension that replaces the additive structure in (5) by

its maximal counterpart. Davis and Resnick (1989) presented a max-ARMA process that extends

the usual additive ARMA process to its extreme-value counterpart. Hall et al. (2002) considered

the class of infinite-order moving-maximum processes, and showed that they are dense in the class

of stationary processes whose finite-dimensional distributions are extreme-value of a given type.

As commented in Zhang (2021b), the additive structure in traditional time series models cannot

describe the extremal clusters and tail dependence satisfactorily in many applications, and it

seems desirable to consider their non-additive extensions such as the max-linear process. Zhang

(2021a) studied the implication of the TASq condition on the moving-maximum process of Hall

et al. (2002) when the innovation distribution is Fréchet, and we shall here extend their results

to the case when the innovations are from a general non-negative regularly varying distribution.

In particular, let (ϵj)j∈Z be i.i.d. non-negative random variables with regularly varying tail:

P(ϵ0 > x) = x−νℓ(x) (50)

21



for some function ℓ slowly varying at +∞ and ν > 0. Let {aj}j≥0 be non-negative coefficients

such that
∞∑
j=0

aν
′

j <∞, (51)

for some ν ′ ∈ (0, ν). Then as shown in Hsing (1986), the moving-maximum process

Xi =

∞∨
j=0

ajϵi−j (52)

is a.s. finite and

lim
x→∞

P(X0 > x)

P(ϵ0 > x)
=

∞∑
j=0

aνj . (53)

Following Section 2, let ϵ∗0 be an i.i.d. copy of ϵ0 which is independent of (ϵj). Define X∗
i as

Xi except that ϵ0 is replaced by ϵ∗0. Introduce

Yi =
∞∨

j≥0, j ̸=i

ajϵi−j .

Then Xi = Yi ∨ (aiϵ0) and X∗
i = Yi ∨ (aiϵ

∗
0). So by (53) and Potter’s bound (13), there exists

y0 > 0 which does not depend on i, such that for z ≥ y0,

P(X∗
i ≤ z|Xi > z) =

P(Yi ≤ z)P(aiϵ∗0 ≤ z)P(aiϵ0 > z)

P(X0 > z)
≤ P(aiϵ0 > z)

P(X0 > z)

≤ caηi , (54)

where η > 0 can be fixed arbitrarily close to ν. Hence we have proved the following.

Corollary 5.1. TASq condition (4) holds for the moving-maximum process (52) if
∑

i≥0 a
η/q
i <

∞ for some η ∈ (0, ν).

Remark 5.2. It is possible to slightly improve (54) for certain slowly varying function ℓ(x) in

(50). For example in Zhang (2021a), the bound (54) can be strengthened to caνi for Fréchet dis-

tribution which leads to the sufficient condition
∑

i≥0 a
ν/q
i <∞ for TASq. Similar improvements

can also be considered for Theorems 3.9 and 4.3. We do not pursue such a refinement here since

it does not lead to a substantial statistical consequence.

6 Extensions via Monotone Transforms

Recall a process X = (Xi) given by (1) satisfies the TASq condition if limy↑UX
Θ

(X)
y,q < ∞ (cf.

(4)). Under the TASq condition, there exists a real

x∗q = inf{y < UX : Θ(X)
y,q <∞} < UX .
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Note that Θ
(X)
y,q <∞ for any y > x∗q . The following proposition provides sufficient conditions for

TASq to carry over through monotonic transforms.

Proposition 6.1. Suppose a stationary process X = (Xi) is given by the model (1), whose

marginal distribution has lower and upper end points LX = sup{x ∈ R : P(X0 ≥ x) = 0} and

UX = inf{x ∈ R : P(X0 ≤ x) = 1} respectively. Suppose X satisfies the TASq condition, q > 0.

Let K : [LX ,UX ] 7→ [−∞,∞] be a non-decreasing function. Suppose the transformed station-

ary process Y = (Yi) = (K(Xi)) has marginal upper end point UY satisfying UY = K(UX). Then

Y satisfies the TASq condition under either of the following conditions:

(a) The function K is strictly increasing on (x0,UX ] for some x0 < UX ;

(b) We have x1 := inf{x ∈ [LX ,UX ] : K(x) = UY } > x∗q, and there exists x0 < x1 such that

P (X0 = x) = 0 for all x ∈ (x0, x1).

Remark 6.2. Condition (a) says K is ultimately strictly increasing. In Condition (b), note that

x1 = UX if K(x) < UY for all x < UX , under which x1 > x∗q always holds if X satisfies TASq.

The second assumption in Condition (b) imposes ultimate continuity of the marginal distribution

X0.

The assumption UY = K(UX) is made without loss of generality. In general, it is possible that

K(UX) > UY . But since P (Y0 > UY ) = 0, one may modify the definition of K by a truncation

as K1{K≤UY } + UY 1{K>UY } without changing Y almost surely.

In the case where K is only defined on the open interval (LX ,UX) (similarly for other half-

open-type intervals), one may without loss of generality extend the domain of K to [LX ,UX ] by

setting K(LX) = limu↓LX
K(x) and K(UX) = limu↑UX

K(x).

Proof of Proposition 6.1. We follow the notation in Section 2.

(a) Let K−1 denote the inverse of K when the latter is restricted to (x0,UX ]. With K(x0,UX ] de-

noting the image of (x0,UX ] under K, observe that infK(x0,UX ] < UY . So with infK(x0,UX ] <

y < UY , one has

sup
z≥y

P(K(X∗
i ) ≤ z | K(Xi) > z) ≤ sup

z∈K(x0,UX ]
P(X∗

i ≤ K−1(z) | Xi > K−1(z))

≤ sup
u≥K−1(x0)

P(X∗
i ≤ u | Xi > u) = θ

(X)
K−1(x0)

(i).

The conclusion follows if, without loss of generality, x0 is chosen sufficently close to UX so that

K−1(x0) > x∗q .
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(b) For z ∈ [LY ,UY ], we define Iz = {x ∈ [LX ,UX ] : K(x) ≤ z} and Jz = {x ∈ [LX ,UX ] :

K(x) > z}, both of which are intervals due to the monotonicity of K. Set b(z) = sup Iz = inf Jz,

which is non-decreasing in z. Assume without loss of generality x0 ∈ (x∗q , x1).

We claim that as z ↑ UY , we have b(z) ↑ x1. Indeed, otherwise, there exists x′1 < x1 such

that b(z) ≤ x′1 for any z < UY . Hence K(x) < UY implies x ≤ x′1, which contradicts with the

definition of x1.

Now with the claim above, we can choose y < UY sufficiently close to UY so that x1 > b(y) >

x0 > x∗q . Then applying the assumptions, we have

sup
z≥y

P(K(X∗
i ) ≤ z | K(Xi) > z) = sup

z≥y
P(X∗

i ∈ Iz | Xi ∈ Jz) = sup
z≥y

P(X∗
i ≤ b(z) | Xi > b(z))

≤ sup
u≥b(y)

P(X∗
i ≤ u | Xi > u),

and the conclusion follows.

Example 6.3. Consider a linear process (Xi) as in (5), which satisfies the TASq condition, q > 0

(cf. Corollary 3.10 and Remark 3.11). Based on the assumptions made, the marginal distribution

of X0 is typically continuous (cf. the Proof of Lemma 3.4), and we shall assume so.

To model integer-valued tail-dependent data, one may consider (Yi) = (K(Xi)) = (⌊Xi⌋),
where K(x) = ⌊x⌋ is the floor function (i.e., greatest integer not exceeding x). Based on Propo-

sition 6.1, in particular, applying Condition (b) (note that x1 = UX = ∞ in this case), the

integer-valued process (Yi) also satisfies TASq.

The same consideration applies to the stochastic volatility extension in Section 4 and the

max-linear process in Section 5.

7 Application: Limit Theorems in Statistical Context

In this section, we provide implications of the developed results on some limit theorems of tail

quantities with statistical motivations.

7.1 High Quantile Regression

We first consider the high quantile regression problem studied in Zhang (2021a). Suppose we

observe the n-th row of a triangular array which consists of response variables U1,n, . . . , Un,n ∈ R
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associated with a set of explanatory variables W1,n, . . . ,Wn,n ∈ Rp according to the quantile

regression model (Koenker and Bassett, 1978)

Ui,n =W⊤
i,nβn +Xi,n,

where ⊤ denotes the transpose, βn ∈ Rp is the regression coefficient for the (1− αn)-th quantile,

and Xi,n = Ui,n −W⊤
i,nβn is the auxiliary variable satisfying P(Xi,n ≤ 0) = P(Ui,n ≤ W⊤

i,nβn) =

1−αn. The quantile regression coefficient βn can then be estimated by the high quantile regression

estimator

β̂n = argmin
η∈Rp

n∑
i=1

ϕ1−αn(Ui,n −W⊤
i,nη), (55)

where ϕ1−αn(u) = (1− αn)u
+ + αn(−u)+ is the check function with u+ = max(u, 0). Compared

with the traditional quantile regression (Koenker and Bassett, 1978, Koenker, 2005), the high

quantile regression in (55) requires the quantile level 1− αn to approach the unit as the sample

size increases to capture the tail phenomena. Assuming that the auxiliary process (Xi,n) ∈ TAS2

(a triangular array variant), under some mild conditions on the smoothness of the marginal

distribution and the design matrix, Zhang (2021a) obtained the consistency and the central limit

theorem for the high quantile regression estimator (55); see Theorems 1 and 2 of Zhang (2021a).

In many applications, one is interested in estimating a high quantile of a given stationary tail

dependent time series, which relates to the situation when Wi,n ≡ 1. In this case, one observes a

stationary time series (Ui,n) = (Ui) whose marginal distribution is denoted by F (u) = P(Ui ≤ u),

and (55) can still be used to obtain an estimator for the (1 − αn)-th quantile βn. We make the

following assumption.

(Q) There exists an α ∈ (0, 1) such that F (·) is continuously differentiable with uniformly

bounded and strictly positive derivative f(·) in its upper tail {F−1(1 − α), F−1(1)} with

|F−1(1)− F−1(1− α)| > 0.

Assumption (Q) mostly concerns the smoothness of the underlying distribution F (·) in the tail

part and is satisfied by many commonly used distributions. Let Xi,n = Ui−βn be the associated

auxiliary variable, the following theorem provides the consistency and central limit theorem of

β̂n, which follows from Theorems 1 and 2 of Zhang (2021a), with some of the conditions simplified

for the current intercept case.

Theorem 7.1 (Zhang, 2021a). Assume (Q), (Ui) ∈ TAS2, αn → 0 and nαn → ∞. If

ψn = (nαn)
1/2 fn(0)

1− Fn(0)
→ ∞
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and

max
1≤i≤n

sup
|η|≤c

∣∣∣∣fn(ψ−1
n η)− fn(0)

fn(0)

∣∣∣∣→ 0

for any c <∞, then

β̂n − βn = Op(ψ
−1
n ).

If in addition the limit

ρk = lim
n→∞

cor(1{X0,n>0}, 1{Xk,n>0})

exists for each k ∈ Z and
∑

k∈Z ρk > 0, then

ψn(β̂n − βn) → N

(
0,
∑
k∈Z

ρk

)
.

Assumptions concerning F (·) and f(·) in the above theorem can be verified for a number of

distribution functions, including the uniform, exponential, normal and Pareto distributions; see

for example the discussions in Zhang (2021a). We shall in the following provide a discussion on

the tail adversarial stability condition that (Ui) ∈ TAS2.

For the linear process (5) with SνS innovations, ν ∈ (0, 2), by the discussion in Section 3,

one can show that the TAS2 condition needed for high quantile regression inference as in Zhang

(2021a) is satisfied if the coefficients

ai ∼ ci−ζ , i→ ∞,

for some ζ > max(2, 2/ν). For more general linear regularly varying process with index −ν, ν > 0,

satisfying the assumptions of Theorem 3.9, we need ζ > max(2, 1 + 2/ν) under the power decay

condition for ai above. By Corollary 4.4, this will continue to hold for the stochastic volatility

extension given in (28) as well. As a comparison, Chernozhukov (2005) studied high quantile

regression under the strong mixing framework of Rosenblatt (1956) and used an additional con-

dition to control the joint probability of nearby tail events. Such a condition can essentially be

interpreted as a negligibility condition on tail dependence, and is generally not expected to hold

for processes exhibiting nonnegligible tail dependence. Therefore, the TAS framework seems to

provide a convenient framework for studying high quantile regression of tail dependent time series

data.

7.2 Tail Autocorrelation Analysis

We in this section consider the problem of tail autocorrelation analysis, which extends the tradi-

tional autocorrelation analysis to the tail setting. For this, let xn → ∞ be an extremal threshold,
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then the degree of tail dependence at lag k can be quantified by the conditional probability

P(X1+k > xn | X1 > xn) as proposed in Zhang (2005); see also Linton and Whang (2007) when

the threshold xn is represented using quantiles. The tail autocorrelation at lag k is then defined

as

τxn(k) =
P(X1+k > xn | X1 > xn)− P(X1+k > xn)

1− P(X1 > xn)
,

which standardizes the conditional probability P(X1+k > xn | X1 > xn) in the form of a correla-

tion coefficient. Zhang (2022) established the consistency and a two-phase central limit theorem of

sample tail autocorrelations under the tail adversarial stability framework, where it was assumed

that

(Z1) the underlying process (Xi) ∈ TASq for some q > 4; and

(Z2) the extremal threshold satisfies F̄ (xn) → 0 and nF̄ (xn) → ∞,

with F̄ (xn) = P(X1 > xn) being the marginal survival function. By Corollary 3.10 with q > 4,

condition (Z1) holds for the regularly varying linear process (5) if

∞∑
i=0

|ai|ι <∞

for some ι < min(ν/4, 1/4). Condition (Z2) is very mild as F̄ (xn) → 0 only requires the threshold

xn to be in the tail and nF̄ (xn) → ∞ essentially requires the amount of the data in the tail goes

to infinity so that we can have the consistency without assuming any parametric assumption on

the tail.

On the other hand, Davis and Mikosch (2009) considered adopting the strong mixing frame-

work and provided a central limit theorem for sample tail autocorrelations in their Corollary 3.4

that aligns with the Phase I result of Zhang (2022). Let Fi,j = σ(Xk, i ≤ k ≤ j) be the σ-field

generated by Xi, . . . , Xj for i ≤ j, it was assumed in Davis and Mikosch (2009) that

(DM1) the underlying process (Xi) is α-mixing and the strong mixing coefficient

α(i) = sup
A∈Fk

−∞, B∈F∞
k+i

|P(A ∩B)− P(A)P(B)|

satisfies

lim
n→∞

mn

∞∑
i=rn

α(i) = 0

for some mn, rn → ∞ with limn→∞mnP(|X1| > xn) = 1, mn/n→ 0 and rn/mn → 0;
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(DM2) for all ϖ > 0,

lim
k→∞

lim sup
n→∞

mn

rn∑
i=k

P(|Xi| > ϖxn, |X0| > ϖxn) = 0;

and

(DM3) nαrn/mn → 0 and mn = o(n1/3), where mn = o(n1/3) can be replaced by

m4
n

n

mn∑
i=rn

α(i) → 0 and
mnr

3
n

n
→ 0.

We shall here verify conditions (DM1)–(DM3) for the regularly varying linear process (5). Davis

and Mikosch (2009) considered the special case of a finite-order ARMA model, for which the

coefficient ai in its linear representation follows a geometric decay. In this case, the strong mixing

coefficient also follows a geometric decay, which largely simplified the verification of conditions

(DM1)–(DM3). As before, we assume that

ai ∼ ci−ζ , i→ ∞,

for some ζ > 0. For simplicity of illustration, we also assume that the regularly varying innova-

tions in (5) satisfies

ν = 1

and ℓ(x) → 1 as x → ∞ in (6). On the other hand, obtaining a sharp estimate of the strong

mixing coefficient is highly nontrivial. The best estimate we can find in literature is Lemma 15.3.1

of Kulik and Soulier (2020) adapted from the results of Pham and Tran (1985). Specifically,

assuming that the index ζ > 3, the strong mixing coefficient has the bound

α(n) = O{n−(ζ−1)(1−ε)/(2−ε)+1}, (56)

where ε ∈ (0, 1) is a constant that can be taken arbitrarily small. Note that mn ∼ 1/F̄ (xn),

condition (DM1) is satisfied if F̄ (xn) → 0, nF̄ (xn) → ∞, rn → ∞, and

rnF̄ (xn) + r2−(ζ−1)(1−ε)/(2−ε)
n /F̄ (xn) → 0. (57)

In addition, by a similar argument used in (15.3.33) of Kulik and Soulier (2020), condition (DM2)

is satisfied if
∞∑
i=0

i|ai|ς <∞
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for some ς ∈ (0, 1). Since ai ∼ ci−ζ , there exists a compatible rn → ∞ such that (DM1) and

(DM2) are satisfied if ζ − 1 > 1 and

2− (ζ − 1)(1− ε)/(2− ε) < −1.

By choosing ε > 0 arbitrarily small, the above indicates that ζ > 7. In contrast, condition

(Z1) from the tail adversarial stability framework only requires that ζ > 4. It is remarkable

that the strong mixing framework requires an additional condition (DM3), which typically leads

to more restrictive conditions on how extremal the tail can be. For example, the condition

mn = o(n1/3) in (DM3) requires that n{F̄ (xn)}3 → ∞, while in comparison condition (Z2)

from the tail adversarial stability framework only requires that nF̄ (xn) → ∞. Note that the

condition mn = o(n1/3) in (DM3) can be replaced by its alternative (m4
n/n)

∑mn
i=rn

α(i) → 0 and

mnr
3
n/n→ 0, for which by (56) and Karamata’s theorem it suffices to have

r
2−(ζ−1)(1−ε)/(2−ε)
n

n{F̄ (xn)}4
→ 0 and

r3n
nF̄ (xn)

→ 0.

This, together with (57), make it difficult to work out the actual condition as it depends on

the nontrivial interplay between how extremal the tail can be and how fast the linear coefficients

decay to zero. Since rnF̄ (xn) → 0 and r
(ζ−1)(1−ε)/(2−ε)−2
n F̄ (xn) → ∞ by (57), it is then necessary,

though probably not sufficient, to have

n{F̄ (xn)}6−(ζ−1)(1−ε)/(2−ε) → ∞ and n{F̄ (xn)}1+3/{(ζ−1)(1−ε)/(2−ε)−2} → ∞,

which is still stronger than condition (Z2) from the tail adversarial stability framework. We also

remark that the condition nαrn/mn ∼ nF̄ (xn)αrn → 0 in (DM3) prevents F̄ (xn) from going to

zero too slowly, while condition (Z2) only requires that F̄ (xn) → 0. Therefore, in addition to

being more tractable, the tail adversarial stability framework can also lead to cleaner and weaker

conditions on not only how strong the tail dependence can be but also how extremal the tail can

be.

7.3 Tail Empirical Distribution

We in this section consider estimating the tail probability T (xn) := F̄ (xn) = P(Xi > xn) by its

empirical version

T̂ (xn) = n−1
n∑

i=1

1{Xi>xn}

when the threshold xn → ∞ satisfying also E[nT̂ (xn)] = nF̄ (xn) → ∞. For simplicity we assume

T (x) ∼ cx−ν as x → ∞, and hence the aforementioned condition becomes xn ≪ n1/ν as n → ∞
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(recall we write an ≪ bn if an = o(bn)). To understand the convergence rate and the associated

asymptotic distribution, it requires a limit theorem on the difference

T̂ (xn)− T (xn) = n−1
n∑

i=1

[1{Xi>xn} − T (xn)]. (58)

For this, by the proof of Theorem 2 in Zhang (2021a), one can show that the central limit theorem[
n

T (xn){1− T (xn)}

]1/2
{T̂ (xn)− T (xn)} →d N(0, σ2)

as n→ ∞ holds for some σ2 > 0 if the process (Xi) ∈ TAS2 along with some other mild regularity

conditions. Rootzén (2009) applied the β-mixing condition and obtained a weak convergence

result for the tail empirical process (introducing an additional parameter into (58)) which implies

the above central limit theorem; see also (Kulik and Soulier, 2020, Chapter 9). We leave a

full development of functional limit theorem for tail empirical process under the tail adversarial

stability framework as a future work, and restrict the discussion on the marginal central limit

theorem.

We shall make a comparison between the TAS framework and the β-mixing framework de-

scribed in (Kulik and Soulier, 2020, Section 9.2.3) for heavy-tailed linear processes (5). Assume

as before that the linear process coefficients satisfy for some ζ > 0 that

ai ∼ ci−ζ , i→ ∞.

Below for simplicity, we focus only on the implications on the exponent ζ and the threshold xn

and omit some additional technical assumptions involved. For the TAS framework, as in Section

7.1, for a linear process with SνS innovations, ν ∈ (0, 2), the process is TAS2 if ζ > max(2, 2/ν);

for the more general regularly varying linear processes satisfying the assumptions of Theorem

3.9, we need the stronger restriction ζ > max(2, 1 + 2/ν). On the other hand, to establish the

central limit theorem under the β-mixing framework as described in (Kulik and Soulier, 2020,

Proposition 9.2.5), one needs the conditions denoted as R(rn, xn), β(rn, ℓn) and S(rn, xn), where
rn and ℓn are two sequences tending to infinity such that ℓn ≪ rn ≪ n as n→ ∞. First, in view

of (Kulik and Soulier, 2020, Section 15.3), the β-mixing condition is satisfied if ζ > 2 + 1/ν with

a β-mixing coefficient estimate βn = O(n1−(ζ−1)(ν−ε)/(1+ν−ε)) = o(1) as n→ ∞, where ε > 0 can

be chosen arbitrarily small. Now the conditions R(rn, xn) and β(rn, ℓn) respectively require:

r1/νn ≪ xn ≪ n1/ν and nℓ1−(ζ−1)(ν−ε)/(1+ν−ε)
n ≪ rn. (59)

According to (Kulik and Soulier, 2020, Section 15.13), the condition S(rn, xn) holds when ζ >

max(2/ν, 1). As a summary, the β-mixing framework minimally requires ζ > max(2/ν, 2 + 1/ν),

30



which is more stringent than the TAS requirement for SνS innovations when ν ∈ (1/2, 2), and

more stringent than the TAS requirement for general regularly varying innovations when ν > 1.

The β-mixing framework also introduces a lower boundary rate for the threshold xn which is not

present in the TAS framework: (59) and ℓn ≪ rn together imply that xn ≫ n(1+ν)/((ζ−1)ν2).

We also consider the moving-maximum process (52). Assume for simplicity that the innova-

tions are ν-Fréchet and again the coefficients

ai ∼ ci−ζ , i→ ∞.

In view of Section 5, the process is TAS2 if ζ > 2/ν. On the other hand, by (Kulik and Soulier,

2020, Theorems 13.4 and 13.5), the β-mixing condition holds holds if ζ > 3/ν (more stringent

than the TAS requirement) with a beta mixing coefficient estimate βn = O(n3−ζν) = o(1) as

n→ ∞, and the condition S(rn, xn) mentioned above also follows. The conditions R(rn, xn) and

β(rn, ℓn) mentioned above respectively require

r1/νn ≪ xn ≪ n1/ν and nℓ3−ζν
n ≪ rn,

which as above imply a lower rate restriction for the threshold: xn ≫ n1/(ν(ζν−2)), which is not

present in the TAS case.

8 Conclusion

Although various tail dependence measures have been proposed to summarize the degree of the

underlying tail dependence, few is useful for developing limit theorems of tail dependent time

series. Because of this limitation on available tools, the existing literature to date still largely

relies on the strong mixing condition of Rosenblatt (1956) to obtain limit theorems of tail depen-

dent time series. However, the strong mixing condition of Rosenblatt (1956) was not originally

developed to handle dependence in the tail, and as a result additional conditions that control

more specifically the degree of dependence in the tail are often needed together with the strong

mixing condition. Such conditions can lead to either additional restrictions on the strong mixing

coefficient that cannot be easily made explicit or conditions that cannot be fully captured by the

strong mixing coefficient. In addition, the supreme over two sigma algebras makes it generally a

difficult task to derive a sharp estimate of the strong mixing coefficient. Recently, Zhang (2021a)

proposed an alternative framework based on a new notion of tail adversarial stability, which has

been shown to be useful in obtaining nontrivial limit theorems of tail dependent time series. The

advantage over the classical strong mixing framework was illustrated in Zhang (2021a) for the
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moving-maximum process of Hall et al. (2002). This article studies the tail adversarial stability

for the class of regularly varying additive linear processes, which has also been adopted in mod-

eling extremal clusters and tail dependence in time series. It can be seen from our main results

in Section 3 that the tail adversarial stability condition can be translated into mild conditions

on the linear coefficients, which can be weaker than those under the strong mixing framework;

see for example the discussion in Section 7. Extensions to the stochastic volatility model and the

max-linear processes are also considered.
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