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A counterexample to the

periodic tiling conjecture

By Rachel Greenfeld and Terence Tao

Abstract

The periodic tiling conjecture asserts that any finite subset of a lattice

Zd that tiles that lattice by translations, in fact tiles periodically. In this

work we disprove this conjecture for sufficiently large d, which also implies

a disproof of the corresponding conjecture for Euclidean spaces Rd. In

fact, we also obtain a counterexample in a group of the form Z2 × G0 for

some finite abelian 2-group G0. Our methods rely on encoding a “Sudoku

puzzle” whose rows and other non-horizontal lines are constrained to lie

in a certain class of “2-adically structured functions,” in terms of certain

functional equations that can be encoded in turn as a single tiling equation,

and then demonstrating that solutions to this Sudoku puzzle exist, but are

all non-periodic.

1. Introduction

In 1960, Hao Wang [Wan60], [Wan75] studied the problem of tiling the

plane by translated copies of finitely many squares a color attached to each

side of each of them, also known as Wang squares, where one square lies next

to another only if the colors of common edges match. This is a variant of

Hilbert’s famous Entscheidungsproblem. Wang conjectured that if a set of

such squares admits a tiling of the plane, then it also admits a periodic tiling.

Wang’s conjecture was disproved by Berger [Ber66], [Ber65], who constructed

an aperiodic set of 20, 426 Wang squares; i.e., the set of squares admits tilings

but none of these tilings is periodic. Over the years, many more constructions

of aperiodic translational tilings (including several not based on Wang squares)

were established, with smaller tile-sets (see, e.g., [GT23b, Table 1]). In this

paper we construct an aperiodic translational tiling with a single tile in Z2 ×

G0 for a certain finite abelian group G0. As a consequence, we disprove the

celebrated “periodic tiling conjecture.” Our methods are based on encoding a

“Sudoku puzzle” rather than a Wang tiling problem.
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1.1. The periodic tiling conjecture. Let G = (G,+) be a discrete abelian

group. If A,F are subsets of G, we write A⊕F = G if the translates a+F :=

{a+ f : f ∈ F} of F by elements a of A form a partition of G. If this occurs,

we say that F tiles G (by translations), and that A is a tiling set of G by F .

The tiling set A is said to be periodic if it is the finite union of cosets of a

finite index subgroup of G. We will refer to A ⊕ F = G as a tiling equation

and think of F,G as being given and A ⊂ G as being an unknown. We say

that the tiling equation A⊕ F = G is aperiodic if there exist solutions A ⊂ G

to the tiling equation A⊕ F = G, but none of these solutions are periodic.

Remark 1.1. We caution that in the aperiodic order literature the term

“periodic” instead refers to sets that are unions of cosets of some non-trivial

cyclic subgroup of G; in our notation, we would refer to such sets as being

one-periodic. For instance, if G = Z2 and A was an arbitrary subset of Z,

then A × Z would be one-periodic, but not necessarily periodic in the sense

adopted in this paper. The notion of an aperiodic tiling is similarly modified

in the aperiodic order literature, and the notion of aperiodicity used here is

sometimes referred to as “weak aperiodicity.” For tilings in dimensions d 6 2,

the two notions of aperiodicity coincide [GS87, Th. 3.7.1].

A well-known conjecture in the area is the periodic tiling conjecture:

Conjecture 1.2 (Discrete periodic tiling conjecture; [Ste74], [GS87],

[LW96]). Let F be a finite non-empty subset of a finitely generated discrete

abelian group G. Then the tiling equation A⊕ F = G is not aperiodic.

In other words, the conjecture asserts that if F tiles G by translations,

then F periodically tiles G by translations.

We also consider the following continuous analogue of this conjecture. If

Σ is a bounded measurable subset of a Euclidean space Rd of positive measure,

and Λ is a subset of Rd, we write Λ⊕Σ =a.e. R
d if the translates λ+Σ, λ ∈ Rd,

partition Rd up to null sets; note from the Steinhaus lemma that this forces Λ to

be discrete. If this occurs, we say that Σ (measurably) tiles Rd by translations

and that Λ is a tiling set of Rd by Λ. The tiling set Λ is said to be periodic if it

is the finite union of cosets of a lattice (a discrete cocompact subgroup) of Rd.

As before, we view Λ⊕Σ =a.e. R
d as a tiling equation with d and Σ given, and

Λ as the unknown. We say that this tiling equation Λ⊕Σ =a.e. R
d is aperiodic

if there exist solutions Λ ⊂ Rd to the tiling equation Λ⊕Σ =a.e. R
d, but none

of these solutions are periodic.

Conjecture 1.3 (Continuous periodic tiling conjecture; [GS87], [LW96]).

Let Σ be a bounded measurable subset of Rd of positive measure. Then the tiling

equation Λ⊕ Σ =a.e. R
d is not aperiodic.
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A standard argument shows that Conjecture 1.3 implies Conjecture 1.2.

This implication arises from “encoding” a discrete subset F of Zd as a bounded

measurable subset F ⊕Rd in Rd, where Rd is a “generic” fundamental domain

of Rd/Zd; we provide the details in Section 2.

Conjectures 1.2 and 1.3 have been extensively studied over the years. The

following partial results towards these conjectures are known:

• Conjecture 1.2 is trivial when G is a finite abelian group, since in this case

all subsets of G are periodic.

• Conjectures 1.2 and 1.3 were established for G = Z and G = R respectively

[New77], [LM91], [LW96]. The argument in [New77] also extends to the

case G = Z×G0 for any finite abelian group G0 [GT23b, §2].

• When G = Z2, Conjecture 1.2 was established by Bhattacharya [Bha20]

using ergodic theory methods. In [GT21] we gave an alternative proof of

this result, and furthermore showed that every tiling in Z2 by a single tile

is weakly periodic (a disjoint union of finitely many one-periodic sets).

• When G = R2, Conjecture 1.3 is known to hold for any tile that is a topo-

logical disk [BN91], [GBN91], [Ken92], [Ken93].

• Conjecture 1.3 is known to be true for convex tiles in all dimensions [Ven54],

[McM80].

• For d > 2, Conjecture 1.2 is known to hold when the cardinality |F | of F is

prime or equal to 4 [Sze98], but remained open in general.

• In [MSS22], it was recently shown that the discrete periodic tiling conjecture

in Zd also implies the discrete periodic tiling conjecture in every quotient

group Zd/Λ.

• The analogues of the above conjectures are known to fail when one has

two or more translational tiles instead of just one; see [GT23b] (particularly

Table 1) for a summary of results in this direction. In particular, in [GT23b,

Ths. 1.8, 1.9] it was shown that the analogue of Conjecture 1.2 for two tiles

fails1 for Z2 ×G0 for some finite group G0, and also for Zd for some d.

1.2. Results. In this work we construct counterexamples to Conjectures 1.2

and 1.3. Our first main result is

Theorem 1.4 (Counterexample to Conjecture 1.2, I). There exist a finite

abelian group G0 and a finite non-empty subset F of Z2×G0 such that the tiling

equation A ⊕ F = Z2 × G0 is aperiodic. In other words, the discrete periodic

tiling conjecture fails for Z2 ×G0.

Remark 1.5. Our construction will in fact make G0 a (non-elementary)

2-group, that is to say, a finite group whose order is a power of two.

1Strictly speaking, the counterexample in that paper involved tiling a periodic subset E

of the group G, rather than the full group G. See, however, Remark 1.8 below.
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The abelian finitely generated group Z2×G0 can be viewed as a quotient

Zd/Λ of a lattice Zd for sufficiently large d, so by Theorem 1.4 and the recent

implication in2 [MSS22, Cor. 1.2] we derive

Corollary 1.6 (Counterexample to Conjecture 1.2, II). For sufficiently

large d, there exists a finite non-empty subset F of Zd such that the tiling

equation A ⊕ F = Zd is aperiodic. In other words, the discrete periodic tiling

conjecture fails for Zd.

By a standard construction (going back to Golomb [Gol70]) relating dis-

crete and continuous tiling problems, we then have a corresponding counterex-

ample to the continuous periodic tiling conjecture:

Corollary 1.7 (Counterexample to Conjecture 1.3). For sufficiently

large d, there exists a bounded measurable subset Σ of Rd of positive mea-

sure such that the tiling equation Λ⊕ Σ =a.e. R
d is aperiodic. In other words,

the continuous periodic tiling conjecture fails for Rd.

We give the (straightforward) derivation of Corollary 1.7 from Corol-

lary 1.6 in Section 2.

Our methods produce a finite group G0, and hence a dimension d, that

is in principle explicitly computable, but we have not attempted to optimize

the size of these objects. In particular, the dimension d produced by our

construction will be extremely large.

1.3. Previous works and constructions. Aperiodic tilings have been exten-

sively studied and have found famous applications to many areas of mathemat-

ics and physics [AG95]. The study of the periodicity of tilings has attracted

many researchers, who have introduced methods from various fields, such as

geometry and topology [GBN91], [Ken92], [Ken93], Fourier analysis [LW96],

[KL96], [Kol04], combinatorics [GT21], [GT23b], ergodic theory and probabil-

ity [Moz89], [Lev13], [Bha20], commutative algebra [Sze98], [Bha20], [GT21],

model theory [BJ08], [GT23b], and computability theory [Ber66], [Kar96],

[Lev13], [JR21], [GT23b].

We do not attempt a comprehensive survey of aperiodic constructions

here, but briefly summarize the current state of knowledge as follows.

• Aperiodic tiling by multiple tiles have been long known to exist. The on-

line encyclopedia of tilings [FGH] contains many explicit examples of such

tilings. In the plane, there are the famous substitution tilings constructions

of Penrose and Ammann [Pen74], [Pen80], [dB81], [Gar77], [AGS92]. (See

also [GS98] and the references therein for the study of substitution tilings.)

Other aperiodic tiling construction methods include the finite state machine

2This is a generalization of the argument in [GT23b, §9].
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approaches of Kari and Culik [Kar96], [Cul96] and the approach of encoding

arbitrary Turing machines3 into a tiling problem [Ber66], [Ber65], [Rob71],

[Oll09], [GT23b].

• In addition, if one allows for the tile to be rotated (and/or reflected) in

addition to being translated, aperiodic non-translational tilings by a single

tile (or “monotile”) are known to exist; see, e.g., [ST12], [WW23]. The

question of whether there are planar aperiodic connected tiles by transla-

tions, rotations and reflections remained open until very recently, when the

“hat” monotile was discovered by Smith–Myers–Kaplan–Godman-Strauss

[SMKGS23a]. Moreover, in a subsequent paper, the same authors con-

structed a connected planar domain that tiles the plane aperiodically by

translations and rotations only (no reflections) [SMKGS23b]. These results

solve the celebrated “einstein problem,” which is an extension of the second

part of Hilbert’s eighteenth problem.

• Moreover, when one allows for the group to be non-abelian, aperiodic (and

undecidable) tilings by a single tile are known to exist. For instance, in

[GT23b, Th. 11.2] we give a construction in Z2 × H for a certain finite

non-abelian group H. See also [Thu22], [Moz97], [GS05], [SSU21], [ABJ18],

[Coh17] for further references to of aperiodic tilings (or subshifts of finite

type) in various groups.

We were not able to adapt the previous aperiodic constructions to the

setting of a single translational tile. Instead, our source of aperiodicity is

more4 novel, in that our tiling of Z2 × G0 is forced to exhibit a “q-adic” (or

“2-adic”) structure5 for some large enough but fixed power of two q = 2s

(say s = 10) in the sense that for each power qj of q, the tiling is periodic

with period qjZ2 × {0} outside of a small number of cosets of that subgroup

qjZ2×{0}, but is unable to be genuinely periodic with respect to any of these

periods. To achieve this we will set up a certain “Sudoku puzzle,” which will

be rigid enough to force all solutions of this problem to exhibit a certain “self-

similar” (and therefore non-periodic) behavior, yet is not so rigid that there

are no solutions whatsoever. By modifying arguments from our previous paper

3This method in fact allows one to construct tiling problems that are not only aperiodic,

but in fact logically undecidable; see, e.g., [GT23b] for further discussion.
4Since the initial release of this preprint, we have learned (Emmanuel Jeandel, private

communication) that a similar use of p-adic functions (with p sufficiently large, but not nec-

essarily a power of 2) was employed by Aanderaa and Lewis [AL74], [Lew79] to establish the

undecidability of an empty distance subshift problem, which in turn implied the undecidabil-

ity of the domino problem; see [JV20, §4] for further discussion.
5Intriguingly, similar “inverse limits of coset structure” appears in other aperiodic tiling

constructions, such as the dragon tiling [BKS02], the Robinson tiling [Rob71], or the trilobite

and crab tilings [GS16], as well as some square-triangle tilings.
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[GT23b], we are then able to encode this Sudoku-type puzzle as an instance

of the original tiling problem A⊕ F = Z2 ×G0.

Our encoding approach is similar in nature to previous “encoding” ar-

guments in the tiling literature. Berger [Ber66], [Ber65] encoded any Turing

machine as a Wang tiling problem. Since the halting problem is known to be

undecidable, Berger’s encoding implies the undecidability of the Wang domino

problem. Subsequently, Wang tilings were encoded to obtain aperiodicity,

strong aperiodicity, or even undecidability of various other problems; see, e.g.,

[ST12], [Gol70], [SSU21], [Moz89], [Rob71], [GS98], [GS05]. In particular, in

[GT23b] we used our tiling language approach to encode any Wang tiling prob-

lem as a tiling of Z2 × G0 by two tiles for a suitable finite abelian group G0

(depending on the given problem). This implies the existence of an undecid-

able tiling problem with only two tiles. Unfortunately, in our encoding of the

Wang domino puzzle, we were not able to reduce the number of the tiles from

two to one. Thus, the main difficulty we address in our current work is find-

ing another aperiodic puzzle (replacing the Wang domino puzzle) that is also

expressible in our tiling language of a tiling by a single tile.

1.4. Our argument and the organization of the paper. Our argument is

a variant of the construction used in our previous paper [GT23b] to produce

aperiodic (and even undecidable) translational tilings with two tiles, and it is

summarized by the diagram in Figure 1.1. However, the fact that we are now

tiling the whole group G instead of a periodic subset of G, and that we are only

allowed to use one tile instead of two, creates additional technical challenges.

As in [GT23b], in Section 3 we begin by replacing the single tiling equation

A⊕F = G with a system A⊕F (m)=G, m=1, . . . ,M of tiling equations for an

arbitrary M , by an elementary “stacking” procedure that takes advantage of

our freedom to enlarge the group G. This creates a flexible “tiling language” of

constraints on the tiling set A; the challenge is to use this language to obtain a

system of constraints that is strict enough to force aperiodic behavior on this

set A, while simultaneously being relaxed enough to admit at least one solution.

Next, in Section 4, we again follow [GT23b] and pass from this tiling

language to a language of functional equations, basically by spending one of

the equations A⊕F (m) = G in the system to force the tiling set A to be a graph

of a function f = (f1, . . . , fK), where fi : Z
2×G0 → Z/qZ, 1 6 i 6 K, andG0 is

an additional small finite abelian group, which we retain for technical reasons.

One can then use one or more tiling equations A ⊕ F (m) = G in the

tiling language to create a “library” of useful functional constraints on these

functions fi; this is done in Section 5. For instance, one can ensure that a given

function fi exhibits periodicity in some direction vi ∈ Z2, or that it encodes

(the periodic extension of) a permutation of a cyclic group Z/qZ.
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Figure 1.1. A high-level overview of the logical implications used

in our proof. We introduce an aperiodic Sudoku puzzle (blue)

and develop a tiling library to express this puzzle inside a tiling

by a single tile (yellow). This, in turn, eventually leads to

constructions of aperiodic translational tilings by a single tile

in Z2 ×G0, Z
d and Rd (green). This diagram has been “curled

up” into a compact bounding rectangle purely to save space,

and the reader is welcome to mentally “straighten” it if desired.

In Section 6 we express via functional equations the assertion that a certain

subcollection of the fi (after a routine normalization) take values in a two-

element set {a, b} (mod q), where a, b have different parity, and can thus be

viewed as boolean functions. By modifying our construction from [GT23b, §7],

we can then use tiling equations to encode arbitrary pointwise constraints

(1.1) (f1(x), . . . , fK(x)) ∈ Ω

for all x ∈ Z2 ×G0 and arbitrary subsets Ω of {a, b}K . This turns out to be a

particularly powerful addition to our library of expressible properties.

In Section 7, by some further elementary transformations (including a

change of variables that resembles the classical projective duality between lines

and points), we are then able to reduce matters to demonstrating aperiodic-

ity of a certain “Sudoku puzzle.” In this puzzle, we have an unknown func-

tion F : {1, . . . , N} × Z→ Z/qZ \ {0} on a vertically infinite “Sudoku board”

{1, . . . , N}×Z that fills each cell (n,m) of this board with an element F (n,m)
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of Z/qZ \ {0} for some fixed but large q = 2s. Along every row or diagonal

(and more generally along any non-vertical line) of this board, the function

F is required6 to exhibit “2-adic behavior”; the precise description of this be-

havior will be given in Section 7, but roughly speaking we will require that on

each such non-vertical line, F behaves like a rescaled version of the function

(1.2) fq(n) :=
n

qνq(n)
(mod q)

(where νq(n) is the number of times q divides n) that assigns to each integer n

the final non-zero digit in its base q expansion (with the convention fq(0) := 1).

We also impose a non-degeneracy condition that the Sudoku solution function

F is a periodized permutation along any of its columns.

In Section 9, for suitable choices of parameters q,N , we “solve” this Su-

doku problem and show that solutions to this problem exist, but necessarily

exhibit self-similar behavior (in that certain rescalings of the solution obey sim-

ilar properties to the original solution) and, in particular, are non-periodic. By

combining this aperiodicity result with the previous encodings and reductions,

we are able to establish Theorem 1.4 and hence Corollary 1.7.

Remark 1.8. Our current argument also provides a solution to [GT23b,

Prob. 12.3]. Namely, using the more advanced library we develop here (Sec-

tions 2–5), we can strengthen our previous undecidability result with two tiles

by now tiling all of the group rather than just a periodic subset. We leave the

details of this modification of the construction to the interested reader.

1.5. Notation. We define the disjoint union
⊎

w∈W Ew of sets Ew indexed

by some set W to be the union
⋃

w∈W Ew if the Ew are disjoint, and we leave
⊎

w∈W Ew undefined otherwise.

All groups in this paper will be written additively and be assumed to be

abelian unless otherwise specified. IfA,B,C are subsets ofG, we useA⊕B = C

to denote the assertion that the translates a + B, a ∈ A partition C; if the

translates a+B are not disjoint, we leave A⊕B undefined. Thus A⊕B = C is

equivalent to
⊎

a∈A(a+B) = C. Similarly, if Λ ⊂ Rd and Σ ⊂ Rd are discrete

and measurable respectively, and E ⊂ Rd is another measurable set, we write

Λ⊕ Σ =a.e. E if the translates λ+Σ, λ ∈ Λ partition E up to null sets; if the

λ+Σ are not disjoint up to null sets, we leave Λ⊕ Σ undefined.

We use 1E to denote the indicator of an event E, thus 1E is 1 when E is

true and 0 otherwise.

6This is analogous to how, in the most popular form of a Sudoku puzzle, the rows, columns,

and 3 × 3 blocks of cells on a board {1, . . . , 9} × {1, . . . , 9} are required to be permutations

of the digit set {1, . . . , 9}.
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By abuse of notation, we will sometimes identify an integer a ∈ Z with its

representative a (mod N) ∈ Z/NZ in a cyclic group Z/NZ when there is no

chance of confusion. For instance, we may refer to the multiplicative identity

of Z/NZ (viewed as a ring) as 1 rather than 1 (mod N).

If v1, . . . , vk are elements of a group G, we use 〈v1, . . . , vk〉 to denote the

group that they generate. If H is a subgroup of G, then a function f : G→ X

on G is said to be H-periodic if f(x+ h) = f(x) for all x ∈ G and h ∈ H. In

particular, a function is 〈v1, . . . , vk〉-periodic if and only if f(x+ vi) = f(x) for

all x ∈ G and i = 1, . . . , k.

We use X = O(Y ), X � Y , or Y � X to denote the estimate |X| 6 CY

for some absolute constant C (which will not depend on other parameters such

as q or N). We write X � Y for X � Y � X.

We use |E| to denote the cardinality of a finite set E. If E ⊂ Ω ⊂ Rd with

Ω non-empty, we define the upper density of E in Ω to be the quantity

lim sup
M→∞

|E ∩ {−M, . . . ,M}d|

|Ω ∩ {−M, . . . ,M}d|
.

Thus, for instance, if q,N are natural numbers, the set {1, . . . , N} × qZ has

upper density 1
q in {1, . . . , N} × Z.

1.6. Acknowledgments. RG was partially supported by the AMIAS Mem-

bership and NSF grants DMS-2242871 and DMS-1926686. TT was partially

supported by NSF grant DMS-1764034 and by a Simons Investigator Award.

We thank Nishant Chandgotia, Asaf Katz, Sébastien Labbé and Misha Sodin

for drawing our attention to some relevant references and to Emmanuel Jean-

del for helpful comments. We are also grateful to the anonymous referee for

many helpful suggestions that improved the exposition of this paper.

2. Building a continuous aperiodic tiling equation from a discrete

aperiodic tiling equation

In this section we show that a counterexample to the discrete periodic

tiling conjecture can be converted to a counterexample to the continuous pe-

riodic tiling conjecture. More precisely, we show

Theorem 2.1 (Lifting a discrete aperiodic tiling equation to a continuous

aperiodic tiling equation). Let d > 1. If there is an aperiodic tiling equation

A ⊕ F = Zd for some finite non-empty subset F of Zd, then there is an ape-

riodic tiling equation Λ ⊕ Σ =a.e. R
d for some bounded measurable subset Σ

of Rd of positive measure. In other words, if Conjecture 1.2 fails in Zd, then

Conjecture 1.3 fails in Rd.
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A basic connection between the discrete lattice Zd and the continuous

space Rd is given by the tiling relation

Zd ⊕Qd =a.e. R
d,

where Qd := [0, 1]d is the unit cube. By translation invariance one also has

(Zd + t)⊕Qd =a.e. R
d

for any t ∈ Rd. However, due to the ability to “slide” cubes Qd in various

directions, there are many more tilings of Rd by Qd than these; this is ev-

idenced for instance by the failure of Keller’s conjecture in high dimensions

[LS92]. Because of this, the unit cube Qd is not a suitable tool for establishing

Theorem 2.1. Instead, we need a “rigid” version Rd of Qd, or more precisely,

Lemma 2.2 (Existence of a rigid tile). For any d > 1, there exists a

bounded measurable subset Rd of Rd such that Zd⊕Rd =a.e. R
d, and conversely

the only sets Λ ⊂ Rd with Λ⊕Rd =a.e. R
d are translates Λ = Zd + t of Zd for

some t ∈ Rd.

The idea of using rigid tiles to pass back and forth between discrete and

continuous tiling questions goes back to the work of Golomb [Gol70]; see also

[GT23b, Lemma 9.3] for a discretized version of this lemma.

Proof. The idea is to remove and add “bumps” at the facets of Qd to make

a rigid “jigsaw puzzle piece”; see Figure 2.1. There are many constructions

available. For instance, we can define Rd to be the set

Rd :=

(

Qd\
d
⊎

k=1

Ck

)

]
d
⊎

k=1

(Ck + ek),

where e1, . . . , ed is the standard basis for Rd, and for each k = 1, . . . , d, Ck ⊂ Qd

is a ε-subcube of Qd, which one can, for instance, define as

Ck :=

Ñ

k−1
∏

j=1

[xj , xj + ε]

é

× [0, ε]×
d
∏

j=k+1

[xj , xj + ε],

where 0 < ε < 1/5 and 2ε < xj < 1 − 3ε, j = 1, . . . , d are arbitrary. Because

the piece Ck removed for a given k is a translate by an element of Zd of the

piece Ck + ek added for a given k, we still have

Zd ⊕Rd =a.e. Z
d ⊕Qd =a.e. R

d.

On the other hand, it is geometrically evident that if Λ ⊕ Rd =a.e. R
d and

t ∈ Λ, then t ± ek must also lie in Λ for all k = 1, . . . , d, as there is no other

way to fit translates of Rd around the added and removed “bumps” Ck + t,

Ck + ek + t of Rd + t. Thus Λ must contain a translated lattice Zd + t; since
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Figure 2.1. A “rigid” tile R2 replacing the non rigid tile Q2 =

[0, 1]2. The only tilings Λ⊕ R2 =a.e. R
2 of the plane R2 by R2

are the translated lattice tilings (Z2+t)⊕R2 =a.e. R
2 for t ∈ R2.

this lattice already is a tiling set of Rd by Rd, we therefore have Λ = Zd + t,

as required. �

Using this rigid tile, it is now straightforward to establish Theorem 2.1.

Proof of Theorem 2.1. Suppose that there is a finite non-empty F ⊂ Zd

such that the tiling equation A⊕ F = Zd is aperiodic.

With Rd being the rigid tile provided by Lemma 2.2, we introduce the

bounded measurable subset Σ of Rd by the formula

Σ := F ⊕Rd ⊂ Zd ⊕Qd =a.e. R
d.

Clearly Σ has positive measure. It will suffice to show that the tiling equation

Λ⊕ Σ =a.e. R
d is aperiodic. On the one hand, we have

A⊕ Σ =a.e. (A⊕ F )⊕Rd =a.e. Z
d ⊕Rd =a.e. R

d,

so there is at least one tiling of Rd by Σ.

Conversely, suppose that we have a tiling Λ⊕ Σ =a.e. R
d of Rd. Then we

have

(Λ⊕ F )⊕Rd =a.e. Λ⊕ Σ =a.e. R
d,

and hence by Lemma 2.2, we have Λ⊕F = Zd+ t for some t ∈ Rd. Then Λ− t

is a tiling set of Zd by F and is hence not periodic by hypothesis. This implies

that Λ is not periodic, and so the tiling equation Λ ⊕ Σ =a.e. R
d is aperiodic

as claimed. �

In view of Theorem 2.1, we see that Corollary 1.6 implies Corollary 1.7.

In [MSS22] it was shown that any tiling of a quotient group Zd/Λ can be

identified with a tiling of Zd. This is done by a rigid pullback argument,

generalizing [GT23b, §9]. As a corollary, this gives that the discrete periodic

tiling conjecture in Zd also implies the discrete periodic tiling conjecture in

every quotient group Zd/Λ [MSS22, Cor. 1.2]. Thus, we have that Theorem 1.4

implies Corollary 1.7. It therefore remains to establish Theorem 1.4. This is

the objective of the remaining sections of the paper.
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3. Building an aperiodic tiling equation from an aperiodic system

of tiling equations

Theorem 1.4 asserts the construction of a single tiling equation A⊕ F =G

that is aperiodic. As in our previous paper [GT23b], it will be more convenient

to consider the significantly more flexible problem of constructing a system

(3.1) A⊕ Fm = G for all m = 1, . . . ,M

of tiling equations that are (jointly) aperiodic in the sense that solutions A ⊂ G

to the system (3.1) exist, but none of them are periodic. The ability to pass

to this more flexible setup is provided by the following tool (compare with

Theorem 2.1):

Theorem 3.1 (Concatenating an aperiodic system of tiling equations into

a single aperiodic tiling equation). Let G be a finitely generated abelian group.

Suppose that there exist finite non-empty sets F1, . . . , FM ⊂ G for some M > 1

such that the system (3.1) of tiling equations is aperiodic. Then there exist a 2-

group of the form Z/NZ, N = 2r, and a finite non-empty subset F̃ of G×Z/NZ

such that the single tiling equation

Ã⊕ F̃ = G× Z/NZ

is aperiodic.

This theorem is a variant of our previous result [GT23b, Th. 1.15], in

which the 2-group Z/NZ was replaced by a proper subset of the cyclic group

Z/(M + 1)Z. In order to be able to tile the whole group, we will utilize a

“rigid” partition of Z/NZ. More precisely, we have the following analogue of

Lemma 2.2:

Lemma 3.2 (Construction of a “rigid” partition). For every M > 1, there

exist N > 1 and a partition Z/NZ = E1]· · ·]EM of Z/NZ into M non-empty

sets E1, . . . , EM , such that

(3.2) Ei ∩ (Ej + h) 6= ∅

for any 1 6 i, j 6 M and h ∈ Z/NZ\{0}. In particular, for any 1 6 i, j 6 M

and hi, hj ∈ Z/NZ, we have

(3.3) (Ei + hi) ∩ (Ej + hj) 6= ∅

unless hi = hj and i 6= j.

Proof. To construct such E1, . . . , EM we use the probabilistic method. Let

N be a sufficiently large power of two (depending onM) to be chosen later. Let

a : Z/NZ → {1, . . . ,M} be a function chosen uniformly at random, thus the

a(x) ∈ {1, . . . ,M} for x ∈ Z/NZ are independent uniform random variables.

We then set Ei := {x ∈ Z/NZ : a(x) = i} to be the level sets of a. Clearly
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the E1, . . . , EM partition Z/NZ. The probability that a given Ei is empty is

(1−1/M)N . Now let 1 6 i, j 6 M and h ∈ Z/NZ\{0}. Then the only way that

(3.2) fails for this choice of parameters is if (a(x), a(x− h)) 6= (i, j) for all x ∈

Z/NZ. As h 6= 0, it has even order, so one can partition Z/NZ into N/2 sets of

the form {x, x−h}, so the probability that (3.2) fails for this choice of param-

eters is at most (1− 1/M2)N/2. As the total number of choices of (i, j, h) is at

most M2N , the probability that this construction fails to work is thus at most

M(1− 1/M)N +M2N(1− 1/M2)N/2.

For N sufficiently large depending on M , this failure probability is less than 1,

and the claim follows. �

Remark 3.3. An inspection of the bounds shows that one can take the

2-group Z/NZ to be of order N = O(M2 logM). A similar construction works

with Z/NZ replaced by other finite abelian groups of comparable order. We

were able to also find deterministic constructions of the sets E1, . . . , EM in

various such groups, but for such constructions, the verification of the key

property (3.3) required a longer argument than the probabilistic arguments

provided here.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let G,F1, . . . , FM be as in that theorem. We use

the partition Z/NZ = E1] · · ·]EM provided by the above lemma to form the

combined tile

(3.4) F̃ :=
M
⊎

m=1

(Fm × Em) ⊂ G× Z/NZ.

To complete the proof of Theorem 3.1, it suffices to show that the single tiling

equation

(3.5) Ã⊕ F̃ = G× Z/NZ.

is aperiodic.

To verify this claim, we first observe that by hypothesis there exists A ⊂ G

such that A⊕Fm = G for allm = 1, . . . ,M . If we set Ã := A×{0} ⊂ G×Z/NZ,

then we have from (3.4) that

Ã⊕ F̃ =
M
⊎

m=1

((A⊕ Fm)× Em) = G×
M
⊎

m=1

Em = G× Z/NZ.

Thus the tiling equation (3.5) has at least one solution.

Conversely, suppose Ã ⊂ G × Z/NZ solves the tiling equation (3.5). We

first claim that any “vertical line” {a}×Z/NZ, a ∈ G, intersects Ã in at most

one point. Indeed, if (a, h), (a, h′) ∈ Ã for some h 6= h′, then by (3.4), Ã ⊕ F̃

will contain both (a+F1)× (h+E1) and (a+F1)× (h′ +E1) as disjoint sets.

But by (3.3), h+ E1, h
′ + E1 intersect, a contradiction.
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Because each vertical line {a} × Z/NZ, a ∈ G meets A in at most one

point, we can write Ã as a graph

Ã = {(a, f(a)) : a ∈ A}

for some A ⊂ G and some function f : A → Z/NZ. From (3.5) and (3.4) we

see that the sets

(3.6) (a+ Fm)× (f(a) + Em)

for a ∈ A and m = 1, . . . ,M partition G× Z/NZ.

We now claim that for any m = 1, . . . ,M , the sets a + Fm, a ∈ A, are

disjoint. For if we had a+f = a′+f ′ for some distinct a, a′ ∈ A and f, f ′ ∈ Fm,

then {a + f} × (f(a) + Em) and {a′ + f ′} × (f(a′) + Em) would have to be

disjoint, but this again contradicts (3.3).

By restricting the partition (3.6) of G × Z/NZ to a single vertical line

{b}×Z/NZ, we see that for any b ∈ G, we can partition Z/NZ into f(am)+Em,

where m = 1, . . . ,M and am is the unique element of A (if it exists) such that

b ∈ am+Fm. Since f(am)+Em has cardinality |Em| > 0, and |E1|+ · · ·+ |EM |

= N , we conclude that am must exist for every m = 1, . . . ,M . In other words,

A ⊕ Fm = G for every m = 1, . . . ,M . By hypothesis, this implies that A is

non-periodic. Since A is the projection of Ã to G, this implies that Ã is also

non-periodic. Thus the tiling equation (3.5) is aperiodic, and Theorem 3.1

follows. �

Let us say that the multiple periodic tiling conjecture holds for some

finitely generated abelian groupG if, whenever F1, . . . , FM are finite non-empty

subsets of G, the system (3.1) of tiling equations is not aperiodic. Obviously,

the multiple periodic tiling conjecture for a given group implies the periodic

tiling conjecture for that group. Applying Theorem 3.1, we conclude that the

periodic tiling conjecture will hold for Z2×G0 for all finite abelian groups G0 if

and only if the multiple periodic tiling conjecture holds for Z2×G1 for all finite

abelian groups G1. Thus, to establish Theorem 1.4, it now suffices to establish

Theorem 3.4 (Counterexample to multiple periodic tiling conjecture).

There exist a finite abelian group G1 and a finite non-empty subsets F1, . . . , FM

of G = Z2 ×G1 such that the system (3.1) of tiling equations is aperiodic. In

other words, the multiple periodic tiling conjecture fails for Z2 ×G1.

Our remaining task is to establish Theorem 3.4. This is the objective of

the remaining sections of the paper.

4. Building an aperiodic system of tiling equations from an

aperiodic property expressible in functional equations

One can view the individual tiling equations A ⊕ Fm = G in (3.1) as

sentences in a “tiling language” that assert various constraints on the tiling
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set A. Theorem 3.4 can then be thought of as an assertion that this tiling

language is expressive enough to describe a type of set A ⊂ Z2 ×G1 that can

exist, but is necessarily non-periodic.

In this section we show that one can replace the language of tiling equa-

tions A⊕F = G by the language of functional equations, in which the unknown

object is now a function α : G → H from a finitely generated abelian group

G to a finite abelian group H, rather than a subset A of G, and then develop

the further theory of this “functional equation language.” A single functional

equation in this language will take the form

(4.1)
J
⊎

j=1

(α(x+ hj) + Ej) = H for every x ∈ G

for some given shifts h1, . . . , hJ ∈ G and some sets E1, . . . , EJ ⊂ H, which we

may take to be non-empty. For instance, in Example 4.8 below we will consider

the functional equation

(α(x) + {1}) ] (α(x+ 1) + (Z/NZ\{0})) = Z/NZ

that may or may not be satisfied by a given function α : Z→ Z/NZ. A system

(4.2)

Ji
⊎

j=1

(α(x+ hi,j) + Ei,j) = H for all i = 1, . . . ,M, x ∈ G

of such functional equations will be said to be aperiodic if solutions α : G→ H

to this system exist, but that they are all non-periodic, by which we mean that

there is no finite index subgroup Λ of G such that α(x + h) = α(x) for all

x ∈ G and h ∈ Λ.

We then have the following tool to convert aperiodic systems of functional

equations to aperiodic systems of tiling equations, in the spirit of Theorems 2.1

and 3.1:

Theorem 4.1 (Converting an aperiodic system of functional equations to

an aperiodic system of tiling equations). Let G be a finitely generated abelian

group, and let H be a finite abelian group. Suppose that there exists M > 1,

and for each i = 1, . . . ,M there exists Ji > 1, and for each 1 6 j 6 Ji there

exist shifts hi,j ∈ G and sets Ei,j ⊂ H , such that the system (4.2) of functional

equations is aperiodic. Then there exists a system (3.1) of tiling equations in

G×H that is aperiodic.

Proof. We will consider the system of tiling equations in G×H consisting

of the “vertical line test” equation

(4.3) A⊕ ({0} ×H) = G×H
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as well as the tiling equations

(4.4) A⊕
Ji
⊎

j=1

{−hi,j} × Ei,j = G×H

for i = 1, . . . ,M . It will suffice to show that this system of tiling equations is

aperiodic.

On the one hand, by hypothesis there is a solution α : G → H to the

system (4.2). If we then form the graph

(4.5) A := {(x, α(x)) : x ∈ G} =
⊎

x∈G

({x} × {α(x)}) ⊂ G×H,

one has

A⊕ ({0} ×H) =
⊎

x∈G

{x} ×H = G×H

and

A⊕
Ji
⊎

j=1

{−hi,j} × Ei,j =

Ji
⊎

j=1

⊎

x∈G

{x− hj} × (α(x) + Ei,j)

=

Ji
⊎

j=1

⊎

y∈G

{y} × (α(y + hj) + Ei,j)

= G×H,

and so A solves the system of tiling equations (4.3) and (4.4).

Conversely, suppose that A ⊂ G×H solves the system of tiling equations

(4.3) and (4.4). From (4.3) we see that each vertical line {x}×H, x ∈ G meets

A in exactly one point; in other words, A is a graph (4.5) of some function

α : G → H. By the above calculations, we then see that each tiling equation

(4.4) is equivalent to its functional counterpart (4.2), so that α is a solution to

the system (4.2). By hypothesis, α is non-periodic, and hence A is non-periodic

also. This establishes the theorem. �

In order to use the above theorem, it is convenient to introduce some

notation.

Definition 4.2. Let G,H be abelian groups. A (G,H)-property is a prop-

erty P that may or may not be satisfied by any given function α : G → H. If

one wishes, one can identify such a property with a subset of HG, namely with

the set of all α ∈ HG that obey property P (after viewing α as a function from

G to H.)

Example 4.3. Every functional equation (4.1) associated to a given set of

parameters h1, . . . , hJ ∈ G and E1, . . . , EJ ⊂ H can be viewed as an example

of a (G,H)-property. The conjunction of any number of (G,H)-properties is
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obviously also a (G,H)-property, so each functional system (4.2) also describes

a (G,H)-property.

Definition 4.4 (Expressible property). We say that a (G,H)-property P

is expressible in the language of functional equations, or expressible7 for short,

if there exists a system (4.2) of functional equations for some M > 0 that is

obeyed by a function α : G→ H if and only if α obeys property P .

One can think of expressible properties as describing certain types of sub-

shifts of finite type; see also Remark 4.11 below.

Definition 4.5 (Aperiodic property). We say that a (G,H)-property P is

aperiodic if it is satisfiable, but only by non-periodic functions.

The following examples may help illustrate these concepts:

Example 4.6 (Empty and full property). The empty property (satisfied by

no function α : G→ H) is expressible, for instance using an empty functional

equation (4.1) with J = 0. Similarly, the complete property (satisfied by every

function α : G → H) is expressible, using the empty system with M = 0

(or alternatively by using the functional equation α(x) + H = H). Neither

property is aperiodic. (The former has no solutions, and the latter includes

periodic solutions.)

Example 4.7 (Closure under conjunction). If P1, . . . , PM are a finite col-

lection of expressible (G,H)-properties, then their conjunction P1 ∧ · · · ∧ PM

is clearly also an expressible (G,H)-property.

Example 4.8 (Expressing a clock). Let Z/NZ be a cyclic group. Let us

call a function α : Z→ Z/NZ a clock if it obeys the property

α(x+ 1) = α(x) + 1

for all x ∈ Z, or equivalently if it takes the form α(x) = x + a (mod N) for

some a ∈ Z/NZ. Then the property of being a clock is expressible by using

the single functional equation

(α(x) + {1}) ] (α(x+ 1) + (Z/NZ\{0})) = Z/NZ.

On the other hand, the property of being a clock is clearly not aperiodic.

7This notion is somewhat analogous to the notion of an algebraic set in algebraic geometry,

or of a variety in universal algebra. For instance, the claim in Example 4.7 is analogous to

the claim that the intersection of finitely many algebraic sets is again algebraic. On the

other hand, unlike algebraic sets that are closed under unions thanks to the integral domain

property ab = 0 ⇐⇒ a = 0 ∨ b = 0, it is not the case that the disjunction of expressible

properties is again expressible, as there is no analogue of the integral domain property in our

setting.
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For technical reasons, we will not actually employ the clock property in

our main argument, but instead rely on the following variant:

Example 4.9 (Expressing a periodized permutation). Let Z/NZ be a cyclic

group. Let us call a function α : Z→ Z/NZ a periodized permutation if it is of

the form α(x) = σ(x (mod N)) for some permutation σ : Z/NZ→ Z/NZ. For

instance, every clock is a periodized permutation, but the converse is not true

for N > 2. We claim that the property of being a periodized permutation is

expressible by the single functional equation

(α(x) + {0}) ] (α(x+ 1) + {0}) ] · · · ] (α(x+N − 1) + {0}) = Z/NZ

for all x ∈ Z. Indeed, this equation asserts that the N points α(x), . . . , α(x+

N − 1) in Z/NZ are all distinct, which when applied to both x and x + 1

implies that α(x) = α(x+N), and also that α is a permutation on any interval

{x, . . . , x + N − 1}, which gives the claim. Obviously, this property is not

aperiodic either.

Theorem 4.1 tells us that if there is an expressible (G,H)-property P

that is aperiodic, then one can use this to build an aperiodic system of tiling

equations. (Note that the empty system M = 0 is not aperiodic, so we must

have M > 1.) As a consequence, Theorem 3.4 is implied by the following

statement:

Theorem 4.10 (Expressing aperiodicity). There exist finite abelian

groups G1, H and an (Z2 × G1, H)-property P that is both expressible and

aperiodic.

Remark 4.11 (Translation invariance). An expressible property P must

necessarily be translation invariant in both the horizontal direction G and the

vertical direction H. More precisely, if α : G → H obeys P , then so do all

the horizontal translates x 7→ α(x + h) for h ∈ G, and vertical translates

x 7→ α(x) + u for u ∈ H. This is because each equation in (4.2) is invariant

with respect to these translations. The horizontal invariance (together with the

“local” nature of equations (4.2)) also means that such properties can be inter-

preted as subshifts of finite type. The “dilation lemma” (see, e.g., [GGRT23,

Th. 1.2]) also can force some dilation invariances of expressible properties (at

least if the shifts hi,j in (4.2) are of finite order), although we will not formal-

ize this assertion here. These invariances are a technical complication for our

applications, as they provide some limitations on what types of properties one

can hope to express in the language of functional equations. For instance, one

cannot remove the constant a from the clock property in Example 4.8 and still

retain expressibility.
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It will be convenient to “coordinatize” the function α : G→ H by replacing

it with a tuple (αw)w∈W of functions αw : G → Hw into various finite abelian

groups Hw indexed by a finite set W. Note that any such tuple (αw)w∈W can

be identified with a single function α : G→
∏

w∈W Hw, defined by the formula

α(x) := (αw(x))w∈W

for x ∈ G. Define a (G, (Hw)w∈W)-function to be a tuple (αw)w∈W of func-

tions αw : G → Hw, and define a (G, (Hw)w∈W)-property to be a property P

of a (G, (Hw)w∈W)-function (αw)w∈W . We will say such a property P is ex-

pressible in the language of functional equations, or expressible for short, if the

corresponding (G,
∏

w∈W Hw)-property P̃ of the combined function α : G →
∏

w∈W Hw is expressible, that is to say, that there is a system of functional

equations

(4.6)

Ji
⊎

j=1

((αw(x+ hi,j))w∈W + Ei,j) =
∏

w∈W

Hw for all i = 1, . . . ,M

for some M , some J1, . . . , JM , and some hi,j ∈ G and Ei,j ⊂
∏

w∈W Hw for

1 6 i 6 M and 1 6 j 6 Ji, which is satisfied by the tuple (αw)w∈W if and only

if the property P holds. We say that P is aperiodic if P̃ is, or equivalently if

there are tuples (αw)w∈W obeying property P , but any such tuple has at least

one of the αw non-periodic.

Example 4.12 (Differing by a constant is expressible). Let H be a finite

abelian group. The property of two functions α1, α2 : Z
2 → H differing by a

constant (thus α1(x) = α2(x) + c for all x ∈ Z and some c ∈ H) can be seen

to be an expressible (Z2, (H,H))-property by using the system of functional

equations

(4.7) ((α1(x), α2(x)) + ∆) ] (α1(x+ ei), α2(x+ ei)) + (H2\∆)) = H2

for x ∈ Z2 and i = 1, 2, where e1 = (1, 0), e2 = (0, 1) is the standard basis

of Z2 and ∆ is the diagonal group

∆ := {(a, a) : a ∈ H}.

Indeed, equation (4.7) can easily be seen to be equivalent to the equation

α1(x)− α2(x) = α1(x+ ei)− α2(x+ ei),

which is in turn equivalent to the constancy of α1 − α2 since the e1, e2 gen-

erate Z2. This property is of course not aperiodic, since one can easily find a

pair (α1, α2) of periodic functions that differ by a constant.

Recall that Theorem 3.4 is implied by Theorem 4.10, which can now be

reduced to establishing the following claim:
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Theorem 4.13 (Expressing aperiodicity for a tuple). There exist a finite

abelian group G1, a tuple (Hw)w∈W of finite abelian groups indexed by a fi-

nite set W , and a (Z2 × G1, (Hw)w∈W)-property that is both expressible and

aperiodic.

Remark 4.14. By Remark 4.11, an expressible (G, (Hw)w∈W)-property

must be invariant with joint horizontal translation of a (G, (Hw)w∈W)-function

(αw)w∈W to (αw(·+h))w∈W by a shift h ∈ G, and also by independent vertical

translations (αw + uw)w∈W of such functions by arbitrary shifts uw ∈ HW ,

and in some cases there are also dilation invariances. Again, these invariances

present some limitations on what properties one can hope to be expressible.

To add even more flexibility to our framework, it will be convenient to

relax the notion of expressibility in which we “allow existential quantifiers.”

Definition 4.15 (Weak expressibility). Let G be a finite abelian group, and

let (Hw)w∈W]W0
be a tuple of finite abelian groups indexed by the disjoint

union of two finite sets W,W0.

(i) Given a (G, (Hw)w∈W]W0
)-property P ∗, we define the existential quantifi-

cation (or projection) P of P ∗ to (G, (Hw)w∈W) to be the (G, (Hw)w∈W)-

property defined by requiring a (G, (Hw)w∈W)-function (αw)w∈W to obey

P if and only if there exists a (G, (Hw)w∈W]W0
)-function (αw)w∈W]W0

ex-

tending the original tuple (αw)w∈W that obeys P ∗.

(ii) A (G, (Hw)w∈W)-property P is said to be weakly expressible if it is the

existential quantification of some expressible (G, (Hw)w∈W]W0
)-property

P ∗ for some W0 disjoint from W.

Expressible and weakly expressible properties (or more precisely, the sets

of tuples obeying such properties) can be viewed as analogous8 to Π0
0 and Σ0

1

sets respectively in the arithmetic hierarchy; we will not need any analogues

of higher order sets in this hierarchy.

Obviously every expressible property is weakly expressible (takeW0 = ∅).

It is somewhat more challenging to locate a weakly expressible property that

is not obviously expressible, but we will do so in later sections. Observe that

if P is an aperiodic weakly expressible (G, (Hw)w∈W)-property, then the asso-

ciated expressible (G, (Hw)w∈W]W0
)-property P ∗ is necessarily also aperiodic,

since it is satisfied by at least one tuple (αw)w∈W]W0
(formed by extending a

tuple obeying P ), and any such tuple must contain a non-periodic function:

αw0
: G→ Hw0

for at least one w0 ∈ W]W0 (because the restriction (αw)w∈W

does). Hence, to prove Theorem 4.13, it suffices to show

8They are also somewhat analogous to the notions of an algebraic set and semi-algebraic

set respectively in real algebraic geometry, though as before this analogy should not be taken

too literally.
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Theorem 4.16 (Weakly expressing aperiodicity for a tuple). There exist

a finite abelian group G1, a tuple (Hw)w∈W of finite abelian groups indexed

by a finite set W , and an (Z2 × G1, (Hw)w∈W)-property that is both weakly

expressible and aperiodic.

To prove this theorem, it will be useful to observe that the class of weakly

expressible properties is closed under a number of natural operations, which

we now introduce.

Definition 4.17 (Lift). If G is a finitely generated abelian group, (Hw)w∈W

is a tuple of finite abelian groups indexed by a finite set W, W1 is a sub-

set of W, and P1 is a (G, (Hw)w∈W1
)-property, we define the lift of P1 to

(G, (Hw)w∈W) to be the (G, (Hw)w∈W)-property P , defined by requiring a

(G, (Hw)w∈W)-function (αw)w∈W to obey P if and only if the (G, (Hw)w∈W1
)-

function (αw)w∈W1
obeys P1.

One can think of this operation as that of adding “dummy functions”

αw : Z2 × G1 → Hw for w ∈ W\W1 that play no actual role in the lifted

property P .

Example 4.18. The (Z2, (H,H,H))-property of a triple (α1, α2, α3) of func-

tions α1, α2, α3 : Z
2 → H such that α2, α3 both differ from α1 by a constant

(i.e., α2 = α1 + c and α3 = α1 + c′ for some c, c′ ∈ H) can be viewed as the

conjunction of two lifts of (relabelings of) the (Z, (H,H))-property described in

Example 4.12; one of these lifts will capture the property of α1 and α2 differing

by a constant, and another will capture the property of α1 and α3 differing

by a constant. If we take an existential quantification to eliminate the role

of α1, we conclude (from Lemma 4.22 below) that the (Z2, (H,H))-property

of a pair α2, α3 : Z
2 → H differing by a constant is then weakly expressible

(since this occurs if and only if we can locate α1 : Z
2 → H such that α2, α3

both differ from α1 by a constant). Of course, from Example 4.12 we already

knew that this property was in fact expressible, so this does not give an exam-

ple of a weakly expressible property that is not expressible. However, in the

next section we shall see several examples in which existential quantification

can be used to produce weakly expressible properties that are not obviously

expressible.

Example 4.19. If one lifts a (G, (Hw)w∈W1
)-property P1 to a (G, (Hw)w∈W)-

property and then takes an existential quantification back to (G, (Hw)w∈W1
),

one recovers the original property P1 (since one could simply set all the dummy

functions equal to zero).

Definition 4.20 (Pullback). Let G be a finitely generated abelian group,

let G′ be a subgroup of G, and let (Hw)w∈W be a tuple of finite abelian groups

indexed by a finite set W. If P ′ is a (G′, (Hw)w∈W)-property, we define the
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pullback of P ′ to (G, (Hw)w∈W) to be the (G, (Hw)w∈W)-property P defined

by requiring a (G, (Hw)w∈W)-function (αw)w∈W to obey P if and only if the

(G′, (Hw)w∈W)-function (αw,x0
)w∈W defined by αw,x0

(x′) := αw(x0 + x′) for

x′ ∈ G′ and w ∈ W obeys P ′ for every choice of base point x0 ∈ G.

Example 4.21 (Pulling back the clock). Let v be a non-zero vector in Z2.

Then we can identify Z with the subgroup Zv = {nv : n ∈ Z} of Z2. If we view

the clock property from Example 4.8 as a (Zv,Z/NZ)-property, its pullback

to (Z2,Z/NZ) is the (Z2,Z/NZ)-property of a function α : Z2 → Z/NZ being

a clock along the direction v; that is to say, for every x0 ∈ Z2, there exists

ax0
∈ Z/NZ such that α(x0 + nv) = ax0

+ n (mod N) for every n ∈ Z.

We now record the closure properties of (weak) expressibility we will need.

Lemma 4.22 (Closure properties of (weak) expressibility).

(i) Any lift of an expressible (respectively weakly expressible) property is also

expressible (respectively weakly expressible).

(ii) Any pullback of an expressible (respectively weakly expressible) property

is also expressible (respectively weakly expressible).

(iii) The conjunction P ∧P ′ of two expressible (respectively weakly expressible)

(G, (Hw)w∈W)-properties is also expressible (respectively weakly express-

ible).

(iv) Any existential quantification of a weakly expressible property is weakly

expressible.

Proof. We begin with the expressible case of (i). Suppose that P is

a (G, (Hw)w∈W)-property formed as a lift of an expressible (G, (Hw)w∈W1
)-

property P1. By definition, we can find M,J1, . . . , JM , and hi,j ∈ G and

Ei,j,1 ⊂
∏

w∈W1
Hw for 1 6 i 6 M and 1 6 j 6 Ji such that a (G, (Hw)w∈W1

)-

function (αw)w∈W1
obeys P1 if and only if it solves the system

Ji
⊎

j=1

((αw(x+ hi,j))w∈W1
+ Ei,j,1) =

∏

w∈W1

Hw

for all i = 1, . . . ,M and x ∈ G. If we then define the lifted sets

Ei,j := Ei,j,1 ×
∏

w∈W\W1

Hw ⊂
∏

w∈W

Hw

for i = 1, . . . ,M and j = 1, . . . , Ji, we see from Definitions 4.17 and 4.4 that a

(G, (Hw)w∈W)-function (αw)w∈W obeys P if and only if

Ji
⊎

j=1

((αw(x+ hi,j))w∈W + Ei,j) =
∏

w∈W

Hw

for all i = 1, . . . ,M . The claim follows.
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For the weakly expressible case of (i), suppose that P is a (G, (Hw)w∈W)-

property formed by lifting a weakly expressible (G, (Hw)w∈W1
)-property P1.

By Definition 4.15, the weakly expressible (G, (Hw)w∈W1
)-property P1 is as-

sociated to an expressible (G, (Hw)w∈W1]W0
)-property P ∗

1 . By relabeling, we

may assume thatW0 is disjoint fromW. The lift P ∗ of P ∗
1 to (G, (Hw)w∈W]W0

)

is then an expressible (G, (Hw)w∈W]W0
)-property by the expressible case of (i),

and it can be seen to be associated to P in the sense of Definition 4.15 by ex-

panding out the definitions. Thus P is weakly expressible, as desired.

Now we establish the expressible case of (ii). Suppose P is a (G, (Hw)w∈W)-

property formed by pulling back an expressible (G′, (Hw)w∈W)-property P ′. By

definition, we can find M,J1, . . . , JM , and hi,j ∈ G′ and Ei,j ⊂
∏

w∈W Hw for

1 6 i 6 M and 1 6 j 6 Ji such that a (G′, (Hw)w∈W)-function (αw)w∈W obeys

P ′ if and only if it solves the system

(4.8)

Ji
⊎

j=1

((αw(x+ hi,j))w∈W + Ei,j) =
∏

w∈W

Hw

for all i = 1, . . . ,M and x ∈ G′. By expanding out the definitions, we then

see that a (G, (Hw)w∈W)-function (αw)w∈W obeys P if and only if it obeys the

same system of equations (4.8) for i = 1, . . . ,M , but now with x ranging over

G instead of G′. Thus P is also expressible as required.

For the weakly expressible case of (ii), suppose that P is a (G, (Hw)w∈W)-

property formed by applying a pullback to a weakly expressible (G′, (Hw)w∈W)-

property P ′. By Definition 4.15, property P ′ is associated to some expressible

(G′, (Hw)w∈W]W0
)-property (P ′)∗. If we let P ∗ be the pullback of (P ′)∗ to

(G, (Hw)w∈W]W0
), then P ∗ is expressible by the expressible case of (ii), and it

can be seen to be associated to P in the sense of Definition 4.15 by expanding

out the definitions. Thus P is weakly expressible as desired.

The expressible case of (iii) is trivial (and was already noted in Re-

mark 4.7). Now suppose that P, P ′ are weakly expressible (G, (Hw)w∈W)-

properties. By Definition 4.15, property P is associated with an expressible

(G, (Hw)w∈W]W0
)-property P ∗, and property P ′ is similarly associated with

an expressible (G, (Hw)w∈W]W ′

0
)-property (P ′)∗. By relabeling, we can assume

that W0 and W ′
0 are disjoint. Let Q∗ be the (G, (Hw)w∈W]W0]W ′

0
)-property

formed by lifting both P ∗ and (P ′)∗ to (G, (Hw)w∈W]W0]W ′

0
) and then taking

their conjunction. By the previously established parts of this lemma, Q∗ is

expressible, and it can be seen to be associated to P ∧P ′ in the sense of Defini-

tion 4.15 by expanding out the definitions. Thus P ∧ P ′ is weakly expressible

as desired.

Finally, (iv) is immediate from Definition 4.15, after observing that an

existential quantification of an existential quantification is again an existential

quantification. �
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5. A library of (weakly) expressible properties

In view of Lemma 4.22, a natural strategy to establish Theorem 4.16

is to first build up a useful “library” of (weakly) expressible (G, (Hw)w∈W)-

properties for various choices of G and (Hw)w∈W , with the aim of combining

them via various applications of Lemma 4.22 to create more interesting (and

ultimately, aperiodic) examples of weakly expressible properties (analogously

to how one can create a complex computer program by combining more fun-

damental library routines together in various ways). For instance, the clock

in Example 4.8 can be regarded as one entry in this library, as can the prop-

erty of being a periodized permutation as discussed in Example 4.9, or the

property of differing by a constant as discussed in Example 4.12. The final

objective is to then “program” such a combination of properties in the library

that necessarily generates an non-periodic function. In fact we will achieve

this by “programming” a certain type of “Sudoku puzzle” that can be solved,

but only in a non-periodic fashion.

Example 5.1. Consider the (Z2,Z/NZ)-property P of a function α : Z2 →

Z/NZ being of the form α(x, y) = x + y + c for all (x, y) ∈ Z2 and some

c ∈ Z/NZ. This is equivalent to α being a clock along the direction e1 = (1, 0)

and simultaneously being a clock along the direction e2 = (0, 1), in the sense

of Example 4.21. Thus this property P is the conjunction of two pullbacks of

the clock property; since we know from Example 4.8 that the clock property

is expressible, we conclude from several applications of Lemma 4.22 that this

property P is also expressible. However, this property is not aperiodic, and so

does not complete the proof of Theorem 4.16.

Example 5.2. The (Z, (Z/NZ)w=1,2)-property of two functions α1, α2 : Z→

Z/NZ being periodized permutations that differ by a constant is expressible,

as can be seen from Lemma 4.22 after lifting Example 4.9 twice and taking

conjunctions of those lifts with Example 4.12. Again, this property is not

aperiodic, and so does not complete the proof of Theorem 4.16.

5.1. Expressing linear constraints. One basic property that we will add to

our library is the ability to express linear constraints (up to constants) between

different functions αw, which significantly generalizes Example 4.12. The basic

relation is

Proposition 5.3 (Expressing constancy modulo a subgroup). Let G be a

finitely generated abelian group, let H be a finite abelian group, and let H ′ be a

subgroup of H . Then the (G,H)-property of a (G,H)-function α taking values

in a single coset c+H ′ of H ′ (i.e., there exists c ∈ H such that α(x) ∈ c+H ′

for all x ∈ G) is expressible.
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Proof. Let e1, . . . , ed be a set of generators for G. Similarly to Exam-

ple 4.12, we consider the functional equation

(α(x) +H ′) ]
(

α(x+ ei) + (H\H ′)
)

= H

for all i = 1, . . . , d and x ∈ G, and some unknown function α : G → H. This

equation can be equivalently expressed as

α(x) = α(x+ ei) (mod H ′);

that is to say, α(x) and α(x + ei) lie in the same coset of H ′. Since the ei
generate G, this is equivalent to α lying in a single coset of H ′, as claimed. �

We isolate two useful corollaries of this proposition:

Corollary 5.4 (Expressing periodicity). Let G be a finitely generated

abelian group, let H be a finite abelian group, and let G′ be a subgroup of G.

Then the (G,H)-property that a (G,H)-function α is G′-periodic in the sense

that α(x+ h) = α(x) for all x ∈ G and h ∈ G′, is expressible.

Proof. From Proposition 5.3 with G replaced by G′ and H ′ replaced

by {0}, we see that the (G′, H) property of being a constant (G′, H)-function

is expressible. Pulling back from (G′, H) to (G,H) using Lemma 4.22(ii), we

obtain the claim. �

Corollary 5.5 (Expressing linear constraints). Let G be a finitely gen-

erated abelian group, let Z/NZ be a cyclic group, and let c1, . . . , cW ∈ Z/NZ

be coefficients. Then the (G, (Z/NZ)w=1,...,W )-property of a tuple α1, . . . , αW :

G→ Z/NZ of functions obeying the linear relation

(5.1) c1α1(x) + · · ·+ cWαW (x) = c

for all x ∈ G and some constant c ∈ Z/NZ, is expressible.

Proof. We can view (αw)w=1,...,W as a single (G, (Z/NZ)W )-function. The

linear relation (5.1) is then equivalent to this function lying in a single coset

of the group

H ′ := {(a1, . . . , aW ) ∈ (Z/NZ)W : c1a1 + · · ·+ cwaw = 0}.

The claim now follows from Proposition 5.3. �

Remark 5.6. Note that Example 4.12 is essentially the special case of

Corollary 5.5 with W = 2, c1 = 1, and c2 = −1. The presence of the constant c

in (5.1) is unfortunately necessary due to the translation invariance mentioned

in Remark 4.11. We remark that a variant of Corollary 5.5 (in which one did

not tile the whole group, and was thus able to set c to zero) was implicitly

used in our previous work [GT23b, §6].
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Example 5.7. For a cyclic group Z/NZ, consider the (Z2, (Z/NZ)w=1,2,3)-

property of a triple of functions α1, α2, α3 : Z
2 → Z/NZ obeying the properties

α1(x, y) = α1(x+ 1, y),

α2(x, y) = α2(x, y + 1),

α3(x, y) = α3(x+ 1, y − 1),

α1(x, y) + α2(x, y) = α3(x, y)

for all (x, y) ∈ Z2; namely, α1, α2, α3 are periodic along the directions (1, 0),

(0, 1), (1,−1) respectively, and that α1 + α2 = α3. Thus, this property is

expressible. It is not difficult to show that the solutions to this system of

equations are given by α1(x, y) = φ(y) + c1, α2(x, y) = φ(x) + c2, α3(x, y) =

φ(x + y) + c3 for some homomorphism φ : Z → Z/NZ and some constants

c1, c2, c3 ∈ Z/NZ. Thus the property of α1, α2, α3 taking this form is express-

ible. Applying existential quantification to eliminate the role of α2, α3, we

conclude that the (Z2,Z/NZ)-property of a function α : Z2 → Z/NZ taking

the form α(x, y) = f(y) for some affine function f : Z → Z/NZ (i.e., the sum

of a homomorphism and a constant) is weakly expressible. This is our first

example of a property that is weakly expressible, but that is not obviously

expressible.

6. Expressing boolean functions

Thus far we have been considering properties of functions αw : G → Hw

that can range over the entirety of a finite abelian group Hw. In order to be

able to express boolean operations (as in [GT23b, §5]), we will need to start

expressing properties of functions that take on only two values {a, b} in a larger

ambient group Hw (which we will take to be a cyclic 2-group Z/2MZ). To do

this, we introduce the following definition:

Definition 6.1 (Boolean function). Let G be a finitely generated abelian

group, let e be an element of G of order 2, let Z/2MZ be a cyclic 2-group for

some M > 1, and let a, b be distinct elements of Z/2MZ of opposite parity.

(Thus one of the a, b is even and the other is odd.) A function α : G →

Z/2MZ is (e, {a, b})-boolean if it takes values in {a, b} and furthermore obeys

the alternating property

(6.1) α(x+ e) = a+ b− α(x)

for all x ∈ G; i.e., for each x ∈ G, α(x) takes one of the values a, b, and α(x+e)

takes the other value. In particular, {a, b} is equal to the image α(G) of α.

A (e, {a, b})-boolean function α is said to be compatible with a (e, {a′, b′})-

boolean function α′ if {a′, b′} is a translate of {a, b}, or equivalently if the image

α(G) of α is a translate of the image α′(G) of α′.
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We restrict to 2-groups Z/2MZ here because in later arguments it will be

important to exploit the fact that all odd elements of such groups are invertible

(with respect to the usual ring structure on cyclic groups) and, in particular,

have order 2M equal to the order of the group. This will also be the main reason

why we will work with “2-adic Sudoku puzzles” in later sections, as opposed

to Sudoku puzzles in odd characteristic that are slightly easier to analyze.

Proposition 6.2 (Expressing a single boolean function). Let G be a

finitely generated abelian group, let e be an element of G of order two, and let

Z/2MZ be a cyclic 2-group for some M > 1. Then the (G,Z/2MZ)-property

of being (e, {a, b})-boolean for some distinct a, b ∈ Z/2MZ of opposite parity is

expressible.

Proof. Suppose that {e1, . . . , er} is a set of generators for G, and consider

the (G,Z/2MZ)-property of a function α : G→ Z/2MZ obeying the functional

equation

(6.2)
Ä

α(x) + 2Z/2MZ
ä

]
Ä

α(x+ e) + 2Z/2MZ
ä

= Z/2MZ

for all x ∈ G, as well as the equations

(6.3)
⊎

y=x,x+e

Ä

(α(y + ei) + {0}) ] (α(y) + (2Z/2MZ\{0}))
ä

= Z/2MZ

for all x ∈ G and i = 1, . . . , r.

Suppose that α obeys this system (6.2), (6.3). Since 2Z/2MZ is an index

two subgroup of Z/2MZ, we see that for each x, the pair (α(x), α(x + e))

must consist of an even element a(x) and an odd element b(x) of Z/2qZ. On

the other hand, from comparing (6.3) with (6.2) we have for each x ∈ G and

i = 1, . . . , r that

(α(x) + {0}) ] (α(x+ e) + {0}) = (α(x+ ei) + {0}) ] (α(x+ e+ ei) + {0})

or equivalently that a(x) = a(x+ ei) and b(x) = b(x+ ei). Since the e1, . . . , er
generate G, we conclude that a(x) = a, b(x) = b are constant in x, and α is

(e, {a, b})-boolean. Conversely, if α is (e, {a, b})-boolean, we can reverse the

above arguments and conclude the functional equations (6.2) and (6.3). The

claim follows. �

Let G be a finitely generated abelian group, let e be an element G of

order two, let Z/2qZ be a cyclic group of even order, and let W > 1. By the

above proposition and Lemma 4.22, one can express the (G, (Z/2qZ)w=1,...,W )-

property of a tuple α1, . . . , αW : G→ Z/2qZ of functions being such that each

αi is (e, {ai, bi})-periodic for some ai, bi ∈ Z/2qZ of different parity. However,

this property does not force the boolean functions to be compatible; in other

words, it does not require that the {ai, bi} are translates of each other. This is

a new difficulty that was not present in our previous work [GT23b], where we

could enforce this compatibility by only tiling a subset of H rather than the
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full group H. In our context, the desired compatibility will be achieved with

the assistance of the following elementary lemma:

Lemma 6.3 (An equation to force boolean compatibility). Let Z/2MZ be

a cyclic 2-group for some M > 2, and let {a, b}, {c, d}, {f, g}, {h′, k′}, {h,′′ k′′}

be pairs of elements of Z/2MZ of different parity. Let z ∈ Z/2MZ be such that

(6.4) (a+ b) + (h′ + k′) + (h′′ + k′′) = 2(c+ d) + (f + g) + 2z.

Suppose also that for any triple (α, τ, τ ′) ∈ {a, b} × {h′, k′} × {h,′′ k′′}, there

exists (β, γ) ∈ {c, d} × {f, g} solving the equation

(6.5) α+ τ + τ ′ = 2β + γ + z.

Then the sets {a, b}, {h′, k′}, {h,′′ k′′} are translates of each other.

Proof. Observe that we can translate any of the pairs {a, b}, {h′, k′},

{h,′′ k′′} by some shift in Z/2MZ, so long as we also shift z by the same

shift. So we may normalize a = h′ = h′′ = 0. By (6.5) we may then find

(β, γ) ∈ {c, d}×{f, g} such that 0 = 2β+γ+z. By shifting {c, d} by −β, {f, g}

by −γ, and replacing z with 0, we may thus also normalize β = γ = z = 0, so

without loss of generality, c = f = z = 0. Thus we now have

(6.6) b+ k′ + k′′ = 2d+ g,

and for any triple (α, τ, τ ′) ∈ {0, b} × {0, k′} × {0, k′′}, there exists (β, γ) ∈

{0, d} × {0, g} such that

α+ τ + τ ′ = 2β + γ.

In particular,
b, k′, k′′ ∈ {0, 2d, g, g + 2d}.

By the hypothesis of distinct parities, b, k′, k,′′ d, g are all odd. Thus in fact we

must have
b, k′, k′′ ∈ {g, g + 2d}.

If b = k′ = k′′, then {0, b}, {0, k′}, {0, k′′} are translates of each other as desired.

There are only two remaining cases:

(1) If two of the b, k′, k′′ are equal to g and the third is equal to g + 2d, then

from (6.6) we have 3g + 2d = 2d + g, which is absurd since g is odd and

M > 2.

(2) If one of the b, k′, k′′ is equal to g and the other two are equal to g + 2d,

then from (6.6) we have 3g + 4d = 2d + g, so in particular, g + 2d =

−g and so {0, g} and {0, g + 2d} are translates of each other. Thus

{0, b}, {0, k′}, {0, k′′} are translates of each other as desired. �

Definition 6.4 (Compatible boolean property). Let G be a finitely gen-

erated abelian group, let e, e′, e′′ be elements of G that generate a copy of

(Z/2Z)3 (so that e, e′, e′′ are of order 2 and linearly independent over Z/2Z),
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let Z/2MZ be a cyclic 2-group for some M > 2, and let W > 1. We say that

a tuple (αw)w=1,...,W of functions α1, . . . , αW : G→ Z/2MZ obeys the compat-

ible boolean property P (with parameters e, e′, e′′) if each αi is 〈e
′, e′′〉-periodic

(thus αi(x + e′) = αi(x + e′′) = αi(x) for all x ∈ G) and (e, {ai, bi})-boolean

for some ai, bi ∈ Z/2MZ of different parity, and additionally that the αi are

compatible (i.e., the {ai, bi} are translates of each other).

We can exploit Lemma 6.3 as follows.

Proposition 6.5 (Expressing multiple compatible boolean functions).

The compatible boolean property P is a weakly expressible (G,(Z/2MZ)w=1,...,W )-

property.

Proof. For sake of notation, we just demonstrate this for W = 2; the

general case is similar, and in any event follows from the W = 2 case by

applying Lemma 4.22 in a similar spirit to Example 4.18.

Let α1, α2 : G→ Z/2MZ be functions. We introduce some auxiliary func-

tions

β1, β2, γ1, γ2, τ
′, τ ′′ : G→ Z/2MZ.

Consider the (G, (Z/2MZ)w=1,...,8)-property P ∗ that the tuple (α1, α2, β1, β2,

γ1, γ2, τ) obeys the following properties for i = 1, 2:

(i) αi is 〈e
′, e′′〉-periodic and (e, {ai, bi})-boolean for some ai, bi ∈ Z/2MZ of

different parity;

(ii) βi is (e, {ci, di})-boolean for some ci, di ∈ Z/2MZ of different parity;

(iii) γi is (e, {fi, gi})-boolean for some fi, gi ∈ Z/2MZ of different parity;

(iv) τ ′ is 〈e+e′, e′′〉-periodic and (e, {h′, k′})-boolean for some h′, k′ ∈ Z/2MZ

of different parity;

(v) τ ′′ is 〈e′, e + e′′〉-periodic and (e, {h,′′ k′′})-boolean for some h,′′ k′′ ∈

Z/2MZ of different parity;

(vi) there is a constant zi ∈ Z/2MZ such that αi(x)+τ ′(x)+τ ′′(x) = 2βi(x)+

γi(x) + zi for all x ∈ G.

From several applications of Corollaries 5.4 and 5.5, Proposition 6.2, and

Lemma 4.22 we already know that P ∗ is expressible. To conclude the propo-

sition, it suffices to show that the compatible boolean property P is the exis-

tential quantification of P ∗.

We first show that any pair (α1, α2) obeying the compatible boolean prop-

erty P can be lifted to a octuplet (α1, α2, β1, β2, γ1, γ2, τ, τ
′) obeying P ∗. By hy-

pothesis and Definition 6.4, each αi is already 〈e
′, e′′〉-periodic and (e, {ai, bi})-

boolean, where ai, bi ∈ Z/2MZ are of different parity and with α1, α2 compat-

ible. By applying independent translations to the compatible boolean func-

tions α1, α2 (which we can do by Remark 4.11), we may normalize {a1, b1} =

{a2, b2} = {0, b} for some odd b ∈ Z/2MZ. Next, let τ ′ be an arbitrary
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〈e+e′, e′′〉-periodic and (e, {0, b})-boolean function; such a function can be con-

structed by arbitrarily partitioning G into cosets x+ 〈e, e′, e′′〉 with a marked

point x and then setting

τ(x+ re+ se′ + te′′) = b1r=s

on each such coset for r, s, t ∈ Z/2Z. Similarly we can let τ ′′ be an arbitrary

〈e′, e + e′′〉-periodic and (e, {0, b})-boolean function. For each i = 1, 2, the

function αi+τ ′+τ ′′ then takes values in {0, b, 2b, 3b} and obeys the alternating

property

(αi + τ ′ + τ ′′)(x+ e) = 3b− (αi + τ ′ + τ ′′)(x)

for all x ∈ G. Note also that the quantities 0, b, 2b, 3b are all distinct since b is

odd and M > 2. By binary expansion, we may thus decompose

(αi + τ ′ + τ ′′)(x) = 2βi(x) + γi(x)

for some unique functions βi, γi : G → {0, b}. It is easy to verify that these

functions are (e, {0, b})-boolean, and so the octuplet (α1, α2, β1, β2, γ1, γ2, τ, τ
′)

obeys P ∗ as required (with zi = 0 in (vi)).

Conversely, suppose that we have an octuplet (α1, α2, β1, β2, γ1, γ2, τ, τ
′)

obeying property P ∗. Applying (vi) to x and x+ e and summing, we have
∑

y=x,x+e

(αi(y) + τ ′(y) + τ ′′(y)) =
∑

y=x,x+e

(2βi(y) + γi(y)) + 2zi

for any x ∈ G and i = 1, 2. Using the boolean nature of the functions

α1, α2, β1, β2, γ1, γ2, τ, τ
′ in the direction e, we conclude that

(ai + bi) + (h′ + k′) + (h′′ + k′′) = 2(ci + di) + (fi + gi) + 2zi

for i = 1, 2.

Let i = 1, 2. By (i), (iv), (v), we see that for any x ∈ G, the triple

(αi(x), τ
′(x), τ ′′(x)) takes values in the eight-element set {ai, bi} × {h

′, k′} ×

{h,′′ k′′}. Furthermore, shifting x by e′ changes the value of τ ′(x) but not

α(x), τ ′′(x); shifting x by e′′ changes the value of τ ′′(x) but not α(x), τ ′(x);

and shifting x by e + e′ + e′′ changes the value of αi(x) but not τ ′(x), τ ′′(x).

We conclude that all eight of the elements of {ai, bi} × {h
′, k′} × {h,′′ k′′} are

actually representable in the form (αi(x), τ
′(x), τ ′′(x)) for some x ∈ G. By (vi),

we conclude that every element (αi, τ, τ
′) of {ai, bi} × {h

′, k′} × {h,′′ k′′} has a

representation αi + τ + τ ′ = 2βi + γi + zi for some (βi, γi) ∈ {ci, di} × {fi, gi}.

We can now apply Lemma 6.3 to conclude that {ai, bi}, {h
′, k′}, {h,′′ k′′} must

be translates of each other. Thus, both α1, α2 are compatible with the τ ′, τ ′′.

By transitivity, this implies that α1 is compatible with α2, and hence the

compatible boolean property P holds as required. �
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Let G,M, e, e′, e′′ be as in the above proposition. If α1, . . . , αW : G →

Z/2MZ obey the compatible boolean property, then (after permuting ai, bi as

necessary) each αi is 〈e
′, e′′〉-invariant and is (e, {ai, ai + b})-boolean for some

ai ∈ Z/2MZ and some odd b independent of i. Thus we have representations

(6.7) αi(x) = ai + bα̃i(x)

for all x ∈ G and i = 1, . . . ,W , where the normalized boolean functions

α̃i : G → Z/2MZ are 〈e′, e′′〉-invariant and (e, {0, 1})-boolean. Note that the

ai, b are only unique up to the reflection symmetry

(a1, . . . , aW , b) 7→ (a1 + b, . . . , aW + b,−b),

which effectively replaces the normalized boolean functions α̃i with their re-

flections 1− α̃i.

Definition 6.6 (Property PΩ). Let Ω be a subset of {0, 1}W that is sym-

metric with respect to the reflection

(y1, . . . , yW ) 7→ (1− y1, . . . , 1− yW ).

We say that a (G, (Z/2MZ)w=1,...,W )-function (α1, . . . , αW ) obeys property PΩ

if it obeys the compatible boolean property P , and furthermore that the nor-

malized functions α̃1, . . . , α̃W obey the boolean constraint

(α̃1(x), . . . , α̃W (x)) ∈ Ω

for all x ∈ G.

Note that from the symmetry hypothesis, it does not matter which of the

two available normalizations α̃i of the αi are used here. Importantly, such

relations are weakly expressible when M is large enough:

Proposition 6.7 (Expressing symmetric boolean constraints). Let G be

a finitely generated abelian group, let e, e′, e′′ be elements of G that generate

a copy of (Z/2Z)3, let Z/2MZ be a cyclic 2-group for some M > 2, and let

W > 1. Let Ω be a symmetric subset of {0, 1}W . If 2M > 2W + 4, then the

(G, (Z/2MZ)w=1,...,W )-property PΩ is weakly expressible.

Proof. This will be a variant of the arguments in [GT23b, §6]. By increas-

ing W by one or two if necessary (and relaxing 2M > 2W + 4 to 2M > 2W )

using Lemma 4.22(iv), we may assume without loss of generality that W is

odd with W > 3. The symmetric set Ω can be expressed as the intersection of

a finite9 number of symmetric sets of the form

(6.8) {0, 1}W \{(ε1, . . . , εW ), (1− ε1, . . . , 1− εW )}

9This number, while finite, could be very large (exponentially large in W ). This expo-

nential growth will cause the dimension d in Theorem 1.4 to be enormous, as one has to

perform the conjunction of exponentially many expressible properties. A substantially more
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for some ε1, . . . , εW ∈ {0, 1}. By Lemma 4.22(iii), it thus suffices to verify the

claim for Ω of the form (6.8).

We introduce some auxiliary functions β1, . . . , βW−2 : G → Z/2MZ and

let P ∗
Ω be the (G, (Z/2MZ)w=1,...,2W−2)-property that a tuple

(α1, . . . , αW , β1, . . . , βW−2)

of functions from G to Z/2MZ obey the following properties:

(i) (α1, . . . ,αW, β1, . . . , βW−2) obeys the compatible boolean property P (with

W replaced by 2W − 2);

(ii) there is a constant z ∈ Z/2MZ such that

(−1)ε1α1(x) + · · ·+ (−1)εWαW (x) = β1(x) + · · ·+ βW−2(x) + z

for all x ∈ G.

From Proposition 6.5, Corollary 5.5, and Lemma 4.22, the property P ∗
Ω is

weakly expressible. By Lemma 4.22(iv), it thus suffices to show that PΩ is the

existential quantification of P ∗
Ω.

We first show that any tuple (α1, . . . , αW ) obeying PΩ can be extended to

a tuple (α1, . . . , αW , β1, . . . , βW−2) obeying P ∗
Ω. By hypothesis, we can write

the αi in the form (6.7) for some ai, b ∈ Z/2MZ with b odd, and some (e, {0, 1})-

boolean and 〈e′, e′′〉-periodic functions α̃1, . . . , α̃W : G→ {0, 1}. In particular,

(−1)ε1α1 + · · ·+ (−1)εWαW = b(α̃1,ε1 + · · ·+ α̃W,εW ) + z0

for some constant z0 ∈ Z/2MZ, where α̃i,εi : G → {0, 1} is the (e, {0, 1})-

boolean and 〈e′, e′′〉-periodic function Rεi(α̃i), where for a = 0, 1,

(6.9) Ra(x) := a+ (−1)ax, x ∈ G.

By the choice (6.8) of Ω, we see that for every x, the tuple

(α̃1,ε1(x), . . . , α̃W,εW (x))

is an element of the cube {0, 1}W that avoids both (0, . . . , 0) and (1, . . . , 1). In

particular, we have

α̃1,ε1(x) + · · ·+ α̃W,εW (x) = bf(x)

for some f(x) ∈ {1, . . . ,W − 1}, which is well defined since the odd element b

of Z/2MZ has order 2M > 2W ; note that f is 〈e′, e′′〉-periodic and obeys the

alternating property f(x+ e)=W − f(x) for all x∈G. We can therefore write

b(α̃1,ε1(x) + · · ·+ α̃W,εW (x)) = β1(x) + · · ·+ βW−2(x) + b

efficient approach will be needed here if one wishes to obtain a more reasonable value for the

dimension d.
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for all x ∈ G, where βi(x) for i = 1, . . . ,W − 2 is defined by

βi(x) := b1i<f(x)

if f(x) < W/2 and

βi(x) := b1i>W−f(x)

if f(x) > W/2. The reason for this rather complicated choice of βi is so that

βi becomes a (e, {0, b})-boolean and 〈e′, e′′〉-invariant function. (In particular,

one has βi(x + e) = b − βi(x) for all x ∈ G.) It is then a routine matter to

verify that (α1, . . . , αW , β1, . . . , βW−2) obeys property PΩ as required.

Conversely, suppose (α1, . . . , αW , β1, . . . , βW−2) obeys the property P ∗
Ω.

By property (i), we may write αi = ai+bα̃i and βi = ci+bβ̃i for some ai, ci, b ∈

Z/2MZ with b odd and some 〈e′, e′′〉-invariant and (e, {0, 1})-boolean functions

α̃1, . . . , α̃W , β̃1, . . . , β̃W−2 : G → {0, 1}. Inserting these representations into

(ii), we see that there exists a constant z0 ∈ Z/2MZ such that

α̃1,ε1(x) + · · ·+ α̃W,εW (x) = β̃1(x) + · · ·+ β̃W−2(x) + z0

for all x ∈ G, where α̃i,εi is defined by Rεi(α̃i) and (6.9). Summing over x and

x+ e and using the (e, {0, 1})-boolean nature of the α̃i,εi and β̃i, we conclude

that

W = W − 2 + 2z0

and hence z0 is equal to 1 or 2M−1 +1. On the other hand, since α̃i,εi , β̃i take

values in {0, 1}, z0 must take values in {−W + 2, . . . ,W} modulo 2M . Since

2M−1 > W , we must therefore have z0 = 1. In particular, α̃1,ε1 + · · ·+ α̃W,εW

takes values in {1, . . . ,W−1}, and hence (α̃1,ε1 , . . . , α̃W,εW ) cannot be (0, . . . , 0)

or (1, . . . , 1). This implies that (α1, . . . , αW ) obeys the property PΩ, and we

are done. �

We need a variant of the above proposition that involves a modifica-

tion of Example 4.9 that is compatible10 with the alternating relation (6.1).

We again let G,M, e, e′, e′′ be as in Proposition 6.5, and we suppose that

α1, . . . , αW : G → Z/2MZ obey the compatible boolean property P , so as be-

fore we have a representation (6.7), unique up to reflection symmetry.

Definition 6.8 (Boolean periodized permutation). If v ∈ G, we say that a

tuple (α1, . . . , αW ) is a boolean periodized permutation along the direction v if

it obeys the compatible boolean property P , and for each x ∈ G, the map

j 7→ (α̃1(x+ jv), . . . , α̃W (x+ jv))

is a bijection from {0, . . . , 2W − 1} to {0, 1}W .

10The simpler clock property from Example 4.8 is unsuitable for this purpose due to its

incompatiblity with (6.1), but the reader is encouraged to think of the periodized permutation

property as a technical substitute for the clock property.
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Note that the boolean periodized permutation property is preserved under

reflection symmetry and is therefore well defined. Comparing this claim with

the corresponding claim with x replaced by x + v, we see that the boolean

periodized permutation property implies, in particular, that

(α̃1(x+ 2W v), . . . , α̃W (x+ 2W v)) = (α̃1(x), . . . , α̃W (x)),

and hence each of the α̃i (or αi) are 〈2
W v〉-periodic.

Proposition 6.9 (Expressing a boolean periodized permutation). Let G

be a finitely generated abelian group, let e, e′, e′′ be elements of G that generate

a copy of (Z/2Z)3, let Z/2MZ be a cyclic 2-group for some M > 2, let W > 1,

and let v ∈ G. Then the property of being a boolean periodized permutation

along the direction v is a weakly expressible (G, (Z/2MZ)w=1,...,W )-property.

Proof. We can assume that v has order at least W , otherwise the property

is impossible to satisfy. We claim that a tuple (α1, . . . , αW ) obeys the boolean

periodized permutation property along v if and only if it obeys the compatible

boolean property P and additionally solves the functional equation

(6.10)
2W−1
⊎

j=0

(α1(x+ jv), . . . , αW (x+ jv)) + (2Z/2MZ)W = (Z/2MZ)W

for all x. Equation (6.10) defines an expressible property by definition (the jv

are all distinct as v has order at least W ), and so the proposition will follow

from this claim, Proposition 6.5, and Lemma 4.22.

It remains to verify the claim. If (α1, . . . , αW ) is a boolean periodized

permutation along v, then it obeys P , and the 2W tuples

(α̃1(x+ jv), . . . , α̃W (x+ jv)), j = 0, . . . , 2W − 1

occupy distinct points in {0, 1}W . Since αw(x+ jv) = ai + bα̃w(x+ jv) and b

is odd, we conclude that the 2W tuples (α1(x + jv), . . . , αW (x + jv)) occupy

distinct cosets of (2Z/2MZ)W . Since there are only 2W such cosets, this gives

(6.10). The converse implication follows by reversing these steps. �

7. Programming a Sudoku puzzle

We now combine the various weakly expressible statements described in

the previous section to reduce matters to demonstrating aperiodicity of a cer-

tain type of “Sudoku puzzle.” To define this puzzle we need some notation.

7.1. A 2-adically structured function. We begin the construction of the

“Sudoku puzzle.” We henceforth fix a base q = 2s0 , which will be a sufficiently

large but constant power of two. (For instance, s0 = 10, q = 210 would suffice.)
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In particular, the reader should interpret any exceptional set of (upper) density

O(1/q) as being negligible in size. We define the digit set Σ to be the finite set

Σ = Σq := (Z/qZ)\{0}.

We need a large width N depending on q; one convenient choice to take will be

N := q2,

although our arguments would also work mutatis mutandis for larger choices

of N . We then define the Sudoku board

B := {1, . . . , N} × Z.

Elements (n,m) of this board will be referred to as cells. We isolate some

collections of cells of relevance to our arguments:

• A column is a set of cells of the form {n} × Z for some 1 6 n 6 N .

• A non-vertical line ` = `i,j is a set of cells of the form

`i,j := {(n, jn+ i) : 1 6 n 6 N}

for some slope j ∈ Z and intercept i ∈ Z.

• A row is a non-vertical line of slope 0, that is to say, a set of cells of the

form {1, . . . , N} × {m} for some m ∈ Z.

• A diagonal is a non-vertical line of slope 1, that is to say, a set of cells of

the form {(n, n+ i) : 1 6 n 6 N} for some i ∈ Z.

• An anti-diagonal is a non-vertical line of slope −1, that is to say, a set of

cells of the form {(n, i− n) : 1 6 n 6 N} for some i ∈ Z.

• A square Qn0,m0
is a set of cells of the form

(7.1) Qn0,m0
:= {n0, . . . , n0 + 7} × {m0, . . . ,m0 + 7}

for some 1 6 n0 6 N − 7 and m0 ∈ Z.

See Figure 7.1.

The Sudoku puzzle that we will introduce later will be solved by filling

in the cells (n,m) of the Sudoku board B with digits F (n,m) from Σ that

obey certain permutation-like constraints along the lines of this board. This

may be compared with a traditional Sudoku puzzle, in which the digit set

is {1, . . . , 9}, the board is {1, . . . , 9}2, and the constraints are that the digit

assignment is a permutation on every row and column of the puzzle, as well as

certain 3×3 squares in the board, and also agrees with some prescribed initial

data on certain cells. We note, however, that while traditional Sudoku puzzles

are designed to have a unique solution, the Sudoku puzzle that we will study

will have a number of solutions, though all have a similar 2-adic structure as

described below.

We now introduce a “basic 2-adically structured function” fq : Z → Σ,

defined by the formula

fq(q
km) := m (mod q)
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Figure 7.1. A portion of the Sudoku board Ω, with some se-

lected (overlapping) objects: a column (blue), a row (in pur-

ple), a diagonal (in gray), an antidiagonal (red), and a square

(green).

Figure 7.2. The function fq for q= 22. The white cells corre-

spond to n∈Z\qZ, the gray cells are those with n∈qZ\q2Z, and

the red ones have n∈q2Z\q3Z; yellow indicates n=0. Compare

with the example of a limit-periodic pattern in [ST12, Fig. 3].

whenever k > 0 and m is an integer not divisible by q, with the (somewhat

arbitrary) convention that fq(0) = 1. In other words, fq(n) is the last non-zero

digit in the base q expansion of n, or 1 if no such digit exists (see Figure 7.2).

We observe the functional equations

(7.2) fq(qn) = fq(n)

for all n ∈ Z,

(7.3) fq(n) = n (mod q),

when n is not divisible by q; indeed, these equations specify fq uniquely except

for the value at zero. We also observe the multiplicativity property

(7.4) fq(an) = afq(n)

whenever a, n ∈ Z with a odd and n non-zero.

Remark 7.1. The function fq : Z → Σq is an example of a limit-periodic

function [God89], [ST12] (so, in particular, is an almost periodic function in
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Figure 7.3. An element g(n) = fq(12 − n) of Sq[N ] with q = 4

and N = q2, depicted as a row of N boxes filled with digits in

Σ = {1, 2, 3}. In the language of Lemma 8.1 below, the step is

sg = 3 (mod q), the order ordg is zero, the bad coset Γg = 4Z

is the set of shaded boxes (which in this case has upper density

1/4), and the associated affine function αg(n) = 12−n (mod 4)

vanishes on the bad coset Γg and agrees with g outside of that

coset.

the sense of Besicovitch [Bes26]): for any natural number r, fq agrees with a

qr-periodic function outside of a single coset 0 + qrZ of qrZ, so, in particular,

it agrees with a periodic function outside of a set of arbitrarily small upper

density in Z. For s0 large, this function is also “approximately affine” in the

sense that it agrees with the affine map n 7→ n (mod q) outside of a single

coset 0 + qZ of qZ, which one should view as being a relatively small (though

still positive density) subset of the integers Z.

Remark 7.2. One could extend fq to a function fq : Z2 → Σq on the 2-adics

Z2 := lim
←−r→∞

Z/2rZ (or equivalently, the q-adics Zq := lim
←−r→∞

Z/qrZ) that is

continuous away from the origin (and has a “piecewise affine” structure). As

such, we will informally think of the function fq (as well as various rescaled

versions of this function) as having “2-adic structure.” However, we will not

explicitly use the 2-adic numbers Z2 in our arguments below, as we did not

find that the use of this number system gave any significant simplifications to

the argument.

Our Sudoku puzzle is to fill the board B in such a way that every non-

vertical line (but not necessarily every column) is a rescaled version of fq. To

make this precise we introduce the following class of finite sequences:

Definition 7.3 (A class of 2-adically structured functions). Let S[N ] =

Sq[N ] denote the set of all functions g : {1, . . . , N} → Σ that take the form

g(n) = cfq(an+ b)

for all m = 1, . . . , N and some integers a, b, c ∈ Z with c odd.

See Figures 7.3, 7.4, 7.5, and 7.6 for some examples of elements of S[N ],

where we set q = 22 (and hence N = 16) in order to make the figures small.

The scaling factor c is of little significance and will often be normalized to 1

in our arguments.

We will explore the properties of this class S[N ] further in later sections.

For now, we use this class to define our Sudoku puzzle.
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Figure 7.4. Another element g(n) = f4(2(n−8)) of Sq[N ], again

with q = 4 and N = q2. In the language of Lemma 8.1 below,

the step is sg = 2 (mod q), the order ordg is one, the bad coset

Γg = 2Z is the set of shaded boxes (which in this case has

upper density 1/2), and the associated affine function αg(n) =

2n (mod 4) vanishes on the bad coset Γg and agrees with g

outside of that coset.

Figure 7.5. A third element g(n) = f4(2n+1) of S4[16]. In the

language of Lemma 8.1 below, the step is sg = 2 (mod q), the

order ordg is −∞, the bad coset Γg is empty (so has upper den-

sity 0), and the associated affine function αg(n)=2n+1 (mod 4)

agrees with g everywhere.

Figure 7.6. A constant element g(n) = 2 (mod 4) of S4[16]. In

the language of Lemma 8.1 below, the step is 0, the order is

−∞, the bad coset is empty, and the associated affine function

αg(n) = 2 (mod 4) agrees with g everywhere.

Definition 7.4 (Sudoku puzzle). Define a Sudoku solution to be a function

F : B → Σ with the property that for every slope j ∈ Z and intercept i ∈ Z,

the function Fi,j : {1, . . . , N} → Σ defined by Fi,j(n) := F (n, jn+ i) lies in the

class S[N ]; see Figure 7.9. Informally, F is a Sudoku solution if it is a rescaled

copy of fq along every non-vertical line `i,j = {(n, jn+ i) : 1 6 n 6 N}.

A Sudoku solution is said to have good columns if, for every n = 1, . . . , N ,

there exists a permutation σn : Z/qZ→ Z/qZ such that

F (n,m) = σn(m (mod q))

whenever σn(m (mod q)) is non-zero.

A Sudoku solution is periodic if the columns m 7→ F (n,m) are periodic for

all n = 1, . . . , N , and non-periodic if at least one of the columns is non-periodic.

Example 7.5 (Standard Sudoku solution). The function F (n,m) := fq(m)

is a Sudoku solution with good columns. (In this case, the permutations

σ1, . . . , σN are all equal to the identity permutation.) It is non-periodic; see

Figure 7.7.
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Figure 7.7. A portion of a standard Sudoku solution (with

q = 4). Observe that it is affine outside of the shaded cells.

This solution is non-periodic.

Figure 7.8. A portion of a constant Sudoku solution (with c=2).

Observe that it is affine and also periodic.

Example 7.6 (Constant Sudoku solutions). If c ∈ Σ, then the constant

function F (n,m) := c is a Sudoku solution that is periodic, but that does not

have good columns.

For future reference, we record some simple invariances of Sudoku solutions.

Proposition 7.7 (Sudoku invariances).

(i) (Affine invariance). If F : B → Σ is a Sudoku solution, then for any

integers a, b, c, the function (n,m) 7→ F (n, am+ bn+ c) is also a Sudoku

solution.

(ii) (Reflection symmetry). If F : B→ Σ is a Sudoku solution, then so is the

reflection (n,m) 7→ F (N + 1− n,m).

(iii) (Homogeneity). If F : B→ Σ is a Sudoku solution, then so is cF for any

odd c ∈ Z/qZ.
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Figure 7.9. A portion of a Sudoku solution with good columns.

Observe that it is affine outside of the shaded cells, and is also

non-periodic.

Proof. Claims (i), (ii) are immediate from Definition 7.4, while claim (iii)

follows from this definition together with Definition 7.3 and (7.4). �

In the remaining sections of the paper, we will prove the non-periodicity

of Sudoku solutions with good columns:

Theorem 7.8 (Non-periodicity of Sudoku solutions with good columns).

Let q = 2s0 be sufficiently large. Then every Sudoku solution with good columns

is non-periodic.

Remark 7.9. A remarkable feature of this result is that while the property

of being a Sudoku solution with good columns is “local” in the sense that it can

be verified by considering a bounded number of cells of the solution at a time,

the conclusion is “global” in that it genuinely involves an infinite number of

cells, and is not obviously verifiable in a bounded complexity fashion. Namely,

Sudoku puzzles have enough rigidity in them to achieve non-trivial constraints

on the solutions, but are not so rigid that they cannot be solved. An analogous

claim can be proven for odd primes q as well, and it is in fact slightly simpler

(for instance, the pseudo-affine functions appearing in Section 9 can be replaced

by genuinely affine functions), but we will not be able to use that variant of

the above theorem for our purposes, and so we leave the details of this variant

to the interested reader.

We assume this theorem for now and show how it implies Theorem 4.16

(and thus Theorem 1.4 and Corollary 1.7).

Proof of Theorem 4.16 assuming Theorem 7.8. We will show that Sudoku

solutions with good columns can be encoded as a weakly expressible property.
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Assuming Theorem 7.8, this will give an aperiodic weakly expressible prop-

erty, proving Theorem 4.16. Let s0, N be such that Theorem 7.8 holds. We

introduce the binary encoding map B : {0, 1}s0 → Z/qZ defined by

B(ε0, . . . , εs0−1) := ε0 + 2ε1 + · · ·+ 2s0−1εs0−1;

this is of course a bijection.

In order to motivate the construction below, we begin with some pre-

liminary calculations. Suppose one is given a Sudoku solution F : B → Σ

with good columns, thus there exist permutations σ1, . . . , σN : Z/qZ → Z/qZ

obeying the following properties:

• For every j, i ∈ Z, the function n 7→ F (n, jn + i) for n = 1, . . . , N lies in

S[N ].

• One has F (n,m) = σn(m (mod q)) whenever σn(m (mod q)) is non-zero.

We encode this data as a collection of boolean functions βa,b,n : Z
2 → {0, 1}

for a = 0, 1, b = 0, . . . , s− 1, and n = 1, . . . , N by enforcing the equations

(7.5) B(β0,0,n(i, j), . . . , β0,s−1,n(i, j)) = σn(jn+ i (mod q))

and

(7.6) B(β1,0,n(i, j), . . . , β1,s−1,n(i, j)) = F (n, jn+ i)

for i, j ∈ Z and n = 1, . . . , N . One then observes the following claims:

(I) For each (i, j) ∈ Z2, the sequence n 7→ B(β1,0,n(i, j), . . . , β1,s−1,n(i, j))

lies in S[N ].

(II) If n = 1, . . . , N and (i, j) ∈ Z2 is such that

B(β0,0,n(i, j), . . . , β0,s−1,n(i, j))

is non-zero, then

B(β1,0,n(i, j), . . . , β1,s−1,n(i, j)) = B(β0,0,n(i, j), . . . , β0,s−1,n(i, j)).

(III) For each a = 0, 1, b = 1, . . . , s and n = 1, . . . , N , the function βa,b,n is

〈(−n, 1)〉-periodic.

(IV) For each n = 1, . . . , N , the tuple (β0,0,n, . . . , β0,s−1,n) is a boolean peri-

odized permutation in the direction (1, 0).

As it turns out, the converse also holds: if βa,b,n : Z
2 → {0, 1} are boolean

functions for a = 0, 1, b = 0, . . . , s−1, and n = 1, . . . , N obeying the properties

(I)–(IV), then they will arise from a Sudoku solution F with good columns

via the relations (7.5) and (7.6). From the machinery established in previous

sections, the properties (I)–(IV) are essentially weakly expressible (after some

technical modifications) and will form the basis of our encoding.

We now turn to the details. In the space {0, 1}2s0N of tuples

(ωa,b,n)(a,b,n)∈W
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of boolean variables ωa,b,n ∈ {0, 1} indexed by the 2s0N -element set

W := {0, 1} × {0, . . . , s0 − 1} × {1, . . . , N},

we define the subset Ω of those tuples in {0, 1}2s0N obeying the following

axioms:

(i) (Encoded Sudoku solution). The sequence n 7→ B(ω1,0,n, . . . , ω1,s0−1,n)

lies in S[N ].

(ii) (Encoded good columns). If n = 1, . . . , N is such that

B(ω0,0,n, . . . , ω0,s0−1,n) 6= (0, . . . , 0),

then

B(ω1,0,n, . . . , ω1,s0−1,n) = B(ω0,0,n, . . . , ω0,s0−1,n)

(or equivalently, that ω0,b,n = ω1,b,n for b = 0, . . . , s0 − 1).

(Compare with the properties (I) and (II) discussed above.) The set Ω is not

symmetric, so we also introduce the symmetrized counterpart Ω̃ ⊂ {0, 1}1+2s0N

in {0, 1}1+2s0N consisting of those tuples (ω∗, (ωa,b,n)(a,b,n)∈W) such that

(Rω∗
(ωa,b,n))(a,b,n)∈W ∈ Ω,

where Ra, a = 0, 1 is as in (6.9).

We consider the group G := Z2 × (Z/2Z)3, which contains, in particular,

the three elements e := ((0, 0), (1, 0, 0)), e′ := ((0, 0), (0, 1, 0)), e′′ := ((0, 0),

(0, 0, 1)) that generate a copy of (Z/2Z)3. We now introduce a property S,

which aims to encode Sudoku solutions with good columns. LetM be a natural

number that is sufficiently large depending on s0, N , and let S denote the

(G, (Z/2MZ)1+2s0N )-property that a tuple (α∗, (αa,b,n)(a,b,n)∈W) of functions

α∗, αa,b,n : G→ Z/2MZ obeys the following axioms:

(a) (α∗, (αa,b,n)(a,b,n)∈W) obeys property PΩ̃.

(b) For each a = 0, 1; b = 0, . . . , s0 − 1; n = 1, . . . , N , the function αa,b,n is

〈((−n, 1), (0, 0, 0))〉-periodic.

(c) For each n = 1, . . . , N , the tuple (α0,0,n, . . . , α0,s0−1,n) is a boolean peri-

odized permutation in the direction ((1, 0), (0, 0, 0)).

The axioms (b) and (c) should be compared with the properties (III) and (IV)

discussed previously. By Proposition 6.7, Corollary 5.4, Proposition 6.9, and

Lemma 4.22, S is a weakly expressible property. It will thus suffice to show

that S is aperiodic.

We first show that there is at least one tuple (α∗, (αa,b,n)(a,b,n)∈W) obey-

ing S. Let F (n,m) be a Sudoku solution with good columns (for instance, one

can take the standard Sudoku solution from Example 7.5). Let σ1, . . . , σN:Z/qZ

→ Z/qZ be the associated permutations. We represent this data via the

boolean functions βa,b,n : Z
2 → {0, 1} for (a, b, n) ∈ W, defined by the binary
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encodings (7.5), (7.6). By properties (III) and (IV), the βa,b,n are 〈(−n, 1)〉-

periodic, and the tuple (β0,0,n, . . . , β0,s0−1,n) obeys the boolean permutation

property in the direction (1, 0) for each n = 1, . . . , N . By properties (I) and

(II), we see that the tuple (βa,b,n(i, j))(a,b,n)∈W lies in Ω for each (i, j) ∈ Z2.

If we now define the tuple (α∗, (αa,b,n)(a,b,n)∈W) of functions α∗, αa,b,n : G →

Z/2MZ by the formulae

α∗(x, (ε, ε
′, ε′′)) := ε

and

αa,b,n(x, (ε, ε
′, ε′′)) := Rε(βa,b,n(x))

for all x∈Z2, a=0, 1, b=0, . . . , s0− 1, n=1, . . . , N ,ε, ε, ε′′∈{0, 1} (where Rε is

as in (6.9)), it is a routine matter to verify that this tuple obeys property S.

Conversely, suppose that (α∗, (αa,b,n)(a,b,n)∈W) obeys S. By (a), we can

write α∗ = a′∗ + b′α̃∗ and αa,b,n = a′a,b,n + b′α̃a,b,n for some a′∗, a
′
a,b,n, b

′ ∈

Z/2MZ with b′ odd, and some 〈e′, e′′〉-periodic (e, {0, 1})-boolean functions

α̃∗, α̃a,b,n : G→ {0, 1} such that

(7.7) (α̃∗(x̃), (α̃a,b,n(x̃))(a,b,n)∈W) ∈ Ω̃

for all x̃ ∈ G. If we define the functions βa,b,n : Z
2 → {0, 1} by the formula

βa,b,n(x) := Rα̃∗(x,(0,0,0))(α̃a,b,n(x, (0, 0, 0)))

for all (a, b, n) ∈ W, x ∈ Z2, we have

(7.8) (βa,b,n(x))(a,b,n)∈W ∈ Ω

for all x ∈ Z2. From axiom (b) we see that each βa,b,n is (−n, 1)-periodic, and

from axiom (c) we see that for each n=1, . . . , N , the tuple (β0,0,n, . . . , β0,s0−1,n)

is a boolean periodized permutation in the direction (1, 0). From the (−n, 1)-

periodicity of the βa,b,n, we may define functions Fa : B→ Z/2MZ for a = 0, 1

by requiring that

B(βa,0,n(i, j), . . . , βa,s0−1,n(i, j)) = Fa(n, jn+ i)

for all n = 1, . . . , N and (i, j) ∈ Z2. From (7.8) we see that F1 is a Sudoku

solution (in particular, it avoids zero and takes values in Σ), and also that

F1(n,m)=F0(n,m) whenever F0(n,m) is non-zero. Since (β0,0,n, . . . , β0,s0−1,n)

is a boolean periodized permutation in the direction (1, 0), we see that for all

(n,m) ∈ B, the q points F0(n,m), . . . , F0(n,m+q−1) take on distinct values of

Z/qZ, and thus we must have F0(n,m) = σn(m (mod q)) for some permutation

σn : Z/qZ→ Z/qZ (cf. Example 4.9). Thus F1 has good columns, and is thus

non-periodic thanks to Theorem 7.8. If (α∗, (αa,b,n)(a,b,n)∈W) were periodic,

F1 would be periodic. We then conclude that (α∗, (αa,b,n)(a,b,n)∈W) is non-

periodic. Thus, property S is aperiodic as required. �
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Remark 7.10. The encoding (7.6) resembles the classical projective dual-

ity between points and lines in the plane. Indeed, a non-vertical line `i,j =

{(n, jn+ i) : n = 1, . . . , N} in the Sudoku board B corresponds to a point (i, j)

in the lattice Z2; the various boolean expressions α̃a,b,n(i, j, (ε, ε
′, ε′′)) are en-

coding different “bits” of the a Sudoku puzzle (and its attendant permutations)

on this line `i,j .

It remains to prove Theorem 7.8. This is the objective of the remaining

sections of the paper.

8. Basic properties of 2-adic structured functions

and Sudoku solutions

We begin by analyzing the class S[N ] defined in Definition 7.3. We can

largely describe the behavior of an element g of S[N ] by some statistics. which

we call the “order,” “step,” “bad coset,” and “associated affine function” of g.

Lemma 8.1 (Statistics of a 2-adic function). To every g ∈ S[N ] one can

find an order ordg ∈ {−∞, 0, . . . , s0 − 1}, a step sg ∈ Z/qZ, a bad coset

Γg ⊂ Z, and an associated affine function αg : Z→ Z/qZ, obeying the following

axioms :

(i) αg : Z → Z/qZ is not identically zero, and it is a function of the form

αg(n) = sgn + cg for some cg ∈ Z/qZ for all n ∈ Z, thus the step sg is

the slope of the affine function αg .

(ii) The bad coset Γg ( Z is the zero set {n ∈ Z : αg(n) = 0} of αg ; it is empty

if ordg = −∞, and is a coset of 2− ordgqZ otherwise. (In particular, the

upper density of Γg is equal to 2ordg/q, and if ordg > 0, then sg is an odd

multiple of 2ordg .)

(iii) One has g(n) = αg(n) whenever αg(n) 6= 0; in other words, g agrees with

the affine function αg outside of the bad coset Γg .

(iv) One can find integers a, b ∈ Z such that αg(n) = an + b (mod q) and

g(n)=fq(an+ b) for all n∈Z. (In particular, this implies a=sg (mod q),

so if ordg > 0, then a is an odd multiple of 2ordg and b is divisible by

2ordg .)

See Figures 7.3, 7.4, 7.5, and 7.6 for some illustrations of these statistics.

We remark that the elements of S[N ] of very high order (close to s0) will be

problematic for our analysis, because the bad coset has large upper density in

those cases; fortunately, we will be able to show that this case occurs quite

rarely for our applications.

Proof. If g ∈ S[N ], then by definition there exist integers a, b, c with c

odd such that g(n) = cfq(an+ b). Since fq(0n+ 0) = fq(0n+ 1) = 1, we may

assume without loss of generality that a, b do not both vanish. Noting that
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fq(an+ b) = fq(a(n+ qr)+ b) for all n = 1, . . . , N if r is large enough, we may

assume without loss of generality that an + b is non-vanishing on {1, . . . , N}.

By (7.4), we may replace a, b, c by ca, cb, 1 and assume without loss of generality

that c = 1. By (7.2) we may assume that a, b are not simultaneously divisible

by q.

We then set αg(n) := an + b (mod q), sg := a (mod q), Γg := {n ∈ Z :

αg(n) = 0}. If Γg is empty, we set ordg = −∞; otherwise we set ordg equal to

the largest number of powers of two that divide a. (This order cannot exceed

s0 − 1, otherwise αg would be constant and non-zero, and so Γg would be

empty). The verification of the axioms (i)–(iv) is then routine. �

In principle, it is possible that the order ordg, step sg, bad coset Γg, or

associated affine function αg produced by this lemma are not unique, because

there are multiple ways to express g in the form fq(an+ b). For instance, for

n = 1, . . . , N , the function fq(n) can also be written as fq(n+ qm) for any m

with qm > N , or as fq(q
rn) for any r > 1. We will be able to exclude this

scenario, thanks to (a modification of) the following useful proposition:

Proposition 8.2 (Rigidity outside of a bad coset). Let {n0, . . . , n0 + 7}

be an interval of length 8 in {1, . . . , N}, and let α : Z → Z/qZ be an affine

function. Suppose that g(n) = fq(an + b) is an element of S[N ] such that

g(n) = α(n) whenever n ∈ {n0, . . . , n0 + 7} is such that α(n) 6= 0. Then in

fact we have g(n) = α(n) whenever n ∈ {1, . . . , N} and α(n) 6= 0.

We caution that while the conclusion of this proposition strongly suggests

that αg = α, and the proof below will support this claim in most cases, there

are a few cases in which this is not actually true. For instance, if g(n) =

fq(0n + q
2) = q

2 , then g agrees with the affine function α(n) := q
2n (mod q)

whenever α(n) 6= 0, but αg(n) =
q
2 is not the same function as α.

Proof. By definition, we can write (possibly non-uniquely)

g(n) = fq(an+ b)

and αg(n) = an+ b (mod q) for some a, b ∈ Z for all n ∈ Z.

We may assume that α does not vanish identically, as the claim is vacu-

ously true otherwise. We set Γ := {n ∈ Z : α(n) = 0} to be the zero set of α;

this is either empty, or a coset of 2jZ for some 1 6 j 6 s0.

First suppose that we can find elements n,m ∈ {n0, . . . , n0+7} of different

parity that lie outside Γ ∪ Γg. Then the affine functions α and αg both agree

at n,m; since the odd number m − n is invertible in Z/qZ, this implies that

α = αg, and hence g(n) = αg(n) = α(n) whenever n ∈ {1, . . . , N} lies outside

Γg = Γ, giving the claim in this case.
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Thus the only remaining cases are when Γ ∪ Γg occupies at least one full

coset of 2Z. There are three ways this can happen: either Γ is a coset of 2Z,

Γg is a coset of 2Z, or Γg = 4Z+ c and Γ = 4Z+ c+ 2 for some c.

We first exclude the latter case. Without loss of generality, we may place

c ∈ {n0, . . . , n0+3}. By hypothesis, we have g(c) = α(c) and g(c+4) = α(c+4);

since α vanishes on 4Z+ c+ 2, we conclude that g(c) = g(c+ 4) = q
2 (mod q).

On the other hand, as c ∈ Γg, by Lemma 8.1(iv), we have that ordg = s0 − 2

(as Γg is a coset of 4Z), a = q
4a

′ is an odd multiple of q
4 , and we can write

ac+ b = qm for some integer m with g(c) = fq(m) and g(c+ 4) = fq(m+ a′).

As a′ is odd, by (7.3) we conclude that at least one of g(c), g(c + 4) is odd, a

contradiction. Hence this case cannot occur.

Now suppose that Γ = 2Z+c is a coset of 2Z. We divide into two subcases:

• If Γg\Γ is empty or contained in a coset of 8Z, then g(n) = α(n) = αg(n)

for at least three of the four points in n ∈ {n0, . . . , n0 + 7} ∩ (2Z + c + 1).

But α(n) = q
2 (mod q) on these points, hence αg equals q

2 (mod q) on these

points also. As αg is affine, we conclude that αg equals q
2 (mod q) on all of

2Z+ c+ 1, and the claim follows.

• If Γg is a coset 2iZ + c′ disjoint from Γ = 2Z + c for some i = 1, 2, then

ordg = s0 − i, a = 2ordga′ is an odd multiple of 2ordg = q/2i, and we may

normalize c′ ∈ {n0, n0 + 1, n0 + 2, n0 + 3}, hence by hypothesis

g(c′) = α(c′); g(c′ + 2i) = α(c′ + 2i).

As c′ ∈ Γg, we may write

q

2i
a′c′ + b = ac′ + b = qm

for some integer m and odd a′, with g(c′) = fq(m) =α(c′) and g(c′ + 2i) =

fq(m+a′)=α(c′+2i). Since a′ is odd, by (7.3) at least one of fq(m), fq(m+a′)

is odd; on the other hand, α is equal to q
2 (mod q) on 2Z+ c+1, and hence

at c′, c′ + 2i, giving a contradiction.

Finally, suppose that Γ is not a coset of 2Z, but Γg = 2Z+ c is. We again

divide into two subcases:

• If Γ\Γg is empty or contained in a coset of 8Z, then by arguing as before we

see that the affine function α equals q
2 (mod q) on at least three of the four

points in n ∈ {n0, . . . , n0 +7}∩ (2Z+ c+1), and hence on all of 2Z+ c+1.

Since Γ is not a coset of 2Z, this forces α to be the constant function
q
2 (mod q), and hence g is equal to q

2 (mod q) on all of {n0, . . . , n0 + 7}.

In particular, g is even on {n0, . . . , n0 + 7} ∩ (2Z + c). However, if we

normalize c ∈ {n0, n0 + 1}, we observe that ordg = s0 − 1, a = q
2a

′ is an

odd multiple of q
2 , and ac+ b = qm for some integer m, with g(c) = fq(m)

and g(c + 2) = fq(m + a′). Thus at least one of g(c), g(c + 2) is odd, a

contradiction.
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• If Γ is a coset 4Z+ c′ disjoint from Γg = 2Z+ c, then α is always a multiple

of q
4 , so in particular g is even on {n0, . . . , n0 + 7} ∩ (2Z+ c). Now we can

argue as in the previous case to obtain a contradiction. �

A variant of the argument gives

Proposition 8.3. If N > 8, then an element g of S[N ] has a well-defined

order, step, affine function, and bad coset.

Proof. Suppose g ∈ S[N ] has two representations g = fq(a1n + b1) =

fq(a2n + b2) with associated orders ord1, ord2, steps s1, s2, affine functions

α1, α2, and bad cosets Γ1,Γ2. Our task is to show that ord1 = ord2, s1 = s2,

α1 = α2, and Γ1 = Γ2.

First suppose that we can find elements n,m ∈ {1, . . . , N} of different

parity that lie outside Γ1 ∪ Γ2. The arguments in the proof of Proposition 8.2

(with α1, α2 playing the roles of α, αg respectively, and similarly for Γ1,Γ2 and

Γ,Γg) imply that α1 = α2, which implies that the steps s1 = s2 agree, and that

the bad cosets Γ1 = Γ2 (which are the zero sets of α1 = α2) agree. Since the

upper density of Γi is 2
ordi/q, we then conclude that ord1 = ord2, as claimed.

On repeating the rest of the analysis in the proof of Proposition 8.2, we see

that the only other case that does not lead to a contradiction is if Γ1 is a coset

2Z+ c of 2Z and α2 =
q
2 (mod q) on the complementary coset 2Z+ c+1. Thus

α2 is either equal to α1, or the constant q
2 . In the former case we are done as

before. In the latter case, Γ2 is empty, and now we can obtain a contradiction

by interchanging the roles of Γ1 and Γ2 and appealing again to the analysis in

the proof of Proposition 8.2. �

We remark that the statistics sg, ordg,Γg, αg of an element g of S[N ] do

not uniquely determine g, because there is still some variability of g within

the bad coset Γg. For instance, the elements n 7→ fq(n) and n 7→ fq(n+ q) of

S[N ] are both of step 1 and order 0 with bad coset qZ and associated affine

function n 7→ n (mod q), but disagree inside of the bad coset. Nevertheless, the

statistics sg, ordg,Γg, αg still give some partial constraints on the behavior of

g on the bad coset Γg; for instance, all elements g ∈ S[N ] with step 1, order 0,

bad coset qZ and associated affine function n 7→ n (mod q) must take the form

g(n) = n
q − c (mod q) for all n in the bad coset {1, . . . , N} ∩ qZ except at a

single point n = cq for some c = 1, . . . , q. It is this partial control inside the

bad coset that will ultimately allow us to conclude the aperiodicity required

in Theorem 7.8.

9. The structure of Sudoku solutions

We are now ready to prove Theorem 7.8. The logical structure of the

argument is summarized in Figure 9.1.
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Figure 9.1. A schematic description of how enough structure is

obtained on a Sudoku solution F with good columns that one

can eventually conclude that solutions are aperiodic and prove

Theorem 7.8. Dashed arrows indicate implications that are es-

sentially compositions of other arrows in the diagram. At a key

step in the argument (depicted by the yellow box) the analy-

sis shifts from a Sudoku solution F to its “post-Tetris move”

version F∗ (after first shearing to normal form). Among other

things, this move reduces any putative period in the solution

by a factor of q.

To use the property of having good columns, we begin with the following

lemma. By definition, if the digits of a Sudoku solution F : B → Σ were

perfectly equidistributed, then each digit would occur on a set of density 1
q−1

(as defined in Section 1.5). It will be convenient to work with a weaker variant

of this property. We say that F has weak digit equidistribution if each digit

σ ∈ Σ occurs in the solution with upper density at most 2
q in B.

Lemma 9.1 (Good columns implies weak digit equidistribution). Every

Sudoku solution with good columns has weak digit equidistribution.

Proof. Let F : B → Σ be a Sudoku solution with good columns. By the

triangle inequality, it suffices to verify the claim for each separate column

{n} × Z, that is to say, to show that

lim sup
M→∞

1

2M + 1
|{m ∈ {−M, . . . ,M} : F (n,m) = γ}| 6

2

q
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for each n = 1, . . . , N . By the good column property, there is a permu-

tation σn : Z/qZ → Z/qZ such that F (n,m) = σn(m (mod q)) whenever

σn(m (mod q)) 6= 0. Thus the property F (n,m) = γ can only occur in two

cosets of Z/qZ, the coset σ−1
n ({γ}) and the coset σ−1

n ({0}), and the claim

follows. �

For each line `i,j = {(n, jn + i) : 1 6 n 6 N} in the Sudoku board, we

have the associated element Fi,j of S[N ] defined by

Fi,j(n) := F (n, jn+ i).

In particular, we have an associated order ordFi,j
∈ {−∞, 0, 1, . . . , s0 − 1} of a

line to be the order of the associated sequence n 7→ F (n, jn+ i). We have the

following bound on the density of lines of high order:

Lemma 9.2 (Weak digit equidistribution implies high-order lines are rare).

Suppose that F : B → Σ is a Sudoku solution with weak digit equidistribution.

Then, for non-negative order 0 6 o 6 s0 − 1, and any slope j, the set {i ∈ Z :

ordFi,j
= o} has upper density at most 2−o+1 in Z.

Proof. If i is such that ordFi,j
= o, then there is an affine function n 7→

2o(an+b) with a, b ∈ Z/qZ and a odd, such that Fi,j(n) = 2o(an+b) whenever

2o(an + b) 6= 0. In particular, F (n, jn + i) attains the value q/2 (mod q) at

least 2oN/q = 2oq. On the other hand, by the weak digit equidistribution

assumption and the triangle inequality the set of (n, i) ∈ {1, . . . , N} × Z for

which Fi,j(n) = q/2 (mod q) has upper density at most 2/q in {1, . . . , N}×Z.

The claim then follows from a standard double counting argument. �

Once one knows that high-order lines are rare, the function F becomes

mostly affine along horizontal lines, diagonals, and anti-diagonals. One can

then expect to “concatenate” this information together (in the spirit of [TZ16])

to conclude that F is in fact mostly a two-dimensional affine function F (n,m) =

An + Bm + C. This is almost correct, but in our 2-adic setting there is an

additional technicality, in that a small amount of quadratic behavior is also

permitted. More precisely, define a pseudo-affine function on Z2 to be a func-

tion Ψ: Z2 → Z/qZ that is of the form

(9.1) Ψ(n,m) = An+Bm+ C +D
q

4
m(m− n)

for some coefficients A,B,C,D ∈ Z/qZ; see Figure 9.2. Observe that such

functions are affine along infinite non-vertical lines `i,j := {(n, jn+ i) : n ∈ Z},

since

Ψ(n, jn+ i) = An+Bjn+Bi+ C +D
q

4
(2nij − in+ i2) +D

q

2
n

Ç

j

2

å
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Figure 9.2.The pseudo-affine function Ψ(n,m)=m+q
4m(m−n)

(mod q) with q = 8. Observe that while Ψ is not affine in a

two-dimensional sense, it is affine along all non-vertical lines.

Also, the zero set of Ψ (shaded in grey) remains well-behaved,

being equal to Z × qZ. A Sudoku solution that agreed with

this pseudo-affine function outside of the grey cells would be in

normal form in the sense of Proposition 9.6 below, and suitable

for applying a “Tetris” move for further analysis.

thanks to the identity

q

2
n2 −

q

2
n = q

Ç

n

2

å

= 0 (mod q).

The quadratic term D q
4m(m− n) in the definition of a pseudo-affine function

is unfortunately necessary, but plays only a minor technical role in the analysis

(for q large enough), and we recommend that the reader ignore these terms

at a first reading. The most important coefficient of a pseudo-affine function

Ψ will be the vertical coefficient B; in particular, the behavior is particularly

tractable when B is odd.

It is clear that the class of pseudo-affine functions forms an additive group.

Note that this group is closed under translations in Z2; if Ψ(x), x ∈ Z2 is a

pseudo-affine function and t ∈ Z2, then Ψ(x + t), x ∈ Z2 is a pseudo-affine

function. We have the following11 concatenation result:

11See the recent preprint [KT23] for some further variations on the theme of this lemma.



A COUNTEREXAMPLE TO THE PERIODIC TILING CONJECTURE 351

Lemma 9.3 (Concatenation lemma). Let F : Q → Z/qZ be a function

defined on an 8×8 square Q such that for any (infinite) line `i,j = {(n, jn+i) :

n ∈ Z} with j = −1, 0, 1 (i.e., an infinite anti-diagonal, horizontal line, or

diagonal) intersecting Q, the function n 7→ F (n, jn + i) is affine on {n :

(n, jn + i) ∈ Q}. Then there exists a pseudo-affine function Ψ: Z2 → Z/qZ

that agrees with F on Q.

Proof. By translation invariance we may normalize Q = {0, . . . , 7} ×

{0, . . . , 7}. The functions n 7→ F (n, 0) and n 7→ F (n, n) are affine on {0, . . . , 7},

thus there exist coefficients A,B,C ∈ Z/qZ such that F (n,m) = An+Bm+C

for

(9.2) (n,m) ∈ {(n, 0) : 0 6 n 6 7} ∪ {(n, n) : 0 6 n 6 7}}.

By subtracting the pseudo-affine function An+Bm+C from F (n,m) we may

normalize A = B = C = 0, thus F now vanishes on the set (9.2).

The function n 7→ F (n, 6 − n) is affine on {0, . . . , 6} and vanishes at

n = 3, 6, hence vanishes on all of {0, . . . , 6}. In particular, F now vanishes at

both (1, 1) and (5, 1). Since n 7→ F (n, 1) is affine on {0, . . . , 7}, we conclude

that F (n, 1) = D q
2(1 − n) for some D ∈ Z/qZ. By subtracting the pseudo-

affine functionD q
4m(m−n) from F (which vanishes on (9.2)) we may normalize

D = 0. Thus F now vanishes on {(n, 1) : 0 6 n 6 7}.

For i = 1, . . . , 7, the function n 7→ F (n, i − n) is affine on {0, . . . , i}

and vanishes at n = i − 1, i, hence vanishes on all of {0, . . . , i}. In particu-

lar, F (0,m) = F (1,m) = 0 for all m = 0, . . . , 6. As n 7→ F (n,m) is affine

on {0, . . . , 7}, we conclude that F now vanishes on {0, . . . , 7} × {0, . . . , 6}.

By inspecting F on diagonal and anti-diagonal lines that meet the top row

{0, . . . , 7} × {7} of the square, one can then check that F vanishes here also.

Thus F is identically zero on Q, and the claim follows. �

We utilize this lemma as follows.

Proposition 9.4 (Weak digit equidistribution implies pseudo-affine struc-

ture). Suppose that F : B → Σ is a Sudoku solution with weak digit equidis-

tribution. Suppose that q is sufficiently large. Then there exists a pseudo-

affine function Ψ: Z2 → Z/qZ, which does not vanish on at least one square

{n0, . . . , n0 + 7} × {m0, . . . ,m0 + 7}, such that F (n,m) = Ψ(n,m) whenever

(n,m) ∈ B is a cell with Ψ(n,m) 6= 0.

Proof. Let M > 100N be a sufficiently large parameter (which can depend

on q) to be chosen later. The first step is to locate a square Q={n0, . . . , n0+7}

× {m0, . . . ,m0 + 7} in {1, . . . , N} × {1, . . . ,M} with good properties. The

number of possible such squares Q is (N −7)(M−7); we select one at random.
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To each non-vertical line `i,j = {(n, jn + i) : 1 6 n 6 N}, one can form

the bad set Γi,j := {(n, jn+ i) : n ∈ ΓFi,j
∩ {1, . . . , N}} associated to the bad

coset ΓFi,j
of Fi,j . If ordFi,j

= o, this bad set has spacing q/2o, and thus has

cardinality O(2oN/q) = O(2oq). Thus, there are at most O(2oq) squares Q

with the property that Q contains one of the elements of this bad set. On

the other hand, for j = −1, 0, 1 (i.e., horizontal lines, diagonals, and anti-

diagonals), we see from Lemma 9.2 that the set of intercepts i with ordFi,j
= o

have upper density O(2−o). Summing in o and over the O(M) possible lines

`i,j of slope j = −1, 0, 1 intersecting {1, . . . , N}×{1, . . . ,M}, we conclude from

double counting (for M large enough) that the probability that Q contains a

bad point from a horizontal line, diagonal, or anti-diagonal intersecting Q is

O(
∑s0−1

o=0
2−o2oq×M

(N−7)(M−7) ) = O(log q/q). Thus, assuming q is large enough, we can

find a square

Q = {n0, . . . , n0 + 7} × {m0, . . . ,m0 + 7}

in {1, . . . , N} × {1, . . . ,M} with the property that all horizontal lines, diago-

nals, and anti-diagonals `i,j passing through Q are such that Q ∩ Γi,j = ∅. In

particular, on every such line `, F agrees on Q ∩ ` with a (one-dimensional)

affine function. Applying Lemma 9.3, we may find a pseudo-affine function

Ψ: Z2 → Z/qZ such that F agrees with Ψ on Q. In particular, Ψ is non-

vanishing on Q.

Call a cell (n,m) good if either Ψ(n,m) = 0, or if Ψ(n,m) = F (n,m).

Then all elements of Q are good. Also, from Proposition 8.2 we see that if

a line `i,j contains eight good consecutive cells, then all the cells in the line

are good. Applying this fact to the eight horizontal lines `m,0 = {(n,m) :

1 6 n 6 N} for m ∈ {m0, . . . ,m0 + 7}, we conclude that all the cells in

the rectangular region {1, . . . , N} × {m0, . . . ,m0 + 7} are good. Applying

the fact again to the diagonal lines `m,1 = {(n, n + m) : 1 6 n 6 M} for

m0 − 1 6 m 6 m0 + 8 − N , we conclude that all the cells in the partial

horizontal line {8, . . . , N}× {m0 +8} are good; applying the fact again to the

horizontal line `m0+8,0 = {(n,m0+8) : 1 6 n 6 N}, we conclude that in fact all

the cells in `m0+8,0 are good. A reflected version of the same argument shows

that all the cells in `m0−1,0 are good. Thus we have extended the rectangle of

good cells by one row in both directions. Iterating this argument to fill out

the remaining rows of the Sudoku board, we conclude that all the cells in B

are good, giving the claim. �

Assuming good columns, we can obtain an important control on a key

coefficient B of the pseudo-affine function Ψ.

Proposition 9.5 (Odd vertical coefficient). Let F be a Sudoku solution

with good columns. Let Ψ(n,m) = An+Bm+C+D q
4m(m−n) be the pseudo-

affine function produced by Proposition 9.4. Then B is odd.
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Proof. By Lemma 9.1, F has weak digit equidistribution. Hence, from

applying Proposition 9.4 we obtain that there exists 1 6 n 6 N such that the

function m 7→ Ψ(n,m) is not identically zero. This function is affine on every

coset of 4Z, and hence is non-vanishing on at least one coset 8Z + c of 8Z.

Suppose for contradiction that B was even. Then the function m 7→ Ψ(n,m)

is 〈 q2〉-periodic on 8Z + c, thus m 7→ F (n,m) is also. But as F has good

columns, we also have F (n,m) = σn(m) whenever σn(m (mod q)) 6= 0, for some

permutation σn : Z/qZ→ Z/qZ. This implies that σn has a zero in every coset

{m (mod q),m+ q
2 (mod q)} of q

2Z/qZ with m ∈ 8Z+ c, which is absurd. �

This gives us a normal form as follows. Given a Sudoku solution F , define

a shearing of F to be any map F ′ : B→ Σ of the form

F ′(n,m) := BF (n,m+An+ C)

for some integers A,B,C with B odd. Note from Proposition 7.7 that F ′ is

also a Sudoku solution; furthermore, F has good columns if and only if F ′ does,

and F is periodic if and only if F ′ is. The property of one Sudoku solution

being a shearing of another can also be easily verified to be an equivalence

relation. In view of Remark 7.10, the shear-invariance of Sudoku solutions is

closely related to the translation invariance of tiling equations A⊕ F = G.

Proposition 9.6 (Normal form). Let F (n,m) be a Sudoku solution that

agrees with a pseudo-affine function Ψ(n,m) = An+Bm+C +D q
4m(m− n)

with B ∈ Z/qZ odd when Ψ(n,m) is non-zero. Then there exists a shearing F ′

of F that is in normal form in the sense that

(9.3) F ′(n,m) = m+D
q

4
m(m− n)

for some D ∈ Z/qZ, all n ∈ {1, . . . , N}, and all m ∈ Z\qZ.

Proof. We claim that the zero set of Ψ takes the form

(9.4) {(n,m) ∈ Z2 : Ψ(n,m) = 0} = {(n,m) ∈ Z2 : m = A′n+ C ′ (mod q)}

for some coefficients A′, C ′ ∈ Z/qZ. To see this, we temporarily divide out by

the invertible elementB to normalizeB = 1. If Ψ(n,m) = 0, thenAn+m+C =

0 (mod 4), hence

0 = Ψ(n,m) = An+m+ C +D
q

4
(−An− C)(−An− C − n) (mod q),

which one can write (using q
2n

2 = q
2n (mod q)) as

0 = An+m+ C +DC2 q

4
+ (2A+ 1)DC

q

4
n+D

q

2

Ç

A+ 1

2

å

n (mod q),

and thus

m = A′n+ C ′ (mod q),
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where A′ := −A−(2A+1)DC q
4−D

q
2

(A+1
2

)

and C ′ := −C−DC2 q
4 . Conversely,

if m = A′n + C ′ (mod q), then An + m + C = 0 (mod 4) and Ψ(n,m) = 0.

This gives (9.4).

Let F ′′ denote the shearing

F ′′(n,m) := F (n,m+A′n+ C ′)

of F , and similarly define Ψ′′(n,m) := Ψ(n,m+A′n+C ′). From direct compu-

tation, Ψ′′ is of the form Ψ′′(n,m) = A′′n+B′′m+C ′′+D′′ q
4m(m−n) for some

A,′′B,′′C,′′D′′ ∈ Z/qZ with B′′ odd (and thus invertible), and Ψ′′(n,m) van-

ishes when m = 0 (mod q). Substituting m = 0 we conclude that A′′ = C ′′ = 0.

If we then set F ′(n,m) := F ′′(n,m)/B′′, we obtain the desired shearing F ′ in

normal form. �

In view of Propositions 9.5 and 9.6, we see that to conclude the proof of

Theorem 7.8, it suffices to show that all Sudoku solutions F in normal form

are non-periodic. Suppose for contradiction that we had a periodic Sudoku

solution F in normal form, thus F is 〈(0,M)〉-periodic for some period M

(i.e., F (n,m) = F (n,m + M) for all (n,m) ∈ B). From the normal form

condition (9.3) we see that M must be divisible by q. The key proposition we

will establish to conclude the argument is

Proposition 9.7 (Tetris iteration). Let F be a Sudoku solution in normal

form. We consider the Tetris move of replacing F with the function

F∗(n,m) := F (n, qm),

which is also a Sudoku solution thanks to Proposition 7.7. Then there exists a

shearing of F ∗ that is in normal form.

Indeed, if F is an 〈(0,M)〉-periodic Sudoku solution in normal form, the

post-Tetris move solution F∗ will be a 〈(0,M/q)〉-periodic Sudoku solution,

and its shearing will be a 〈(0,M/q)〉-periodic Sudoku solution in normal form.

Iterating this gives an infinite descent of periods M , which is absurd.

Remark 9.8. In the computer game “Tetris,” every time a row is com-

pletely filled with blocks, it is deleted. Analogously to this, a Sudoku solution

F in normal form has its values completely specified on all rows `m,0 = {(n,m) :

1 6 n 6 N} with m 6= 0 (mod q); deleting all these rows yields the post-Tetris

move solution F∗. This may help explain our terminology of a “Tetris move.”

9.1. Analyzing the Tetris move. It remains to establish Proposition 9.7.

In order to deploy tools such as Proposition 9.4, we will need to control upper

digits of densities of the post-Tetris solution F∗. To do this, we first analyze

the diagonal lines Fi,1(n) = F (n, n+ i) of the original solution F . From (9.3)
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we have

Fi,1(n) = n+ i+D
q

4
(n+ i)i (mod q)

whenever n+ i 6= 0 (mod q). We can simplify this to

Fi,1(n) = ai,1n+ bi,1

whenever n + i 6= 0 (mod q), where the coefficients ai,1, bi,1 ∈ Z/qZ are given

by the formulae

(9.5) ai,1 := 1 +D
q

4
i (mod q)

and
bi,1 := i+D

q

4
i2 (mod q).

Observe that ai,1 is odd, and Fi,1(n) is equal to ai,1n+ bi,1 for n ∈ {1, . . . , N}

outside of the coset ΓFi,1
:= {n ∈ Z : n + i = 0 (mod q)} of qZ. By Proposi-

tion 8.3 (applied to some interval {n0, . . . , n0+7} in {1, . . . , N} avoiding ΓFi,1
),

this forces the step sFi,1
of Fi,1 to equal ai,1, and the order ordFi,1

to equal 0.

Thus, by Lemma 8.1(iv), we may write

Fi,1(n) = fq(ãi,1n+ b̃i,1)

for some integers ãi,1, b̃i,1 with ãi,1 = ai,1 (mod q) and b̃i,1 = bi,1 (mod q). If

we now let ni ∈ {1, . . . , q} be such that ni + i = 0 (mod q), we conclude, in

particular, that ãi,1ni + b̃i,1 = qc̃i,1 for some integer c̃i,1, and

F∗

Å

ni + qj,
ni + i

q
+ j

ã

= Fi,1(ni + qj)

= fq(qc̃i,1 + ãi,1qj)

= fq(ãi,1j + c̃i,1)

(9.6)

for j = 0, . . . , q − 1. Since ãi,1 is odd, this implies that F∗(ni + qj ,
ni+i
q + j) =

ãi,1j + c̃i,1 (mod q) for all but one value of j. In particular, each digit γ of

Σ is attained by F∗(ni + qj ,
ni+i
q + j) at most twice. Averaging over all i

and double counting using N = q2, we conclude that the upper density of

{(n,m) ∈ B : F∗(n,m) = γ} in B does not exceed the upper density of E by

more than 2/q. In other words, F∗ has weak digit equidistribution.

We may now invoke Proposition 9.4 and conclude that there exists a

pseudo-affine function

Ψ∗(n,m) = A∗n+B∗m+ C∗ +D∗
q

4
m(m− n)

that is not identically zero in B, and such that F∗(n,m) = Ψ∗(n,m) whenever

Ψ∗(n,m) is non-zero.

Since B can be covered by sets of the form {(n0 + qj,m0 + j) : j =

0, . . . , q − 1} for n0 = 1, . . . , q and m0 ∈ Z, we can find n0 = 1, . . . , q and
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m0 ∈ Z such that Ψ∗ does not vanish identically on this set. By repeating the

calculation (9.6) (with i = qm0 − n0) we see that

F∗(n0 + qj,m0 + j) = fq(ãj + c̃)

for some integers ã, c̃ (depending on n0,m0) with ã odd. In particular,

(9.7) fq(ãj + c̃) = Ψ∗(n0 + qj,m0 + j)

whenever j = 0, . . . , q − 1 is such that the right-hand side is non-zero.

As ã is odd, the left-hand side of (9.7) attains the value q
2 (mod q) at

most twice for j = 0, . . . , q − 1. On the other hand, at the midpoint be-

tween consecutive values of j in which the (not identically zero) affine func-

tion Ψ∗(n0 + qj,m0 + j) vanishes, this affine function will attain the value of
q
2 (mod q). We conclude that Ψ∗(n0 + qj,m0 + j) vanishes for at most three

values of j = 0, . . . , q − 1; meanwhile, ãj + c̃ (mod q) vanishes for one value

of j. Hence by the pigeonhole principle, and the assumption that q is large,

the identity

ãl + c̃ = Ψ∗(n0 + ql,m0 + l) (mod q); l = j, j + 1

holds for two consecutive values l = j, j+1 of l. Subtracting these two identities

and reducing modulo 2, we conclude that B∗ has the same parity as ã and is

thus odd. Applying Proposition 9.6, we conclude that there exists a shearing

of F∗ that is in normal form. This concludes the proof of Proposition 9.7, and

hence of Theorems 7.8, 1.4, and Corollary 1.7.

10. Open problems

We close by posing some problems left open by our work.

10.1. Explicit bound on dimension. The dimension d produced by our

proof of Corollary 1.6 is explicit but extremely large and probably not op-

timal. This is for a number of reasons, the most significant being that we need

an enormous number of functional equations in order to encode the property

PΩ̃ appearing in Section 7. Thus, a natural question is

Question 10.1. What is the smallest value of d for which Corollary 1.6

(resp. Corollary 1.7) is true?

The fact that our construction originates in the virtually two-dimensional

space Z2 × G0 hints that Conjectures 1.2 and 1.3 might fail in a “reasonably

small” dimension.

On the other hand, there may be hope to extend the known positive results

on the periodic tiling conjecture beyond the known cases.

Question 10.2. Is Conjecture 1.2 true in Z3? Is Conjecture 1.3 true in

R2?
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10.2. Connected tiles. An inspection of our proof of Corollary 1.7 reveals

that the tile Σ ⊂ Rd constructed by the argument is a finite union of cubes;

however, this union need not be connected. Given the positive results available

for connected tiles (and in particular for topological disks [Ken92], [Ken93]),

it is natural to ask12

Question 10.3. Is it possible in Corollary 1.7 to choose Σ to be an open

connected set?

Of course the question can be trivially answered without the requirement

that Σ is open, simply by adding suitable measure zero line segments to the

tile Σ constructed by our arguments. Observe that an aperiodic tiling by

translations, rotations and reflections of a convex domain in R3 was constructed

by Schmitt–Conway–Danzer [Sen96] (aka SCD biprism).

10.3. Cardinality of aperiodic tiles. In view of the results in [Sze98], it

might be interesting to compute the size of our tile F in Corollary 1.6.

Question 10.4. Suppose that a finite F ⊂ Zd admits an aperiodic tiling.

What is the fewest number of prime factors that the cardinality of F can have?

10.4. Decidability of tilings. A famous application of the study of the pe-

riodicity of tiling is to the problem of determining whether tilings are decidable.

Namely, the question13 whether there exists an algorithm that, upon any input

of a finite set F in a finitely generated abelian group G, computes (in finite

time) if this set is a tile of G or not. A well-known argument of H. Wang

[Wan75] shows that if any tile admits a periodic tiling, then any tiling problem

is decidable.

In this work we prove that there are tiles of finitely generated abelian

groups that tile aperiodically. However, the decidability of tilings by a single

tile remains14 open.

Question 10.5. Does there exist any undecidable tiling problem with a

single tile?

In a previous paper [GT23b] we proved the undecidability of tilings of

periodic sets by two tiles. This implies, in particular, the existence of aperi-

odic tilings by two tiles. Our proof consists of encoding any Wang tiling as a

tiling of a periodic set with two tiles; then, the undecidability of Wang tilings

12Note added in proof: the first author and Kolountzakis have answered this question in

the affirmative in [GK23].
13One can also ask, for an individual tile F , whether the existence of a tiling A⊕ F = G

is logically decidable (i.e., provable or disprovable) in a first-order theory such as ZFC. The

two questions are closely related; see [GT23b] for further discussion.
14Note added in proof: we have answered this question in the affirmative in [GT23a].
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[Ber66], [Ber65] implies the existence of an undecidable tiling problem with

only two tiles.

10.5. Weak periodicity. Let d and F ⊂ Zd be as in Corollary 1.6. Observe

that by our construction, all the sets in Tile(F ;Zd) := {A ⊂ Zd : A⊕ F = Zd}

are (d − 2)-periodic in the sense that for every A ∈ Tile(F ;Zd), there exist

d − 2 linearly independent vectors v1, . . . , vd−2 in Zd such that A is invariant

under translations by vj for every j = 1, . . . , d− 2.

Definition 10.6. A set S ⊂ Zd is called k-weakly periodic if it can be

partitioned into finitely many sets, each of which is k-periodic.

It is not difficult to show that if a tile in Zd admits a tiling of Zd that is

(d− 1)-weakly periodic, then it also admits a tiling that is periodic. Thus, our

aperiodic construction contains the largest possible amount of periodicity.

In [GT21] we showed that for every F ⊂ Z2, all the sets in Tile(F ;Z2) are

1-weakly periodic. This, in particular, implies Conjecture 1.2 in Z2.

The following question remains open:

Question 10.7. Let d > 3 and F ⊂ Z3 be finite. Are there any A ∈

Tile(F ;Zd) that are not 1-weakly periodic?

10.6. The structure of our construction. We believe that with additional

effort, our analysis should give a complete classification of the space of Sudoku

solutions with good columns, and hence also the set of tilings by the tile F in

Theorem 1.4, however the answer appears to be somewhat complicated15 and

we do not give it here.

Problem 10.8. Find a complete classification of the space Tile(F ;Z2

×G0), where F and G0 are as in Theorem 1.4. What is the dynamical struc-

ture of this space (viewed as a topological dynamical system with the translation

action of Z2 ×G0)?

Following [Lab21], it would be of interest to study the tilings in Tile(F ;Z2

×G0) that have a substitution structure.

Question 10.9. Can any of the tilings by our aperiodic tile be interpreted

as a substitution tiling?

The 2-adic nature of the Sudoku solutions suggests a positive answer.

15In particular, the D coefficient in the pseudo-affine functions (9.1) is somewhat difficult

to control.
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[FGH] D. Frettlöh, F. Gähler, and E. Harriss, Tilings encyclopedia.

Available at https://tilings.math.uni-bielefeld.de/.

[Gar77] M. Gardner, Mathematical games, Scientific American (1977), 110–

121. Available at https://www.jstor.org/stable/10.2307/24953856.

[GBN91] D. Girault-Beauquier and M. Nivat, Tiling the plane with one tile,

in Topology and Category Theory in Computer Science (Oxford, 1989),

Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 291–333.

MR 1145780. Zbl 0755.52008.
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