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Stress-driven recurrence and precursory 
moment-rate surge in caldera collapse 
earthquakes

Paul Segall    1  , Mark V. Matthews    2, David R. Shelly    3, Taiyi A. Wang1 & 
Kyle R. Anderson    4

Predicting the recurrence times of earthquakes and understanding the 
physical processes that immediately precede them are two outstanding 
problems in seismology. Although geodetic measurements record elastic 
strain accumulation, most faults have recurrence intervals longer than 
available measurements. Foreshocks provide the principal observations 
of processes before mainshocks, but variability between sequences limits 
generalizations of pre-failure behaviour. Here we analyse seismicity and 
deformation data for highly characteristic caldera collapse earthquakes 
from 2018 Kīlauea Volcano (Hawaii, USA), with a mean recurrence interval 
of 1.4 days. These events provide a unique test of stress-induced earthquake 
recurrence and document processes preceding mainshocks with magnitude 
greater than five. We show that recurrence intervals are well predicted by 
stress histories inferred from near-field deformation measurements and 
that cycle-averaged seismicity reveals a critical phase, minutes before 
mainshocks, where earthquakes grew larger and seismic moment rate 
surged dramatically. The average moment rate in the final 15 minutes 
(0.7% of the mean cycle duration) was 4.75 times the background, a highly 
significant change. We infer that as the average stress increased, ruptures 
were more likely to overcome geometric barriers and grow larger, leading 
to characteristic, whole-fault ruptures. These findings imply that stress 
heterogeneity influences both earthquake nucleation and growth, including 
on potentially hazardous tectonic faults.

Earthquakes occur when accumulating shear stresses reach a fault’s 
frictional strength1,2. Quantitative application to recurrence estima-
tion has been challenging because (1) characteristic ruptures3 are rare,  
(2) recurrence intervals are typically centuries or longer (for example, 
the San Andreas Fault4 and the moment magnitude MW 9 Tohoku-oki 
megathrust earthquake5), (3) geodetic observations typically span 
only a fraction of the earthquake cycle, making it challenging to infer 
strain/stress accumulation, and (4) long recurrence intervals allow 

other factors, including stress perturbations from nearby ruptures, 
to influence cycle duration.

Foreshocks provide principal observations of processes in 
focal regions before mainshocks. Seismicity rates6,7 and the relative  
frequency of larger events8,9 may increase before mainshocks.  
Earthquakes typically follow the Gutenberg–Richter (GR) size distribu-
tion, N ∝ 10−bM, where N is the frequency of events of magnitude M or 
larger and b is a constant of order unity. A decrease in b, representing 
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deformation16 that constrains the ring fault stressing history. The 
short repeat times and high stressing rates (megapascals (MPa) per 
day rather than megapascals per century) minimized the influence of 
stress transfer from neighbouring faults.

Volcanic collapse earthquakes are distinct from tectonic earth-
quakes in being depleted in high-frequency shaking due to interac-
tion of the caldera block with the underlying magma reservoir17. The 
frequency content of the mainshocks does not, however, impact either 
their recurrence times or pre-mainshock behaviour.

The 2018 caldera collapse events
Between May and August of 2018, Kīlauea Volcano erupted more than 
1 km3 of basalt18, causing the summit to collapse in 62 discrete events. 
During each of the final ~50 events, the caldera floor dropped several 
metres into the magma reservoir13 in less than 10 s (ref. 19), generat-
ing M > 5 very-long-period (VLP) earthquakes (Fig. 1). Between these  
collapses, the Global Navigation Satellite System (GNSS) stations CALS 

a greater fraction of large events, has been observed in laboratory 
experiments10. Dynamic rupture simulations on geometrically rough 
faults have shown that the probability of large events increases with 
increasing loading stress11. Ref. 12 reported b-value variation with tec-
tonic environment and, by implication, stress; however, the specific 
stress dependence and the implication for foreshock behaviour is 
poorly constrained in situ.

Understanding mainshock recurrence and precursors would be 
advanced by a well-recorded sequence of characteristic earthquakes, 
which could be used to test recurrence models and average foreshock 
behaviour over multiple cycles. Dozens of repeating M > 5 caldera 
collapse earthquakes at Kīlauea Volcano, Hawaii, in 201813 provide 
such a dataset. These characteristic earthquakes14 ruptured the same 
ring fault system (that is, are full-fault ruptures) with a mean recur-
rence interval of less than 1.5 days, a factor of ~7,000 times shorter 
than the characteristic Parkfield, California earthquakes on the  
San Andreas Fault15. A dense geodetic network measured inter-collapse 
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Fig. 1 | Summary of observations. a, Map showing GNSS (four-letter codes) and 
tilt stations (three-letter codes) with average inter-collapse displacement and tilt 
rates. Earthquake epicentres are shown for M > 5 mainshock events (red stars), 
the 50 largest VT events, 3.7 < M < 4.4 events (blue) and smaller VT events (small 
red dots). b, Cross-section showing cycles with collapse mainshocks pressurizing 
the magma chamber, with magma outflow during the inter-collapse period 

leading to pressure decrease. c–e, Time series for the last 19 collapse cycles at 
Kīlauea in 2018. c, Vertical displacement (metres) of the GNSS station CALS. 
d, Radial displacement of the GNSS station CRIM (millimetres). e, Cumulative 
number of VT earthquakes per cycle. Earthquake locations from ref. 27. For the 
three VLP/mainshocks not relocated by ref. 27, we plot the HVO epicentres. Panel 
b adapted from ref. 19, Annual Reviews.
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and NPIT on the down-dropped block (Fig. 1c) subsided by several 
metres, indicating extensive ring fault creep20. Caldera formation was 
accompanied by thousands of volcano-tectonic (VT) earthquakes. 
VT activity ceased immediately following collapse mainshocks and 
then built up to nearly constant rates of hundreds of events per day  
(Fig. 1e)21,22. Multiple lines of evidence, including the strong correlation 
between cumulative VT seismicity and CALS displacement, indicate 
that most, but not all, VT earthquakes were caused by failure of asperi-
ties driven by ring fault creep20.

Extra-caldera GNSS stations exhibited ‘inflationary’ deformation 
(radially outwards and up) during collapses due to pressurization of 
the underlying magma chamber and exponentially decaying ‘defla-
tion’ (inwards and down) between collapses (Fig. 1d) from the out-
flow of magma and pressure decrease within the sub-caldera magma 
chamber23,24.

A new fault segment propagated across the old caldera floor in June 
2018, linking pre-existing faults along the north, west and south sectors 
to form a roughly circular ring fault13. Most VT seismicity was associated 
with this new eastern segment (Fig. 1a). Here we focus on the final 29 
caldera collapse mainshocks beginning on 24 June 2018, after the ring 
fault was fully formed, although our results did not change materially 
by including additional cycles. During this period, mainshock recur-
rence times ranged from 0.90 to 2.2 days, with a mean of 1.4 days and 
a coefficient of variation of 0.23.

Controls on earthquake recurrence
Seismic slip occurred when shear stress on the ring fault reached the 
static frictional resistance. We employed extra-caldera GNSS and tilt 
data to estimate the temporal change in spatially averaged ring fault 
shear stress (Methods). The exponential decay of co-collapse inflation 
between collapses (Fig. 1b) was consistent with the flow of magma from 
the chamber to the eruption site, with a time constant tc of ~0.5 days24, 
although there was considerable inter-cycle variability16. Modelling 
geodetic and seismic data showed 2–3 MPa pressure increases during 
collapse earthquakes16,17,25.

Between collapses, the weight of the caldera block(s) was balanced 
by magma pressure at its base and vertical shear stress τ on its sides26. 
With exponential decay in chamber pressure, the spatially averaged 
vertical shear stress on the ring fault increased as

τ(t) = 𝒯𝒯𝒯1 − e−t/tc ] + τ0 (1)

where τ0 is the initial shear stress and 𝒯𝒯  is the stress-change scale  
(Methods). The co-collapse stress drop Δτ = τ(T) − τ0, where T is the 
cycle duration, is in the order of 1 MPa (ref. 17).

For a given 𝒯𝒯 , the pressure decay time tc controls how rapidly stress 
accumulates. From equation (1), we expect the recurrence time T to 
scale as T = −tc log𝒯1 − (τ(T) − τ0)/𝒯𝒯]. Figure 2a confirms that faster 
decay in inflationary displacement correlates with shorter recurrence 
intervals. This correlation is highly significant (r = 0.83), with a root 
mean square prediction error of 0.26 days, equivalent to 19% of the 
mean cycle duration. This convincingly verified that the average stress-
ing rate controlled earthquake recurrence. Deviations from the simple 
prediction could arise due to variations in 𝒯𝒯  and τ0 between cycles. 
However, these are difficult to estimate, as are possible changes in 
normal stress. Models with a free intercept or higher order nonlinear 
terms improve fit, but we defer such extensions until physical founda-
tions are clear. Figure 2b shows the relative stressing histories 
(τ(t) − τ0)/𝒯𝒯  with observed cycle durations. Due to heterogeneity,  
we do not necessarily expect a constant failure threshold, as  
discussed below.

Foreshock rates and magnitudes
We utilized the catalogue of ref. 27, which detected smaller earthquakes 
with template matching28 and located hypocentres with waveform 
cross-correlation-derived relative travel times. This catalogue is sta-
tistically complete for magnitudes M > 2.4. We found that magnitude 
biases in the United States Geological Survey (USGS)/Hawaiian Volcano 
Observatory (HVO) catalogue distort the size distribution for M ≤ 3.3 
events (Supplementary Fig. 1). Nonetheless, key observations here are 
confirmed with the USGS catalogue (Supplementary Fig. 2).

Collapse mainshocks lack decaying aftershock sequences22,29. 
We suggest that this occurs because, rather than transferring stress 
to the neighbouring crust as in tectonic earthquakes, collapses are 
nearly rigid body motions25 that relax accumulated stresses. Seismic-
ity following mainshocks built up to quasi-steady rates well before 
subsequent events (Fig. 1e). The rapid seismicity onset following 
quiescence implies that ring fault stresses are highly heterogeneous, 
locally reaching failure at low average stress. The concentration of 
seismicity around the new (eastern) fault sector (Fig. 1a) suggests that 
fault roughness generates stress heterogeneity30, although aseismic 
creep20 also plays a role.

The long-period character of collapse mainshocks results from the 
dynamics of caldera collapse into the underlying magma chamber17, 
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not from properties of the ring fault. This suggests that collapse main-
shocks initiate as VT events. Indeed, early parts of mainshock wave-
forms contain high-frequency energy comparable to VTs (Extended 
Data Figs. 1 and 2). If collapse mainshocks initiate as VT events, then 
VTs are failed mainshocks. As the average shear stress increases, rup-
tures are more likely to propagate farther, and the proportion of larger 
magnitude events increases. In this way, the likelihood of a VT ‘breaking 
out’ into a mainshock increases.

We tested this hypothesis by stacking earthquakes from the final 
29 cycles aligned on subsequent mainshock times (Fig. 3), following 
ref. 29, and by examining (1) the frequency–magnitude distribution 
in the immediate pre-collapse interval relative to the background and  
(2) the average seismic moment rate at different times before main-
shocks. VT seismicity followed a typical GR distribution with b = 1.07 
(log daily event rate in Fig. 4a). However, for events in the 15 min 
before collapse, b = 0.79 (Fig. 4a), representing a dramatic increase in 
the relative number of large events in a very short interval. The stand-
ard deviation of the change in b was 0.065 (z = 0.28/0.065 = 4.3 with 
P ≪ 0.001); thus, the change in the b-value was highly significant31.

VT events depart from the GR line around M ≈ 3.5, including VLP 
mainshocks brings the observed frequency to the GR expectation at 
M ≈ 4.2. Thereafter, there is a prominent magnitude gap to M = 5.2. The 
absence of intermediate-size events combined with the large number of 
nearly identical events at the largest magnitude reveals a characteristic 
earthquake distribution3. The distribution is consistent with the deficit 
in VT events being filled in by earthquakes that ‘broke out’ resulting in 
characteristic mainshocks.

Ref. 29 reported that seismicity rates over collapse cycles follow a 
semi-Gaussian shape—rapidly increasing mid cycle and flattening or 
slightly decreasing before mainshocks, whereas cumulative seismic 
moment increases exponentially. We found important departures 
from this at shorter timescales. Magnifying the 6 h period immediately 
before mainshocks (Fig. 4b) revealed a dramatic increase in average 
seismicity and moment rate. Relative to the previous 5.75 h, the aver-
age rate in the final interval grew by 3 times (104 versus 35 events) 
(Methods) and moment rate by 4.75 times. We marked the onset at 
15 min, although the cumulative moment rate appeared to increase 
quasi-exponentially during this time (Extended Data Fig. 3). The 
increase in the moment rate was highly significant; simulations with 

100,000 randomized permutations of the catalogue failed to produce 
even a 2 times rate increase or 4 times moment increase in any 15 min 
interval in the final 6 h. Although there was cycle-to-cycle variability, 23 
of the 29 cycles produced above-average rates in the final 15 min. The 
mean event moment in the final interval was high, but not significantly 
higher than the other epochs in the final 6 h. Sixteen events outside 
the final interval had magnitudes greater than the largest event in the 
final 15 min (M 3.9). Thus, the late surge in moment rate was not due to a 
few very large events but rather to a very high rate of moderately large 
events (Fig. 3). The increases in earthquake rate and moment rate and 
the decrease in the b-value indicated that the fault entered a critical 
phase immediately before collapse mainshocks.

The stressing rate at the end of an average cycle was relatively  
low, decreasing by a factor of e−T/tc ≈ e−1.4/0.5 ≈ 1/16  since the  
previous mainshock. In an absolute sense, however, the stressing  
rate was very high. For a 1 MPa mainshock stress drop17, ̇τ(T ) ≈
(1MPa/0.5 day )/16 ≈ 40MPayr−1 . Thus, even though the terminal 
15 min interval was only 0.7% of the mean cycle duration, there was 
sufficient stressing to drive threshold phenomena. This resulted in a 
shear stress increase of ~1.3 × 10−3 MPa in the final 15 min. A nominal 
effective normal stress of 10 MPa (ref. 24) implies a change in spatially 
averaged shear to a normal stress ratio of ~1.3 × 10−4. Thus, very modest 
changes in average loading resulted in dramatic changes in earthquake 
rupture extent. On a longer timescale, the b-value decreased as a func-
tion of relative stress (Fig. 4c), as has long been suggested12 but difficult 
to demonstrate in situ.

Implications
The 4.75 times increase in the moment rate in the critical period 
was the product of a 1.6 times increase in the average moment and 
a 2.97 times increase in the rate of M > 2.4 earthquakes. Although 
the limitations of the earthquake catalogue could not rule out an 
increase in nucleation rate, the dramatic change in moment rate 
most likely arose from earthquakes getting larger, not from a higher 
nucleation rate.

Earthquake epicentres were non-uniformly distributed with most 
seismicity in the eastern sector, where the new ring fault formed in 2018 
(Fig. 1a). In contrast, mainshock epicentres were concentrated in the 
northwestern, southeastern and southwestern sectors. This has led 
to the suggestion that creep was restricted to the east, with a ‘seesaw’ 
descent of the caldera block14. However, the inter-collapse subsidence 
of NPIT and CALS in the northern and southeastern sectors showed that 
creep was widespread20, including where many mainshocks initiated. 
Multiple observations support the hypothesis that VLP mainshocks 
nucleated as typical VT earthquakes: (1) the largest VTs (3.7 < M < 4.4) 
tended to locate near VLP epicentres (Fig. 1a), (2) mainshocks were 
preceded by nearby VTs in the last 30 min of nearly all collapse cycles 
(Extended Data Fig. 4), (3) the relative frequency of larger magnitude 
VT events increased dramatically before mainshocks (Fig. 4a) and  
(4) the gap in the frequency–magnitude distribution (Fig. 4a) was con-
sistent with larger VTs breaking out to form full-fault ruptures. Thus, 
VT and mainshock epicentral distributions were not inconsistent with 
the break-out hypothesis.

We suggest that extreme stress heterogeneity along new fault  
segments induced early nucleation of VTs at low average stress but also 
limited rupture extent. This is illustrated in Fig. 5, where local stresses 
reached static friction on the ‘rough’ side, but the spatially averaged 
driving stress τ/σ was well below the threshold for full-fault rupture 
(red dashed line). Along the pre-existing ring fault, where stresses were 
more homogeneous, rupture nucleation was delayed until the average 
shear stress increased. However, when local stresses reached static 
friction on the smoother fault, ruptures tended to extend farther with 
a higher probability of full-fault rupture (green dashed line in Fig. 5).

The early onset of VTs and the proximity of larger VTs and main-
shock epicentres (Fig. 1a) suggest spatially variable size dependence. 
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Indeed, we found evidence for lower b-values in mainshock nucleation 
zones (Supplementary Fig. 4). Note finally that mainshocks ruptured 
through creeping parts of the ring fault, which strongly suggests that 
dynamic weakening mechanisms were activated20.

Collapse mainshocks have notable differences from most  
tectonic earthquakes. The extensive ring fault creep at Kīlauea pro-
duced extreme local stressing rates, resulting in very high nucleation 
rates. Although rough faults with unstable frictional properties can lead 
to a mixture of creep and earthquake cascades32, the extensive creep 
at Kīlauea required large areas of stable friction. This likely resulted 
from low normal stresses and/or stable ring fault frictional properties, 
perhaps due to hydrothermal alteration20,33. The absence of detectable 
creep before most tectonic earthquakes requires that such slip be much 
more limited than in the 2018 Kīlauea sequence.

Our results are consistent with a threshold phenomenon where 
small changes in driving stress lead to dramatic changes in the tendency 
for earthquakes to increase in magnitude. Heterogeneous stresses on 

the newly formed fault sector promoted earthquake nucleations at low 
average stress but inhibited large ruptures. Full-fault ruptures did not 
occur until the average stress reached a threshold for larger events on 
the smoother pre-existing fault segments.

We conclude that stress heterogeneity in general and fault 
geometry in particular contribute to both earthquake initiation 
and ultimate size. This has important implications for potentially 
damaging tectonic earthquakes. We do not suggest that detailed 
observations, such as the length of the critical phase, scale to tec-
tonic earthquakes. Rather, we suggest that the mechanical insights 
gained from these data, including that rupture extent may increase 
dramatically with very modest changes in driving stress, carry over. 
Sufficiently steep break-out probability distribution functions (near 
the limiting case of the step functions in Fig. 5b) would lead to very 
few events preceding full-fault rupture. This would be consistent 
with mainshocks that lack detectable foreshocks, such as Parkfield 
200434. Future modelling studies could quantify the shape of the 
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schematic distributions in Fig. 5b, which would aid the interpreta-
tion of foreshock sequences.
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Methods
Average stress history
Extra-caldera displacements and tilts, which are observed to decay 
exponentially, are dominated by pressure changes in the shallow sum-
mit magma reservoir24. Given that deformation is proportional to 
changes in magma chamber pressure, we infer that the chamber pres-
sure is of the form

p(t) = (p0 − p∞)e−t/tc + p∞,

where p0 = p(t = 0) is the pressure at the onset of a cycle and p∞ = p(t → ∞) 
is the asymptotic pressure that would occur in the absence of subse-
quent collapse. The weight of the overlying caldera block, with radius 
R and height L, is balanced by pressure p at its base and shear stress τ 
on its sides. Thus

πR2Lρcg − πR2p(t) − 2πRLτ(t) = 0,

where ρc is the crustal density. Combining these equations leads to 
equation (1) in the main text, where 𝒯𝒯 𝒯 R(p0 − p∞)/2L.

Fitting tc

The pressure decay constant tc in each cycle was fit to data consisting 
of GNSS displacements measured in 5 s intervals at four extra-caldera 
sites (AHUP, CRIM, OUTL and PUHI) and tilt measured at 1 min intervals 
at a single station (SDH). The data model was a three-parameter expo-
nential decay y(t) = α + βe−t/tc . Parameters α and β are the asymptotic 
value and scale (amplitude), respectively. To isolate the nonlinear shape 
parameter of interest, tc, we took the best fitting values α̂(tc), β̂(tc) for 
each tc in a finely sampled interval and chose the value that minimized 
the L1 norm of the misfits. The estimated value for observation i at site 
j in cycle k is ̂yi, j,k = α̂j(tc,k) + β̂j(tc,k)e−ti/tc,k. The fitted values tc,k minimized 
the objective function g(tc,k) = ∑i, j|yi, j,k − ̂yi, j,k|.

b-value estimation
b-value fits applied the Aki-Utsu maximum likelihood estimator35

b̂ =
log10(e)

⟨M ⟩ − (Mc −
∆

2
)
,

where 〈M〉 is the mean magnitude, Mc is the lower magnitude threshold, 
Δ is the magnitude precision and e is Euler’s number, the base of the 
natural logarithm. For the catalogue27, Δ = 0.01 and the threshold was 
usually set at Mc = 2.4.

Seismic production rates and ratios
Catalogue event size, recorded as local magnitude, ML, was mapped to 
seismic moment M0 by log10M0 = 1.5ML + 9.05. For ML ≤ 3.0, ref. 36 sug-
gested Mw = 2/3ML + 1.0, rather than Mw = ML. However, this did not sig-
nificantly alter our results (Supplementary Fig. 3). Applying power-law 
principles, we set the minimum magnitude cut-off Mc and calculated the 
excess local magnitude as X = ML − Mc. The excess moment magnitude 
was 1.5X. An event with excess magnitude X had moment W(X) = 101.5X 
measured in units where W(0) = 1.

The seismic moment rate is the product of the event rate n/T and 
the average moment. Two averages are calculated:

⟨Moment⟩a = ⟨101.5X⟩ = ∑ 10(1.5Xi)

n

⟨Moment⟩g = 10⟨1.5X⟩ = 101.5X̄.

These are, respectively, the arithmetic and geometric mean moments. 
Arithmetic averages are highly sensitive to rare, large ‘tail events’ in 

power-law distributions. Geometric averages often better represent 
‘typical’ size. For these data, M > 2.4 events had an arithmetic average 
moment of 11.73 and a geometric average of 3.90. The median moment 
was 2.63.

Let B denote a catalogue subset with time duration T and n events 
at excess magnitudes X = (X1, X2, …, Xn). The total moment production 
rate in B, μ, is the event rate, n/T times the average moment:

μ(B) = n(B)
T(B) ⟨Moment(B)⟩.

The catalogue subsets A and B are comparable in terms of the produc-
tion ratio: ρ[A/B] = μ[A]/μ[B].

Data availability
GNSS data are available from the UNAVCO archive (https://www.
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http://ds.iris.edu/mda/HV. Any use of trade, firm or product names 
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Extended Data Fig. 1 | Comparison of velocity waveforms from closely located VT and VLP earthquakes. a, map view of Kīlauea summit, with VT and VLP 
epicenters, as well as three broadband stations. b,c,d, first 10 seconds of vertical velocity seismograms at stations STCD, MLOD, HLPD. VLP time shifted to match VT.
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Extended Data Fig. 2 | Comparison of closely located VT and VLP vertical component spectrograms at station MLOD. a, VT b, VLP.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01372-3

Extended Data Fig. 3 | Cumulative seismic moment in the final 15 minute stacked catalog. Moments are multiples of the moment of an M = 2.4 event, which is  
4.47 × 1012 Nm. Red line shows exponential fit.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01372-3

Extended Data Fig. 4 | Mainshock epicentral regions are active in the 30 
minutes prior to mainshocks. Epicenters of earthquakes in 26 of the last 29 
collapse cycles. (26 depicted VLP locations are from Shelly and Thelen (2019). 
Three VLPs locations, in Cycles 34, 41, and 46, are not available in the Shelley-
Thelen catalog.) Epicenters colored by time to collapse. Light blue: background 

time to failure > 30 minutes, dark blue: last 30 minutes; red stars mainshocks 
epicenters. Note that nearly all mainshocks are preceded by nearby VT events in 
the final 30 minutes, supporting the hypothesis that mainshocks are runaway VT 
earthquakes.
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