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A counterexample to the
periodic tiling conjecture

By RACHEL GREENFELD and TERENCE TAO

Abstract

The periodic tiling conjecture asserts that any finite subset of a lattice
7% that tiles that lattice by translations, in fact tiles periodically. In this
work we disprove this conjecture for sufficiently large d, which also implies
a disproof of the corresponding conjecture for Euclidean spaces R%. In
fact, we also obtain a counterexample in a group of the form Z* x Gg for
some finite abelian 2-group Go. Our methods rely on encoding a “Sudoku
puzzle” whose rows and other non-horizontal lines are constrained to lie
in a certain class of “2-adically structured functions,” in terms of certain
functional equations that can be encoded in turn as a single tiling equation,
and then demonstrating that solutions to this Sudoku puzzle exist, but are
all non-periodic.

1. Introduction

In 1960, Hao Wang [Wan60], [Wan75] studied the problem of tiling the
plane by translated copies of finitely many squares a color attached to each
side of each of them, also known as Wang squares, where one square lies next
to another only if the colors of common edges match. This is a variant of
Hilbert’s famous Entscheidungsproblem. Wang conjectured that if a set of
such squares admits a tiling of the plane, then it also admits a periodic tiling.
Wang’s conjecture was disproved by Berger [Ber66], [Ber65], who constructed
an aperiodic set of 20,426 Wang squares; i.e., the set of squares admits tilings
but none of these tilings is periodic. Over the years, many more constructions
of aperiodic translational tilings (including several not based on Wang squares)
were established, with smaller tile-sets (see, e.g., [GT23b, Table 1]). In this
paper we construct an aperiodic translational tiling with a single tile in Z? x
Gy for a certain finite abelian group Gg. As a consequence, we disprove the
celebrated “periodic tiling conjecture.” Our methods are based on encoding a
“Sudoku puzzle” rather than a Wang tiling problem.
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1.1. The periodic tiling conjecture. Let G = (G, +) be a discrete abelian
group. If A, F are subsets of G, we write A@® F = G if the translates a + F' =
{a+ f: f€F} of F by elements a of A form a partition of G. If this occurs,
we say that F' tiles G (by translations), and that A is a tiling set of G by F.
The tiling set A is said to be periodic if it is the finite union of cosets of a
finite index subgroup of G. We will refer to A ® F = G as a tiling equation
and think of F,G as being given and A C G as being an unknown. We say
that the tiling equation A & F' = G is aperiodic if there exist solutions A C G
to the tiling equation A @ F' = G, but none of these solutions are periodic.

Remark 1.1. We caution that in the aperiodic order literature the term
“periodic” instead refers to sets that are unions of cosets of some non-trivial
cyclic subgroup of G; in our notation, we would refer to such sets as being
one-periodic. For instance, if G = Z? and A was an arbitrary subset of Z,
then A x Z would be one-periodic, but not necessarily periodic in the sense
adopted in this paper. The notion of an aperiodic tiling is similarly modified
in the aperiodic order literature, and the notion of aperiodicity used here is
sometimes referred to as “weak aperiodicity.” For tilings in dimensions d < 2,
the two notions of aperiodicity coincide [GS87, Th. 3.7.1].

[43

A well-known conjecture in the area is the periodic tiling conjecture:

CONJECTURE 1.2 (Discrete periodic tiling conjecture; [Ste74], [GS87],
[LWO6]). Let F be a finite non-empty subset of a finitely generated discrete
abelian group G. Then the tiling equation A ® F = G is not aperiodic.

In other words, the conjecture asserts that if F' tiles G by translations,
then F' periodically tiles G by translations.

We also consider the following continuous analogue of this conjecture. If
¥ is a bounded measurable subset of a Euclidean space R? of positive measure,
and A is a subset of R%, we write A®Y =, R? if the translates A+ X, A € R?,
partition R? up to null sets; note from the Steinhaus lemma that this forces A to
be discrete. If this occurs, we say that X (measurably) tiles R? by translations
and that A is a tiling set of R? by A. The tiling set A is said to be periodic if it
is the finite union of cosets of a lattice (a discrete cocompact subgroup) of R
As before, we view A @Y =, .. R? as a tiling equation with d and ¥ given, and
A as the unknown. We say that this tiling equation A ® % =, .. R? is aperiodic
if there exist solutions A C R? to the tiling equation A ® ¥ =, .. R¢, but none
of these solutions are periodic.

CoONJECTURE 1.3 (Continuous periodic tiling conjecture; [GS87], [LW96]).
Let Y be a bounded measurable subset of R% of positive measure. Then the tiling
equation A ® X =, . R% is not apertodic.
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A standard argument shows that Conjecture 1.3 implies Conjecture 1.2.
This implication arises from “encoding” a discrete subset F' of Z% as a bounded
measurable subset F' @ Ry in R?, where Ry is a “generic” fundamental domain
of R?/Z%; we provide the details in Section 2.

Conjectures 1.2 and 1.3 have been extensively studied over the years. The
following partial results towards these conjectures are known:

e Conjecture 1.2 is trivial when G is a finite abelian group, since in this case
all subsets of G are periodic.

e Conjectures 1.2 and 1.3 were established for G = Z and G = R respectively
[New77], [LM91], [LW96]. The argument in [New77] also extends to the
case G = Z x Gy for any finite abelian group Gy [GT23b, §2].

e When G = Z2, Conjecture 1.2 was established by Bhattacharya [Bha20]
using ergodic theory methods. In [GT21] we gave an alternative proof of
this result, and furthermore showed that every tiling in Z? by a single tile
is weakly periodic (a disjoint union of finitely many one-periodic sets).

e When G = R?, Conjecture 1.3 is known to hold for any tile that is a topo-
logical disk [BN91], [GBN91], [Ken92|, [Ken93|.

e Conjecture 1.3 is known to be true for convex tiles in all dimensions [Ven54],
[McMS0].

e For d > 2, Conjecture 1.2 is known to hold when the cardinality |F| of F' is
prime or equal to 4 [Sze98], but remained open in general.

e In [MSS22], it was recently shown that the discrete periodic tiling conjecture
in Z% also implies the discrete periodic tiling conjecture in every quotient
group Z4/A.

e The analogues of the above conjectures are known to fail when one has
two or more translational tiles instead of just one; see [GT23b] (particularly
Table 1) for a summary of results in this direction. In particular, in [GT23b,
Ths. 1.8, 1.9] it was shown that the analogue of Conjecture 1.2 for two tiles
fails! for Z2 x Gy for some finite group Gy, and also for Z¢ for some d.

1.2. Results. In this work we construct counterexamples to Conjectures 1.2
and 1.3. Our first main result is

THEOREM 1.4 (Counterexample to Conjecture 1.2, I). There exist a finite
abelian group Gy and a finite non-empty subset F of Z2 x G such that the tiling
equation A @ F = 72 x Gy is aperiodic. In other words, the discrete periodic
tiling conjecture fails for Z? x Gy.

Remark 1.5. Our construction will in fact make Gy a (non-elementary)
2-group, that is to say, a finite group whose order is a power of two.

!Strictly speaking, the counterexample in that paper involved tiling a periodic subset F
of the group G, rather than the full group G. See, however, Remark 1.8 below.
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The abelian finitely generated group Z? x Gy can be viewed as a quotient
Z2 /A of a lattice Z? for sufficiently large d, so by Theorem 1.4 and the recent
implication in? [MSS22, Cor. 1.2] we derive

COROLLARY 1.6 (Counterexample to Conjecture 1.2, IT). For sufficiently
large d, there exists a finite non-empty subset F of Z% such that the tiling
equation A @ F = 7% is aperiodic. In other words, the discrete periodic tiling
conjecture fails for 74,

By a standard construction (going back to Golomb [Gol70]) relating dis-
crete and continuous tiling problems, we then have a corresponding counterex-
ample to the continuous periodic tiling conjecture:

COROLLARY 1.7 (Counterexample to Conjecture 1.3). For sufficiently
large d, there exists a bounded measurable subset ¥ of R® of positive mea-
sure such that the tiling equation A & X =, ¢. RY s aperiodic. In other words,
the continuous periodic tiling conjecture fails for R,

We give the (straightforward) derivation of Corollary 1.7 from Corol-
lary 1.6 in Section 2.

Our methods produce a finite group Gy, and hence a dimension d, that
is in principle explicitly computable, but we have not attempted to optimize
the size of these objects. In particular, the dimension d produced by our
construction will be extremely large.

1.3. Previous works and constructions. Aperiodic tilings have been exten-
sively studied and have found famous applications to many areas of mathemat-
ics and physics [AG95]. The study of the periodicity of tilings has attracted
many researchers, who have introduced methods from various fields, such as
geometry and topology [GBNO91], [Ken92], [Ken93], Fourier analysis [LW96],
[KL96], [Kol04], combinatorics [GT21], [GT23b], ergodic theory and probabil-
ity [Moz89], [Lev13], [Bha20], commutative algebra [Sze98], [Bha20], [GT21],
model theory [BJO8], [GT23b], and computability theory [Ber66], [Kar96],
[Lev13], [JR21], [GT23b].

We do not attempt a comprehensive survey of aperiodic constructions
here, but briefly summarize the current state of knowledge as follows.

e Aperiodic tiling by multiple tiles have been long known to exist. The on-
line encyclopedia of tilings [FGH]| contains many explicit examples of such
tilings. In the plane, there are the famous substitution tilings constructions
of Penrose and Ammann [Pen74|, [Pen80], [dB81], [Gar77], [AGS92]. (See
also [GS98] and the references therein for the study of substitution tilings.)
Other aperiodic tiling construction methods include the finite state machine

2This is a generalization of the argument in [GT23b, §9].
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approaches of Kari and Culik [Kar96], [Cul96] and the approach of encoding
arbitrary Turing machines? into a tiling problem [Ber66], [Ber65], [Rob71],
[O1109], [GT23b].

e In addition, if one allows for the tile to be rotated (and/or reflected) in
addition to being translated, aperiodic non-translational tilings by a single
tile (or “monotile”) are known to exist; see, e.g., [ST12], [WW23]. The
question of whether there are planar aperiodic connected tiles by transla-
tions, rotations and reflections remained open until very recently, when the
“hat” monotile was discovered by Smith—Myers—Kaplan—Godman-Strauss
[SMKGS23a]. Moreover, in a subsequent paper, the same authors con-
structed a connected planar domain that tiles the plane aperiodically by
translations and rotations only (no reflections) [SMKGS23b]. These results

> which is an extension of the second

solve the celebrated “einstein problem,’
part of Hilbert’s eighteenth problem.

e Moreover, when one allows for the group to be non-abelian, aperiodic (and
undecidable) tilings by a single tile are known to exist. For instance, in
[GT23b, Th. 11.2] we give a construction in Z? x H for a certain finite
non-abelian group H. See also [Thu22], [Moz97], [GS05], [SSU21], [ABJ18],
[Cohl17] for further references to of aperiodic tilings (or subshifts of finite

type) in various groups.

We were not able to adapt the previous aperiodic constructions to the
setting of a single translational tile. Instead, our source of aperiodicity is
more? novel, in that our tiling of Z2 x G is forced to exhibit a “g-adic” (or
“2-adic”) structure® for some large enough but fixed power of two q = 2°
(say s = 10) in the sense that for each power ¢’ of ¢, the tiling is periodic
with period ¢/Z? x {0} outside of a small number of cosets of that subgroup
@72 x {0}, but is unable to be genuinely periodic with respect to any of these
periods. To achieve this we will set up a certain “Sudoku puzzle,” which will
be rigid enough to force all solutions of this problem to exhibit a certain “self-
similar” (and therefore non-periodic) behavior, yet is not so rigid that there
are no solutions whatsoever. By modifying arguments from our previous paper

3This method in fact allows one to construct tiling problems that are not only aperiodic,
but in fact logically undecidable; see, e.g., [GT23b] for further discussion.

“Since the initial release of this preprint, we have learned (Emmanuel Jeandel, private
communication) that a similar use of p-adic functions (with p sufficiently large, but not nec-
essarily a power of 2) was employed by Aanderaa and Lewis [AL74], [Lew79] to establish the
undecidability of an empty distance subshift problem, which in turn implied the undecidabil-
ity of the domino problem; see [JV20, §4] for further discussion.

®Intriguingly, similar “inverse limits of coset structure” appears in other aperiodic tiling
constructions, such as the dragon tiling [BKS02], the Robinson tiling [Rob71], or the trilobite
and crab tilings [GS16], as well as some square-triangle tilings.
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[GT23b], we are then able to encode this Sudoku-type puzzle as an instance
of the original tiling problem A @ F = Z? x Gy.

Our encoding approach is similar in nature to previous “encoding” ar-
guments in the tiling literature. Berger [Ber66], [Ber65] encoded any Turing
machine as a Wang tiling problem. Since the halting problem is known to be
undecidable, Berger’s encoding implies the undecidability of the Wang domino
problem. Subsequently, Wang tilings were encoded to obtain aperiodicity,
strong aperiodicity, or even undecidability of various other problems; see, e.g.,
[ST12], [Gol70], [SSU21], [Moz89], [Rob71], [GS98], [GS05]. In particular, in
[GT23b] we used our tiling language approach to encode any Wang tiling prob-
lem as a tiling of Z? x G by two tiles for a suitable finite abelian group Gg
(depending on the given problem). This implies the existence of an undecid-
able tiling problem with only two tiles. Unfortunately, in our encoding of the
Wang domino puzzle, we were not able to reduce the number of the tiles from
two to one. Thus, the main difficulty we address in our current work is find-
ing another aperiodic puzzle (replacing the Wang domino puzzle) that is also
expressible in our tiling language of a tiling by a single tile.

1.4. Our argument and the organization of the paper. Our argument is
a variant of the construction used in our previous paper [GT23b] to produce
aperiodic (and even undecidable) translational tilings with two tiles, and it is
summarized by the diagram in Figure 1.1. However, the fact that we are now
tiling the whole group G instead of a periodic subset of G, and that we are only
allowed to use one tile instead of two, creates additional technical challenges.

As in [GT23b], in Section 3 we begin by replacing the single tiling equation
A®F = G with a system A®F(™ =G, m=1,..., M of tiling equations for an
arbitrary M, by an elementary “stacking” procedure that takes advantage of
our freedom to enlarge the group G. This creates a flexible “tiling language” of
constraints on the tiling set A; the challenge is to use this language to obtain a
system of constraints that is strict enough to force aperiodic behavior on this
set A, while simultaneously being relaxed enough to admit at least one solution.

Next, in Section 4, we again follow [GT23b] and pass from this tiling
language to a language of functional equations, basically by spending one of
the equations A@®F(™) = @ in the system to force the tiling set A to be a graph
of a function f = (f1,..., fx), where f;: Z*xGo — Z/qZ,1 < i < K, and Gy is
an additional small finite abelian group, which we retain for technical reasons.

One can then use one or more tiling equations A ® F(™) = G in the
tiling language to create a “library” of useful functional constraints on these
functions f;; this is done in Section 5. For instance, one can ensure that a given
function f; exhibits periodicity in some direction v; € Z2, or that it encodes
(the periodic extension of) a permutation of a cyclic group Z/qZ.
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Library of weakly
expressible properties
(Secs 5,6)

Lem 4.20
(
Encoded Sudoku with
good columns is
weakly expressible

[MSS22 Thm 2.1

Figure 1.1. A high-level overview of the logical implications used
in our proof. We introduce an aperiodic Sudoku puzzle (blue)
and develop a tiling library to express this puzzle inside a tiling
by a single tile (yellow). This, in turn, eventually leads to
constructions of aperiodic translational tilings by a single tile
in Z2 x Gy, Z¢ and R? (green). This diagram has been “curled
up” into a compact bounding rectangle purely to save space,
and the reader is welcome to mentally “straighten” it if desired.

In Section 6 we express via functional equations the assertion that a certain
subcollection of the f; (after a routine normalization) take values in a two-
element set {a,b} (mod ¢), where a,b have different parity, and can thus be
viewed as boolean functions. By modifying our construction from [GT23b, §7],
we can then use tiling equations to encode arbitrary pointwise constraints

(L.1) (fi(x),..., [ (x)) € Q

for all x € Z? x Gy and arbitrary subsets 2 of {a,b}!. This turns out to be a
particularly powerful addition to our library of expressible properties.

In Section 7, by some further elementary transformations (including a
change of variables that resembles the classical projective duality between lines
and points), we are then able to reduce matters to demonstrating aperiodic-
ity of a certain “Sudoku puzzle.” In this puzzle, we have an unknown func-
tion F': {1,...,N} X Z — Z/qZ \ {0} on a vertically infinite “Sudoku board”
{1,..., N} x Z that fills each cell (n,m) of this board with an element F'(n,m)
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of Z/qZ \ {0} for some fixed but large ¢ = 2°. Along every row or diagonal
(and more generally along any non-vertical line) of this board, the function
F is required® to exhibit “2-adic behavior”; the precise description of this be-
havior will be given in Section 7, but roughly speaking we will require that on
each such non-vertical line, F' behaves like a rescaled version of the function

(1.2) fq(n) = (mod q)

ql’q (n)

(where v,4(n) is the number of times ¢ divides n) that assigns to each integer n
the final non-zero digit in its base ¢ expansion (with the convention f,(0) = 1).
We also impose a non-degeneracy condition that the Sudoku solution function
F' is a periodized permutation along any of its columns.

In Section 9, for suitable choices of parameters ¢, N, we “solve” this Su-
doku problem and show that solutions to this problem exist, but necessarily
exhibit self-similar behavior (in that certain rescalings of the solution obey sim-
ilar properties to the original solution) and, in particular, are non-periodic. By
combining this aperiodicity result with the previous encodings and reductions,
we are able to establish Theorem 1.4 and hence Corollary 1.7.

Remark 1.8. Our current argument also provides a solution to [GT23b,
Prob. 12.3]. Namely, using the more advanced library we develop here (Sec-
tions 2-5), we can strengthen our previous undecidability result with two tiles
by now tiling all of the group rather than just a periodic subset. We leave the
details of this modification of the construction to the interested reader.

1.5. Notation. We define the disjoint union (4,,cyy Ew of sets F,, indexed
by some set VW to be the union | J,cy P if the Ey, are disjoint, and we leave
Hwew Fw undefined otherwise.

All groups in this paper will be written additively and be assumed to be
abelian unless otherwise specified. If A, B, C are subsets of G, we use A®B = C
to denote the assertion that the translates a + B, a € A partition C'; if the
translates a + B are not disjoint, we leave A® B undefined. Thus A@ B = C is
equivalent to [#),c4(a + B) = C. Similarly, if A C R? and ¥ C R? are discrete
and measurable respectively, and £ C R? is another measurable set, we write
A® Y =, F if the translates A + X, A € A partition £ up to null sets; if the
A+ 3 are not disjoint up to null sets, we leave A @& X undefined.

We use 15 to denote the indicator of an event E, thus 1g is 1 when F is
true and 0 otherwise.

5This is analogous to how, in the most popular form of a Sudoku puzzle, the rows, columns,
and 3 x 3 blocks of cells on a board {1,...,9} x {1,...,9} are required to be permutations
of the digit set {1,...,9}.
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By abuse of notation, we will sometimes identify an integer a € Z with its
representative a (mod N) € Z/NZ in a cyclic group Z/NZ when there is no
chance of confusion. For instance, we may refer to the multiplicative identity
of Z/NZ (viewed as a ring) as 1 rather than 1 (mod N).

If vq,...,v; are elements of a group G, we use (vy,...,v;) to denote the
group that they generate. If H is a subgroup of G, then a function f: G — X
on G is said to be H-periodic if f(x + h) = f(z) for allz € G and h € H. In
particular, a function is (v1, ..., vg)-periodic if and only if f(z +v;) = f(z) for
alzeGandi=1,...,k.

Weuse X =0(Y), X <Y, or Y > X to denote the estimate | X| < CY
for some absolute constant C' (which will not depend on other parameters such
as g or N). We write X <Y for X <Y <« X.

We use |E| to denote the cardinality of a finite set E. If E ¢ Q C R? with
Q) non-empty, we define the upper density of E in 2 to be the quantity

s |EN{-M,...,M}9|
1m sup .
M—o0 |Qﬂ{—M’7M}d|

Thus, for instance, if ¢, N are natural numbers, the set {1,..., N} X ¢Z has
upper density % in{1,...,N} x Z.

1.6. Acknowledgments. RG was partially supported by the AMIAS Mem-
bership and NSF grants DMS-2242871 and DMS-1926686. T'T was partially
supported by NSF grant DMS-1764034 and by a Simons Investigator Award.
We thank Nishant Chandgotia, Asaf Katz, Sébastien Labbé and Misha Sodin
for drawing our attention to some relevant references and to Emmanuel Jean-
del for helpful comments. We are also grateful to the anonymous referee for
many helpful suggestions that improved the exposition of this paper.

2. Building a continuous aperiodic tiling equation from a discrete
aperiodic tiling equation

In this section we show that a counterexample to the discrete periodic
tiling conjecture can be converted to a counterexample to the continuous pe-
riodic tiling conjecture. More precisely, we show

THEOREM 2.1 (Lifting a discrete aperiodic tiling equation to a continuous
aperiodic tiling equation). Let d > 1. If there is an aperiodic tiling equation
A@®F = 7% for some finite non-empty subset F' of Z%, then there is an ape-
riodic tiling equation A & X =, R for some bounded measurable subset X
of R% of positive measure. In other words, if Conjecture 1.2 fails in Z%, then
Conjecture 1.3 fails in R?.
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A basic connection between the discrete lattice Z?¢ and the continuous
space R? is given by the tiling relation

Zd ® Q4 =ae. Rd?
where Qg := [0,1]? is the unit cube. By translation invariance one also has
(27 +1) ® Qu =ae. R?

for any t € R, However, due to the ability to “slide” cubes Qg in various
directions, there are many more tilings of R? by Qg than these; this is ev-
idenced for instance by the failure of Keller’s conjecture in high dimensions
[LS92]. Because of this, the unit cube Qg is not a suitable tool for establishing
Theorem 2.1. Instead, we need a “rigid” version Ry of (J4, or more precisely,

LEMMA 2.2 (Existence of a rigid tile). For any d > 1, there exists a
bounded measurable subset Ry of RY such that Z*® Ry =a.e. Rd, and conversely
the only sets A C R with A ® Ry =a.0. R? are translates A = Z% + t of 7 for
some t € R?.

The idea of using rigid tiles to pass back and forth between discrete and
continuous tiling questions goes back to the work of Golomb [Gol70]; see also
[GT23b, Lemma 9.3] for a discretized version of this lemma.

Proof. The idea is to remove and add “bumps” at the facets of Q4 to make
a rigid “jigsaw puzzle piece”; see Figure 2.1. There are many constructions
available. For instance, we can define Ry to be the set

d

d
Ry = <Qd\ v, Ck) W [H (Ck + ex),
k=1

k=1

where e1, . .., eq is the standard basis for R, and foreach k =1, ...,d, C;; C Qq
is a e-subcube of @4, which one can, for instance, define as

k—1 d
Ci = H[wjuxj"‘f] x [0, €] x H g + €],
il j=k+1

where 0 < € < 1/5 and 2¢ < z; < 1— 3¢, j = 1,...,d are arbitrary. Because
the piece C}, removed for a given k is a translate by an element of Z¢ of the
piece C + e added for a given k, we still have

Zd 5> Rd —a.e. Zd S Qd —a.e. Rd-

On the other hand, it is geometrically evident that if A & Ry =a.. R? and
t € A, then t + e, must also lie in A for all £k = 1,...,d, as there is no other
way to fit translates of R4 around the added and removed “bumps” Cj + t,
Ci +er +tof Rg+t. Thus A must contain a translated lattice Z% + t; since
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-

] Ry | 4um Q)2
M

Figure 2.1. A “rigid” tile Ry replacing the non rigid tile Qo =
[0,1]2. The only tilings A @& Ry =, R? of the plane R? by Ry
are the translated lattice tilings (Z?+t)® Ry =, R? for t € R%.

this lattice already is a tiling set of R? by Ry, we therefore have A = Z¢ + t,
as required. O

Using this rigid tile, it is now straightforward to establish Theorem 2.1.

Proof of Theorem 2.1. Suppose that there is a finite non-empty F C Z¢
such that the tiling equation A @ F = Z% is aperiodic.

With Ry being the rigid tile provided by Lemma 2.2, we introduce the
bounded measurable subset 3 of R? by the formula

LS =F® Ry CZ'®Qy=ae R

Clearly X has positive measure. It will suffice to show that the tiling equation
A® Y =, R%is aperiodic. On the one hand, we have

A X =a.e. (A @ F) S Rd =a.e. Zd @ Rd =a.e. Rda

so there is at least one tiling of R? by .
Conversely, suppose that we have a tiling A ® ¥ =, .. R? of R%. Then we
have
(A @ F) ® Ry =ae. ADY =, Rda

and hence by Lemma 2.2, we have A@® F = Z?+t for some t € R%. Then A —t
is a tiling set of Z¢ by F and is hence not periodic by hypothesis. This implies
that A is not periodic, and so the tiling equation A ® ¥ =, .. R? is aperiodic
as claimed. O

In view of Theorem 2.1, we see that Corollary 1.6 implies Corollary 1.7.
In [MSS22] it was shown that any tiling of a quotient group Z?/A can be
identified with a tiling of Z?. This is done by a rigid pullback argument,
generalizing [GT23b, §9]. As a corollary, this gives that the discrete periodic
tiling conjecture in Z% also implies the discrete periodic tiling conjecture in
every quotient group Z%/A [MSS22, Cor. 1.2]. Thus, we have that Theorem 1.4
implies Corollary 1.7. It therefore remains to establish Theorem 1.4. This is
the objective of the remaining sections of the paper.



312 RACHEL GREENFELD and TERENCE TAO

3. Building an aperiodic tiling equation from an aperiodic system
of tiling equations

Theorem 1.4 asserts the construction of a single tiling equation A & F=G
that is aperiodic. As in our previous paper [GT23b], it will be more convenient
to consider the significantly more flexible problem of constructing a system

(3.1) A®F,=Gforalm=1,....M

of tiling equations that are (jointly) aperiodic in the sense that solutions A C G
to the system (3.1) exist, but none of them are periodic. The ability to pass
to this more flexible setup is provided by the following tool (compare with
Theorem 2.1):

THEOREM 3.1 (Concatenating an aperiodic system of tiling equations into
a single aperiodic tiling equation). Let G be a finitely generated abelian group.
Suppose that there exist finite non-empty sets Fy, ..., Fyy C G for some M > 1
such that the system (3.1) of tiling equations is aperiodic. Then there ezist a 2-
group of the form Z/N7Z, N = 2", and a finite non-empty subset F of GXZ/NZ
such that the single tiling equation

A®F =G x7Z/NZ
1$ aperiodic.

This theorem is a variant of our previous result [GT23b, Th. 1.15], in
which the 2-group Z/NZ was replaced by a proper subset of the cyclic group
Z/(M + 1)Z. In order to be able to tile the whole group, we will utilize a
“rigid” partition of Z/NZ. More precisely, we have the following analogue of
Lemma 2.2:

LEMMA 3.2 (Construction of a “rigid” partition). For every M > 1, there
exist N > 1 and a partition Z/NZ = E1W---WEy of Z/NZ into M non-empty
sets F1,...,Ey, such that

(3.2) E;N(E;+h)#0

for any 1 <i,5 < M and h € Z/NZ\{0}. In particular, for any 1 < i,j < M
and hi, hj € Z/NZ, we have
(3.3) (Ei + hi) 0 (Ej + hy) #0
unless hy = hj and i # j.

Proof. To construct such E1, ..., Eyy we use the probabilistic method. Let
N be a sufficiently large power of two (depending on M) to be chosen later. Let
a: Z/NZ — {1,..., M} be a function chosen uniformly at random, thus the

a(x) € {1,...,M} for x € Z/NZ are independent uniform random variables.
We then set E; == {x € Z/NZ : a(x) = i} to be the level sets of a. Clearly
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the Ey, ..., Ey partition Z/NZ. The probability that a given E; is empty is
(1-1/M)N. Nowlet 1 < i,j < M and h € Z/NZ\{0}. Then the only way that
(3.2) fails for this choice of parameters is if (a(z),a(z — h)) # (i,j) for all z €
Z/NZ. As h # 0, it has even order, so one can partition Z/NZ into N/2 sets of
the form {z,x — h}, so the probability that (3.2) fails for this choice of param-
eters is at most (1 — 1/M?)N/2. As the total number of choices of (i, j, h) is at
most M?N, the probability that this construction fails to work is thus at most

M1 —1/M)N + M?N(1—1/M*)N/2,
For N sufficiently large depending on M, this failure probability is less than 1,
and the claim follows. (]

Remark 3.3. An inspection of the bounds shows that one can take the
2-group Z/NZ to be of order N = O(M?log M). A similar construction works
with Z/NZ replaced by other finite abelian groups of comparable order. We
were able to also find deterministic constructions of the sets F1,..., Ejs in
various such groups, but for such constructions, the verification of the key
property (3.3) required a longer argument than the probabilistic arguments
provided here.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let G, Fy,..., Fa be as in that theorem. We use
the partition Z/NZ = E1W- - -® Ej provided by the above lemma to form the

combined tile
M

(3.4) Fi= |4 (Fn x En) C G x Z/NZ.
m=1

To complete the proof of Theorem 3.1, it suffices to show that the single tiling
equation
(3.5) A9 F =G xZ/NZ.
is aperiodic.

To verify this claim, we first observe that by hypothesis there exists A C G
such that A®F,, =G forallm=1,..., M. If weset A:= Ax{0} C GXZ/NZ,
then we have from (3.4) that

M M
Ao F = |H(A®Fy) x En) =G x |4 En =G x Z/NL.
m=1 m=1

Thus the tiling equation (3.5) has at least one solution.

Conversely, suppose A C G x Z/NZ solves the tiling equation (3.5). We
first claim that any “vertical line” {a} x Z/NZ, a € G, intersects A in at most
one point. Indeed, if (a,h), (a,h') € A for some h # k', then by (3.4), A® F
will contain both (a + F1) x (h+ E1) and (a+ Fy) x (b’ + E1) as disjoint sets.
But by (3.3), h + E1, h' + E; intersect, a contradiction.
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Because each vertical line {a} x Z/NZ, a € G meets A in at most one
point, we can write A as a graph

A ={(a, f(a)) : a € A}
for some A C G and some function f: A — Z/NZ. From (3.5) and (3.4) we
see that the sets
(3.6) (a+ Fn) x (f(a) + En)
fora € Aand m =1,..., M partition G x Z/NZ.

We now claim that for any m = 1,..., M, the sets a + Fi,, a € A, are
disjoint. For if we had a+ f = o'+ f’ for some distinct a,a’ € A and f, f’ € F,,,
then {a + f} x (f(a) + Ep) and {a’ + f'} x (f(¢’) + E;) would have to be
disjoint, but this again contradicts (3.3).

By restricting the partition (3.6) of G x Z/NZ to a single vertical line
{b} XxZ/NZ, we see that for any b € G, we can partition Z/NZ into f(am,)+Em,

where m = 1,..., M and a,, is the unique element of A (if it exists) such that
b € ay,+ Fy,. Since f(ap,)+ E,, has cardinality |E,,| > 0, and |Eq|+-- -+ |En]|
= N, we conclude that a,, must exist for every m = 1,..., M. In other words,

A F, = G for every m = 1,..., M. By hypothesis, this implies that A is
non-periodic. Since A is the projection of A to G, this implies that A is also

non-periodic. Thus the tiling equation (3.5) is aperiodic, and Theorem 3.1
follows. O

Let us say that the multiple periodic tiling conjecture holds for some
finitely generated abelian group G if, whenever Fi, ..., Fjs are finite non-empty
subsets of G, the system (3.1) of tiling equations is not aperiodic. Obviously,
the multiple periodic tiling conjecture for a given group implies the periodic
tiling conjecture for that group. Applying Theorem 3.1, we conclude that the
periodic tiling conjecture will hold for Z? x Gy for all finite abelian groups Gy if
and only if the multiple periodic tiling conjecture holds for Z?2 x G4 for all finite
abelian groups G1. Thus, to establish Theorem 1.4, it now suffices to establish

THEOREM 3.4 (Counterexample to multiple periodic tiling conjecture).
There exist a finite abelian group G1 and a finite non-empty subsets Fy, ..., Fy
of G = 72 x Gy such that the system (3.1) of tiling equations is aperiodic. In
other words, the multiple periodic tiling conjecture fails for 72 x G1.

Our remaining task is to establish Theorem 3.4. This is the objective of
the remaining sections of the paper.

4. Building an aperiodic system of tiling equations from an
aperiodic property expressible in functional equations

One can view the individual tiling equations A & F,, = G in (3.1) as
sentences in a “tiling language” that assert various constraints on the tiling
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set A. Theorem 3.4 can then be thought of as an assertion that this tiling
language is expressive enough to describe a type of set A C Z? x G that can
exist, but is necessarily non-periodic.

In this section we show that one can replace the language of tiling equa-
tions A@ F = G by the language of functional equations, in which the unknown
object is now a function a: G — H from a finitely generated abelian group
G to a finite abelian group H, rather than a subset A of G, and then develop
the further theory of this “functional equation language.” A single functional
equation in this language will take the form

J
(4.1) H—J(a(x +hj) + E;) = H for every x € G
7j=1
for some given shifts hq,...,h; € G and some sets F1,...,E; C H, which we

may take to be non-empty. For instance, in Example 4.8 below we will consider
the functional equation

(a(z) +{1}) W (a(x + 1)+ (Z/NZ\{0})) = Z/NZ

that may or may not be satisfied by a given function a: Z — Z/NZ. A system

+ &

(4.2) (el +hij)+E;j)=Hforalli=1,.... M, z€G

1

J

of such functional equations will be said to be aperiodic if solutions a: G — H

to this system exist, but that they are all non-periodic, by which we mean that

there is no finite index subgroup A of G such that a(z + h) = a(x) for all
x € Gand h € A.

We then have the following tool to convert aperiodic systems of functional

equations to aperiodic systems of tiling equations, in the spirit of Theorems 2.1
and 3.1:

THEOREM 4.1 (Converting an aperiodic system of functional equations to
an aperiodic system of tiling equations). Let G be a finitely generated abelian
group, and let H be a finite abelian group. Suppose that there exists M > 1,
and for each i = 1,..., M there exists J; > 1, and for each 1 < j < J; there
exist shifts h; ; € G and sets E; j C H, such that the system (4.2) of functional
equations is aperiodic. Then there exists a system (3.1) of tiling equations in
G x H that is aperiodic.

Proof. We will consider the system of tiling equations in G x H consisting
of the “vertical line test” equation

(4.3) A® ({0} xH)=Gx H
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as well as the tiling equations
Ji
(4.4) A® | H{~hi;} xE;=GxH
j=1
fori=1,..., M. It will suffice to show that this system of tiling equations is
aperiodic.
On the one hand, by hypothesis there is a solution a: G — H to the
system (4.2). If we then form the graph

(4.5) A={(z,a(x)):x € G} = L—Ij ({z} x{a(x)}) Cc G x H,

zeG
one has
Ao ({0} x H)= |H{a} x H=G x H
zeG
and

Ji Jz‘
AP t’j{_hi’j} X Ei,j = L—lj L—l_-J {x — hj} X (Oé(.f) +Ei,j)
j=1 j=1z€qG

Ji

= WLy} x (aly + hy) + Eij)
j=lyeG

=G x H,

and so A solves the system of tiling equations (4.3) and (4.4).

Conversely, suppose that A C G x H solves the system of tiling equations
(4.3) and (4.4). From (4.3) we see that each vertical line {z} x H, x € G meets
A in exactly one point; in other words, A is a graph (4.5) of some function
a: G — H. By the above calculations, we then see that each tiling equation
(4.4) is equivalent to its functional counterpart (4.2), so that « is a solution to
the system (4.2). By hypothesis, « is non-periodic, and hence A is non-periodic
also. This establishes the theorem. O

In order to use the above theorem, it is convenient to introduce some
notation.

Definition 4.2. Let G, H be abelian groups. A (G, H)-property is a prop-
erty P that may or may not be satisfied by any given function a: G — H. If
one wishes, one can identify such a property with a subset of H, namely with
the set of all « € H® that obey property P (after viewing « as a function from
G to H.)

Ezample 4.3. Every functional equation (4.1) associated to a given set of
parameters hi,...,hy € G and Eq,...,E; C H can be viewed as an example
of a (G, H)-property. The conjunction of any number of (G, H)-properties is
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obviously also a (G, H)-property, so each functional system (4.2) also describes
a (G, H)-property.

Definition 4.4 (Expressible property). We say that a (G, H)-property P
is expressible in the language of functional equations, or expressible” for short,
if there exists a system (4.2) of functional equations for some M > 0 that is
obeyed by a function a: G — H if and only if o obeys property P.

One can think of expressible properties as describing certain types of sub-
shifts of finite type; see also Remark 4.11 below.

Definition 4.5 (Aperiodic property). We say that a (G, H)-property P is
aperiodic if it is satisfiable, but only by non-periodic functions.

The following examples may help illustrate these concepts:

Ezample 4.6 (Empty and full property). The empty property (satisfied by
no function a: G — H) is expressible, for instance using an empty functional
equation (4.1) with J = 0. Similarly, the complete property (satisfied by every
function av: G — H) is expressible, using the empty system with M = 0
(or alternatively by using the functional equation a(x) + H = H). Neither
property is aperiodic. (The former has no solutions, and the latter includes
periodic solutions.)

Ezample 4.7 (Closure under conjunction). If Py, ..., Py are a finite col-
lection of expressible (G, H)-properties, then their conjunction P; A --- A Py
is clearly also an expressible (G, H)-property.

Ezample 4.8 (Expressing a clock). Let Z/NZ be a cyclic group. Let us
call a function a: Z — Z/NZ a clock if it obeys the property

alz+1)=a(x)+1

for all © € Z, or equivalently if it takes the form «a(z) = = + a (mod N) for
some a € Z/NZ. Then the property of being a clock is expressible by using
the single functional equation

(a(x) +{1}) W (a(z + 1) + (Z/NZ\{0})) = Z/NZ.
On the other hand, the property of being a clock is clearly not aperiodic.

"This notion is somewhat analogous to the notion of an algebraic set in algebraic geometry,
or of a wvariety in universal algebra. For instance, the claim in Example 4.7 is analogous to
the claim that the intersection of finitely many algebraic sets is again algebraic. On the
other hand, unlike algebraic sets that are closed under unions thanks to the integral domain
property ab =0 <= a =0V b =0, it is not the case that the disjunction of expressible
properties is again expressible, as there is no analogue of the integral domain property in our
setting.
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For technical reasons, we will not actually employ the clock property in
our main argument, but instead rely on the following variant:

Ezample 4.9 (Expressing a periodized permutation). Let Z/NZ be a cyclic
group. Let us call a function a: Z — Z/NZ a periodized permutation if it is of
the form a(x) = o(x (mod N)) for some permutation o: Z/NZ — Z/NZ. For
instance, every clock is a periodized permutation, but the converse is not true
for N > 2. We claim that the property of being a periodized permutation is
expressible by the single functional equation

(a(z) + {0 W (afx+1)+{0HhW - W (a(xr+ N —1)+{0}) =Z/NZ

for all z € Z. Indeed, this equation asserts that the N points a(z),...,a(x +
N — 1) in Z/NZ are all distinct, which when applied to both = and z + 1
implies that a(z) = a(x+ N), and also that « is a permutation on any interval
{z,...,z + N — 1}, which gives the claim. Obviously, this property is not
aperiodic either.

Theorem 4.1 tells us that if there is an expressible (G, H)-property P
that is aperiodic, then one can use this to build an aperiodic system of tiling
equations. (Note that the empty system M = 0 is not aperiodic, so we must
have M > 1.) As a consequence, Theorem 3.4 is implied by the following
statement:

THEOREM 4.10 (Expressing aperiodicity). There exist finite abelian
groups G1,H and an (Z* x Gy, H)-property P that is both expressible and
apertodic.

Remark 4.11 (Translation invariance). An expressible property P must
necessarily be translation invariant in both the horizontal direction G and the
vertical direction H. More precisely, if a: G — H obeys P, then so do all
the horizontal translates z — «(x + h) for h € G, and vertical translates
x + az) + u for uw € H. This is because each equation in (4.2) is invariant
with respect to these translations. The horizontal invariance (together with the
“local” nature of equations (4.2)) also means that such properties can be inter-
preted as subshifts of finite type. The “dilation lemma” (see, e.g., [GGRT23,
Th. 1.2]) also can force some dilation invariances of expressible properties (at
least if the shifts h; j in (4.2) are of finite order), although we will not formal-
ize this assertion here. These invariances are a technical complication for our
applications, as they provide some limitations on what types of properties one
can hope to express in the language of functional equations. For instance, one
cannot remove the constant a from the clock property in Example 4.8 and still
retain expressibility.
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It will be convenient to “coordinatize” the function a: G — H by replacing
it with a tuple (au)wew of functions au,: G — H,, into various finite abelian
groups H,, indexed by a finite set W. Note that any such tuple (ay,)wew can
be identified with a single function a: G — [[,ey Huw, defined by the formula

a(z) = (aw(®))wew

for z € G. Define a (G, (Hy)wew)-function to be a tuple (ay,)weyy of func-
tions oy : G — Hy, and define a (G, (Hy )wew )-property to be a property P
of a (G, (Hy)wew)-function (aq)wew. We will say such a property P is ez-
pressible in the language of functional equations, or expressible for short, if the
corresponding (G, [] ey Hw)-property P of the combined function a: G —
[Twew Hw is expressible, that is to say, that there is a system of functional
equations

Ji
(4.6) W (cw(@ + hij)wew + Eij) = [] Hoforalli=1,...,M
j=1 wew
for some M, some Ji,...,Jy, and some h;; € G and E;; C [[,ep Hw for

1<i< M and1<j<J;, which is satisfied by the tuple (au,)wew if and only
if the property P holds. We say that P is aperiodic if P is, or equivalently if
there are tuples (au,)wey obeying property P, but any such tuple has at least
one of the «,, non-periodic.

Ezample 4.12 (Differing by a constant is expressible). Let H be a finite
abelian group. The property of two functions g, ag: Z?> — H differing by a
constant (thus ai(x) = as(x) + ¢ for all x € Z and some ¢ € H) can be seen
to be an expressible (Z2, (H, H))-property by using the system of functional
equations

(4.7) ((a1(z), an(z)) + A) W (a1 (z + &), an(z + €;)) + (H*\A)) = H?

for z € Z? and i = 1,2, where e; = (1,0), ez = (0,1) is the standard basis
of Z? and A is the diagonal group

A= {(a,a):a € H}.
Indeed, equation (4.7) can easily be seen to be equivalent to the equation
ai(z) —az(z) = a1z +€) — aa(z + ),

which is in turn equivalent to the constancy of a1 — ag since the eq,es gen-
erate Z2. This property is of course not aperiodic, since one can easily find a
pair (aq, ) of periodic functions that differ by a constant.

Recall that Theorem 3.4 is implied by Theorem 4.10, which can now be
reduced to establishing the following claim:
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THEOREM 4.13 (Expressing aperiodicity for a tuple). There exist a finite
abelian group Gi, a tuple (Hy)wew of finite abelian groups indezed by a fi-
nite set W, and a (Z? x Gy, (Hy)wew)-property that is both expressible and
aperiodic.

Remark 4.14. By Remark 4.11, an expressible (G, (Hy)wew)-property
must be invariant with joint horizontal translation of a (G, (Hy)wew )-function
() wew t0 (ay(-+h))wew by ashift h € G, and also by independent vertical
translations (o, + uy)wew of such functions by arbitrary shifts u,, € Hyy,
and in some cases there are also dilation invariances. Again, these invariances
present some limitations on what properties one can hope to be expressible.

To add even more flexibility to our framework, it will be convenient to
relax the notion of expressibility in which we “allow existential quantifiers.”

Definition 4.15 (Weak expressibility). Let G be a finite abelian group, and
let (Hy)wewww, be a tuple of finite abelian groups indexed by the disjoint
union of two finite sets W, W).

(i) Given a (G, (Hy)wewww, )-property P*, we define the existential quantifi-
cation (or projection) P of P* to (G, (Hy)wew) to be the (G, (Hy)wew)-
property defined by requiring a (G, (Hy )wew)-function (au,)wew to obey
P if and only if there exists a (G, (Hy)wewww, )-function (au,)wewwwy, €x-
tending the original tuple (au,)weyy that obeys P*.

(ii)) A (G, (Hw)wew)-property P is said to be weakly expressible if it is the
existential quantification of some expressible (G, (Hy)wewww, )-property
P* for some W, disjoint from W.

Expressible and weakly expressible properties (or more precisely, the sets
of tuples obeying such properties) can be viewed as analogous® to H8 and ¢
sets respectively in the arithmetic hierarchy; we will not need any analogues
of higher order sets in this hierarchy.

Obviously every expressible property is weakly expressible (take Wy = 0).
It is somewhat more challenging to locate a weakly expressible property that
is not obviously expressible, but we will do so in later sections. Observe that
if P is an aperiodic weakly expressible (G, (Hy )wew )-property, then the asso-
ciated expressible (G, (Hy)wewww, )-property P* is necessarily also aperiodic,
since it is satisfied by at least one tuple (a,)wewww, (formed by extending a
tuple obeying P), and any such tuple must contain a non-periodic function:
Qo : G — Hy, for at least one wyg € WwW, (because the restriction (ouy)wew
does). Hence, to prove Theorem 4.13, it suffices to show

8They are also somewhat analogous to the notions of an algebraic set and semi-algebraic
set respectively in real algebraic geometry, though as before this analogy should not be taken
too literally.
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THEOREM 4.16 (Weakly expressing aperiodicity for a tuple). There exist
a finite abelian group G1, a tuple (Hy)wew of finite abelian groups indezxed
by a finite set W, and an (Z? x G1,(Hy)wew)-property that is both weakly
expressible and aperiodic.

To prove this theorem, it will be useful to observe that the class of weakly
expressible properties is closed under a number of natural operations, which
we now introduce.

Definition 4.17 (Lift). If G is a finitely generated abelian group, (Hy,)wew
is a tuple of finite abelian groups indexed by a finite set W, W; is a sub-
set of W, and P; is a (G, (Hy)wew, )-property, we define the lift of P; to
(G, (Hy)wew) to be the (G, (Hy)wew)-property P, defined by requiring a
(G, (Hy)wew)-function (au,)wew to obey P if and only if the (G, (Hy)wew, )-
function (au)wew, obeys Pi.

One can think of this operation as that of adding “dummy functions”
aw: 72 x Gy — Hy for w € W\W); that play no actual role in the lifted
property P.

Example 4.18. The (Z2, (H, H, H))-property of a triple (a1, aa, a3) of func-
tions a1, aw, a3: Z? — H such that as,as both differ from a; by a constant
(i.e., ag = a1 + c and a3 = a1 + ¢ for some ¢, € H) can be viewed as the
conjunction of two lifts of (relabelings of) the (Z, (H, H))-property described in
Example 4.12; one of these lifts will capture the property of a1 and «o differing
by a constant, and another will capture the property of a; and ag differing
by a constant. If we take an existential quantification to eliminate the role
of a1, we conclude (from Lemma 4.22 below) that the (Z2, (H, H))-property
of a pair as,as: Z2 — H differing by a constant is then weakly expressible
(since this occurs if and only if we can locate a;: 7> — H such that a9, as
both differ from «y by a constant). Of course, from Example 4.12 we already
knew that this property was in fact expressible, so this does not give an exam-
ple of a weakly expressible property that is not expressible. However, in the
next section we shall see several examples in which existential quantification
can be used to produce weakly expressible properties that are not obviously
expressible.

Ezample 4.19. If one lifts a (G, (Hy )wew, )-property Pi to a (G, (Hy)wew)-
property and then takes an existential quantification back to (G, (Hy)wew, ),
one recovers the original property P; (since one could simply set all the dummy
functions equal to zero).

Definition 4.20 (Pullback). Let G be a finitely generated abelian group,
let G’ be a subgroup of G, and let (Hy,)wew be a tuple of finite abelian groups
indexed by a finite set W. If P' is a (G’, (Hy)wew )-property, we define the



322 RACHEL GREENFELD and TERENCE TAO

pullback of P to (G, (Hy)wew) to be the (G, (Hy)wew)-property P defined
by requiring a (G, (Hy)wew)-function (o, )wew to obey P if and only if the
(G, (Hy)wew)-function (ouy gz )wew defined by a0 (2') = ay(zo + ) for
' € G’ and w € W obeys P’ for every choice of base point xy € G.

Example 4.21 (Pulling back the clock). Let v be a non-zero vector in Z2.
Then we can identify Z with the subgroup Zv = {nv : n € Z} of Z2. If we view
the clock property from Example 4.8 as a (Zv,Z/NZ)-property, its pullback
to (Z%,7Z/NZ) is the (Z?,7Z/NZ)-property of a function a: Z? — Z/NZ being
a clock along the direction v; that is to say, for every zg € Z?, there exists
ag, € Z/NZ such that a(zg + nv) = az, +n (mod N) for every n € Z.

We now record the closure properties of (weak) expressibility we will need.

LEMMA 4.22 (Closure properties of (weak) expressibility).

(i) Any lift of an expressible (respectively weakly expressible) property is also
expressible (respectively weakly expressible).

(ii) Any pullback of an expressible (respectively weakly expressible) property
is also expressible (respectively weakly expressible).

(i) The conjunction PAP’ of two expressible (respectively weakly expressible)
G, (Hy)w -properties is also expressible (respectively weakly express-
(G, ew)-prop 2 P y y exp
ible).

(iv) Any existential quantification of a weakly expressible property is weakly
expressible.

Proof. We begin with the expressible case of (i). Suppose that P is
a (G, (Hy)wew)-property formed as a lift of an expressible (G, (Hy)wew, )-
property P;. By definition, we can find M, Jy,...,Jy, and h;; € G and
Eij1 C [Twew, Hw for 1 <i < M and 1 < j < J; such that a (G, (Hy)wew, )-
function (au,)wew, obeys Py if and only if it solves the system
Ji

W ((cw(@ + hij))wew, + Eija) = [] Huw
j=1 weW1

foralli=1,...,M and = € G. If we then define the lifted sets
Ez’,j = Ei,j,l X H H, C H H,
weW\W, weW

fori=1,...,.M and j =1,...,J;, we see from Definitions 4.17 and 4.4 that a
(G, (Hy)wew)-function (au,)wew obeys P if and only if

J;
L‘ﬂ ((aw(z + hij))wew + Eijj) = H Hy,
j=1 wew

forallt=1,..., M. The claim follows.
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For the weakly expressible case of (i), suppose that P is a (G, (Hy)wew)-
property formed by lifting a weakly expressible (G, (Hy)wew, )-property P;.
By Definition 4.15, the weakly expressible (G, (Hy)wew, )-property P is as-
sociated to an expressible (G, (Hy)wew,ww, )-property P;. By relabeling, we
may assume that Wy is disjoint from W. The lift P* of P} to (G, (Hw)wewww,)
is then an expressible (G, (Hy)wewww, )-property by the expressible case of (i),
and it can be seen to be associated to P in the sense of Definition 4.15 by ex-
panding out the definitions. Thus P is weakly expressible, as desired.

Now we establish the expressible case of (ii). Suppose P is a (G, (Hy)wew)-
property formed by pulling back an expressible (G', (Hy,)wew)-property P'. By
definition, we can find M, Ji,...,Jy, and h;; € G' and E; j C [[wew Huw for
1<i< Mand1<j < J;suchthat a (G, (Hy)wew)-function (auy)wey obeys
P’ if and only if it solves the system

Ji

(4.8) ) ((w(@ + hig)wew + Eij) = [] Ho
Jj=1 weWw

foralli = 1,...,M and x € G’. By expanding out the definitions, we then
see that a (G, (Hy)wew)-function (ay,)wew obeys P if and only if it obeys the
same system of equations (4.8) for i = 1,..., M, but now with x ranging over
G instead of G'. Thus P is also expressible as required.

For the weakly expressible case of (ii), suppose that P is a (G, (Hy)wew)-
property formed by applying a pullback to a weakly expressible (G, (Hy)wew )-
property P’. By Definition 4.15, property P’ is associated to some expressible
(G', (Hy)wewww, )-property (P')*. If we let P* be the pullback of (P')* to
(G, (Hy)wewew, ), then P* is expressible by the expressible case of (ii), and it
can be seen to be associated to P in the sense of Definition 4.15 by expanding
out the definitions. Thus P is weakly expressible as desired.

The expressible case of (iii) is trivial (and was already noted in Re-
mark 4.7). Now suppose that P, P’ are weakly expressible (G, (Hy)wew)-
properties. By Definition 4.15, property P is associated with an expressible
(G, (Hw)wewwewy, )-property P*, and property P’ is similarly associated with
an expressible (G, (Huw)wewewy)-property (P')*. By relabeling, we can assume
that Wy and W) are disjoint. Let @ be the (G, (Huw)wewswyww;)-Property
formed by lifting both P* and (P')* to (G, (Huw)wewew,wwy) and then taking
their conjunction. By the previously established parts of this lemma, Q* is
expressible, and it can be seen to be associated to P A P’ in the sense of Defini-
tion 4.15 by expanding out the definitions. Thus P A P’ is weakly expressible
as desired.

Finally, (iv) is immediate from Definition 4.15, after observing that an
existential quantification of an existential quantification is again an existential
quantification. O
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5. A library of (weakly) expressible properties

In view of Lemma 4.22, a natural strategy to establish Theorem 4.16
is to first build up a useful “library” of (weakly) expressible (G, (Hy)wew)-
properties for various choices of G and (Hy)wewy, with the aim of combining
them via various applications of Lemma 4.22 to create more interesting (and
ultimately, aperiodic) examples of weakly expressible properties (analogously
to how one can create a complex computer program by combining more fun-
damental library routines together in various ways). For instance, the clock
in Example 4.8 can be regarded as one entry in this library, as can the prop-
erty of being a periodized permutation as discussed in Example 4.9, or the
property of differing by a constant as discussed in Example 4.12. The final
objective is to then “program” such a combination of properties in the library
that necessarily generates an non-periodic function. In fact we will achieve
this by “programming” a certain type of “Sudoku puzzle” that can be solved,
but only in a non-periodic fashion.

Example 5.1. Consider the (Z2,Z/NZ)-property P of a function a: Z2 —
Z/NZ being of the form a(z,y) = = + y + ¢ for all (z,y) € Z? and some
c € Z/NZ. This is equivalent to a being a clock along the direction e; = (1,0)
and simultaneously being a clock along the direction e; = (0,1), in the sense
of Example 4.21. Thus this property P is the conjunction of two pullbacks of
the clock property; since we know from Example 4.8 that the clock property
is expressible, we conclude from several applications of Lemma 4.22 that this
property P is also expressible. However, this property is not aperiodic, and so
does not complete the proof of Theorem 4.16.

Example 5.2. The (Z, (Z/NZ)y=1,2)-property of two functions o, ag: Z—
Z/NZ being periodized permutations that differ by a constant is expressible,
as can be seen from Lemma 4.22 after lifting Example 4.9 twice and taking
conjunctions of those lifts with Example 4.12. Again, this property is not
aperiodic, and so does not complete the proof of Theorem 4.16.

5.1. Expressing linear constraints. One basic property that we will add to
our library is the ability to express linear constraints (up to constants) between
different functions v, which significantly generalizes Example 4.12. The basic
relation is

PROPOSITION 5.3 (Expressing constancy modulo a subgroup). Let G be a
finitely generated abelian group, let H be a finite abelian group, and let H' be a
subgroup of H. Then the (G, H)-property of a (G, H)-function « taking values
in a single coset c+ H' of H' (i.e., there exists c € H such that o(x) € ¢+ H'
for all x € G) is expressible.
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Proof. Let eq,...,eq be a set of generators for GG. Similarly to Exam-
ple 4.12, we consider the functional equation

() + H) W (x4 ¢;) + (H\H')) = H

foralli=1,...,d and x € G, and some unknown function o: G — H. This
equation can be equivalently expressed as

a(z) = a(z + ¢;) (mod H');

that is to say, a(z) and a(z + ;) lie in the same coset of H'. Since the e;
generate G, this is equivalent to « lying in a single coset of H', as claimed. [

We isolate two useful corollaries of this proposition:

COROLLARY 5.4 (Expressing periodicity). Let G be a finitely generated
abelian group, let H be a finite abelian group, and let G’ be a subgroup of G.
Then the (G, H)-property that a (G, H)-function « is G'-periodic in the sense
that a(x + h) = a(x) for all z € G and h € G', is expressible.

Proof. From Proposition 5.3 with G replaced by G’ and H’ replaced
by {0}, we see that the (G', H) property of being a constant (G’, H)-function
is expressible. Pulling back from (G’, H) to (G, H) using Lemma 4.22(ii), we
obtain the claim. ]

COROLLARY 5.5 (Expressing linear constraints). Let G be a finitely gen-
erated abelian group, let Z/NZ be a cyclic group, and let ¢1,...,cwy € Z/NZ
be coefficients. Then the (G, (Z/NZ)y=1,...w)-property of a tuple ax, ..., oy :
G — Z/NZ of functions obeying the linear relation

(5.1) aai(z)+ -+ ewaw(x) =c
for all x € G and some constant ¢ € Z/NZ, is expressible.

Proof. We can view (u)w—1,. w as a single (G, (Z/NZ)")-function. The
linear relation (5.1) is then equivalent to this function lying in a single coset
of the group

H ={(a1,...,aw) € (Z/NZ)W ccra + -+ cpay = 0}
The claim now follows from Proposition 5.3. U

Remark 5.6. Note that Example 4.12 is essentially the special case of
Corollary 5.5 with W = 2, ¢; = 1, and cg = —1. The presence of the constant ¢
in (5.1) is unfortunately necessary due to the translation invariance mentioned
in Remark 4.11. We remark that a variant of Corollary 5.5 (in which one did
not tile the whole group, and was thus able to set ¢ to zero) was implicitly
used in our previous work [GT23b, §6].
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Ezample 5.7. For a cyclic group Z/NZ, consider the (Z2,(Z/NZ)w=123)-
property of a triple of functions a1, as, ag: Z? — Z/NZ obeying the properties
ai(z,y) = on(z + 1,y),
= az(z,y +1),
(x+1,y—1),
(,

)

for all (x,y) € Z?; namely, a1, a9, as are periodic along the directions (1,0),
(0,1),(1,—1) respectively, and that a; + oy = as. Thus, this property is
expressible. It is not difficult to show that the solutions to this system of
equations are given by ai(x,y) = ¢(y) + c1, as(z,y) = ¢(z) + c2, as(z,y) =
¢(x + y) + c3 for some homomorphism ¢: Z — Z/NZ and some constants

(z,y) =
az(z,y) = as
(z,y) =

ai(z,y) + az(z,y) = az(x

c1,¢2,c3 € Z/NZ. Thus the property of aq, ae, a3 taking this form is express-
ible. Applying existential quantification to eliminate the role of aws,as, we
conclude that the (Z2,7Z/NZ)-property of a function a: Z? — Z/NZ taking
the form a(x,y) = f(y) for some affine function f: Z — Z/NZ (i.e., the sum
of a homomorphism and a constant) is weakly expressible. This is our first
example of a property that is weakly expressible, but that is not obviously
expressible.

6. Expressing boolean functions

Thus far we have been considering properties of functions «,: G — Hy,
that can range over the entirety of a finite abelian group H,,. In order to be
able to express boolean operations (as in [GT23b, §5]), we will need to start
expressing properties of functions that take on only two values {a, b} in a larger
ambient group H, (which we will take to be a cyclic 2-group Z/2MZ). To do
this, we introduce the following definition:

Definition 6.1 (Boolean function). Let G be a finitely generated abelian
group, let e be an element of G of order 2, let Z/2M7Z be a cyclic 2-group for
some M > 1, and let a,b be distinct elements of Z/ 2M7, of opposite parity.
(Thus one of the a,b is even and the other is odd.) A function a: G —
7.)2M7. is (e, {a,b})-boolean if it takes values in {a,b} and furthermore obeys
the alternating property

(6.1) alr+e)=a+b—a(z)

for all z € Gj i.e., for each z € G, a(z) takes one of the values a, b, and a(x+e)
takes the other value. In particular, {a, b} is equal to the image o(G) of a.

A (e, {a,b})-boolean function « is said to be compatible with a (e, {a’,V'})-
boolean function o if {a’, b’} is a translate of {a, b}, or equivalently if the image
a(G) of a is a translate of the image o/(G) of .
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We restrict to 2-groups Z/2M7Z here because in later arguments it will be
important to exploit the fact that all odd elements of such groups are invertible
(with respect to the usual ring structure on cyclic groups) and, in particular,
have order 2™ equal to the order of the group. This will also be the main reason
why we will work with “2-adic Sudoku puzzles” in later sections, as opposed
to Sudoku puzzles in odd characteristic that are slightly easier to analyze.

PROPOSITION 6.2 (Expressing a single boolean function). Let G be a
finitely generated abelian group, let e be an element of G of order two, and let
Z)2M7 be a cyclic 2-group for some M > 1. Then the (G,Z/2™Z)-property
of being (e, {a,b})-boolean for some distinct a,b € Z/2M 7 of opposite parity is
expressible.

Proof. Suppose that {e1,...,e,} is a set of generators for G, and consider
the (G, Z/2MZ)-property of a function a: G — Z /27 obeying the functional
equation

(6.2) (@) +22/2M2Z) W (a(w + €) + 22/2MZ) = 2/2M 7

for all x € G, as well as the equations

(6.3) B ((ely+e) +{0}) W (aly) + (22/2Y2\{0}))) = 2/2"Z
y=x,x+e

forallz € Gandit=1,...,7.

Suppose that a obeys this system (6.2), (6.3). Since 2Z/2M7Z is an index
two subgroup of Z/2M7Z, we see that for each x, the pair (a(z),a(x + ¢))
must consist of an even element a(z) and an odd element b(x) of Z/2¢Z. On
the other hand, from comparing (6.3) with (6.2) we have for each x € G and
i=1,...,r that

(a(x) + {0 W (a(x+e)+{0}) = (a(z +€;) + {0}) W (a(x + e+ ¢€;) + {0})

or equivalently that a(x) = a(z + e;) and b(z) = b(x +€;). Since the eq, ..., e,
generate GG, we conclude that a(z) = a, b(z) = b are constant in z, and « is
(e,{a,b})-boolean. Conversely, if « is (e, {a,b})-boolean, we can reverse the
above arguments and conclude the functional equations (6.2) and (6.3). The
claim follows. O

Let G be a finitely generated abelian group, let e be an element G of
order two, let Z/2qZ be a cyclic group of even order, and let W > 1. By the
above proposition and Lemma 4.22, one can express the (G, (Z/2qZ)y=1....w)-
property of a tuple a1, ...,aw: G — Z/2qZ of functions being such that each
a; is (e, {a;i, b })-periodic for some a;,b; € Z/2qZ of different parity. However,
this property does not force the boolean functions to be compatible; in other
words, it does not require that the {a;, b;} are translates of each other. This is
a new difficulty that was not present in our previous work [GT23b], where we
could enforce this compatibility by only tiling a subset of H rather than the
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full group H. In our context, the desired compatibility will be achieved with
the assistance of the following elementary lemma:

LEMMA 6.3 (An equation to force boolean compatibility). Let Z/2MZ be
a cyclic 2-group for some M > 2, and let {a,b},{c,d},{f, g}, {0 K'},{h K"}
be pairs of elements of Z./2M 7 of different parity. Let z € 7./2M 7 be such that

(6.4) (@a+b)+ W +K)+(H" +E')=2(c+d)+ (f+g)+ 2=

Suppose also that for any triple (o, 7,7") € {a,b} x {W',k'} x {h,) K"}, there
exists (B8,7) € {¢,d} x {f, g} solving the equation

(6.5) a+T1+7 =28+7+ 2z

Then the sets {a,b},{h',k'},{h,” K"} are translates of each other.

Proof. Observe that we can translate any of the pairs {a,b},{h', £},
{h,”k"} by some shift in Z/2M7Z, so long as we also shift z by the same
shift. So we may normalize a = ' = h” = 0. By (6.5) we may then find
(B,7) € {c,d} x{f, g} such that 0 = 28+~+z. By shifting {c,d} by =5, {f, g}
by —~, and replacing z with 0, we may thus also normalize § =~ =z = 0, so
without loss of generality, ¢ = f = z = 0. Thus we now have

(6.6) b+ K + k' =2d+g,

and for any triple (o, 7,7") € {0,b} x {0,k'} x {0,k"}, there exists (8,7) €
{0,d} x {0, g} such that

a+1+7 =28+1.
In particular,

b k' k" €{0,2d, 9,9+ 2d}.

By the hypothesis of distinct parities, b, k', k,” d, g are all odd. Thus in fact we
must have

b k' k" € {g,g+2d}.
Ifb =k =K’ then {0,b},{0,k'}, {0, K"} are translates of each other as desired.
There are only two remaining cases:

(1) If two of the b, k', k" are equal to g and the third is equal to g + 2d, then
from (6.6) we have 3g + 2d = 2d + g, which is absurd since g is odd and
M > 2.

(2) If one of the b, k', k" is equal to g and the other two are equal to g + 2d,
then from (6.6) we have 3g + 4d = 2d + ¢, so in particular, g + 2d =
—g and so {0,9} and {0,¢ + 2d} are translates of each other. Thus
{0,b},{0, &'}, {0, K"} are translates of each other as desired. O

Definition 6.4 (Compatible boolean property). Let G be a finitely gen-
erated abelian group, let e,e’,¢e” be elements of G that generate a copy of
(Z/27Z)? (so that e, e/, e” are of order 2 and linearly independent over Z/27),
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let Z/2M7 be a cyclic 2-group for some M > 2, and let W > 1. We say that
a tuple (auy)w=1,. w of functions ay,...,aw: G — 7./2M 7, obeys the compat-
ible boolean property P (with parameters e, €', ") if each a; is (¢/, ¢”)-periodic
(thus a;(z + €') = aj(z + €”) = a;(x) for all x € G) and (e, {a;, b;})-boolean
for some a;,b; € Z/2M7Z of different parity, and additionally that the a; are
compatible (i.e., the {a;, b;} are translates of each other).

We can exploit Lemma 6.3 as follows.

PROPOSITION 6.5 (Expressing multiple compatible boolean functions).
The compatible boolean property P is a weakly expressible (G, (Z/2MZ)w:17W7W)—
property.

Proof. For sake of notation, we just demonstrate this for W = 2; the
general case is similar, and in any event follows from the W = 2 case by
applying Lemma 4.22 in a similar spirit to Example 4.18.

Let ay,c0: G — Z/ 2M7 he functions. We introduce some auxiliary func-
tions

B1, Bay 1,72, T, 7" G — Z/2M 7.

Consider the (G, (Z/2MZ)w:1,,,.78)—property P* that the tuple (aq, oz, f1, Po,
1,72, T) obeys the following properties for i = 1, 2:
(i) a; is (¢, ¢")-periodic and (e, {a;, b;})-boolean for some a;, b; € Z/2M 7 of
different parity;
(ii) Bi is (e, {ci, di})-boolean for some c;,d; € Z/2M7Z of different parity;
(iii) 7; is (e, {fi, gi})-boolean for some fi, g; € Z/2MZ of different parity;
(iv) 7' is (e+¢€, e")-periodic and (e, {I’, k'})-boolean for some b/, k' € Z/2M 7,
of different parity;
(v) 7" is (¢/,e + €’)-periodic and (e, {h,” k”})-boolean for some h,” k" €
7./2M 7, of different parity;
(vi) there is a constant z; € Z/2M7Z such that a;(z)+7"(z) +7"(2) = 26;(x) +

vi(x) + z for all x € G.

From several applications of Corollaries 5.4 and 5.5, Proposition 6.2, and
Lemma 4.22 we already know that P* is expressible. To conclude the propo-
sition, it suffices to show that the compatible boolean property P is the exis-
tential quantification of P*.

We first show that any pair (a1, ) obeying the compatible boolean prop-
erty P can be lifted to a octuplet (aq, ag, 81, 82,71, V2, T, T') obeying P*. By hy-
pothesis and Definition 6.4, each «; is already (¢’, ¢”)-periodic and (e, {a;, b;})-
boolean, where a;,b; € Z/ 2M7, are of different parity and with a1, iy compat-
ible. By applying independent translations to the compatible boolean func-
tions a1, ae (which we can do by Remark 4.11), we may normalize {a1,b1} =
{az, b} = {0,b} for some odd b € Z/2MZ. Next, let 7/ be an arbitrary
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(e+¢, e")-periodic and (e, {0, b})-boolean function; such a function can be con-
structed by arbitrarily partitioning G into cosets x + (e, €/, €”) with a marked
point z and then setting

7(x + re+ se’ +te’) = bl,—g

on each such coset for r,s,t € Z/27Z. Similarly we can let 7/ be an arbitrary
(¢/,e 4+ €")-periodic and (e, {0,b})-boolean function. For each i = 1,2, the
function a; +7' 47" then takes values in {0, b, 20, 3b} and obeys the alternating
property

(a; + 7" +7")(x+e)=3b— (a; + 7"+ 7")(x)

for all z € GG. Note also that the quantities 0, b, 2b, 3b are all distinct since b is
odd and M > 2. By binary expansion, we may thus decompose

(a; + 7"+ 7")(x) = 2Bi(x) + vi(z)

for some unique functions f;,7;: G — {0,b}. It is easy to verify that these
functions are (e, {0, b})-boolean, and so the octuplet (a1, s, 81, B2, 71,72, T, ')
obeys P* as required (with z; =0 in (vi)).

Conversely, suppose that we have an octuplet (aq, a9, 51, B2, 71,72, 7, T')
obeying property P*. Applying (vi) to  and = + e and summing, we have

Y () +TW+"W) = D @Biy) + %) + 22

y=z,0+e€ y=xz,x+e

for any z € G and ¢ = 1,2. Using the boolean nature of the functions
a1, a9, 1, B2,71,72, T, 7" in the direction e, we conclude that

(ai +b;) + (W +E)+ (B + k") = 2(ci + di) + (fi + g;) + 22

fori=1,2.

Let i = 1,2. By (i), (iv), (v), we see that for any =z € G, the triple
(aj(x), 7' (x),7"(x)) takes values in the eight-element set {a;, b;} x {h/,k'} x
{h,)”K"}. Furthermore, shifting = by e’ changes the value of 7/(x) but not
a(z), 7" (x); shifting x by €’ changes the value of 7”(z) but not a(z),'(z);
and shifting = by e + ¢’ + ¢” changes the value of a;(x) but not 7/(x), 7" (z).
We conclude that all eight of the elements of {a;,b;} x {h',k'} x {h,” K"} are
actually representable in the form (o;(x), 7'(z), 7" (x)) for some z € G. By (vi),
we conclude that every element (a;, 7,7') of {a;,b;} x {h', K’} x {h,” K"} has a
representation a; + 7 + 7' = 20; + 7; + z; for some (B;,v;) € {ci,di} X {fi,9i}-
We can now apply Lemma 6.3 to conclude that {a;, b;}, {h/, k'}, {h,” K"} must
be translates of each other. Thus, both a1, as are compatible with the 7/, 7”.
By transitivity, this implies that a; is compatible with g, and hence the
compatible boolean property P holds as required. ([l
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Let G,M,e,e’,e” be as in the above proposition. If ai,...,aw: G —
7./2M 7 obey the compatible boolean property, then (after permuting a;, b; as
necessary) each «; is (¢, ¢”)-invariant and is (e, {a;, a; + b})-boolean for some
a; € 7./2M7 and some odd b independent of i. Thus we have representations
(6.7) ai(r) = a; + bay(x)
for all x € G and ¢ = 1,...,W, where the normalized boolean functions
a;: G — 7Z)2M7Z are (€¢/,e")-invariant and (e, {0, 1})-boolean. Note that the
a;, b are only unique up to the reflection symmetry

(a1,...,aw,b) — (a1 +b,...,aw +b,—b),
which effectively replaces the normalized boolean functions &; with their re-
flections 1 — &;.

Definition 6.6 (Property Pg). Let Q be a subset of {0,1}" that is sym-
metric with respect to the reflection

<y177yW)'_>(1_y1771_yW)

We say that a (G, (Z/2MZ) =1, w)-function (a1, ..., aw) obeys property Py
if it obeys the compatible boolean property P, and furthermore that the nor-
malized functions &4, ..., &y obey the boolean constraint

(@1(). ... aw(x)) € 0
for all z € G.

Note that from the symmetry hypothesis, it does not matter which of the
two available normalizations &; of the «; are used here. Importantly, such
relations are weakly expressible when M is large enough:

PROPOSITION 6.7 (Expressing symmetric boolean constraints). Let G be
a finitely generated abelian group, let e,e’,e” be elements of G that generate
a copy of (Z/27)3, let Z.J2MZ be a cyclic 2-group for some M > 2, and let
W > 1. Let Q be a symmetric subset of {0,1}W. If 2M > 2W + 4, then the
(G, (Z/ZMZ)U,:L_”,W)—pmperty Pq is weakly expressible.

Proof. This will be a variant of the arguments in [GT23b, §6]. By increas-
ing W by one or two if necessary (and relaxing 2 > 2W + 4 to 2M > 2I)
using Lemma 4.22(iv), we may assume without loss of generality that W is
odd with W > 3. The symmetric set {2 can be expressed as the intersection of
a finite” number of symmetric sets of the form

(68) {O,I}W\{(Gl,...,ﬁw),(l—61,...,1—6w)}

9This number, while finite, could be very large (exponentially large in W). This expo-
nential growth will cause the dimension d in Theorem 1.4 to be enormous, as one has to
perform the conjunction of exponentially many expressible properties. A substantially more
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for some €1,...,ew € {0,1}. By Lemma 4.22(iii), it thus suffices to verify the
claim for © of the form (6.8).

We introduce some auxiliary functions fi,...,Bw_2: G — Z/2M7Z and
let Pg be the (G, (Z/QMZ)w:Lm,gW,Q)—property that a tuple

(Oél,. ..,O[W,,Bl,. "7ﬁW72)

of functions from G to Z/2M7Z obey the following properties:
(i) (oa,...,aw,pB1,...,Pw—2) obeys the compatible boolean property P (with
W replaced by 2W — 2);
(ii) there is a constant z € Z/2MZ such that
(=D)%a(@) + -+ (=1)Waw(z) = fi(x) + - + Pw—2(x) + 2
for all x € G.
From Proposition 6.5, Corollary 5.5, and Lemma 4.22, the property Fj is
weakly expressible. By Lemma 4.22(iv), it thus suffices to show that Py is the
existential quantification of Fj.
We first show that any tuple («q, ..., o) obeying Py can be extended to
a tuple (ou,...,aw, B1,..., Bw—2) obeying P3. By hypothesis, we can write
the ; in the form (6.7) for some a;,b € Z/2™7Z with b odd, and some (e, {0, 1})-
boolean and (€', ¢’)-periodic functions aq,...,aw : G — {0,1}. In particular,
(101 o (1) Vo = @ + -+ Gawey) + 2
for some constant zg € Z/2MZ, where d;.,: G — {0,1} is the (e, {0,1})-
boolean and (¢’, ¢”)-periodic function R, (&;), where for a = 0,1,
(6.9) R,(z) =a+ (-1)"z, zed.
By the choice (6.8) of €2, we see that for every z, the tuple

(dLel (37), s 7&W7€W (.%'))

is an element of the cube {0,1}" that avoids both (0,...,0) and (1,...,1). In
particular, we have

@16, (T) 4+ ey (2) = bf (2)

for some f(z) € {1,...,W — 1}, which is well defined since the odd element b
of Z/2M7 has order 2M > 2W; note that f is (¢/, ”)-periodic and obeys the
alternating property f(z +e)=W — f(x) for all x€G. We can therefore write

(01 (2) + -+ + Awey () = Br(x) + - + Pw—a(z) + b

efficient approach will be needed here if one wishes to obtain a more reasonable value for the
dimension d.
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for all x € G, where p;(z) fori =1,...,W — 2 is defined by

Bi(x) = blic p(a)
if f(x) <W/2 and
Bl(a;) = bli}Wff(x)

if f(z) > W/2. The reason for this rather complicated choice of 3; is so that
B; becomes a (e, {0,b})-boolean and (¢’, ¢”)-invariant function. (In particular,
one has Bi(z +e) = b — Bi(z) for all x € G.) It is then a routine matter to
verify that (aq,...,aw,B1,..., Bw—2) obeys property P as required.

Conversely, suppose (a1, ...,ow,B1,..., w—2) obeys the property Pg.
By property (i), we may write o; = a;+ba; and 3; = ¢ +b3; for some a;, ¢;,b €
7./2M 7 with b odd and some (¢, €”')-invariant and (e, {0, 1})-boolean functions
&1,..., 6w, 01, ..., Pw—2: G = {0,1}. Inserting these representations into
(ii), we see that there exists a constant zy € Z/2M7Z such that

Q16 (x) + -+ Qe () = fr(x) + -+ + Pw—a(x) + 20
for all z € G, where &; ., is defined by R, (&;) and (6.9). Summing over x and
z + e and using the (e, {0, 1})-boolean nature of the é;, and j;, we conclude
that
W=W-2+ 22’0

and hence z is equal to 1 or 2~1 4 1. On the other hand, since Qje;s BZ take
values in {0, 1}, zop must take values in {~W 4 2,..., W} modulo 2. Since
2M=1 > W, we must therefore have zy = 1. In particular, &1 ¢, + - + Gwey
takes values in {1,...,W—1}, and hence (&1, ..., @w,, ) cannot be (0,...,0)
or (1,...,1). This implies that (aq,...,aw) obeys the property Po, and we
are done. (]

We need a variant of the above proposition that involves a modifica-
tion of Example 4.9 that is compatible!® with the alternating relation (6.1).
We again let G, M, e,e',e¢” be as in Proposition 6.5, and we suppose that
at,...,aw: G — Z/2M7 obey the compatible boolean property P, so as be-
fore we have a representation (6.7), unique up to reflection symmetry.

Definition 6.8 (Boolean periodized permutation). If v € G, we say that a
tuple (a1, ..., aw) is a boolean periodized permutation along the direction v if
it obeys the compatible boolean property P, and for each x € G, the map

Jj ((z+jv), ..., aw(z + jv))
is a bijection from {0, ...,2" — 1} to {0,1}".

10The simpler clock property from Example 4.8 is unsuitable for this purpose due to its
incompatiblity with (6.1), but the reader is encouraged to think of the periodized permutation
property as a technical substitute for the clock property.
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Note that the boolean periodized permutation property is preserved under
reflection symmetry and is therefore well defined. Comparing this claim with
the corresponding claim with = replaced by x + v, we see that the boolean
periodized permutation property implies, in particular, that

(dl(l‘ + QWU)’ s 7dW(:L‘ + 2WU)) = (6[1(1‘), s ,OZW(ZL')),
and hence each of the &; (or a;) are (2" v)-periodic.

PROPOSITION 6.9 (Expressing a boolean periodized permutation). Let G
be a finitely generated abelian group, let e, €', e” be elements of G that generate
a copy of (Z)27)3, let Z.J2M 7 be a cyclic 2-group for some M > 2, let W > 1,
and let v € G. Then the property of being a boolean periodized permutation
along the direction v is a weakly expressible (G, (Z/2™Z)w=1. w)-property.

Proof. We can assume that v has order at least W, otherwise the property
is impossible to satisfy. We claim that a tuple (a1, ..., ay ) obeys the boolean
periodized permutation property along v if and only if it obeys the compatible
boolean property P and additionally solves the functional equation

2% 1
(610) W (@ +jv).....ow(e +jv) + (22/2Y2)Y = (2/2"2)Y
=0

for all z. Equation (6.10) defines an expressible property by definition (the jv
are all distinct as v has order at least W), and so the proposition will follow
from this claim, Proposition 6.5, and Lemma 4.22.

It remains to verify the claim. If (aq,...,aw) is a boolean periodized
permutation along v, then it obeys P, and the 2V tuples

(1(x + jv),...,aw(z+jv)), j=0,...,2" -1

occupy distinct points in {0, 1}, Since v, (z + jv) = a; + bay,(z + jv) and b
is odd, we conclude that the 2" tuples (o (x + jv),...,aw(x + jv)) occupy
distinct cosets of (2Z/2M7Z)W. Since there are only 2"V such cosets, this gives
(6.10). The converse implication follows by reversing these steps. g

7. Programming a Sudoku puzzle

We now combine the various weakly expressible statements described in
the previous section to reduce matters to demonstrating aperiodicity of a cer-
tain type of “Sudoku puzzle.” To define this puzzle we need some notation.

7.1. A 2-adically structured function. We begin the construction of the
“Sudoku puzzle.” We henceforth fix a base ¢ = 2°0, which will be a sufficiently
large but constant power of two. (For instance, so = 10, ¢ = 2'° would suffice.)
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In particular, the reader should interpret any exceptional set of (upper) density
O(1/q) as being negligible in size. We define the digit set ¥ to be the finite set

S = %, = (Z/qZ)\{0}.
We need a large width N depending on ¢; one convenient choice to take will be
N = ¢,
although our arguments would also work mutatis mutandis for larger choices
of N. We then define the Sudoku board

B:={1,...,N} x Z.
Elements (n,m) of this board will be referred to as cells. We isolate some
collections of cells of relevance to our arguments:
e A column is a set of cells of the form {n} x Z for some 1 < n < N.
o A non-vertical line £ = {; ; is a set of cells of the form
lij={(n,jn+1i):1<n< N}

for some slope j € Z and intercept ¢ € Z.
e A row is a non-vertical line of slope 0, that is to say, a set of cells of the
form {1,..., N} x {m} for some m € Z.
A diagonal is a non-vertical line of slope 1, that is to say, a set of cells of
the form {(n,n+14):1 < n < N} for some i € Z.
An anti-diagonal is a non-vertical line of slope —1, that is to say, a set of

cells of the form {(n,i —n): 1 <n < N} for some i € Z.
o A square Qnym, is a set of cells of the form

(7.1) Qno,mo = {no,. ..,No + 7} X {mo,. .., mg + 7}
for some 1 < ng < N —7 and mg € Z.

See Figure 7.1.

The Sudoku puzzle that we will introduce later will be solved by filling
in the cells (n,m) of the Sudoku board B with digits F'(n,m) from ¥ that
obey certain permutation-like constraints along the lines of this board. This
may be compared with a traditional Sudoku puzzle, in which the digit set
is {1,...,9}, the board is {1,...,9}2, and the constraints are that the digit
assignment is a permutation on every row and column of the puzzle, as well as
certain 3 X 3 squares in the board, and also agrees with some prescribed initial
data on certain cells. We note, however, that while traditional Sudoku puzzles
are designed to have a unique solution, the Sudoku puzzle that we will study
will have a number of solutions, though all have a similar 2-adic structure as
described below.

We now introduce a “basic 2-adically structured function” f,: Z — 3,
defined by the formula

fq(qkm) =m (mod q)
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Y

n

Figure 7.1. A portion of the Sudoku board 2, with some se-
lected (overlapping) objects: a column (blue), a row (in pur-
ple), a diagonal (in gray), an antidiagonal (red), and a square
(green).

0

¥

- B2 [3[ATI 2 3 212 [3 31 T2 [3 W12 3 A 123 2 112 331 [2[3[A[1[2[3[A 1 [2]3 2[1]2] -

Figure 7.2. The function f, for ¢= 22, The white cells corre-
spond to n € Z\qZ, the gray cells are those with n € ¢Z\¢*Z, and
the red ones have n € ¢*Z\¢>Z; yellow indicates n=0. Compare
with the example of a limit-periodic pattern in [ST12, Fig. 3].

whenever k£ > 0 and m is an integer not divisible by ¢, with the (somewhat

arbitrary) convention that f;(0) = 1. In other words, f,(n) is the last non-zero

digit in the base ¢ expansion of n, or 1 if no such digit exists (see Figure 7.2).
We observe the functional equations

(7’2) fq(qn) = fq(n)
for all n € Z,
(7.3) fq(n) =n (mod gq),

when 7 is not divisible by ¢; indeed, these equations specify f, uniquely except
for the value at zero. We also observe the multiplicativity property

(7’4) fq(an) = afq(n)
whenever a,n € Z with a odd and n non-zero.

Remark 7.1. The function f,: Z — X, is an example of a limit-periodic
function [God89], [ST12] (so, in particular, is an almost periodic function in
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[312[1[2]3]2]1]1]3[2]1[T1]3]2]1]3]

Figure 7.3. An element g(n) = f,(12 — n) of Sq[N] with ¢ = 4
and N = ¢?, depicted as a row of N bozes filled with digits in
¥ ={1,2,3}. In the language of Lemma 8.1 below, the step is
sg = 3 (mod ¢), the order ordy is zero, the bad coset I'y = 47
is the set of shaded boxes (which in this case has upper density
1/4), and the associated affine function ay(n) = 12—n (mod 4)
vanishes on the bad coset I'; and agrees with g outside of that

coset.

the sense of Besicovitch [Bes26]): for any natural number r, f, agrees with a
q"-periodic function outside of a single coset 0 + ¢"Z of ¢"Z, so, in particular,
it agrees with a periodic function outside of a set of arbitrarily small upper
density in Z. For s large, this function is also “approximately affine” in the
sense that it agrees with the affine map n — n (mod ¢) outside of a single
coset 0 + ¢qZ of qZ, which one should view as being a relatively small (though
still positive density) subset of the integers Z.

Remark 7.2. One could extend f; to a function f,: Zs — ¥, on the 2-adics
Lo = @T_}OO Z/2"Z (or equivalently, the g-adics Z, = T&nr_)oo 7/q"7Z) that is
continuous away from the origin (and has a “piecewise affine” structure). As
such, we will informally think of the function f, (as well as various rescaled
versions of this function) as having “2-adic structure.” However, we will not
explicitly use the 2-adic numbers Zo in our arguments below, as we did not
find that the use of this number system gave any significant simplifications to
the argument.

Our Sudoku puzzle is to fill the board B in such a way that every non-
vertical line (but not necessarily every column) is a rescaled version of f,. To
make this precise we introduce the following class of finite sequences:

Definition 7.3 (A class of 2-adically structured functions). Let S[N] =
Sy[N] denote the set of all functions g: {1,..., N} — X that take the form

9(n) = cf,(an +b)

for all m =1,..., N and some integers a, b, c € Z with ¢ odd.

See Figures 7.3, 7.4, 7.5, and 7.6 for some examples of elements of S[N],
where we set ¢ = 22 (and hence N = 16) in order to make the figures small.
The scaling factor ¢ is of little significance and will often be normalized to 1
in our arguments.

We will explore the properties of this class S[N] further in later sections.
For now, we use this class to define our Sudoku puzzle.
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(2[1]2[2]2]3]2]1[2]1]2[2]2[3]2[2]

Figure 7.4. Another element g(n) = f1(2(n—8)) of S4[N], again
with ¢ = 4 and N = ¢%. In the language of Lemma 8.1 below,
the step is s = 2 (mod q), the order ord is one, the bad coset
I'y = 2Z is the set of shaded boxes (which in this case has
upper density 1/2), and the associated affine function agy(n) =
2n (mod 4) vanishes on the bad coset I'; and agrees with g
outside of that coset.

Bl1[3]13[1[3[1]3[1]3]1]3]1]3]1]

Figure 7.5. A third element g(n) = fa(2n+1) of S4[16]. In the
language of Lemma 8.1 below, the step is s, = 2 (mod ¢), the
order ord, is —oo, the bad coset Iy is empty (so has upper den-
sity 0), and the associated affine function ay(n)=2n+1 (mod 4)
agrees with g everywhere.

[2[2]2]2]2]2]2]2]2]2]2]2]2]2]2]2]

Figure 7.6. A constant element g(n) = 2 (mod 4) of S4[16]. In
the language of Lemma 8.1 below, the step is 0, the order is
—o0, the bad coset is empty, and the associated affine function
ag(n) =2 (mod 4) agrees with g everywhere.

Definition 7.4 (Sudoku puzzle). Define a Sudoku solution to be a function
F: B — ¥ with the property that for every slope j € Z and intercept ¢ € Z,
the function F; ;: {1,..., N} — X defined by F; j(n) = F(n,jn+1) lies in the
class S[N]; see Figure 7.9. Informally, F' is a Sudoku solution if it is a rescaled
copy of f, along every non-vertical line ¢; ; = {(n,jn+1i): 1 <n < N}.

A Sudoku solution is said to have good columns if, for every n =1,..., N,
there exists a permutation o,,: Z/qZ — Z/qZ such that

F(n,m) = o,(m (mod q))

whenever o,(m (mod ¢)) is non-zero.
A Sudoku solution is periodic if the columns m +— F(n, m) are periodic for
alln =1,..., N, and non-periodic if at least one of the columns is non-periodic.
Ezxample 7.5 (Standard Sudoku solution). The function F(n,m):= f,(m)
is a Sudoku solution with good columns. (In this case, the permutations

o1,...,0n are all equal to the identity permutation.) It is non-periodic; see
Figure 7.7.
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212(2(2(2]2[2]2(2(2(2|2|2|2]|2]|2
T[T [T {111 [1{1|1f1(1|1
LTI {T {1111 {1{1f1(f1(1
313131313131313131313131313[31(3
212(2(2(2]2[2]2(2(2(2|2|2|2]|2|2
T[T T {111 |1{1{1f1(1(1
3131313(3[313[3[3]|3[3[3[3]|3[3]3
313(31313131313131313131313[3[3
212(12(2(2]2[2]2(2({2(2(2|2|2|2]|2

Figure 7.7. A portion of a standard Sudoku solution (with
g=4). Observe that it is affine outside of the shaded cells.
This solution is non-periodic.

DNIN N[N (DN DO
DNIN N[N DO
NN |INN(DNO| DD
DO (N[N DN | DN
DNOIN NN (DN DD
DNIN NN DN
DNIN N[N DD
DNOIN N[N DD
DN N[N (DN DD
NN | [N [N | DN
DN (DN DN 1N [N [N
DN (DN [N 1N [N (DN
DN DN DN [N [N [ DN
DN (DN DN 1N [N (DN
DN (DN [N 1N | N (DN
DNOIN NN DN

Figure 7.8. A portion of a constant Sudoku solution (with c=2).
Observe that it is affine and also periodic.

Ezample 7.6 (Constant Sudoku solutions). If ¢ € 3, then the constant
function F'(n,m) := c is a Sudoku solution that is periodic, but that does not
have good columns.

For future reference, we record some simple invariances of Sudoku solutions.

PROPOSITION 7.7 (Sudoku invariances).

(i) (Affine invariance). If F: B — 3 is a Sudoku solution, then for any
integers a, b, ¢, the function (n,m) — F(n,am+bn+ c) is also a Sudoku
solution.

(ii) (Reflection symmetry). If F': B — 3 is a Sudoku solution, then so is the
reflection (n,m) — F(N +1—n,m).

(iii) (Homogeneity). If F: B — X is a Sudoku solution, then so is cF' for any
odd c € Z/qZ.
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= DO O] — Do
(N0 ] 1N (U] (O6] o
[OC] NS ) 1] [UV] (98
=N WRIND | —
D= [ =0
DN N
o L 1N BN Y
WIND | DN o=
DN ol eo—no |
N (DN
(V) ol ] (6] 1 e
WD o [ D

(OS] L Ll [N 6] 1Y)

DN OIN| DO

DO IND [ — oo

DO — oo

Figure 7.9. A portion of a Sudoku solution with good columns.
Observe that it is affine outside of the shaded cells, and is also
non-periodic.

Proof. Claims (i), (ii) are immediate from Definition 7.4, while claim (iii)
follows from this definition together with Definition 7.3 and (7.4). 0

In the remaining sections of the paper, we will prove the non-periodicity
of Sudoku solutions with good columns:

THEOREM 7.8 (Non-periodicity of Sudoku solutions with good columns).
Let g = 2% be sufficiently large. Then every Sudoku solution with good colummns
18 non-periodic.

Remark 7.9. A remarkable feature of this result is that while the property
of being a Sudoku solution with good columns is “local” in the sense that it can
be verified by considering a bounded number of cells of the solution at a time,
the conclusion is “global” in that it genuinely involves an infinite number of
cells, and is not obviously verifiable in a bounded complexity fashion. Namely,
Sudoku puzzles have enough rigidity in them to achieve non-trivial constraints
on the solutions, but are not so rigid that they cannot be solved. An analogous
claim can be proven for odd primes ¢ as well, and it is in fact slightly simpler
(for instance, the pseudo-affine functions appearing in Section 9 can be replaced
by genuinely affine functions), but we will not be able to use that variant of
the above theorem for our purposes, and so we leave the details of this variant
to the interested reader.

We assume this theorem for now and show how it implies Theorem 4.16

(and thus Theorem 1.4 and Corollary 1.7).

Proof of Theorem 4.16 assuming Theorem 7.8. We will show that Sudoku
solutions with good columns can be encoded as a weakly expressible property.
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Assuming Theorem 7.8, this will give an aperiodic weakly expressible prop-
erty, proving Theorem 4.16. Let sg, N be such that Theorem 7.8 holds. We
introduce the binary encoding map B: {0,1}*° — Z/qZ defined by

B(eo,. -, €s9-1) = €0 +2e1 + -+ 207 e s
this is of course a bijection.

In order to motivate the construction below, we begin with some pre-
liminary calculations. Suppose one is given a Sudoku solution F : B — X
with good columns, thus there exist permutations o1,...,0n: Z/qZ — Z/qZ
obeying the following properties:

e For every j,i € Z, the function n — F(n,jn + 1) forn = 1,..., N lies in
S[N].

e One has F'(n,m) = o,(m (mod ¢q)) whenever o, (m (mod ¢)) is non-zero.

We encode this data as a collection of boolean functions B, : 72 — {0,1}

fora=0,1,b=0,...,s—1,and n=1,..., N by enforcing the equations

(75) B(ﬁ()’()’n(i,j), e ,ﬁo,s_lm(i,j)) = O'n(jn + 1 (mod q))

and

(7.6) B(B1,0n(i,4), - Br,s—1,n(i, 7)) = F(n, jn +1)
fori,je€Z and n=1,...,N. One then observes the following claims:
(I) For each (i,j) € Z?, the sequence n — B(B10n(i,7),---,B1s-1n(i, 7))
lies in S[N].
(IT) Ifn=1,...,N and (4,5) € Z? is such that

B(ﬁO,O,n(ivj)a v 7/30,8—1,n(i7.j))

is non-zero, then

B(B1,0,m(1:4),- -+ Brs—1,n(i,5)) = B(Bo,on(is5)s-- -, Bos—1,n(4,7))-

(IIT) For each a =0,1,b=1,...,s and n = 1,..., N, the function B4y, is
((—n, 1))-periodic.
(IV) For each n =1,..., N, the tuple (Bo,0n,---,50,s—1,n) is a boolean peri-
odized permutation in the direction (1,0).
As it turns out, the converse also holds: if B4 p: 72 — {0,1} are boolean
functions fora =0,1,b=0,...,s—1,and n = 1,..., N obeying the properties
(I)-(IV), then they will arise from a Sudoku solution F' with good columns
via the relations (7.5) and (7.6). From the machinery established in previous
sections, the properties (I)—(IV) are essentially weakly expressible (after some
technical modifications) and will form the basis of our encoding.
We now turn to the details. In the space {0, 1}2%" of tuples

(Wa,b,n)(a,b,n)EW
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of boolean variables wgp,, € {0,1} indexed by the 2soN-element set
W:={0,1} x{0,...,s0 — 1} x {1,..., N},

we define the subset Q of those tuples in {0,1}%°Y obeying the following
axioms:

(i) (Encoded Sudoku solution). The sequence n — B(wi,0n;---sWi,so—1,n)
lies in S[N].
(ii) (Encoded good columns). If n =1,..., N is such that

B(wo,0,ns - --»wWo,50—1,n) 7 (0,...,0),
then
B(wi1,0m,---sWi,s9—1,n) = B(Wo,0m, - - - s W0,50—1,n)
(or equivalently, that wop, = wipp, for b=0,...,50 —1).

(Compare with the properties (I) and (II) discussed above.) The set €2 is not
symmetric, so we also introduce the symmetrized counterpart Q C {0, 1}1+2s0N

in {0, 1}1+250N consisting of those tuples (ws, (Wa,b.n) (a,bn)ew) such that

(Rw* (wa,b,n))(a,b,n)GW € Q’

where R,, a = 0,1 is as in (6.9).

We consider the group G := Z? x (Z/27Z)3, which contains, in particular,
the three elements e = ((0,0),(1,0,0)), ¢ = ((0,0),(0,1,0)), ¢ = ((0,0),
(0,0,1)) that generate a copy of (Z/2Z)3. We now introduce a property S,
which aims to encode Sudoku solutions with good columns. Let M be a natural
number that is sufficiently large depending on sg, N, and let S denote the
(G, (Z/2MZ) 250N )-property that a tuple (o, (Ca,bn)(abm)ew) of functions
s, Qg pn: G — Z/2MZ obeys the following axioms:

(a) (s, (apn)(a,pm)ew) Obeys property Pg.
(b) For each a = 0,1; b =0,...,50 — 1; n = 1,..., N, the function agy,, is

{(((—=n,1),(0,0,0)))-periodic.

(c) For each n = 1,..., N, the tuple (xo,0n;---,®0,59—1,n) IS & boolean peri-

odized permutation in the direction ((1,0), (0,0,0)).

The axioms (b) and (c) should be compared with the properties (III) and (IV)
discussed previously. By Proposition 6.7, Corollary 5.4, Proposition 6.9, and
Lemma 4.22, S is a weakly expressible property. It will thus suffice to show
that S is aperiodic.

We first show that there is at least one tuple (au, (Qabn)(abn)ew) Obey-
ing S. Let F'(n,m) be a Sudoku solution with good columns (for instance, one
can take the standard Sudoku solution from Example 7.5). Let o1,...,0n:Z/qZ
— Z/qZ be the associated permutations. We represent this data via the
boolean functions B,p,: Z* — {0,1} for (a,b,n) € W, defined by the binary
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encodings (7.5), (7.6). By properties (III) and (IV), the B4, are ((—n,1))-
periodic, and the tuple (Boon,---,00,s0—1,n) Obeys the boolean permutation
property in the direction (1,0) for each n = 1,..., N. By properties (I) and
(II), we see that the tuple (Ba,pn (%)) (a,bm)ew lies in Q for each (i,5) € Z2.
If we now define the tuple (., (Cta,bn)(apn)ew) of functions ax, agpn: G —
7./2M 7, by the formulae
ax(z, (6,6 ,€")) =€
and

Qg bn (l'a (6, 6,’ 6”)) = R (ﬁa,b,n(x))
for all z€Z?, a=0,1, b=0,...,50 — 1, n=1,...,N,e,e,"€{0,1} (where R, is
as in (6.9)), it is a routine matter to verify that this tuple obeys property S.
Conversely, suppose that (., (Qa,bn)(apn)ew) Obeys S. By (a), we can

write a, = al, + Va, and agp, = aihbm + b'dgp, for some a;,a;’b’n,b' €

7.)2M7, with b’ odd, and some (', e")-periodic (e, {0,1})-boolean functions
Gy, Qg bt G — {0,1} such that

(77) (5‘* ('i‘)a (da,b,n(i'))(a,b,n)EW) S Q
for all # € G. If we define the functions 8,4, : Z* — {0,1} by the formula

Ba,b,n (x) = R&*(x,(O,O,O))(da,b,n ('%3 (07 0, 0)))
for all (a,b,n) € W, x € Z?, we have

(7.8) (/Ba,b,n(x))(a,bm)ew €
for all z € Z2. From axiom (b) we see that each B4, is (—n, 1)-periodic, and
from axiom (c) we see that for each n=1,..., N, the tuple (5o.0.n, - - -, B0,50-1,n)

is a boolean periodized permutation in the direction (1,0). From the (—n,1)-
periodicity of the 3,4, we may define functions F,: B — 7./2M7 for a = 0,1
by requiring that

B(ﬁa,o,n(i7j)v ce. 7/6a,80—1,n(i)j)) - Fa(najn + 7’)

for all n = 1,..., N and (i,j) € Z?. From (7.8) we see that F} is a Sudoku
solution (in particular, it avoids zero and takes values in ¥), and also that
Fi(n,m)=Fy(n,m) whenever Fy(n, m) is non-zero. Since (8o,0.n,- - - 50,50—1,n)
is a boolean periodized permutation in the direction (1,0), we see that for all
(n,m) € B, the g points Fy(n,m), ..., Fo(n,m+q—1) take on distinct values of
7./qZ, and thus we must have Fy(n, m) = o,(m (mod q)) for some permutation
on: L/qZ — Z/qZ (cf. Example 4.9). Thus F; has good columns, and is thus
non-periodic thanks to Theorem 7.8. If (cu, (Qab,n)(ap,n)ew) Were periodic,
Fy would be periodic. We then conclude that (aux, (a,bm)(abn)ew) is non-
periodic. Thus, property S is aperiodic as required. [l
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Remark 7.10. The encoding (7.6) resembles the classical projective dual-
ity between points and lines in the plane. Indeed, a non-vertical line ¢; ; =
{(n,jn+1i):n=1,..., N} in the Sudoku board B corresponds to a point (i, j)
in the lattice Z?; the various boolean expressions &q.p.n (i, J, (€, €, €”)) are en-
coding different “bits” of the a Sudoku puzzle (and its attendant permutations)
on this line 4; ;.

It remains to prove Theorem 7.8. This is the objective of the remaining
sections of the paper.

8. Basic properties of 2-adic structured functions
and Sudoku solutions

We begin by analyzing the class S[N] defined in Definition 7.3. We can
largely describe the behavior of an element g of S[/N] by some statistics. which

we call the “order,” “step,” “bad coset,” and “associated affine function” of g.

LEMMA 8.1 (Statistics of a 2-adic function). To every g € S[N] one can
find an order ordy € {—00,0,...,s0 — 1}, a step sq € Z/qZ, a bad coset
I'y C Z, and an associated affine function oy : Z — Z/qZ, obeying the following
azTioms:

(i) ag: Z — Z/qZ is not identically zero, and it is a function of the form
ag(n) = sgn + ¢4 for some cy € Z/qZ for all n € Z, thus the step sy is
the slope of the affine function oy.

(ii) The bad cosetT'y C 7Z is the zero set {n € Z : ag(n) = 0} of ag; it is empty
if ordg = —o0, and is a coset of 2~ ordg 7 otherwise. (In particular, the
upper density of I'y is equal to ordg /q, and if ordg > 0, then s4 is an odd
multiple of 2°™s.)

(iii) One has g(n) = ay(n) whenever ay(n) # 0; in other words, g agrees with
the affine function oy outside of the bad coset I',.

(iv) One can find integers a,b € Z such that ay(n) = an + b (mod ¢q) and
g(n)= fqlan+b) for allneZ. (In particular, this implies a=s, (mod q),
so if ordg > 0, then a is an odd multiple of 20" gnd b is divisible by
20rdg')

See Figures 7.3, 7.4, 7.5, and 7.6 for some illustrations of these statistics.
We remark that the elements of S[N] of very high order (close to sp) will be
problematic for our analysis, because the bad coset has large upper density in
those cases; fortunately, we will be able to show that this case occurs quite
rarely for our applications.

Proof. If g € S[N], then by definition there exist integers a, b, c with ¢
odd such that g(n) = cfy(an + b). Since f,(0n +0) = f,(0n + 1) =1, we may
assume without loss of generality that a,b do not both vanish. Noting that
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felan+b) = fy(a(n+q¢") +0b) for alln =1,..., N if r is large enough, we may
assume without loss of generality that an + b is non-vanishing on {1,..., N}.
By (7.4), we may replace a, b, ¢ by ca, ¢b, 1 and assume without loss of generality
that ¢ = 1. By (7.2) we may assume that a, b are not simultaneously divisible
by gq.

We then set ay(n) == an + b (mod q), sq == a (mod q), I'y == {n € Z:
ag(n) = 0}. If I'y is empty, we set ord, = —oo; otherwise we set ord, equal to
the largest number of powers of two that divide a. (This order cannot exceed
sp — 1, otherwise a, would be constant and non-zero, and so I'y would be
empty). The verification of the axioms (i)—(iv) is then routine. O

In principle, it is possible that the order ordy, step sy, bad coset I'y, or
associated affine function oy produced by this lemma are not unique, because
there are multiple ways to express g in the form f,(an + b). For instance, for
n=1,...,N, the function f,(n) can also be written as f,(n + ¢™) for any m
with ¢" > N, or as f,(¢"n) for any r > 1. We will be able to exclude this
scenario, thanks to (a modification of) the following useful proposition:

ProprosiTION 8.2 (Rigidity outside of a bad coset). Let {ng,...,no+ 7}
be an interval of length 8 in {1,...,N}, and let a: Z — 7Z/qZ be an affine
function. Suppose that g(n) = fs(an + b) is an element of S[N] such that
g(n) = a(n) whenever n € {ng,...,no+ 7} is such that a(n) # 0. Then in
fact we have g(n) = a(n) whenever n € {1,...,N} and a(n) # 0.

We caution that while the conclusion of this proposition strongly suggests
that oy = «a, and the proof below will support this claim in most cases, there
are a few cases in which this is not actually true. For instance, if g(n) =
fq(On 4+ 2) = 2, then g agrees with the affine function a(n) = 4n (mod ¢)

whenever a(n) # 0, but ay(n) = 2 is not the same function as a.

Proof. By definition, we can write (possibly non-uniquely)

g9(n) = fqlan +b)

and ag(n) = an + b (mod ¢) for some a,b € Z for all n € Z.

We may assume that a does not vanish identically, as the claim is vacu-
ously true otherwise. We set I' := {n € Z : a(n) = 0} to be the zero set of «;
this is either empty, or a coset of 2/Z for some 1 < j < sp.

First suppose that we can find elements n,m € {ng,...,ng+7} of different
parity that lie outside I' UT'y. Then the affine functions o and a4 both agree
at m, m; since the odd number m — n is invertible in Z/qgZ, this implies that
a = ag, and hence g(n) = ay4(n) = a(n) whenever n € {1,..., N} lies outside
I'y =T, giving the claim in this case.
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Thus the only remaining cases are when I' UT'; occupies at least one full
coset of 2Z. There are three ways this can happen: either I' is a coset of 2Z,
I'y is a coset of 2Z, or I'y = 4Z + ¢ and I' = 47 + ¢ + 2 for some c.

We first exclude the latter case. Without loss of generality, we may place
¢ € {no, ..., np+3}. By hypothesis, we have g(c) = a(c) and g(c+4) = a(c+4);
since o vanishes on 47 + ¢ + 2, we conclude that g(c) = g(c+4) = 4 (mod q).

On the other hand, as ¢ € I'y, by Lemma 8.1(iv), we have that ord, = sp — 2
q
10
ac + b = gm for some integer m with g(c) = f,(m) and g(c+4) = fy(m + d’).
As d’ is odd, by (7.3) we conclude that at least one of g(c),g(c +4) is odd, a
contradiction. Hence this case cannot occur.

Now suppose that I' = 2Z+c is a coset of 2Z. We divide into two subcases:

(as I'y is a coset of 4Z), a = %a’ is an odd multiple of %, and we can write

o If I')\T" is empty or contained in a coset of 8Z, then g(n) = a(n) = ay(n)
for at least three of the four points in n € {ng,...,no+ 7} N (2Z + c+ 1).
But a(n) = 2 (mod ¢) on these points, hence oy equals 4 (mod ¢) on these
points also. As oy is affine, we conclude that oy equals 4 (mod ¢) on all of
27 + ¢+ 1, and the claim follows.

o If Iy is a coset 2!7 + ¢ disjoint from I' = 2Z + ¢ for some i = 1,2, then
ordg = 50 — 1, a = 2°Mdg ¢/ is an odd multiple of 2°7ds = q/2%, and we may
normalize ¢’ € {ng,ng + 1,n9 + 2,9 + 3}, hence by hypothesis

g(d)=a(d); g(d +2") =a(d +2).
As ¢ € T, we may write

%a'c’—%bzac'—%bzqm
for some integer m and odd o, with g(c') = f,(m)=a() and g(c’ + 2%) =
fq(m+a')=a(d42). Since d’ is odd, by (7.3) at least one of f,(m), f,(m+a’)
is odd; on the other hand, « is equal to % (mod ¢) on 2Z + ¢+ 1, and hence
at ¢, + 2, giving a contradiction.

Finally, suppose that I' is not a coset of 2Z, but I'j = 2Z + c is. We again
divide into two subcases:

o If I'\T'y is empty or contained in a coset of 8Z, then by arguing as before we
see that the affine function o equals 4 (mod ¢) on at least three of the four
points in n € {ng,...,ng+ 7} N(2Z+ c+ 1), and hence on all of 2Z + c+ 1.
Since I' is not a coset of 2Z, this forces a to be the constant function
1 (mod ¢), and hence g is equal to % (mod ¢) on all of {nog,...,ng + 7}.
In particular, g is even on {ng,...,ng + 7} N (2Z + ¢). However, if we
normalize ¢ € {ng,ng + 1}, we observe that ordy = so — 1, a = Za’ is an
odd multiple of , and ac 4 b = gm for some integer m, with g(c) = f,(m)
and g(c+ 2) = fy(m + a'). Thus at least one of g(c),g(c + 2) is odd, a
contradiction.
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e If I' is a coset 4Z + ¢ disjoint from I'y = 2Z + ¢, then « is always a multiple

of 4, so in particular g is even on {nog,...,ng + 7} N (2Z + ¢). Now we can
argue as in the previous case to obtain a contradiction. O

A variant of the argument gives

PROPOSITION 8.3. If N > 8, then an element g of S[N| has a well-defined
order, step, affine function, and bad coset.

Proof. Suppose g € S[N] has two representations g = fy(ain + b1) =
fq(agn + b2) with associated orders ord;,ords, steps si,sq, affine functions
a1, oo, and bad cosets I'1,I's. Our task is to show that ord; = ords, s1 = s9,
a1 = (9, and F1 = FQ.

First suppose that we can find elements n,m € {1,..., N} of different
parity that lie outside I'; UT'y. The arguments in the proof of Proposition 8.2
(with a1, a playing the roles of a, a4 respectively, and similarly for I'y, 'y and
I',Ty) imply that oy = ag, which implies that the steps s; = s2 agree, and that
the bad cosets I'y = I'y (which are the zero sets of a; = ag) agree. Since the
upper density of T; is 207 /q, we then conclude that ord; = ords, as claimed.

On repeating the rest of the analysis in the proof of Proposition 8.2, we see
that the only other case that does not lead to a contradiction is if I'y is a coset
27+ c of 2Z and az = £ (mod ¢) on the complementary coset 2Z+c+ 1. Thus
a9 is either equal to aq, or the constant %. In the former case we are done as
before. In the latter case, I's is empty, and now we can obtain a contradiction
by interchanging the roles of 'y and I'y and appealing again to the analysis in
the proof of Proposition 8.2. O

We remark that the statistics s4,ordg, I'g, oy of an element g of S[N] do
not uniquely determine g, because there is still some variability of g within
the bad coset T'y. For instance, the elements n — fy(n) and n — fy(n+ q) of
S[N] are both of step 1 and order 0 with bad coset ¢Z and associated affine
function n — n (mod ¢), but disagree inside of the bad coset. Nevertheless, the
statistics sq,ordy,I'g, g still give some partial constraints on the behavior of
g on the bad coset I'y; for instance, all elements g € S[N] with step 1, order 0,
bad coset gZ and associated affine function n — n (mod ¢) must take the form
g(n) = 7 — ¢ (mod g) for all n in the bad coset {1,..., N} N gZ except at a
single point n = ¢q for some ¢ = 1,...,q. It is this partial control inside the
bad coset that will ultimately allow us to conclude the aperiodicity required
in Theorem 7.8.

9. The structure of Sudoku solutions

We are now ready to prove Theorem 7.8. The logical structure of the
argument is summarized in Figure 9.1.
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F has weakly - F has few high
em o1 equidistributed digits [ Lem 9.2 order lines

(Prop 9.4) pigeonhole
argument
analyze diagonals Lem 9.3
from previous . em 9.
iteration I agrees V\f/f'th a _+ Prop 8.2 F has a good
pseudo-_a ine < square
function

Prop 9.5 (if F has good columns)
OR
use normal form from

previous iteration
shear to

. _normal form
Perform Tetris move [< Ia
Fe p can be sheared < Bis odd
* - to normal form Prop 9.6
B — B* (Prop 9.7)
(iteration)

Figure 9.1. A schematic description of how enough structure is
obtained on a Sudoku solution F with good columns that one
can eventually conclude that solutions are aperiodic and prove
Theorem 7.8. Dashed arrows indicate implications that are es-
sentially compositions of other arrows in the diagram. At a key
step in the argument (depicted by the yellow box) the analy-
sis shifts from a Sudoku solution F' to its “post-Tetris move”
version F, (after first shearing to normal form). Among other
things, this move reduces any putative period in the solution
by a factor of q.

To use the property of having good columns, we begin with the following
lemma. By definition, if the digits of a Sudoku solution F: B — > were
perfectly equidistributed, then each digit would occur on a set of density qi%
(as defined in Section 1.5). It will be convenient to work with a weaker variant
of this property. We say that F' has weak digit equidistribution if each digit
o € % occurs in the solution with upper density at most % in B.

LEMMA 9.1 (Good columns implies weak digit equidistribution). Every
Sudoku solution with good columns has weak digit equidistribution.

Proof. Let F': B — X be a Sudoku solution with good columns. By the
triangle inequality, it suffices to verify the claim for each separate column
{n} x Z, that is to say, to show that

1
limsup —|{m e {-M,...,M}: F(n,m) = <
msup s m € { } < F(n,m) =}

QN
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for each n = 1,...,N. By the good column property, there is a permu-
tation o,: Z/qZ — 7/qZ such that F(n,m) = o,(m (mod ¢)) whenever
on(m (mod q)) # 0. Thus the property F(n,m) = « can only occur in two
cosets of Z/qZ, the coset o,1({7}) and the coset o,'({0}), and the claim
follows. ]

For each line 4; ; = {(n,jn+1) : 1 < n < N} in the Sudoku board, we
have the associated element F; ; of S[N]| defined by

Fyj(n) == F(n, jn +i).

In particular, we have an associated order ordp, ; € {—00,0,1,...,50 — 1} of a
line to be the order of the associated sequence n — F'(n,jn +i). We have the
following bound on the density of lines of high order:

LEMMA 9.2 (Weak digit equidistribution implies high-order lines are rare).
Suppose that F': B — X is a Sudoku solution with weak digit equidistribution.
Then, for non-negative order 0 < o < sop — 1, and any slope j, the set {i € Z :
ordp, ; = o} has upper density at most 27°+1 in 7Z.

Proof. 1f i is such that ordp, ; = o, then there is an affine function n —
2°(an+0b) with a,b € Z/qZ and a odd, such that F; j(n) = 2°(an-+b) whenever
2°(an + b) # 0. In particular, F'(n,jn + i) attains the value ¢/2 (mod q) at
least 2°N/q = 2°q. On the other hand, by the weak digit equidistribution
assumption and the triangle inequality the set of (n,i) € {1,...,N} x Z for
which F; j(n) = ¢/2 (mod ¢) has upper density at most 2/¢q in {1,..., N} x Z.
The claim then follows from a standard double counting argument. ([

Once one knows that high-order lines are rare, the function F' becomes
mostly affine along horizontal lines, diagonals, and anti-diagonals. One can
then expect to “concatenate” this information together (in the spirit of [TZ16])
to conclude that F is in fact mostly a two-dimensional affine function F'(n,m) =
An + Bm + C. This is almost correct, but in our 2-adic setting there is an
additional technicality, in that a small amount of quadratic behavior is also
permitted. More precisely, define a pseudo-affine function on Z? to be a func-
tion W: Z2 — Z/qZ that is of the form

(9.1) U(n,m) :An—l—Bm—l—C—i—D%m(m—n)

for some coefficients A, B,C,D € 7Z/qZ; see Figure 9.2. Observe that such
functions are affine along infinite non-vertical lines ¢; ; == {(n, jn+1) : n € Z},
since

U(n, jn +1i) = An—i—Bjn—i—Bi—i—C—i—D%Qnij —in +42) —l—Dgn(;)
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Figure 9.2. The pseudo-affine function ¥(n, m)=m+{m(m —n)
(mod ¢) with ¢ = 8. Observe that while ¥ is not affine in a
two-dimensional sense, it is affine along all non-vertical lines.
Also, the zero set of ¥ (shaded in grey) remains well-behaved,
being equal to Z x qZ. A Sudoku solution that agreed with
this pseudo-affine function outside of the grey cells would be in
normal form in the sense of Proposition 9.6 below, and suitable
for applying a “Tetris” move for further analysis.

thanks to the identity

B2 4y — o[ ™) =
5 q<2) 0 (mod q).

The quadratic term D$m(m — n) in the definition of a pseudo-affine function
is unfortunately necessary, but plays only a minor technical role in the analysis
(for g large enough), and we recommend that the reader ignore these terms
at a first reading. The most important coefficient of a pseudo-affine function
¥ will be the vertical coefficient B; in particular, the behavior is particularly
tractable when B is odd.

It is clear that the class of pseudo-affine functions forms an additive group.
Note that this group is closed under translations in Z2; if ¥(z), x € Z* is a
pseudo-affine function and ¢t € Z2, then U(x +t), z € Z? is a pseudo-affine
function. We have the following'!' concatenation result:

1 See the recent preprint [KT23] for some further variations on the theme of this lemma.
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LeEMMA 9.3 (Concatenation lemma). Let F': Q — Z/qZ be a function
defined on an 8 x 8 square Q such that for any (infinite) line {; j = {(n, jn+1i) :
n € Z} with j = —1,0,1 (i.e., an infinite anti-diagonal, horizontal line, or
diagonal) intersecting @Q, the function n — F(n,jn + i) is affine on {n :
(n,jn +1i) € Q}. Then there exists a pseudo-affine function V: 72 — 7./qZ
that agrees with F' on Q.

Proof. By translation invariance we may normalize @ = {0,...,7} X
{0,...,7}. The functions n — F(n,0) and n — F(n,n) are affine on {0, ..., 7},
thus there exist coefficients A, B, C' € Z/qZ such that F(n,m) = An+Bm+C
for

(9.2) (n,m) € {(n,0):0<n<7U{(n,n): 0< n<T7}H}.

By subtracting the pseudo-affine function An+ Bm+ C from F(n,m) we may
normalize A = B = C' = 0, thus F' now vanishes on the set (9.2).

The function n — F(n,6 — n) is affine on {0,...,6} and vanishes at
n = 3,6, hence vanishes on all of {0,...,6}. In particular, F' now vanishes at
both (1,1) and (5,1). Since n +— F(n,1) is affine on {0,...,7}, we conclude
that F(n,1) = DZ(1 — n) for some D € Z/qZ. By subtracting the pseudo-
affine function D§m(m—n) from F' (which vanishes on (9.2)) we may normalize
D = 0. Thus F now vanishes on {(n,1): 0 < n < 7}.

For i = 1,...,7, the function n — F(n,i — n) is affine on {0,...,:}
and vanishes at n = i — 1,4, hence vanishes on all of {0,...,i}. In particu-
lar, F(0,m) = F(1,m) = 0 for all m = 0,...,6. As n — F(n,m) is affine
on {0,...,7}, we conclude that F' now vanishes on {0,...,7} x {0,...,6}.
By inspecting F' on diagonal and anti-diagonal lines that meet the top row
{0,...,7} x {7} of the square, one can then check that F' vanishes here also.
Thus F' is identically zero on (), and the claim follows. U

We utilize this lemma as follows.

PROPOSITION 9.4 (Weak digit equidistribution implies pseudo-affine struc-
ture). Suppose that F: B — X is a Sudoku solution with weak digit equidis-
tribution. Suppose that q is sufficiently large. Then there exists a pseudo-
affine function W: 72 — 7/qZ, which does not vanish on at least one square
{no,...,no + 7} x {mo,...,mo + 7}, such that F(n,m) = ¥(n,m) whenever
(n,m) € B is a cell with ¥(n,m) # 0.

Proof. Let M > 100N be a sufficiently large parameter (which can depend
on q) to be chosen later. The first step is to locate a square Q@ ={ng,...,no+7}
X {mo,...,mog + 7} in {1,...,N} x {1,..., M} with good properties. The
number of possible such squares @ is (N —7)(M —7); we select one at random.
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To each non-vertical line ¢; ; = {(n,jn+1i) : 1 < n < N}, one can form
the bad set I'; j .= {(n,jn +1i) :n € T'r; N{1,..., N}} associated to the bad
coset I'p, ; of Fj ;. If ordg, ; = o, this bad set has spacing ¢/2°, and thus has
cardinality O(2°N/q) = O(2°q). Thus, there are at most O(2°g) squares @
with the property that ) contains one of the elements of this bad set. On
the other hand, for j = —1,0,1 (i.e., horizontal lines, diagonals, and anti-
diagonals), we see from Lemma 9.2 that the set of intercepts ¢ with ordr, , = o
have upper density O(27°). Summing in o and over the O(M) possible lines
¢; j of slope j = —1,0, 1 intersecting {1,..., N} x{1,..., M}, we conclude from
double counting (for M large enough) that the probability that @) contains a
bad pOiPt from a horizontal line, diagonal, or anti-diagonal intersecting @) is
O(%#) = O(logq/q). Thus, assuming ¢ is large enough, we can
find a square

Q:{no,...,no—l-?} X {mo,...,m0—|—7}
in {1,...,N} x{1,..., M} with the property that all horizontal lines, diago-
nals, and anti-diagonals ¢; ; passing through @ are such that Q@ NT;; = 0. In
particular, on every such line ¢, F' agrees on @ N ¢ with a (one-dimensional)
affine function. Applying Lemma 9.3, we may find a pseudo-affine function
U: 7Z? — 7/qZ such that F agrees with ¥ on Q. In particular, ¥ is non-
vanishing on Q.

Call a cell (n,m) good if either ¥(n,m) = 0, or if ¥(n,m) = F(n,m).
Then all elements of @ are good. Also, from Proposition 8.2 we see that if
a line ¢; ; contains eight good consecutive cells, then all the cells in the line
are good. Applying this fact to the eight horizontal lines ¢, = {(n,m) :
1 <n < N} form e {mg,...,mg+ 7}, we conclude that all the cells in
the rectangular region {1,...,N} x {mg,...,mo + 7} are good. Applying
the fact again to the diagonal lines £, 1 = {(n,n+m) : 1 < n < M} for
mog—1 < m < mg+ 8 — N, we conclude that all the cells in the partial
horizontal line {8,..., N} x {mg + 8} are good; applying the fact again to the
horizontal line £,,,+80 = {(n, mo+8) : 1 <n < N}, we conclude that in fact all
the cells in £,,,4+80 are good. A reflected version of the same argument shows
that all the cells in ¢,,,,—1,0 are good. Thus we have extended the rectangle of
good cells by one row in both directions. Iterating this argument to fill out
the remaining rows of the Sudoku board, we conclude that all the cells in B
are good, giving the claim. ([

Assuming good columns, we can obtain an important control on a key
coefficient B of the pseudo-affine function V.

PROPOSITION 9.5 (Odd vertical coefficient). Let F' be a Sudoku solution
with good columns. Let W(n,m) = An+Bm+C +D%m(m—n) be the pseudo-
affine function produced by Proposition 9.4. Then B is odd.



A COUNTEREXAMPLE TO THE PERIODIC TILING CONJECTURE 353

Proof. By Lemma 9.1, F' has weak digit equidistribution. Hence, from
applying Proposition 9.4 we obtain that there exists 1 < n < N such that the
function m — ¥(n,m) is not identically zero. This function is affine on every
coset of 47, and hence is non-vanishing on at least one coset 87Z + ¢ of 8Z.
Suppose for contradiction that B was even. Then the function m — ¥(n, m)
is (2)-periodic on 8Z + ¢, thus m +— F(n,m) is also. But as F has good
columns, we also have F'(n, m) = o, (m) whenever o,(m (mod ¢q)) # 0, for some
permutation oy,: Z/qZ — 7Z/qZ. This implies that o,, has a zero in every coset
{m (mod ¢),m+ % (mod ¢)} of 4Z/qZ with m € 8Z + ¢, which is absurd. O

This gives us a normal form as follows. Given a Sudoku solution F', define
a shearing of F' to be any map F’: B — X of the form

F'(n,m) = BF(n,m+ An + O)

for some integers A, B,C' with B odd. Note from Proposition 7.7 that F”’ is
also a Sudoku solution; furthermore, F' has good columns if and only if F” does,
and F' is periodic if and only if F’ is. The property of one Sudoku solution
being a shearing of another can also be easily verified to be an equivalence
relation. In view of Remark 7.10, the shear-invariance of Sudoku solutions is
closely related to the translation invariance of tiling equations A ® F' = G.

PROPOSITION 9.6 (Normal form). Let F(n,m) be a Sudoku solution that
agrees with a pseudo-affine function W(n,m) = An+ Bm + C 4+ D4m(m —n)
with B € Z/qZ odd when ¥(n,m) is non-zero. Then there exists a shearing F’
of F' that is in normal form in the sense that

(9.3) F'(n,m)=m+ D%m(m —n)
for some D € Z/qZ, alln € {1,...,N}, and all m € Z\qZ.
Proof. We claim that the zero set of W takes the form
(9.4) {(n,m) € Z?:V(n,m) =0} ={(n,m) € Z* :m = A'n 4+ C’' (mod ¢)}

for some coefficients A’, C" € Z/qZ. To see this, we temporarily divide out by
the invertible element B to normalize B = 1. If U'(n,m) = 0, then An+m+C =
0 (mod 4), hence

0=Y(n,m)=An+m+C + D%(—An —C)(—An — C —n) (mod q),

which one can write (using 4n? = 4n (mod q)) as

0:An+m+C+DCQZ+(2A+1)DCZn+Dg(A;1)n (mod q),

and thus
m = A'n+C’ (mod q),
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where A" := —A—(2A+1)DC%—D%(A;1) and C" := —C — DC?4. Conversely,
if m = A'n+ C' (mod q), then An +m + C = 0 (mod 4) and ¥(n,m) = 0.
This gives (9.4).

Let F” denote the shearing

F'(n,m) = F(n,m+ A'n+ C")

of F', and similarly define ¥”(n,m) :== ¥(n,m+ A'n+C"). From direct compu-
tation, ¥" is of the form ¥”(n,m) = A"n+B"m+C"+D"4m(m—n) for some
A/"B/ C/" D" € Z/qZ with B"” odd (and thus invertible), and ¥”(n, m) van-
ishes when m = 0 (mod ¢). Substituting m = 0 we conclude that A” = C" = 0.
If we then set F'(n,m) = F"(n,m)/B", we obtain the desired shearing F” in
normal form. O

In view of Propositions 9.5 and 9.6, we see that to conclude the proof of
Theorem 7.8, it suffices to show that all Sudoku solutions F' in normal form
are non-periodic. Suppose for contradiction that we had a periodic Sudoku
solution F' in normal form, thus F' is ((0, M))-periodic for some period M
(i.e., F(n,m) = F(n,m + M) for all (n,m) € B). From the normal form
condition (9.3) we see that M must be divisible by ¢. The key proposition we
will establish to conclude the argument is

PROPOSITION 9.7 (Tetris iteration). Let F' be a Sudoku solution in normal
form. We consider the Tetris move of replacing F' with the function

Fi(n,m) == F(n,qm),

which is also a Sudoku solution thanks to Proposition 7.7. Then there exists a
shearing of F* that is in normal form.

Indeed, if F' is an ((0, M))-periodic Sudoku solution in normal form, the
post-Tetris move solution Fy will be a ((0, M /q))-periodic Sudoku solution,
and its shearing will be a ((0, M/q))-periodic Sudoku solution in normal form.
Iterating this gives an infinite descent of periods M, which is absurd.

Remark 9.8. In the computer game “Tetris,” every time a row is com-
pletely filled with blocks, it is deleted. Analogously to this, a Sudoku solution
F in normal form has its values completely specified on all rows £,,, o = {(n,m) :
1 <n < N} with m # 0 (mod q); deleting all these rows yields the post-Tetris
move solution F,. This may help explain our terminology of a “Tetris move.”

9.1. Analyzing the Tetris move. It remains to establish Proposition 9.7.
In order to deploy tools such as Proposition 9.4, we will need to control upper
digits of densities of the post-Tetris solution Fi. To do this, we first analyze
the diagonal lines F; 1(n) = F(n,n + i) of the original solution F. From (9.3)
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we have
Fia(n) =n+i+ D%(n +1i)i (mod q)

whenever n + i # 0 (mod ¢). We can simplify this to
Fii(n) =ajin+bi1

whenever n + 7 # 0 (mod ¢), where the coeflicients a;1,b;1 € Z/qZ are given
by the formulae

(9.5) a1 =1+ D%i (mod q)

and
bi1=1+ D%i2 (mod q).
Observe that a; is odd, and Fj1(n) is equal to a;1n+b;; for n € {1,..., N}
outside of the coset I'r,, == {n € Z:n+1i =0 (mod q)} of gZ. By Proposi-
tion 8.3 (applied to some interval {no,...,no+7} in {1,..., N} avoiding I's, , ),
this forces the step SF;, of Fj1 to equal a;1, and the order ordFi’1 to equal 0.
Thus, by Lemma 8.1(iv), we may write

Fii(n) = fy(@ian +bia)
for some integers C~Li71, ‘61'71 with C~Li71 = a1 (mod q) and 67;71 = bi71 (mod q). If
we now let n; € {1,...,q} be such that n; +7 = 0 (mod ¢), we conclude, in
particular, that a; 1n; + b;,1 = q¢;1 for some integer ¢; 1, and

n;+1 . .

F, <m+qy, Zq +J) = Fi1(ni +qj)

(9-6) = fq(qCin1 + ainqy)
= fg(@i1j + ¢in)

for j =0,...,¢9 — 1. Since a; is odd, this implies that Fy(n; + ¢;, "iTH +7) =
a;,1j + i1 (mod q) for all but one value of j. In particular, each digit v of
¥ is attained by Fi(n; + g¢j, nquri + j) at most twice. Averaging over all i
and double counting using N = ¢2, we conclude that the upper density of
{(n,m) € B: Fy(n,m) = v} in B does not exceed the upper density of E by
more than 2/q. In other words, F, has weak digit equidistribution.

We may now invoke Proposition 9.4 and conclude that there exists a

pseudo-affine function

U, (n,m)=Amn+ Bom+ C, + D*%m(m —n)

that is not identically zero in B, and such that Fi(n,m) = ¥, (n, m) whenever
U, (n,m) is non-zero.

Since B can be covered by sets of the form {(ng + qj,mo + j) : j =
0,...,q— 1} for ng = 1,...,q and mgy € Z, we can find nyp = 1,...,q and
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mg € Z such that ¥, does not vanish identically on this set. By repeating the
calculation (9.6) (with i = gmo — ng) we see that

Fi(no + qj,mo + j) = fq(aj +¢)
for some integers a, ¢ (depending on ng, mg) with a odd. In particular,
(9.7) fa(aj +¢) = Wu(no + qj, mo + j)

whenever j = 0,...,q — 1 is such that the right-hand side is non-zero.

As @ is odd, the left-hand side of (9.7) attains the value Z (mod ¢) at
most twice for j = 0,...,¢ — 1. On the other hand, at the midpoint be-
tween consecutive values of j in which the (not identically zero) affine func-
tion W, (ng + qj, mo + j) vanishes, this affine function will attain the value of
4 (mod ¢). We conclude that W, (ng + ¢j,mo + j) vanishes for at most three
values of j = 0,...,¢ — 1; meanwhile, aj + ¢ (mod ¢) vanishes for one value
of j. Hence by the pigeonhole principle, and the assumption that ¢ is large,
the identity

al+¢=V.(no+ql,mo+1) (mod q); l=jj+1

holds for two consecutive values [ = j, j+1 of [. Subtracting these two identities
and reducing modulo 2, we conclude that B, has the same parity as a and is
thus odd. Applying Proposition 9.6, we conclude that there exists a shearing
of F that is in normal form. This concludes the proof of Proposition 9.7, and
hence of Theorems 7.8, 1.4, and Corollary 1.7.

10. Open problems
We close by posing some problems left open by our work.

10.1. Explicit bound on dimension. The dimension d produced by our
proof of Corollary 1.6 is explicit but extremely large and probably not op-
timal. This is for a number of reasons, the most significant being that we need
an enormous number of functional equations in order to encode the property
P4 appearing in Section 7. Thus, a natural question is

QUESTION 10.1. What is the smallest value of d for which Corollary 1.6
(resp. Corollary 1.7) is true?

The fact that our construction originates in the virtually two-dimensional
space Z? x Gg hints that Conjectures 1.2 and 1.3 might fail in a “reasonably
small” dimension.

On the other hand, there may be hope to extend the known positive results
on the periodic tiling conjecture beyond the known cases.

QUESTION 10.2. Is Conjecture 1.2 true in Z3? Is Conjecture 1.3 true in
R2?
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10.2. Connected tiles. An inspection of our proof of Corollary 1.7 reveals
that the tile ¥ C R? constructed by the argument is a finite union of cubes;
however, this union need not be connected. Given the positive results available
for connected tiles (and in particular for topological disks [Ken92], [Ken93)),
it is natural to ask'?

QUESTION 10.3. Is it possible in Corollary 1.7 to choose ¥ to be an open
connected set?

Of course the question can be trivially answered without the requirement
that ¥ is open, simply by adding suitable measure zero line segments to the
tile ¥ constructed by our arguments. Observe that an aperiodic tiling by
translations, rotations and reflections of a convex domain in R3 was constructed
by Schmitt—Conway-Danzer [Sen96] (aka SCD biprism).

10.3. Cardinality of aperiodic tiles. In view of the results in [Sze98], it
might be interesting to compute the size of our tile F' in Corollary 1.6.

QUESTION 10.4. Suppose that a finite F C Z% admits an aperiodic tiling.
What is the fewest number of prime factors that the cardinality of F' can have?

10.4. Decidability of tilings. A famous application of the study of the pe-
riodicity of tiling is to the problem of determining whether tilings are decidable.
Namely, the question'® whether there exists an algorithm that, upon any input
of a finite set F' in a finitely generated abelian group G, computes (in finite
time) if this set is a tile of G or not. A well-known argument of H. Wang
[Wan75] shows that if any tile admits a periodic tiling, then any tiling problem
is decidable.

In this work we prove that there are tiles of finitely generated abelian
groups that tile aperiodically. However, the decidability of tilings by a single
tile remains'* open.

QUESTION 10.5. Does there exist any undecidable tiling problem with a
single tile?

In a previous paper [GT23b] we proved the undecidability of tilings of
periodic sets by two tiles. This implies, in particular, the existence of aperi-
odic tilings by two tiles. Our proof consists of encoding any Wang tiling as a
tiling of a periodic set with two tiles; then, the undecidability of Wang tilings

2Note added in proof: the first author and Kolountzakis have answered this question in
the affirmative in [GK23].

130ne can also ask, for an individual tile F, whether the existence of a tiling A® F = G
is logically decidable (i.e., provable or disprovable) in a first-order theory such as ZFC. The
two questions are closely related; see [GT23b] for further discussion.

“Note added in proof: we have answered this question in the affirmative in [GT23a].
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[Ber66], [Ber65] implies the existence of an undecidable tiling problem with
only two tiles.

10.5. Weak periodicity. Let d and F C Z% be as in Corollary 1.6. Observe
that by our construction, all the sets in Tile(F;Z%) :== {A C Z¢: A® F = 7%}
are (d — 2)-periodic in the sense that for every A € Tile(F;Z%), there exist
d — 2 linearly independent vectors v, ...,v4_o in Z% such that A is invariant
under translations by v; for every j =1,...,d — 2.

Definition 10.6. A set S C Z% is called k-weakly periodic if it can be
partitioned into finitely many sets, each of which is k-periodic.

It is not difficult to show that if a tile in Z? admits a tiling of Z? that is
(d — 1)-weakly periodic, then it also admits a tiling that is periodic. Thus, our
aperiodic construction contains the largest possible amount of periodicity.

In [GT21] we showed that for every F' C Z2, all the sets in Tile(F; Z?) are
1-weakly periodic. This, in particular, implies Conjecture 1.2 in Z2.

The following question remains open:

QUESTION 10.7. Let d > 3 and F C Z3 be finite. Are there any A €
Tile(F; Z%) that are not 1-weakly periodic?

10.6. The structure of our construction. We believe that with additional
effort, our analysis should give a complete classification of the space of Sudoku
solutions with good columns, and hence also the set of tilings by the tile F' in
Theorem 1.4, however the answer appears to be somewhat complicated'® and
we do not give it here.

PROBLEM 10.8. Find a complete classification of the space Tile(F;Z>
x Go), where F' and Gy are as in Theorem 1.4. What is the dynamical struc-
ture of this space (viewed as a topological dynamical system with the translation

action of 72 x Gg)?

Following [Lab21], it would be of interest to study the tilings in Tile(F; Z?
x Gp) that have a substitution structure.

QUESTION 10.9. Can any of the tilings by our aperiodic tile be interpreted
as a substitution tiling?

The 2-adic nature of the Sudoku solutions suggests a positive answer.

151n particular, the D coefficient in the pseudo-affine functions (9.1) is somewhat difficult
to control.
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