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Abstract All instrumented basaltic caldera collapses have generated Mw > 5 very long period earthquakes.
However, previous studies of source dynamics have been limited to lumped models treating the caldera block as
rigid, leaving open questions related to how ruptures initiate and propagate around the ring fault, and the seismic
expressions of those dynamics. We present the first 3D numerical model capturing the nucleation and
propagation of ring fault rupture, the mechanical coupling to the underlying viscoelastic magma, and the
associated seismic wavefield. We demonstrate that seismic radiation, neglected in previous models, acts as a
damping mechanism reducing coseismic slip by up to half, with effects most pronounced for large magma
chamber volume/ring fault radius or highly compliant crust/compressible magma. Viscosity of basaltic magma
has negligible effect on collapse dynamics. In contrast, viscosity of silicic magma significantly reduces ring
fault slip. We use the model to simulate the 2018 Kıl̄auea caldera collapse. Three stages of collapse,
characterized by ring fault rupture initiation and propagation, deceleration of the downward‐moving caldera
block and magma column, and post‐collapse resonant oscillations, in addition to chamber pressurization, are
identified in simulated and observed (unfiltered) near‐field seismograms. A detailed comparison of simulated
and observed displacement waveforms corresponding to collapse earthquakes with hypocenters at various
azimuths of the ring fault reveals a complex nucleation phase for earthquakes initiated on the northwest. Our
numerical simulation framework will enhance future efforts to reconcile seismic and geodetic observations of
caldera collapse with conceptual models of ring fault and magma chamber dynamics.

Plain Language Summary Caldera collapse manifests as the rapid subsidence of a kilometer‐scale
block of crust circumscribed by a near‐circular fault on top of a volcano. The subsidence of the caldera block is
caused by the eruption‐induced withdrawal of magma and reduction in pressure in the underlying magma
chamber. All scientifically instrumented caldera collapses at volcanoes with low‐viscosity magma are
accompanied by earthquakes of magnitude 5 and above. How do magma viscosity and the seismic wave
radiation influence the amount of slip per earthquake on the fault? What can we learn about the dynamics of
these earthquakes from seismic records? We address these questions by performing computer simulations of
caldera collapse earthquakes and compare the results to the seismic records from the Kıl̄auea caldera collapse of
2018.

1. Introduction
Basaltic caldera collapse initiates when the crust overlying a magma chamber fails catastrophically due to
eruption‐induced magma chamber pressure decrease. Over the course of a few months, the subsidence of the crust
(“caldera block”) is accommodated by episodic, meter‐scale slip on a near‐circular fault (“ring fault”) kilometers
in diameter, with collapse slip events having recurrence intervals of hours to days (Geshi et al., 2002; Gud-
mundsson et al., 2016; Neal et al., 2019; Peltier et al., 2009). These ring fault slip events manifest as Mw > 5 very
long period (VLP) earthquakes (Duputel & Rivera, 2019; Fontaine et al., 2019; Gudmundsson et al., 2016;
Kumagai et al., 2001; Lai et al., 2021; Wang et al., 2022) at every instrumented basaltic caldera collapse
(Miyakejima 2001, Piton de la Fournaise, 2007, Bárðarbunga 2014, Kıl̄auea 2018). In addition to the flank
eruptions sustained by collapse earthquakes (Dietterich et al., 2021; Patrick et al., 2019; Roman & Lundg-
ren, 2021; Segall & Anderson, 2021), the earthquakes pose significant hazards to the region surrounding the
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volcano (Williams et al., 2020). Therefore, it is critical to understand the mechanics of caldera collapse
earthquakes.

Caldera collapse earthquakes are inherently 3D processes with spatial‐temporal variations in slip and stress. Much
like earthquakes on tectonic faults, caldera collapse earthquakes must nucleate at a high‐stress or low‐strength
region on the ring fault. Once the rupture expands past a critical nucleation dimension, it propagates dynami-
cally around the ring fault, as indicated by seismic source inversions (Fichtner & Tkalčić, 2010). It is not until the
rupture fronts converge on the opposite side of the ring fault when slip occurs everywhere simultaneously, a
condition implicit in lumped parameter models of caldera collapse earthquakes (Gudmundsson et al., 2016;
Kumagai et al., 2001; Roman & Lundgren, 2021; Segall & Anderson, 2021; Wang et al., 2022). Nonetheless,
lumped models brought tremendous insights into critical questions regarding the mechanics of caldera collapse
earthquakes, such as: why are caldera collapse earthquakes unexpectedly long‐duration and large‐magnitude,
compared to tectonic earthquakes on faults of similar sizes? The long slip duration is the reason that collapse
earthquakes manifest as VLP earthquakes (seismic corner frequency shifts lower with longer slip duration; e.g.,
Savage (1972)). The large slip magnitude is the reason that collapse earthquakes sustain chamber overpressure
over month‐long eruptions (each collapse earthquake reduces chamber volume and increases chamber pressure;
e.g., Segall and Anderson (2021)).

In the following, we explicitly address these questions and motivate for 3D dynamic rupture simulations. The
puzzling questions are clearly embodied when comparing the observations from the caldera collapse earthquakes
at Kıl̄auea in 2018, the best monitored caldera collapse in history (K. R. Anderson et al., 2023), with the following
scaling of tectonic earthquakes. Consider rupture propagation on a rectangular normal fault. Because the ring fault
at Kıl̄auea summit is nearly vertical (Segall et al., 2020), we assume that the fault has a down‐dip dimension, L,
equivalent to the height of the caldera block, defined as the distance from the summit surface to the top of the
magma reservoir. The fault has an along‐strike dimension, 2πR, equivalent to the circumference of a ring fault
with radius R. For 2πR ≫ L, the rupture duration (defined as the time between dynamic slip initiation and
cessation everywhere on the fault), T, is approximately

T ≈
2πR
vr

, (1)

where vr is the rupture velocity. The slip magnitude, S, is approximately (Day, 1982; Madariaga, 1976)

S ≈
L
Cμr

Δτ, (2)

where μr is the crustal shear modulus, Δτ the coseismic stress drop, and C∈ [0.65,2.55] is a non‐dimensional
shape factor.

At Kıl̄auea, the height of the caldera block, L, and average ring fault radius, R, are approximately 1 km (K.
Anderson et al., 2019). The average S‐wave speed for the upper 1 km of crust is approximately 1.7 km s−1

(Dawson et al., 1999; Lin et al., 2014; Saccorotti et al., 2003). Assuming that ring fault rupture occurs at the
Rayleigh wave speed (approximately 90% of S‐wave speed), we estimate T of 4 s. However, both GNSS (Global
Navigation Satellite System) time series (K. Anderson & Johanson, 2022) and VLP seismic waveforms (Lai
et al., 2021; Wang et al., 2022) indicate a rupture duration up to 10 s for collapse earthquakes in late June and July,
2018, when the ring fault was fully developed (K. R. Anderson et al., 2023). Assuming C = 1, μr = 7.8 GPa (for
typical basaltic rock density of 2.7 × 103 kg m−3 and aforementioned S‐wave speed), and Δτ = 1 MPa (Segall &
Anderson, 2021), we estimate S of 0.1 m, which is an order of magnitude smaller than the GNSS‐derived average
coseismic slip of 2–5 m (K. Anderson & Johanson, 2022; Tepp et al., 2020). To reconcile the large discrepancy in
observed and theoretical estimates of T and S, anomalously low μr, inconsistent with observed seismic wave
speeds, would be required.

The discrepancy between theory and observation is resolved by recognizing that, after earthquake nucleation,
caldera collapse earthquakes are comprised of a rupture phase, the period in between the onset of dynamically
propagating fault rupture and the simultaneous slip of the entire fault, as well as a collapse phase, the period in
between the onset of simultaneous slip of the entire fault and the cessation of slip everywhere on the fault. The
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collapse phase is characterized by the mechanical coupling between fault slip and the underlying magma
chamber. When wave radiation effects are negligible, or ωL/c ≪ 1 (ω, c: characteristic angular frequency of
waves and wave speed, respectively; L: characteristic dimension of the source), a lumped model with axisym-
metric slip on a vertical ring fault, accounting for caldera block/magma momentum balance, chamber pressur-
ization, and ring fault stress drop, yields a new scaling (Gudmundsson et al., 2016; Kumagai et al., 2001; Roman
& Lundgren, 2021; Segall & Anderson, 2021; Wang et al., 2022):

Tcol ≈
1

R2

̅̅̅̅̅̅̅̅̅̅̅

βVm′

√

, (3)

Scol ≈
4βVLΔτ

πR3 , (4)

m′ = m + ϕmf , (5)

where β is the total compressibility of the magma reservoir (magma + chamber), V the chamber volume, m the
mass of the caldera block, mf the mass of magma in the reservoir, and ϕ the fraction of total magma mass acting as
inertial mass impeding caldera block motion. For a vertically oriented cylindrical magma chamber with the same
radius as the caldera block, ϕ = 1/3 (Wang et al., 2022).

We identify Tcol and Scol as the duration and slip magnitude during the collapse phase, respectively. For typical
crustal elastic moduli and chamber compressibility in volcanic environments, the duration of the rupture phase, T,
is always small compared to that of the subsequent collapse phase, Tcol, unless R/

̅̅̅̅̅̅̅
HL

√
≥ 1 (H is the vertical

dimension of the chamber). The magnitude of ring fault slip is proportional to the compressibility of the chamber,
which, for basaltic magma containing exsolved volatiles, is typically dominated by magma compressibility (with
the exception of dike or sill like chambers). For Kıl̄auea, appropriate parameter values for Equations 3 and 4 are:
R = 1 km, β = 7 × 10−10 Pa−1, V = 4 km3, L = 1 km, and Δτ = 1 MPa (K. Anderson et al., 2019; Segall &
Anderson, 2021; Wang et al., 2022). Assuming ϕ = 1/3, magma density ρm = 2.6 × 103 kg m−3, and rock density
ρr = 2.7 × 103 kg m−3, we have m = πR2Lρr ≈ 8.5 × 1012 kg and mf = Vρm ≈ 1013 kg. The predicted Tcol and Scol

are 6 s and 4 m, respectively, consistent with observations. Therefore, caldera collapse earthquakes have longer
than expected duration due to the collapse duration (Equation 3) being much longer than the rupture duration
(Equation 1). Caldera collapse earthquakes incur larger than expected ring fault slip, mainly due to the fact that
slip is proportional to magma compressibility (Equation 4) instead of crustal compressibility (Equation 2).

Here we seek a deeper understanding of factors controlling the duration and magnitude of fault slip during caldera
collapse earthquakes. Lumped models assume uniform slip on the ring fault, therefore neglecting the rupture
phase and only appropriate for modeling the collapse phase. Further, lumped models neglect seismic wave ra-
diation and assume inviscid magma. As we will show, neglecting wave radiation effects is invalid for caldera
systems with large spatial dimensions, slow wave propagation in compressible magma or surrounding compliant
crust. Inviscid assumption for fluid is reasonable for basaltic magma, but invalid for silicic magma.

In this study, we systematically investigate the physics of caldera collapse earthquakes, eliminating the above
assumptions with numerical dynamic rupture simulations and complementary analytical analyses. Additionally,
we make theoretical predictions of the surface wavefield for realistic caldera collapse scenarios, gaining insight
into rupture nucleation, propagation, and magma chamber responses to collapse. The paper is organized as
follows. In Section 2, we introduce a numerical simulation method for caldera collapse earthquakes using SeisSol
(Dumbser et al., 2007; Krenz et al., 2021; Ulrich et al., 2022; Uphoff & Bader, 2016), a discontinuous Galerkin
finite element code for earthquake rupture dynamics and seismic wave propagation. The simulation can capture
the nucleation and propagation of rupture on the ring fault, as well as the wavefield in the solid crust, basaltic
magma (approximated as an inviscid acoustic fluid with zero shear modulus), and silicic magma (approximated as
a linear Maxwell viscoelastic material, in which shear waves and deviatoric stresses are relaxed by viscous flow).
In Section 3, we investigate the influence of wave radiation and magma viscosity on the duration and magnitude
of ring fault slip. In Section 4, we perform a dynamic rupture simulation with relevant chamber, ring fault ge-
ometry and material properties for the 2018 caldera collapse of Kıl̄auea. We compare simulated near‐field
waveforms with observations to identify phases of earthquake nucleation, rupture propagation, deceleration of
the downward‐moving caldera block and magma column, and post‐collapse resonant oscillations.
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2. Simulation Method
We introduce two categories of 3D simulations with distinct chamber and ring fault geometries, magmatic and
crustal material properties, and initial stress conditions. “Benchmark case” simulations are performed to isolate
the effect of seismic radiation and magma viscosity on ring fault slip magnitude and duration (Section 3).
“Kıl̄auea case” simulations are performed to guide interpretations of near‐field seismic waveforms at Kıl̄auea in
2018 (Section 4). In both cases, the ring fault is loaded with shear tractions in the down‐dip direction to emulate
stress conditions resulting from a pressure deficit in the magma chamber.

For the benchmark case, the crust is set up for linear elastodynamics with homogeneous, isotropic moduli, except
the volume occupied by magma, the constitutive law of which is discussed below. For the Kıl̄auea case, we utilize
a 1D (depth‐dependent) elastic property model with attenuation. For both cases, we assume slip weakening
friction on the ring fault. This is a reasonable approximation since we do not seek to simulate episodic collapses.
During fault slip, the friction coefficient, f, decreases linearly from a static value, fs, to a dynamic value, fd, over a
slip weakening distance, Dc, and remains constant for slip beyond Dc. For the benchmark case, fault strength is
defined as fσ, where σ is normal stress. For the Kıl̄auea case, fault strength fσ + C additionally includes cohe-
sion, C.

Magma is a multi‐phase fluid with crystal, melt, and volatile phases. Here we are concerned with the bulk me-
chanical properties of magma at time scales relevant to caldera collapse earthquakes and model magma as a
homogeneous material. Magma is viscoelastic in nature (e.g., Webb & Dingwell, 1990), with the elastic and
viscous regimes for deviatoric straining demarcated by its intrinsic relaxation time scale(s). We assume that
magma is well approximated by a Maxwell viscoelastic material with deviatoric stresses relaxing toward zero
over a single relaxation time, τM (defined as the ratio of dynamic viscosity, ηm, to magma shear modulus, μm). This
material permits transmission of attenuated shear waves at ωτM ≫ 1, and forbids transmission of shear waves at
ωτM ≪ 1 (here ω denotes the angular frequency of shear waves).

For silicate melts, τM varies over orders of magnitude due to large variability of ηm and a relatively constant μm

(Dingwell & Webb, 1989). At storage temperatures (≥1100°C), basaltic magma has μm ∼ 1 GPa (James
et al., 2004), and ηm ∼ 102 Pa s (Pinkerton & Norton, 1995), corresponding to τM ∼ 10−7 s ≪ Tcol, indicating that
elastic behavior can be neglected for deviatoric straining. For silicic magma with low vesicularity at storage
temperatures (≥650°C), μm ∼ 10−2 − 10−1 GPa, and ηm ∼ 108 Pa s (Okumura et al., 2010). These values
correspond to τM = 1–10 s, indicating that viscoelastic behavior should be considered. Furthermore, viscous drag
forces from magma can influence ring fault slip only when the ratio of magmatic boundary layer thickness near
the chamber wall, Lboundary, to the characteristic dimension of the chamber, approaches unity. As shown in
Section 3.1, for an idealized cylindrical chamber with radius R, Lboundary/R ∼ 10−3 for basaltic magma and
Lboundary/R ∼ 10−1 for silicic magma. This indicates that basaltic magma is expected to behave like a
compressible, inviscid fluid and silicic magma a compressible, viscoelastic fluid during caldera collapse
earthquakes.

Therefore, we model basaltic magma as an acoustic fluid (a built‐in option in SeisSol), which has zero viscosity.
We model silicic magma as a Maxwell material, achieved by utilizing the memory variable attenuation feature of
SeisSol using the procedure described in Appendix A. The method can be generalized to approximate arbitrarily
complex linear viscoelastic rheology with multiple relaxation times.

3. Control on Collapse Duration and Magnitude
Here we investigate the effects of magma viscosity and seismic wave radiation on the duration and magnitude of
ring fault slip during caldera collapse earthquakes. The effect of magma viscosity is qualitatively shown to reduce
slip magnitude via a pair of benchmark case simulations with different magma rheologies. The effect of wave
radiation through the caldera block/magma interface is quantified via a parameter study using the benchmark case
simulations, and shown to reduce fault slip. Further physical intuition on the effect of wave radiation through the
ring fault on collapse dynamics is gained using asymptotic solutions for impedance (ratio of stress change to fault
slip rate) for an idealized 2D antiplane shear ring fault in an isotropic and linear elastodynamic full space.

All benchmark case simulations adopt idealized geometries for the ring fault and chamber, and assume
axisymmetric rupture on the ring fault (Figure 1a). This is done to isolate features associated with collapse,
without the additional complexities associated with ring fault rupture propagation. The magma chamber is a
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vertical cylinder with the same cross‐sectional radius as the overlying caldera block, which is bounded by a
vertical, cylindrical ring fault. Ring fault rupture is initiated with a spatially uniform downward shear traction
slightly higher than the spatially uniform shear strength (Figure 1b; Table 1). The crustal elastic moduli are such
that the chamber wall is stiff (Figure 1c; Table 1) and the subsidence of the caldera block into the chamber induces

Figure 1. (a) 3D simulation setup for the benchmark case showing tetrahedral mesh, boundary conditions, and caldera
geometry. For simplicity, both caldera block and underlying magma chamber are cylindrical. (b) Initial conditions on fault
stress and strength. τ0, σ0, fs, fd: initial shear, normal stresses, and static, dynamic friction coefficients. (c) Velocity model for
the crust. Note that for the parameter study investigating the effect of wave radiation, magma is modeled as a compressible
fluid with zero viscosity and shear modulus. Magma chamber vertical dimension varies from 1 to 6 km and magma
compressibility varies between 1 × 10−10 and 7.4 × 10−10 Pa−1. (d) Spatially averaged slip, δ̄, on the ring fault for the
simulations with basaltic and silicic magmas, with vertical lines indicating the timing of wavefield snapshots in Figures 2 and 3.

Table 1
Model Parameters for Simulations

Parameter Symbol Benchmark case Kıl̄auea case Unit

Crust

Density ρr 3,000 2,700 kg m−3

Shear modulus μr 30 1D velocity model with attenuationa GPa

Poisson's ratio ν 0.25 0.25

Magma

Density ρm 2,700 2,600 kg m−3

Shear modulusb μm 0 for basaltic magma; 0.01 for silicic magma 0 GPa

Compressibility βm 0.1 0.46c GPa−1

Viscosityb ηm 0 for basaltic magma; 100 for silicic magma 0 MPa · s

Fault

Static friction fs 0.6 0.61 outside of nucleation patch; 0.59 inside of nucleation patch

Dynamic friction fd 0.37 0.53

Slip evolution distance Dc 1 1 cm

Cohesion C 0 0.2 MPa

Initial shear stress τ0 12.01 Depth dependentd MPa

Initial normal stress σ0 20 Depth dependentd MPa
aSee Figure 7c. bThese are target values approximated with the procedure described in Appendix A. cMedian value estimated by K. Anderson et al. (2019). dSee
Figure 7b.
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relatively small shear strength changes on the ring fault, as compared to shear stress changes, facilitating com-
parison with analytical solutions of lumped models. All domain boundaries, except the free surface, are absorbing
boundaries, where wave reflections are minimized. The timing of wavefield snapshots in Section 3.1 are marked
along the spatially averaged ring fault slip history (Figure 1d).

3.1. Magma Viscosity

We compare basaltic and silicic benchmark case simulations to discern the effect of magma viscosity on ring fault
slip. An example simulation (Figure 2) is shown for basaltic magma with minimal exsolved volatiles (parameters
in Table 1). At 0.3 s, the caldera block accelerates downward, setting off elastic rebound outside of the ring fault
and downward propagating P‐waves in the magma (Figure 2a). The apparent reversed sense of polarity at wave
fronts along earth surface (upward inside of the ring fault and downward outside of the ring fault) is attributed to
precursory body waves preceding Rayleigh waves in Lamb's problem (Mooney, 1974). Between 0.8 and 1.3 s, the
caldera block and the magma column decelerate due to chamber pressure increase, resulting in the transmission of
downward momentum from the caldera block and magma into the surrounding crust. This manifests as downward
velocity of the crust outside of the ring fault (Figures 2b and 2c). At 2.3 s, ring fault slip stops (Figure 2d). The
caldera block (in conjunction with surrounding crust) and the magma inside the chamber move upwards due to the
conversion of elastic strain energy stored in the crust and magma back to kinetic energy. Hereafter, oscillations
due to elastic strain energy and kinetic energy conversions continue for tens of seconds.

With silicic magma, we expect the viscous drag on the descending magma to transfer some of the downward
momentum laterally out into the crust through boundary layer development, reducing the slip rate on the ring
fault. The effect can be quantified through the ratio of lateral momentum transfer through viscous boundary layer,
ΔPviscous, to total momentum residing in the magma prior to boundary layer development, Ptotal. For a cylindrical
chamber with cross‐sectional radius, R ∼ 103 m, chamber height, H, and spatially averaged magma flow velocity
(mostly in the vertical direction), v ∼ 1 m s−1, the Reynolds number during caldera collapse, ρmvR/ηm, is of order
10−2 − 101, indicating that flow is within the laminar regime (the Reynolds number for basaltic magma is
103 − 104, at the upper end of the laminar regime). Thus Lboundary scales as

̅̅̅̅̅̅̅̅̅̅̅̅̅
νmTcol

√
, where νm = ηm /ρm is the

kinematic viscosity, and the spatially averaged viscous traction along the chamber side walls, Δτrz, scales as
ηmv/

̅̅̅̅̅̅̅̅̅̅̅̅̅
νmTcol

√
. ΔPviscous can be obtained via time integral of the lateral momentum transfer rate, 2πRHΔτrz:

ΔPviscous = ∫

Tcol

0
2πRHΔτrzdt ∼ 2πRHηmv

̅̅̅̅̅̅̅̅
Tcol

νm

√

. (6)

The total vertical momentum residing in the magma prior to boundary layer development is

Ptotal = πR2Hρmv. (7)

Therefore, the momentum ratio is

ΔPviscous

Ptotal
∼

2
̅̅̅̅̅̅̅̅̅̅̅̅̅
νmTcol

√

R
∼

Lboundary

R
. (8)

At the time scale of collapse earthquakes (Tcol ∼ 10 s), Lboundary ∼ 102 m and Lboundary/R ∼ 10−1 for silicic magma,
allowing for reduction in vertical motion of the caldera block. In contrast, Lboundary ∼ 1 m and Lboundary/R ∼ 10−3

for basaltic magma. Thus boundary layers have little effect on basaltic collapse dynamics.

Next we show the development of boundary layers in a simulation (Figure 3) for silicic magma with minimal
exsolved volatiles (parameters in Table 1). The magma has a viscosity of 108 Pa s and a shear modulus of 107 Pa,
with a corresponding Maxwell relaxation time, τM, of 10 s. Compared to the basaltic simulation, the silicic
simulation shows viscous boundary layer development along the vertical chamber walls (Figures 3a–3c). The
boundary layers grow wider as the caldera block continues to drive downward flow in the chamber, imparting
downward momentum into the surrounding crust. By 1.3 s, the boundary layer on either side of the chamber wall
reaches a mean thickness of 0.2 km (Figures 3e and 3f). Drag on the magma is exemplified by viscous deviatoric
stress Δσrz ≈ 1 MPa near the chamber wall (region 1 and 2 in Figure 4a), which arises due to high viscous strain
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rates as the magma at the center of the chamber descends faster than that near the chamber walls. Hence Δσrz is
positive and has highest magnitudes near the walls (downward flow rate decreases in magnitude with increasing
radial distance from the axis of the cylindrical chamber, r). This viscous drag effect is completely absent in the
basaltic simulation. Additionally, deviatoric stresses transmitted via S‐waves are pronounced near the center of
the chamber (region 3 in Figure 4a). Δσrz is negative here because it is dominated by elastic strain, which is
proportional to the gradient of downward displacement (at 1.3 s, downward displacement has the largest
magnitude at the chamber walls, since downward magma flow initiates near the ring fault and propagates inward).
With this specific simulation, viscous drag force due to boundary layer development is the main mechanism for

Figure 2. Snapshots of a 3D benchmark case simulation for caldera collapse with basaltic magma (compressible magma with zero viscosity and shear modulus). vz:
vertical particle velocities. (a) Downward axisymmetric collapse of the caldera block sets off elastic rebound outside of the ring fault and downward P‐waves in the
chamber. (b) Downward collapse of the caldera block continues. (c) Caldera block and magma column decelerate due to chamber pressure increase, resulting in the
transmission of downward momentum from the caldera block and magma into the surrounding crust. (d) Cessation of fault slip and subsequent rebound due to elastic
strain energy stored in the crust and chamber converting back to kinetic energy.
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Figure 3. Snapshots of a 3D benchmark case simulation for caldera collapse with silicic magma (linear Maxwell viscoelastic fluid with relaxation in deviatoric stresses).
vz: vertical particle velocities. (a–d) Development of viscous boundary layers along the side walls of the magma chamber. The dynamics in the crust is largely the same
as observed in Figure 2. (e, f) Zoomed‐in view of the viscous boundary layers, indicated by the region between the chamber wall and the white curve marking
vz = −0.5 m s−1 (approximately the maximum vertical downward velocity in the chamber). Arrows indicate local flow directions and scale with particle velocity
magnitude.
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transferring vertical momentum laterally into the crust. In cases where τM/Tcol ≫ 1, elastic deviatoric stresses
could be the dominant mechanism for laterally transferring vertical momentum into the crust, thereby reducing
fault slip.

The viscous drag force on the magma is proportional to the magnitude of downward magma flow velocity, which,
in turn, is proportional to the slip rate on the ring fault. Magma viscosity, therefore, acts as a rate‐dependent
damping mechanism to the ring fault slip rate by transferring the downward momentum of the caldera block
laterally into the crust through the chamber walls. The time‐integrated effect of this damping mechanism is
pronounced in the time history of ring fault‐averaged slip, δ̄, ring fault‐averaged shear stress change, Δτ̄, and
chamber‐averaged pressure change, Δp̄ (Figure 4b). For both the basaltic and silicic collapses, Δτ̄(t) decreases to
−4.6 MPa initially due to a drop in fault strength, initiating slip on the ring fault. The magnitude of δ̄(t) continues
to increase until it plateaus at Scol = 2 m at Tcol = 2.1 s. This is because fault slip reduces chamber volume, V, and
increases Δp̄, bringing the caldera block into static force equilibrium in the vertical direction. Between 0 and 2.1 s,
Δτ̄(t) decreases slightly due to decrease of ring fault‐averaged normal stress. The fault normal stress change, Δσ̄,
is induced by ring fault unclamping due to magma chamber pressurization and the resulting elastic deformation of
the crust, although the magnitude of the associated strength drop, fdΔσ̄, is a small contribution to coseismic stress
drop, Δτ̄(t = Tcol) (Figure S1 in Supporting Information S1). At 2.1 s, Δτ̄(t) decreases again due to dynamic
overshoot, or drop in fault shear stress below the residual strength (fdσ̄) due to inertia. After fault slip stops, Δp̄(t)
exhibits ∼10 s of transient perturbations due to wave reflections in the chamber. In the basaltic collapse, the stress
drop due to dynamic overshoot is of the same magnitude as the initial drop in fault strength. In the silicic collapse,
the stress drop due to dynamic overshoot is smaller than the strength drop (Figure 4b). Correspondingly, the final
magnitude of Δp̄ and δ̄, which relate to Δτ̄ via the momentum balance (Equation C1), are also smaller in the silicic
than in the basaltic collapse. Overall, the viscous drag force in the magma reduces Scol by approximately one
fourth, but has negligible influence on Tcol (Figure 4b). Compared to the basaltic collapse, transient pressure
perturbations due to P‐wave reflections during silicic collapse are more damped (Figure 4b). In addition to
viscous damping, wave radiation is also a rate‐dependent damping mechanism that can reduce the magnitude of
dynamic overshoot. Next we investigate this effect.

3.2. Seismic Wave Radiation Through the Magma Chamber and Ring Fault

During caldera collapse earthquakes, seismic waves radiate out from both the ring fault and the bottom of the
caldera block. Because seismic waves carry momentum, they can exert frequency‐dependent influence on caldera
block motion. We focus on P‐wave radiation through the bottom of the caldera block (Figures 2 and 3), because P‐

Figure 4. Effect of magma viscosity on collapse dynamics. (a) A snapshot of Δσrz at t = 1.3 s for basaltic (left) and silicic
magma (right). Region 1, 2 denote large magnitude of Δσrz due to viscous stresses. Region 3 denotes moderate magnitude of
Δσrz due to S‐waves. (b) Ring fault‐averaged slip, δ̄, ring fault‐averaged shear stress change, Δτ̄, and chamber‐averaged
pressure change, Δp̄, as a function of time. The magnitudes of δ̄, Δp̄, Δτ̄ are smaller for silicic magma (modeled as linear
Maxwell fluid) than for basaltic magma (modeled as acoustic fluid) due to viscous drag arising from boundary layers shown
in (a).
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waves are the dominant momentum‐carrying radiation in the chamber. When the wavelength in magma is long
compared to the chamber height, or ωH/ cm

p ≪ 1 with cm
p denoting the P‐wave speed in magma, the magma motion

decreases linearly with depth. Thus, magma impedes ring fault motion through a spatially uniform pressure
increase that applies an upward force on the caldera block in the opposite direction of subsidence. In this limit, the
response of the magma is quasi‐static and wave effects are negligible, as commonly assumed in lumped models.
When the wavelength is short compared to the length scale of the chamber, or ωH/ cm

p ≫ 1, only a portion of the
total magma volume is affected by wave motion at a given time. In this limit, seismic waves can reduce fault stress
drop and slip rate via radiation damping, or the damping of fault motion via seismic wave radiation.

We investigate the effect of wave radiation through the caldera block/magma interface on Tcol and Scol with a set
of benchmark simulations with basaltic magma. The simulations are set up such that results can be directly
compared to the lumped model of Wang et al. (2022), which does not account for wave effects. All simulations are
axisymmetric, with rupture initiated uniformly on the ring fault. An example time domain solution, as well as the
corresponding lumped model prediction, is shown for H = 1 km and βm = 1 × 10−10 Pa−1 (Figure 5a). Because the
significance of wave radiation depends on the dimensionless parameter ωH/ cm

p , we perform a parameter sweep
with respect to chamber volume V (corresponding to 6 evenly spaced values of H from 1 to 6 km, with R = 1 km
and βm = 1 × 10−10 Pa−1) and magma compressibility βm (6 values from 1 × 10−10 to 7.4 × 10−10 Pa−1, with
H = 1 km), the latter of which is related to cm

p via cm
p = (βmρm)

−1/ 2. The range of the parameters is chosen such

Figure 5. Variation of slip duration and magnitude as a function magma chamber volume and magma compressibility. (a) Time‐domain, spatially averaged, numerical
solutions of fault slip, δ̄, chamber pressure change, Δp̄, shear stress change, Δτ̄, compared to that of the lumped model, which does not account for wave radiation. (b, c)
Duration of the collapse phase (black circles), Tcol, derived from dynamic rupture simulations and the mean (black solid circle), compared to that of the lumped model (red
solid circles). (d) Dimensionless parameters as a function of Vβ (V, β: chamber volume and total compressibility, respectively). Note that β = βm + βc, where βm is magma
compressibility. βc is chamber compressibility, which varies as a function of chamber height and take on the following values 2.3 × 10−11, 2.6 × 10−11, 2.9 × 10−11,
3.3 × 10−11, 2.5 × 10−11, 2.7 × 10−11 Pa−1 for increasing V. (e, f) Slip magnitude of the collapse phase (black circles), Scol, derived from dynamic rupture simulations and
the mean (black solid circles), compared to that of the lumped model (red solid circles). Also shown is Scol predicted by lumped model accounting for wave radiation
(yellow solid circles). Variability of simulation‐derived Tcol, Scol arises from the rupture process and depth‐dependent elastic response relating slip to shear and normal
stress changes on the fault.
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that (a) ωH/ cm
p is larger than unity (ω approximated with 2π/Tcol), isolating the effect of wave radiation through

caldera block/magma interface (Figure 5d) and (b) for each pair of V and βm (e.g., V = 3.14 km3 in Figure 5e and
βm = 1 × 10−10 Pa−1 in Figure 5f), the corresponding Vβ is the same so that Scol is expected to be the same based
on the lumped model (Equation 4).

For each value of V and βm, we compare Tcol, Scol derived from numerical solutions with analytical solutions of the
lumped model. For numerical simulations, Tcol at a particular location on the ring fault is determined as the time at
which local slip rate drops below 1 × 10−2 m s−1, and Scol is determined as the total slip at time Tcol. Tcol, Scol are
sampled along the depths of the ring fault to capture their spatial variability, which arises from the rupture process
and depth‐dependent elastic response relating slip to shear and normal stress changes on the fault. The lumped
model prediction of Tcol is slightly larger than the mean of numerical solutions at large V and βm (Figures 5b and
5c), although the discrepancy is small, given the range of numerical solutions (the larger Vβ is, the longer the
collapse duration, and the more difficult to numerically determining Tcol with a threshold slip rate). However, the
lumped model overpredicts the mean Scol by up to a factor of two at large V and large βm (Figures 5e and 5f), or
large ωH/ cm

p values (i.e., when wave effects are important; Figure 5d). When a collapse earthquake is damped by
seismic wave radiation, dynamic overshoot in Δτ̄ is reduced, and up to a factor of two reduction in Scol is expected.
Therefore, the discrepancy in the lumped model prediction and numerical simulation results for Scol is attributed
to radiation damping.

For seismic wave radiation through the ring fault (Figures 2 and 3), the relevant waves are S‐waves propagating
inward and outward from the cylindrical fault. The relevant dimensionless parameter is ωR/ cr

s, with cr
s denoting

S‐wave speed in the crust. Due to the high computational cost of dynamic rupture simulations, we did not perform
additional simulations with regard to variations in ωR/ cr

s (although ωR/ cr
s does vary slightly with ω for the

parameter sweep; Figure 5d). Instead, we seek insight by developing Fourier series solutions to the elastic wave
equation for an idealized 2D antiplane shear ring fault problem (Appendix B). When the wavelength is long
compared to the length scale of the ring fault, R (ωR/ cr

s ≪ 1) , the displacements within the caldera block are
approximately uniform. Thus the block behaves like a rigid mass, as assumed in previous lumped models
(Gudmundsson et al., 2016; Kumagai et al., 2001; Roman & Lundgren, 2021; Segall & Anderson, 2021; Wang
et al., 2022). Waves and quasi‐static deformation (elastic deformation in the absence of inertia) outside of the ring
fault contribute minutely to fault slip. When the wavelength is short compared to the length scale of the ring fault
(ωR/ cr

s ≫ 1) , frequency‐dependent wave effects are important. In particular, when the shear modulus and/or
density of material inside the ring fault are extremely high compared to those outside of the ring fault, the effect of
wave radiation on ring fault slip is similar to that for shear slip on planar faults (Geubelle & Breitenfeld, 1997). As
we will show next via a lumped model approximately accounting for wave radiation, in the ωR/ cr

s ≫ 1 limit, ring
fault wave radiation, similar to chamber wave radiation, can reduce Scol by up to a factor of two. Additionally,
resonance effects could be important when ωR/ cr

s is slightly larger than unity (Figure B1b). Resonance effects are
subdued if slip concentrates on one side of the ring fault (Figure B1e), a scenario relevant for the initiation of
caldera collapse earthquakes and trap‐door faulting (Amelung et al., 2000; Sandanbata et al., 2022).

We approximate the effects of wave radiation from caldera block/magma interface or ring fault by adding a
radiation damping term, ϵAρcδ̇ (ϵ: a dimensionless factor of order unity encapsulating the importance of wave
radiation; δ̇: fault slip rate; ρ, c, A: relevant density, wave speed, and surface area), to the momentum balance of
the coupled caldera block and magma chamber system in the lumped model (Appendix C). The value of ϵ can be
chosen based on a regime diagram parameterized by ωR/ cr

s and ωH/ cm
p (Figure 6a). For example, ωH/ cm

p ≫ 1
and/or ωR/ cr

s ≫ 1 correspond to ϵ ≈ 1–2, otherwise ϵ < 1. As ϵ increases, the slip history computed from the
lumped model transitions from being under‐damped to over‐damped, with the maximum damping reducing Scol

by half and slightly lengthening Tcol (Figure 6b). In the benchmark simulations, ωH/ cm
p > 1 and ωR/ cr

s < 1
(Figure 5d). Using ϵ ≈ 2, the lumped model accounting for wave radiation nicely explains the reduction in Scol as
predicted by benchmark simulations (Figures 5e and 5f). However, this approximation of radiation damping
neglects resonance effects (Appendix B), and the precise functional form of ϵ cannot be analytically obtained,
highlighting the limitations of lumped models in emulating collapse dynamics. Further applications of the regime
diagram to historic caldera collapses are discussed in Section 5.1.
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4. Application to Kıl̄auea Caldera Collapse in 2018
Here we simulate a caldera collapse earthquake based on observations from Kıl̄auea volcano in 2018 (Figure 7),
accounting for ring fault rupture nucleation, propagation, radiation of seismic waves, and the pressurization of the
underlying magma chamber. The objective is to associate each phase of the synthetic waveforms with caldera

Figure 7. (a) 3D simulation setup for the Kıl̄auea case showing tetrahedral mesh, boundary conditions, and caldera geometry. Inset shows the location of the circular
nucleation patch and frictional coefficients inside/outside of the patch. (b) Initial conditions on fault stress and strength. (c) Composite 1D velocity model used in this
study, assuming Poisson ratio of 0.25. τ0, σ0, fd, fs, C: initial shear, normal stresses, and static, dynamic friction coefficients, cohesion.

Figure 6. Effect of wave radiation on ring fault slip magnitude. (a) Regime diagram showing the effect of wave radiation on
ring fault slip. Red dashed box indicate the region inside of which the lumped model without accounting for wave radiation is
adequate for predicting coseismic slip magnitudes. Boxes labeled with volcano names indicate historic caldera collapses and
their corresponding location on the regime diagram. (b) Lumped model prediction of ring fault slip, δ, as a function of time,
assuming radiation damping of the form ϵAρcδ̇. ϵ: a factor of order unity encapsulating importance of wave radiation; δ̇: fault
slip rate; ρ, c, A: relevant density, wave speed, area. For ωH/ cm

p ≫ 1 and/or ωR/ cr
s ≫ 1, ϵ ∼ 1–2, otherwise ϵ < 1.
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collapse dynamics, and guide interpretations of observed waveforms. We set up an axisymmetric caldera system
(Figure 7a) due to large uncertainties regarding the chamber and ring fault geometries, although complex ring
fault geometries involving multiple fault strands or long‐wavelength roughness can be incorporated in the sim-
ulations. We assume a vertical ring fault, as inferred through modeling of coseismic deformation (Segall
et al., 2022). At Kıl̄auea, a geometrically simple, liquid‐dominated, sub‐caldera reservoir is supported by isotope
geochemistry (Pietruszka & Garcia, 1999) and decades of geodetic modeling of summit deformation, including
immediately prior to (K. Anderson et al., 2019) and after (Wang et al., 2021) the 2018 caldera collapse eruptions.
We therefore model the reservoir as a spheroidal cavity, filled with basaltic magma idealized as an inviscid,
acoustic (compressible) fluid (Table 1). The volume (5.5 km3), shape (prolate spheroid with an aspect ratio of
1.1), and depth to the top of the magma chamber (0.85 km) are approximately based on the median model inverted
from pre‐caldera collapse deformation (K. Anderson et al., 2019).

In the simulation, fault rupture is artificially nucleated in a circular region with a radius of 150 m and at a depth of
425 m, in the northwest quadrant of the ring fault by reducing the static friction coefficient inside the nucleation
region (Figures 7a and 7b; Table 1). The nucleation patch size is carefully selected to be slightly larger than the
critical dimension for spontaneous rupture propagation, so as to avoid artificially abrupt rupture nucleation. Due
to the axisymmetry of the caldera system, we duplicate receivers in 90° azimuthal intervals with respect to the
center of caldera block, such that only one simulation is required to obtain seismic waveforms for earthquakes
initiating at various quadrants of the ring fault. The initial normal stress, σ0, is assumed to be lithostatic, assuming
a constant rock density of 2.7 × 103 kg m−3 (Figure 7b). The initial shear stress, τ0, is assumed to be a linear
function of depth and everywhere 0.1 MPa below the static strength, fsσ0 + C (C: cohesion), except inside the
nucleation patch. Thus, the stress drop, τ0 − ( fdσ0 + C), increases as a function of depth. We adopt a composite 1D
elastic property model (Figure 7c) with attenuation. The elastic model uses the S‐wave velocity model of Sac-
corotti et al. (2003) for depths shallower than 1 km and that of Dawson et al. (1999) for depths between 1 and
2.5 km. The approximate velocity model of Lin et al. (2014) for the Kıl̄auea region is also shown for reference
(Figure 7c). The attenuation model uses a P‐wave quality factor, Qp = 100, obtained by approximately averaging
the 1D model from Lin et al. (2015) over the appropriate depth range, and a S‐wave quality factor, Qs = 50.

4.1. Simulated Rupture Propagation and Collapse

Fault slip initiates at time zero and propagates outwards. Because the stress drop is higher at depth (Figure 7b), the
rupture propagates slightly faster downwards than upwards. By 0.2 s, the ring fault rupture has reached the magma
chamber, but has not yet reached the surface (Figures 8a and 8b). The fault slip rate is the highest at the edge of the
expanding rupture due to high stress concentrations.

By 0.7 s, the ring fault rupture reaches the surface at the northwest of the caldera (Figures 8a and 8b). Waves
emanating from the fault enter the magma chamber, where downward propagating P‐waves are initiated (S‐waves
are not sustained due to the inviscid approximation for basaltic magma; Figure 8c). Meanwhile, rupture continues
to expand on the ring fault, allowing a large portion of the caldera block to subside. Subsidence on one side of the
caldera block results in a slight upward motion at the opposite side, similar to bending of an elastic beam (e.g., at
1.2 and 1.7 s in Figure 8c).

By 2.2 s, the rupture propagation phase around the ring fault completes, leaving the fault slipping everywhere. The
convergence of high slip rate fronts manifests as rapid downward motion inward of the ring fault and strong
upward ground velocity outside of the ring fault at the southeast (at 2.2 s in Figures 8a and 8c). This initial rupture
process is similar to that seen in 2D antiplane shear simulations on circular faults (O’Reilly et al., 2015).

By 2.7 s, the caldera block subsides relatively uniformly, further compressing the magma in the underlying
chamber, and gradually decelerates due to the increasing pressure at the bottom of the caldera block. Next we
quantitatively interpret synthetic near‐field waveforms in terms of collapse dynamics.

4.2. Interpretation of Seismic Wavefield in Terms of Collapse Dynamics

We divide the collapse dynamics into three stages based on interpretations of displacement waveforms, which,
due to the low‐pass filtering of time‐integration, are effectively quasi‐static motions in response to equivalent
seismic forces and moment. Each stage is identified based on a distinct phase (up/down or radially outward/
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inward) in the displacement waveforms. The time intervals of various stages are then used for identifying stages in
the velocity waveforms.

Stage 1 is characterized by rupture initiation and propagation around the ring fault (Figure 9a). When the rupture
initiates, the ring fault motion is dip‐slip on a locally planar fault, and motion outside of the ruptured ring fault is
that of elastic rebound. The dip‐slip motion is a double couple in terms of seismic source representation
(Figure 9b). Therefore, near the azimuth of rupture initiation, the tangential (i.e., azimuthal) component of particle
velocity is negligible, compared to the radial and vertical components (waveforms at receiver A in Figure 9c). As
the rupture expands, the stress concentration at the rupture front grows, resulting in higher slip rates at the rupture

Figure 8. Snapshots of a 3D caldera collapse simulation for Kıl̄auea 2018. For this particular simulation, rupture initiates on
the northwest corner of the ring fault, and ends approximately 7 s after rupture initiation, with 1.5 m of total slip. (a) Surface
vertical velocity. (b) Slip rate on the ring fault in the dip direction. Negative numbers indicate downward slip. (c) Vertical
velocity along the cross section marked in (a).
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front and more pronounced directivity effects. This translates to higher amplitude of initial wave arrivals at lo-
cations azimuthally farther away from the site of rupture initiation (waveforms at receiver B in Figure 9c). Once
the rupture is complete around the ring fault (at 2.2 s in Figure 8), the upward motion outside of the ring fault is
more appropriately construed as that due to an upward single force. In terms of mechanics, an upward single force
on the crust arises when the caldera block acquires downward momentum (Coppess et al., 2022; Wang
et al., 2022). In terms of seismic source representation, the downward force on the caldera block and upward force

Figure 9. Interpretation of near‐field waveforms in terms of collapse dynamics. (a) Vertical velocity in map (first row) and
cross section view (second row), with colors saturated to emphasize polarity of ground motion. Pressure change in fluid and
mean stress change in solid in cross section view (third row). The wavefield snapshots correspond to three stages of collapse.
(b) Seismic representations of collapse stages. (c) Three‐component velocity and displacement time series at two locations, A
and B, where waveform phases are color‐coded in correspondence to collapse stages. Radial and tangential are relative to the
surface center of the caldera block.
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on the surrounding crust arise due to cancellation of force couples in the radial directions once the entire fault is
slipping (Figure 9b). Because the caldera block is bounded by a free surface above and compressible magma
below, the caldera block attains substantial downward momentum over a period of a few seconds. The downward
momentum is transferred to the chamber by downward propagating P‐waves in the magma, which have yet to
reach the bottom of the chamber when the rupture completes around the ring fault (at 2.2 s). Therefore, receivers
outside of the ring fault only sense the upward motion due to the upward force (Figure 9c). Associated with the
upward force are strong Rayleigh waves, the evanescent character of which is apparent in the exponentially
decreasing particle velocity as a function of depth (e.g., the upward velocity at 2.2 s in Figure 8c).

Stage 2 is characterized by the pressurization of the magma chamber, as well as the deceleration of the caldera
block and magma column. This stage begins with the arrival of P‐waves at the bottom of the chamber (at 2.7 s in
Figure 8c), which injects downward momentum into the crust. Shortly after that, P‐waves reflected from the
bottom of the chamber reach the bottom of the caldera block, causing chamber‐wide pressurization (due to
chamber volume reduction and associated magma compression). The chamber pressure increase is the highest at
the bottom, and smaller in magnitude toward the top of the chamber (Figure 9a). Thus, chamber pressure increase
additionally resolves into an upward force on the caldera block and magma column, causing their deceleration.
The upward force on the caldera block and magma column is paired with a downward force on the crust
(Figure 9b). The chamber pressurization manifests as an expansion moment (Wang et al., 2022), but the
downward force dominates the expansion moment in the near‐field, resulting in a downward velocity and
displacement observable at all receivers (Figure 9c).

Stage 3 is characterized by the end of fault slip (at approximately 7 s) and a broad upward motion (Figure 9a),
followed by a downward motion. This upward motion is caused by an upward force on the crust, which is a
reaction force to the downward force on the magma and caldera block. The downward force manifests as a higher
pressure increase near the top of the chamber and a lower pressure increase at the bottom of the chamber
(Figure 9a). This pressure gradient arises due to the conversion of elastic strain energy in the crust and the magma
back into kinetic energy. The kinetic energy will eventually be converted into elastic strain energy, and a
downward force on the crust will then cause a downward motion on the surface. The upward‐downward force
cycle repeats with a period of 7 s, which can be viewed as the natural frequency of a harmonic oscillator
(Equation C5). The transient oscillations are superposed on an upward and radially outward static displacement
due to the pressurization of the chamber. Therefore, the seismic representation for this stage begins with an
upward force and an expansion moment (Figure 9b). The amplitude of ground displacement associated with each
cycle decreases over time, reflecting energy dissipation to seismic wave radiation. Because there is no net mass
loss to the system, the single force eventually returns to zero. The only static displacement remains is that due to
chamber pressurization.

We compare simulated velocity waveforms and static displacements with near‐field observations at Kıl̄auea for
selected collapse earthquakes in July 2018 (when collapses localized to a persistent ring fault structure around the
caldera; e.g., K. Anderson and Johanson (2022)). We focus on observations of individual earthquakes, rather than
observations stacked over multiple earthquakes (e.g., Segall et al., 2022; Wang et al., 2022), so that temporal
variability of earthquake dynamics may be revealed. Due to the complexity of structures underneath the volcano,
the 1D elastic property model adopted here is less accurate for modeling waveforms at stations farther away from
the caldera. Therefore, we focus on data‐simulation comparison at one accelerometer, UWE, which is only a few
hundred meters from the caldera rim (Figure 10a). A comparison with all available near‐field broadband and
accelerometer stations can be found in Figure S2 of the Supporting Information S1. Re‐located hypocenters
(Shelly & Thelen, 2019) indicate that collapse earthquakes initiate at different azimuths around the ring fault
(hypocenter locations in Figure 10a). We group the hypocenters into northwest (NW), southwest (SW), and
southeast (SE) quadrants (there are no collapse earthquakes with hypocenters on the northeast in July in the
catalog, which is shown in Table S1 of the Supporting Information S1), with the geodetically inverted centroid of
the Halema'uma'u reservoir (19°24′ 32.4″N, 155°16′ 39.72″W; see K. Anderson et al. (2019)) as the origin. We
select the waveforms from the last earthquake of each quadrant and compare them with the simulation, which is
time‐shifted based on alignment of stage 1 phase in observed and simulated displacement waveforms. For the
earthquake on July 21 (SW initiation), the vertical component of the simulated velocity waveform at UWE
matches reasonably well with observations (Figure 10b). The three stages of collapse previously identified in the
synthetic waveform can also be identified in the data. Inward of the caldera ring fault, the simulation predicts a
downward coseismic subsidence of 2.06 and 2.01 m at GNSS stations CALS and NPIT, respectively, closely
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matching with observed 2.56 m at CALS (the NPIT data is unavailable for this earthquake). Outward of the
caldera ring fault, simulated coseismic displacement underpredicts observed radial displacements at stations close
to the caldera rim, such as UWEV, CRIM, and BYRL, but reasonably predicts radial and vertical displacements at
other stations (Figures 10c and 10d). This is consistent with previous modeling showing that most of the static
displacement can be explained by coseismic pressure increase in a vertically oriented, prolate spheroidal chamber,
with displacements near the ring fault (in particular, at UWEV) potentially affected by asymmetry in chamber
geometry (Segall et al., 2020; Wang et al., 2022). The fit to velocity waveforms is slightly degraded for the
earthquake on July 28 (SE initiation), but the three stages can still be identified in the data. The fit to the
earthquake on July 31 (NW initiation) is poor. This degradation in fit is attributed to an initial phase in the data that
is not present in the simulation, a feature we later identify as a complex nucleation phase of the collapse
earthquake (Section 5.2).

In summary, we identify three stages of a caldera collapse earthquake from the simulation and determine their
seismic source representations. Stage 1 is the rupture initiation and propagation, which manifests initially as a
seismically equivalent double couple, and transitions into an upward single force. Stage 2 is the pressurization
of the chamber and the deceleration of the downward moving caldera block and magma, which manifests as an

Figure 10. Comparison of observed and simulated ground motions for selected earthquakes at Kıl̄auea summit in July, 2018. (a) Relocated (VLP) collapse earthquake
hypocenters color‐coded by depth and grouped into four quadrants. Curves delineate surface topographic features at the caldera. The gray region corresponds to the
approximate extent of the ring fault in 2018. Also shown are the location of accelerometer UWE, and intra‐caldera GNSS stations NPIT and CALS. (b) Observed and
simulated vertical velocity waveforms at accelerometer UWE, corresponding to three earthquakes with hypocenters on the NW, SW, and SE of the caldera. Sections of
the waveforms are color‐coded by the three stages of collapse (Section 4.2). Simulated velocity waveforms are time‐shifted based on alignment of stage 1 phase in
observed and simulated displacement waveforms. (c, d) Radial and vertical static coseismic displacements at various extra‐caldera GNSS stations (for the earthquake on
July 21), compared with simulation. Red circles in (a), (c), (d) show ring fault dimension and location in the simulation.
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expansion moment and downward single force. Stage 3 is the post‐collapse resonant oscillations, which
manifests as a static expansion moment and a transient single force in the vertical direction switching polarities
at the natural frequency of the system. Each stage is then identified in observed near‐field seismograms at
accelerometer UWE during the late stage of the Kıl̄auea caldera collapse of 2018, for collapse earthquakes
initiated on the southwest and southeast of the ring fault. For collapse earthquakes initiated on the northwest of
the ring fault, an initial phase in the observed waveforms is not captured in the simulation, the implication of
which is discussed in Section 5.2.

5. Discussion
5.1. Neglecting Seismic Radiation Overestimates Coseismic Chamber Pressure Increase and Interseismic
Duration

Existing models of caldera collapse neglect the effects of seismic wave radiation on collapse dynamics, which is
not justified when ωR/ cr

s ≫ 1 and/or ωH/ cm
p ≫ 1 (Section 3.2). Indeed, the larger the caldera ring fault radius, the

larger the chamber, the more compliant the crust, or the more compressible the magma, the less accurate the
solutions of coseismic slip and chamber pressure increase become when neglecting radiation damping
(Figure 6a). To emphasize this point, we estimate ωR/ cr

s and ωH/ cm
p for 4 instrumented basaltic caldera collapses

at Miyakejima in 2001, Piton de la Fournaise in 2007, Bárðarbunga in 2014, and Kıl̄auea in 2018, using various
constraints available in the published literature (Text S1 in Supporting Information S1). Accounting for large
uncertainties in parameters such as chamber dimensions and wave speeds, we find that all 4 caldera collapses
potentially overlap with the ωR/ cr

s ≫ 1 and/or ωH/ cm
p ≫ 1 regime, indicating that radiation damping is crucial for

accurately modeling these caldera collapses (Figure 6a).

Neglecting seismic radiation affects models of both individual collapse earthquakes and sequences of
earthquakes. For lumped models of individual collapse earthquakes (Gudmundsson et al., 2016; Kumagai
et al., 2001; Wang et al., 2022), neglecting radiation damping results in overestimation of coseismic stress
drop by up to a factor of two, and correspondingly, overestimation of chamber pressure increase and ring
fault slip by up to a factor of two (Figure 6b). For lumped models of earthquake sequences (Roman &
Lundgren, 2021; Segall & Anderson, 2021), neglecting radiation damping additionally results in over-
estimation of interseismic period. To demonstrate this point, we modify the lumped model of Segall and
Anderson (2021) to account for ring fault radiation and compare simulation results with and without ra-
diation damping. The Segall and Anderson model considers an axisymmetric caldera block bounded by
vertical ring faults, supported below by magma chamber pressure and on the side by shear stress. Magma
chamber pressure evolves with collapse induced chamber volume reduction and flank eruption fed by a
conduit with constant hydraulic connectivity. Shear stress evolves with rate‐and‐state velocity‐weakening
friction. We modify the Segall and Anderson model by adding a term of the form ϵ2πRLρrcr

sδ̇ (R: ring
fault radius, L: caldera block height, ρr: rock density, cr

s: crustal shear wave speed, δ̇: slip rate), such as in
Section 3.2, to the momentum balance equation of the caldera block. We perform two simulations, one with
full inertia of the caldera block (without wave radiation, or ϵ = 0), and one with ring fault wave radiation
in addition to inertia (ϵ = 1). Simulations that neglect seismic wave radiation lead to an overestimation of
coseismic chamber pressure increase (Figure 11a) and coseismic slip (Figure 11b), compared to simulations
that include radiation damping, in agreement with those predicted by models of individual collapse
earthquakes (Figure 6b). Importantly, neglecting seismic wave radiation leads to an overestimation of
interseismic period, the part of the earthquake cycle defined by low slip rate, δ̇, and increasing shear stress,
τ (the extreme left portion of the phase portraits in Figure 11c). For caldera collapse earthquakes, inter-
seismic stressing rate on the caldera ring fault is controlled by the rate of chamber depressurization (Roman
& Lundgren, 2021; Segall & Anderson, 2021; Wang et al., 2023). For a given interseismic stressing rate,
reduced stress drop during coseismic period (the extreme right portion of the phase portraits in Figure 11c)
due to radiation damping results in shorter time to reach a threshold stress for earthquake nucleation (the
top portion of the phase portraits in Figure 11c).

In summary, lumped models with radiation damping (Appendix C) appropriately tuned to a specific caldera using
the proposed regime diagram (Figure 6a) are useful for interpreting near‐field seismograms at periods longer than
the duration of rupture propagation, inferring ring fault averaged friction, estimating chamber volume/
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compressibility, as well as predicting interseismic intervals and ring fault slip magnitudes. However, even though
closed‐form expressions for radiation damping can be derived for various idealized cases (e.g., axisymmetric,
antiplane shear slip on a circular fault, Equation B13), the precise form of radiation damping varies with the
geometry of the caldera system. Future studies could use dynamic rupture simulations to establish lumped ra-
diation damping terms as a function of ωR/ cr

s and ωH/ cm
p , accounting for caldera block and chamber aspect

ratios. For questions related to rupture propagation, spatially varied fault friction/stress, and transient magma
flows in the underlying chamber, 3D dynamic rupture simulations are required.

5.2. Earthquakes on the Northwest of the Kıl̄auea Caldera Exhibit Complex Nucleation Phase

We observe that, the simulated velocity waveforms at UWE do not explain the initial phase in the observed
waveform for the last earthquake initiated in the NW of the caldera (Figure 10b). Here we seek to understand
this unexplained initial phase. We limit the observation period to July 1–July 31 2018, covering the last 22
collapse earthquakes (relocated hypocenters are unavailable for collapse events on July 2 and July 8 2018,
therefore excluded from analysis; VLP earthquake catalog in Table S1 of the Supporting Information S1).
When grouping the collapse earthquakes by hypocenter location, a consistent pattern emerges: at accelerometer
UWE, velocity waveform onset is more emergent and complex for earthquakes initiated in the NW quadrant
(except the earthquakes on July 15 and 20), whereas waveform onset is more impulsive for earthquakes
initiated in the SW and SE quadrants (Figure 12a). Displacement waveforms (twice integrated from acceler-
ation for accelerometers and once integrated from velocity for broadband seismometers) show a distinct initial
phase for earthquakes initiated in the NW that is absent for those initiated in the SW and SE, despite that all
three waveforms contain common phases associated with the three stages of collapse (Figure 12b). The
presence of this initial phase at stations at a range of azimuths and distances relative to the ring fault suggests
that this phase did not arise from path effects (Figure 12c). The absence of this initial phase in simulated

Figure 11. Effect of seismic wave radiation on collapse earthquake sequence. Simulations are done with the lumped model of
Segall and Anderson (2021), modified to account for seismic wave radiation from the ring fault. The original model considers
an axisymmetric caldera block bounded by a vertical ring fault, supported below by magma chamber pressure and on the side
by shear stress. Magma chamber pressure evolves with collapse induced chamber volume reduction and flank eruption fed by
a conduit with constant hydraulic connectivity. Shear stress evolves with rate‐and‐state velocity‐weakening friction.
(a) Magma chamber pressure, p, over multiple collapse cycles. Pressure surges due to each collapse‐induced reduction in
chamber volume, and subsequently decreases exponentially due to flank eruption. (b) Cumulative ring fault slip, δ, over
multiple collapse cycles. (c) Phase portrait in the fault slip rate (δ̇)—friction coefficient (τ/σ; τ, σ: ring fault shear stress,
normal stress, respectively) space. At a fixed interseismic loading rate, fault stress recovers to a critical level in shorter time
when coseismic stress drop is reduced by radiation damping, resulting in a shorter interseismic period.
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displacement waveforms suggests that this phase is associated with source complexities not captured in the
simulation.

The irregular shape and low amplitude of this initial phase, followed by a rapid ramp up in displacement, are
characteristic of earthquake nucleation phases (Ellsworth & Beroza, 1995). On tectonic faults, the nucleation
phase is interpreted in terms of two conceptual models, the cascade model and the pre‐slip model (Ellsworth &
Beroza, 1995), or a mixture of both on rough faults (Cattania & Segall, 2021). In the cascade model, a large
earthquake occurs when a small earthquake triggers a cascade of increasingly large‐slip earthquakes. In the pre‐
slip model, earthquake occurs when an aseismically slipping fault patch grows beyond a critical size. We can
not rule out either interpretation for earthquakes initiated on the NW without quantitative comparisons between
the initial moment rate history of the VLP collapse earthquakes and closely located Mw = 2.4 – 4.2 volcano
tectonic (VT) earthquakes in between collapse earthquakes (Shelly & Thelen, 2019). However, we note that,
models that invoke smaller earthquakes breaking out to become large collapse earthquakes are potentially more
favorable, as it has been shown that the seismically observed onset of a collapse (VLP) earthquake in the SE is
similar to that of a much smaller magnitude, but closely located, VT earthquake (Segall et al., 2024). Other
observations, such as the gap in the frequency‐magnitude distribution between large VT earthquakes and VLP
earthquakes, as well as increasing magnitudes of VT earthquakes leading toward the VLP earthquakes, also

Figure 12. Evidence of complex nucleation phase for earthquakes initiated on the NW section of the ring fault. (a) Three columns show observed, unfiltered, vertical
velocity waveforms at accelerometer UWE, categorized by the quadrants in which the collapse (VLP) earthquake hypocenter locates. (b) Simulated vertical
displacement waveform is compared to observed waveforms at UWE. Observed waveforms correspond to collapse earthquakes with hypocenters in the NW, SW, and
SE quadrants. The simulated waveform is time‐shifted based on alignment of stage 1 phase in observed and simulated displacement waveforms. Various stages of
collapse (Section 4.2) are identified in both synthetic and observed waveforms at UWE. (c) Zoomed‐in view of vertical displacement onset for the July 31 earthquake at
various stations (see map in lower right), showing the presence of a nucleation phase at all available near‐field stations. Vertical dashed lines demarcate the onset of the
nucleation phase and its transition to dynamic rupture. Waveforms are normalized by displacement magnitude 5 s after onset (where the dashed line on the right
intersects the waveforms).
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support this interpretation (Segall et al., 2024). The fact that the nucleation phase is the most distinct for
earthquakes initiated on the NW of caldera indicates strong fault heterogeneity at that location. This hetero-
geneity may reflect underlying variability in velocity strengthening/weakening friction, as suggested by the
simultaneous occurrence of meter‐per‐day interseismic creep and episodic collapse earthquakes (Wang
et al., 2023), or variability in fault roughness.

6. Conclusions
We present the first 3D dynamic rupture simulation for basaltic caldera collapse, building on the open‐source
software, SeisSol, with extended capability of simulating collapse with silicic magma. The model captures
dynamically coupled ring fault rupture initiation and propagation, caldera block subsidence, chamber pres-
surization, as well as seismic waves in both the solid crust and magma. We perform simulations to (a) un-
derstand controls on the duration and magnitude of caldera collapse earthquakes, and (b) guide interpretations
of near‐field seismic waveforms in terms of collapse dynamics. We find that seismic wave radiation at both
the ring fault and the caldera block/magma interface reduce the coseismic ring fault slip magnitude by up to a
factor of two, while having negligible effects on slip duration. Seismic radiation is particularly important for
calderas with large ring fault radii, large chamber volume, highly compliant crust, or highly compressible
magma. To guide future modeling and data interpretation studies, we developed a regime diagram quantifying
the importance of radiation damping, based on both simulations and theoretical derivations. We also find that,
similar to slip rate dependent damping due to seismic wave radiation, magma viscosity appropriate for silicic
magmas reduces caldera collapse magnitude significantly. We specialize the simulation for the 2018 caldera
collapse of the Kıl̄auea volcano. A comparison between synthetic and observed near‐field seismic waveforms
reveals that, the full sequence of collapse earthquake dynamics, from nucleation, rupture propagation, to the
end of ring fault slip, as well as magma chamber dynamics, from deceleration of the downward‐moving
magma column, chamber pressurization, to the resonant oscillations after ring fault slip ends, are well re-
flected in unfiltered near‐field waveforms. Dynamic rupture simulations reveal unprecedented details of
caldera collapse mechanics and allow for quantitative interpretations of near‐field seismic data in terms of the
dynamics. Future studies of caldera collapse earthquakes may utilize these simulations to further establish
quantitative relationships between seismic, geodetic, observations and conceptual models of caldera collapse
dynamics.

Appendix A: Modeling Silicic Magma With Maxwell Rheology
Here we present a method to approximate the constitutive equations for a homogeneous, isotropic, Maxwell
material with relaxation in deviatoric stresses, using the built‐in seismic wave attenuation feature of SeisSol.

First we derive the target constitutive equations. For linear viscoelastic materials in general, the stress tensor, σij,
depends on the history of the strain tensor, ϵij (Christensen, 2012; Uphoff, 2020):

σij(t) = Gc
ijkl ∗ ϵ̇kl, (A1)

where ∗ denotes convolution and over‐dot indicates time derivative. Gc
ijkl is the short hand notation for Gijkl(t)H(t),

where Gijkl(t) is a fourth order tensor that can be decomposed, assuming isotropic material response, into a bulk
relaxation function, G1(t), and a deviatoric relaxation function, G2(t) (Christensen, 2012; Uphoff, 2020):

Gijkl(t) =
1
3

(G2(t) − G1(t))δijδkl +
1
2

G1(t)(δikδjl + δilδjk), (A2)

where δij denotes the Kronecker delta.

To obtain G1(t) and G2(t) for a Maxwell material with relaxation only in deviatoric stresses, we first decompose σij

as the summation of the mean stress, σkk/3, and the deviatoric stress tensor, σ′ij:

σij = σ′ij +
1
3

σkkδij, (A3)
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where repeated indices indicate summation. A similar decomposition is performed on the strain rate tensor, ϵ̇ij into
the dilation rate, ϵ̇kk/3, and deviatoric strain rate, ėij:

ϵ̇ij = ėij +
1
3

ϵ̇kkδij. (A4)

The elastic deviatoric strain rate, ėe
ij and viscous deviatoric strain rate, ėv

ij, are additive, so σ′ij satisfies:

ėij = ėv
ij + ėe

ij

=
σ′ij

2ηm
+

σ̇′ij

2μm
,

(A5)

where μm and ηm are the magma shear modulus and shear viscosity, respectively. In the rest of this section all
quantities are associated with magma and we omit the subscript “m.” Similarly, the elastic dilation rate, ϵ̇e

kk/3, and
viscous dilation rate, ϵ̇v

kk/3, are additive, so σkk satisfies:

ϵ̇kk = ϵ̇v
kk + ϵ̇e

kk

=
σkk

3ξ
+

σ̇kk

3K
,

(A6)

where K and ξ are the magma bulk modulus and bulk viscosity, respectively.

Solving Equations A5 and A6, we obtain

σ′ij = 2μe−
μ
ηtH(t) ∗ ėkk, (A7a)

σkk = 3Ke−K
ξtH(t) ∗ ϵ̇kk. (A7b)

We assume that there is no mean stress relaxation, so σkk is not history‐dependent:

σkk/3 = Kϵkk = −p, (A8)

where p is the mechanical pressure. Therefore, the target relaxation functions for a Maxwell material are of the
following form:

GM
1 (t) = 2μe−

μ
ηt, (A9a)

GM
2 (t) = 3K. (A9b)

Equations A9a and A9b is what we ideally seek to solve numerically. Unfortunately, this cannot be done using the
current implementation of viscoelastic attenuation in SeisSol. Next we show how Equations A9a and A9b can be
approximated using the attenuation feature of SeisSol.

SeisSol uses a Generalized Maxwell Body (GMB) to approximate G1(t) and G2(t) of arbitrary forms. For a GMB
of N Maxwell bodies, the relaxation functions are of the following form:

ν = 1,2 : Gc
ν(t) = (Y0ν + ∑

N

n=1
Ynνe−ωnνt) H(t), (A10)

where ωnν = Ynν/ηnν is the reciprocal of the Maxwell relaxation time.

Combining Equations A1, A2, and A10 yields the stress‐strain relationship for a GMB:
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σij =
1
3

(Gc
2 − Gc

1 )δij ∗ ϵ̇kk + Gc
1 ∗ ϵ̇ij

=
1
3

Gc
2 δij ∗ ϵ̇kk + Gc

1 ∗ (ϵ̇ij −
1
3

δijϵ̇kk)

=
1
3

Gc
2 δij ∗ ϵ̇kk + Gc

1 ∗ ėij

=
1
3

(Y02 + ∑
N

n=1
Yn2e−ωn2t) H(t)δij ∗ ϵ̇kk + (Y01 + ∑

N

n=1
Yn1e−ωn1t) H(t)δij ∗ ėij.

(A11)

At this point, to obtain Equations A9a and A9b exactly, we simply set N = 1, Y01 = 0, Y11 = 2μ, ω11 = μ/η,
Y02 = 3K, Y12 = 0, and ω12 = 0. However, a major hurdle is that SeisSol utilizes the same set of ωnν for the bulk
(ν = 2) and deviatoric relaxation functions (ν = 1). This implementation reduces memory requirements for

computation, but constrains the accuracy of the approximation.

Therefore, to approximate Equations A9a and A9b, we optimize for Y01, Y02, Yn1, Yn2, ωn1, and ωn2 such that the
following sum of L2 norm of residual is minimized:

L2 = ‖(Y01 + ∑
N

n=1
Yn1e−ωn1t) − 2μe−

μ
ηt‖2 + ‖(Y02 + ∑

N

n=1
Yn2e−ωn2t) − 3K‖2. (A12)

The inversion code is provided. In practice, the desired relaxation functions cannot always be approximated well
using the GMB, due to a couple of constraints. First, due to implementation considerations in SeisSol, ωnν are
required to be evenly spaced in log space and Y01, Y02, Yn1, Yn2 are non‐trivially interdependent. Second, although
increasing the number of mechanisms theoretically increases the ability of GMB to approximate any relaxation
function, the larger the number of mechanisms, the higher the computation cost. Thus, we limit our approximation
to 9 mechanisms, which reasonably approximate the rheology of typical intermediate and silicic magmas
(Figure A1).

Figure A1. Example target relaxation functions for Maxwell materials, GM
1 , GM

2 , and corresponding SeisSol approximations,
G1, G2, using 9 Maxwell bodies. (a) Magma of intermediate silicic composition with large amount of exsolved volatiles. The
target relaxation functions are specified with the parameters: μ = 105 Pa, η = 105 Pa s, ρ = 2.2 × 103 kg m−3, K = 109 Pa.
(b) Magma of high silicic composition with small amount of exsolved volatiles. The target relaxation functions are specified
with the parameters: μ = 107 Pa, η = 108 Pa s, ρ = 2.7 × 103 kg m−3, K = 1010 Pa. τM = η/μ: target Maxwell relaxation time.
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Appendix B: Seismic Wave Radiation Through Ring Fault
We investigate the effect of ring fault seismic wave radiation on caldera collapse dynamics through frequency
domain solutions for slip on a circular ring fault (Figure B1a). We restrict attention to the 2D antiplane shear
problem and thus neglect variations with depth. Elastic properties are allowed to differ inside and outside of the
ring fault. The analysis focuses on the relationship between impedance, Ẑ (defined as the ratio of ring fault stress
change and slip rate in frequency domain), and the dimensionless parameters, ωR/ c−

s , μ−/μ+, ρ−/ρ+. ω = 2πf is
the angular frequency, cs the crustal S‐wave speed (superscript r is dropped from now on for simplicity), R the ring
fault radius, μ the shear modulus, and ρ the crustal density. “−” and “+” signs denote inside and outside of the ring
fault, respectively.

For axisymmetric fault slip (uniform slip rate at all azimuths of the ring fault), we find that, when ωR/ c−
s ≪ 1, Ẑ

takes the form of caldera block inertia (caldera block is effectively rigid and its response dependent only on the
block's acceleration and its total mass); quasi‐static deformation and wave radiation outside of the ring fault has
negligible influence on fault slip (Figure B1b). When ωR/ c−

s ≫ 1, Ẑ takes the form of radiation damping on
planar faults, modulated by troughs corresponding to resonance frequencies. Resonance effects are particularly
strong when the shear modulus inside of the ring fault is low compared to that outside of the ring fault (Figure B1b
inset). For asymmetric fault slip (slip concentrates on one side of the ring fault), a scenario relevant to trap‐door
faulting at certain calderas (Amelung et al., 2000; Sandanbata et al., 2022) and the initiation of caldera collapse
earthquakes, we show that, when ωR/ c−

s ≪ 1, Ẑ is influenced by quasi‐static deformation of the caldera block
(Figure B1c), in addition to inertia. When ωR/ c−

s ≫ 1, Ẑ can be approximated with radiation damping on planar
faults. Asymptotic approximations of Ẑ in the ωR/ c−

s ≪ 1 limit, as well as radiation damping approximation in
the ωR/ c−

s ≫ 1 limit, may be combined to derive a lumped parameter model for caldera trap‐door faulting
(Figure B1e).

We assume an isotropic, linear elastic full space, and consider the 2D antiplane shear problem of slip on a ring
fault that is infinite and invariant in the z direction (Figure B1a). Conservation of momentum and linear elasticity
yield the cylindrical coordinates scalar wave equation for displacement in z direction, w(t, r, θ):

1
c2

s

∂2w
∂t2 =

∂2w
∂r2 +

1
r

∂w
∂r

+
1
r2

∂2w
∂θ2 , (B1)

where cs takes the form of c−
s inside of the ring fault and c+

s outside of the ring fault. Next we Fourier transform
Equation B1 in time, t, adopting the following convention for Fourier transform and its inverse transform,

F( f (t)) = ∫

∞

−∞
f (t)eiωtdt, (B2a)

F−1 (f̂ (ω)) = ∫

∞

−∞
f̂ (ω)e−iωtdω, (B2b)

respectively. We then seek Fourier series solutions in azimuthal angle, θ

∂2ŵ
∂r2 +

1
r

∂ŵ
∂r

+ (−
n2

r2 +
ω2

c2
s

) ŵ = 0, (B3)

where n is the dimensionless azimuthal order in θ. To satisfy the periodic boundary condition, w(θ = 0) = w
(θ = 2π), n must be non‐negative integers: n = {0, 1, 2, …}.

Equation B3 is the transformed Bessel's equation (Bowman, 2012), with general solutions of the form:

ŵ = ∑
∞

n=1
ŵnei2πnθ, (B4)

where,
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Figure B1. Effect of shear wave radiation on caldera collapse dynamics, in terms of Fourier‐domain impedance to ring fault
slip. (a) Schematic of the 2D antiplane shear ring fault slip problem. r: radial distance; θ: azimuthal angle; R: ring fault radius.
Note elastic properties (μ, ρ) inside and outside of the ring fault can be different. (b) Nondimensionalized impedance for the
axisymmetric mode, Z̃0, for μ−/μ+ = 1 and ρ−/ρ+ = 1. Inset shows Z̃0 at ρ−/ρ+ = 1 and μ−/μ+ between 10−2 and 102.
(c) Nondimensionalized impedance for the tilting mode, Z̃1, for μ−/μ+ = 0.1, ρ−/ρ+ = 1. (d) Schematic illustrating building
asymmetric slip, δ̂asymmetric(θ,ω), with n = 0 mode (axisymmetric mode) and n = 1 mode (tilting mode). δ̂n(θ,ω): fault slip
Fourier‐transformed in time associated with azimuthal mode, n, and at angular frequency, ω. Note the slip is normalized by the
frequency dependent slip amplitude, D(ω). (e) Real and complex components of the nondimensionalized impedance for
asymmetric ring fault slip, Z̃asymmetric, illustrating the possibility of building a lumped model for trap‐door faulting. Note
asymptotic limits are labeled in dimensional forms for ease of recognition.
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ŵn = C1
n Jn (

ωr
cs

) + C2
n Yn (

ωr
cs

). (B5)

Jn and Yn denote Bessel functions of the first and the second kind (of order n), respectively, representing standing
waves. C1

n and C2
n are arbitrary constants associated with each order. Because lim

x→0
Yn(x) is unbounded, the general

solution for displacement inside of the ring fault, ŵ−
n is:

ŵ−
n = C1

n Jn (
ωr
c−

s
). (B6)

To seek the general solution for displacement outside of the ring fault, we re‐write Equation B5 in terms of the
Hankel function of the first kind, H(1)

n , a linear combination of Jn and Yn that represents outward traveling waves:

ŵn = C3
n Jn (

ωr
cs

) + C2
n H(1)

n (
ωr
cs

), (B7a)

C3
n = C1

n + iC2
n (B7b)

Because of the infinite domain assumption, the only valid solution outside of the ring fault is that of outward
traveling waves:

ŵ+
n = C2

n H(1)
n (

ωr
c+

s
). (B8)

For the Fourier series solution, the only relevant stress change is that of rz component of the stress tensor at order
n, which we denote as Δτ̂rz,n. The stress changes are obtained from Hooke's law as

Δτ̂−
rz,n = C1

n
μ−ω
c−

s
(Jn−1 (

ωr
c−

s
) −

nc−
s

ωr
Jn (

ωr
c−

s
)), (B9a)

Δτ̂+
rz,n = −C2

n
μ+ω
c+

s
(H(1)

n+1 (
ωr
c+

s
) −

nc+
s

ωr
H(1)

n (
ωr
c+

s
)). (B9b)

Defining the one‐sided impedance as the function relating stress changes and particle velocity immediately inside
and outside of the ring fault, we have:

Ẑ−

n ≡
Δτ̂−

rz,n
−iωŵ−

n

⃒
⃒
⃒
⃒
r=R

=
iμ−

c−
s

(
Jn−1 (ωR/c−

s )

Jn (ωR/c−
s )

−
nc−

s
ωR

), (B10a)

Ẑ+

n ≡ −
Δτ̂+

rz,n
−iωŵ+

n

⃒
⃒
⃒
⃒
r=R

= −
iμ+

c+
s

(
H(1)

n+1 (ωR/c+
s )

H(1)
n (ωR/c+

s )
−

nc+
s

ωR
). (B10b)

We define slip on the ring fault as δ̂n ≡ ŵ−
n − ŵ+

n
⃒
⃒
r=R. It follows that the total impedance to ring fault slip, Ẑn, is

Ẑn ≡
Δτ̂rz,n

−iωδ̂n

⃒
⃒
⃒
⃒
r=R

=
Ẑ−

n Ẑ+

n

Ẑ+

n + Ẑ−

n

. (B11)

Note that Δτ̂rz,n|r=R = Δτ̂−
rz,n|r=R = Δτ̂+

rz,n|
r=R.

For visualization, Equations B10a, B10b, and B11 are nondimensionalized with μ−/ c−
s , and their magnitudes

plotted numerically (Figure B1b) as a function of ωR/ c−
s , μ−/μ+, ρ−/ρ+:
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Z̃−

n = i(
Jk−1 (ωR/c−

s )

Jk (ωR/c−
s )

−
nc−

s
ωR

), (B12a)

Z̃+

n = −i(
μ+

μ−
)(

μ−

μ+
)

1/2

(
ρ+

ρ−
)

1/2

×

⎛

⎜
⎜
⎜
⎝

H(1)
k+1 [(ωR/c−

s )(μ−/μ+)
1/2

(ρ+/ρ−)
1/2

]

H(1)
k [(ωR/c−

s )(μ−/μ+)
1/2

(ρ+/ρ−)
1/2

]
−

nc+
s

ωR
(
μ−

μ+
)

−1/2

(
ρ+

ρ−
)

−1/2

⎞

⎟
⎟
⎟
⎠
,

(B12b)

where crustal density, ρ, arises from combining shear modulus and wave speeds (e.g., ρ− = μ−/ (c−
s )

2). In the
analyses below, we derive the asymptotic approximations for the axisymmetric mode impedance Ẑ0 to gain
insight on how wave radiation impacts ring fault slip.

When the wavelength is small compared to the radius (ωR/cs ≫ 1), the fault is effectively planar at the length scale
of the wavelength and separates two semi‐infinite half spaces. In this limit, we seek the large argument expansion
of Equation B10b in ωR/ c+

s and obtain the radiation damping limit of impedance:

Ẑ+

0 = −
μ+

c+
s

. (B13)

Equation B13 is recognized as the radiation damping limit of impedance on one side of a planar bi‐material fault
for antiplane shear (Geubelle & Breitenfeld, 1997). Note that different from a planar fault, a ring fault does not
have a radiation damping limit of impedance inward of the fault due to resonance associated with the length scale
of the ring fault (Figure B1b).

When the wavelength is large compared to the radius (ωR/cs ≪ 1), particle motions are approximately uniform
within the caldera block. In this limit, we seek the Taylor series expansion of Equations B10a and B10b in ωR/cs

about zero and keep the leading terms:

Ẑ−

0 =
−iωρ−R

2
, (B14a)

Ẑ+

0 =
μ+

−iωR(log(ωR
2c+

s
) + γ − iπ/2)

, (B14b)

where γ is the Euler–Mascheroni constant. The leading term of Ẑ−

0 represents the impedance due to caldera block

inertia (Figure B1b). To see this, consider the caldera block inertia term, mδ
..

, (Equation C1) in the lumped
parameter model (Kumagai et al., 2001; Wang et al., 2021). When mδ

..

is normalized by the area of the ring fault,
2πRL, the term has the unit of stress change. Examining the Fourier transform of the term,

F{mδ
..

}

2πRL
=

πR2Lρ−(−iω)

2πRL
(−iωδ̂) =

−iωρ−R
2

(−iωδ̂), (B15)

reveals that the leading term of Ẑ−

0 (ωR/ c−
s → 0) indeed represents the impedance due to caldera block inertia.

The leading term of Ẑ+

0 can be interpreted as quasi‐static effects modulated by waves (Figure B1b). −μ+/(iωR) is
of the form of quasi‐static stiffness, with characteristic length scale R. The wave effects are indicated by the

frequency dependence of the modifier, (log(ωR
2c+

s
) + γ − iπ/2)

−1
.

In light of the above interpretations for Ẑ−

0 and Ẑ+

0 , we can see that Ẑ0 is dominated by caldera block inertia in the
limit of ωR/ c−

s ≪ 1, and dominated by wave‐mediated radiation damping in the limit of ωR/ c−
s ≫ 1 (Figure B1b).
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In the ωR/ c−
s ≫ 1 limit, when μ−/μ+ ≪ 1, Ẑ0 → Ẑ−

0 and resonance effects within the ring fault are pronounced.
Thus the impedance deviates significantly from that of shear slip on planar faults. When μ−/μ+ ≫ 1, Ẑ0 → Ẑ+

0 and
resonance effects are subdued (Figure B1b, inset). Thus the impedance is well approximated with that of planar
fault radiation damping with a pre‐factor of two. Density contrast across the ring fault has similar effects as that of
shear modulus contrast.

Some basaltic calderas exhibit trap‐door faulting, which is well documented through geodetic, seismic obser-
vations on land (Amelung et al., 2000) and tsunami observations in the ocean (Sandanbata et al., 2022). During
trap‐door faulting, the caldera ring fault exhibits high‐angle reverse slip at some azimuths, while the rest of the
ring fault remains largely locked. This is kinematically similar to the initiation of a caldera collapse earthquake,
where the ring fault initially ruptures a small azimuthal portion of the fault, albeit with the opposite sense of fault
slip. In both cases, slip is asymmetric with regard to the azimuth of the ring fault. We can gain insight into the
dynamics of asymmetric slip by constructing its impedance with those of the axisymmetric mode (n = 0; uniform
slip rate at all azimuths) and the tilting mode (n = 1; upward slip rate on half of the azimuths and downward slip
rate on the other half without net vertical translation of the caldera block) of slip.

Following the same procedure as for the axisymmetric mode of slip, we seek asymptotic approximations to the
impedance of the tilting mode (Figure B1c). We find that, when the wavelength is small compared to the radius
(ωR/cs ≫ 1), impedance outside of the ring fault again takes the form of planar fault radiation damping:

Ẑ+

1 = −
μ+

c+
s

. (B16)

When the wavelength is large compared to ring fault radius (ωR/cs ≪ 1), impedance takes the form of:

Ẑ−

1 =
μ−

−iωR
, (B17a)

Ẑ+

1 = −
μ+

−iωR
. (B17b)

Equations B17a and B17b is recognized as quasi‐static effects with fault stiffness μ/R, similar to that identified on
planar faults (Dieterich, 1979). Quasi‐static effects arise because asymmetric ring fault slip strains the caldera
block, unlike in the axisymmetric case where motions within the block are dominated by vertical translation.

We can define the asymmetric slip as the average of the axisymmetric and tilting modes,

δ̂asymmetric(θ,ω) ≡
1
2

(δ̂0 + δ̂1)

=
D(ω)

2
(1 + ei2πθ),

(B18)

yielding a slip profile sinusoidal in azimuth, smoothly varying between zero and a frequency‐dependent
amplitude, D(ω) (Figure B1d).

The ring fault stress change for the asymmetric slip is the superposition of the stress change due to the
axisymmetric and tilting modes. Also recognizing that stress change is linear in slip rate via impedance, we have,

Δτ̂asymmetric(θ,ω) =
1
2

(Δτ̂0(ω) + Δτ̂1(ω)ei2πθ)

= −iω
D(ω)

2
(Ẑ0(ω) + Ẑ1(ω)ei2πθ),

(B19)

where subscript “rz” for stress change is omitted and subscript 0, 1 denote values for azimuthal order, n. We
define the impedance for asymmetric slip as the frequency‐dependent factor relating slip rate and stress change at
θ = 0, thus yielding:
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Ẑasymmetric ≡
1
2

(Ẑ0(ω) + Ẑ1(ω)). (B20)

Note that there is inherent ambiguity in defining the impedance for asymmetric slip, because δ̂asymmetric and
Δτ̂asymmetric have different angular dependence. An alternative choice would be to define impedance using
spatially averaged δ̂asymmetric and Δτ̂asymmetric. The real and imaginary components of the nondimensionalized
Ẑasymmetric are plotted numerically (Figure B1e) for μ−/μ+ = 1 and ρ−/ρ+ = 1 (and the expressions that follow are
specific to this assumption). We observe that, in the ωR/ c−

s ≫ 1 limit, the real component of Ẑasymmetric dominates
the imaginary component, and Ẑasymmetric can be modeled with plane wave radiation damping, −μ−/ (2c−

s ). In the
ωR/ c−

s ≪ 1 limit, Ẑasymmetric has the following asymptotic limit:

Ẑasymmetric =
2iμ−

c−
s

(1 + 4γ − 2πi + 4 log
ωR
2c−

s
)

−1

(
ωR
c−

s
)

−3

. (B21)

Future work can utilize these frequency domain asymptotes for impedance to construct time domain lumped
parameter models of trap‐door faulting at caldera ring faults.

Appendix C: Seismic Wave Radiation Approximation in Lumped Model
Here we examine the effect of radiation damping on collapse dynamics, in the lumped parameter limit. For a rigid,
cylindrical, caldera block surrounded by rigid crust, situated above an axisymmetric magma chamber filled with
inviscid fluid, the momentum balance for the caldera block, with the initial equilibrium state subtracted, is
(Kumagai et al., 2001):

mδ
..

= −2πRLΔτ − πR2Δp, (C1)

where R is the radius of the caldera block, L the height of the caldera block. δ, Δp, Δτ are the time dependent fault
slip, chamber pressure change, and shear stress change, respectively. All changes are relative to initial states prior
to collapse. The term on the left hand side is the caldera block inertia. The terms on the right hand side are changes
in force due to the ring fault shear traction, and changes in force due to chamber pressure, respectively.

The pressure change can be related to fault slip via:

Δp =
πR2

βV
δ +

ϕmf

πR2 δ
..

+ ϵm
p ρmcm

p δ̇, (C2)

where ρm is magma density, β the combined compressibility of magma chamber wall and magma, V the magma
chamber volume, mf is the mass of magma in the reservoir, cm

p is P‐wave speed in the magma, and ϕ the fraction of
total magma mass acting as inertial added mass impeding caldera block motion. ϵm

p is a dimensionless constant of
order unity, encapsulating the importance of wave radiation. The first and second term on the right hand side are
due to chamber storativity and inertia imparted by the magma, respectively (Wang et al., 2022). The third term is
P‐wave radiation damping in the magma.

The shear stress change is related to fault slip via:

Δτ = T (δ) + ϵr
s ρrcr

sδ̇, (C3)

where ρr is the rock density, cr
s the S‐wave speed in the crust. The first term is the quasi‐static stress change with

nonlinear dependence on δ, determined a priori with static‐dynamic friction:

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028280

WANG ET AL. 29 of 32

 21699356, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028280 by Stanford U
niversity, W

iley O
nline Library on [03/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



T (δ)

⎧⎪⎪⎨

⎪⎪⎩

= 0 for δ = 0

= (fd − fs)σ for 0 < δ < δmax

= 2(fd − fs)σ for δ = δmax

, (C4)

where fs is the static friction, fd the dynamic friction, and σ the spatially uniform, constant ring fault normal stress.
The second term on the right hand side of Equation C3 is S‐wave radiation in the crust. Substituting Equations C2
and C3 into Equation C1, and grouping terms based on order of derivatives, we obtain:

m′δ
..

+ (2πRLϵr
s ρrcr

s + πR2ϵm
p ρmcm

p )δ̇ + 2πRLT (δ) +
π2R4

βV
δ = 0, (C5)

where m′ = m + ϕmf. ϵr
s and ϵm

p can be estimated via the regime diagram (Figure 6a). ϵr
s = 1 when ωR/ cr

s ≫ 1 and
ϵr

s = 0 when ωR/ cr
s ≪ 1. Similarly, ϵm

p = 1 when ωH/ cm
p ≫ 1, and ϵm

p = 0 when ωH/ cm
p ≪ 1. Note that the two

radiation damping terms can be concisely written with the general expression, ϵAρcδ̇, with ϵ, A, ρ, and c
correspond to relevant dimensionless number, surface area, density, and wave speed for P‐ or S‐waves.

Data Availability Statement
All numerical simulations are performed using open source software SeisSol (Uphoff et al., 2022). Selected input
files for benchmark and Kıl̄auea case simulations are available via Zenodo (Wang et al., 2024). Scripts for
optimizing for SeisSol input parameters approximating the relaxation functions of Maxwell rheology and for
demonstrating the effects of wave radiation on collapse earthquakes are also available via Zenodo (Wang &
Dunham, 2024). GNSS data are available through UNAVCO archive (USGS Hawaiian Volcano Observatory
(HVO), 2008). Accelerometer and broadband data are available through the Incorporated Research Institute for
Seismology (IRIS) Data Management Center (U.S. Geological Survey, 1931; USGS Hawaiian Volcano Obser-
vatory (HVO), 1956). The catalog of very long period earthquakes analyzed in this study is presented in Table S1
of the Supporting Information S1.

References
Amelung, F., Jónsson, S., Zebker, H., & Segall, P. (2000). Widespread uplift and ‘trapdoor’ faulting on Galapagos volcanoes observed with radar

interferometry. Nature, 407(6807), 993–996. https://doi.org/10.1038/35039604
Anderson, K., & Johanson, I. (2022). Incremental caldera collapse at Kıl̄auea Volcano recorded in ground tilt and high‐rate GNSS data, with

implications for collapse dynamics and the magma system. Bulletin of Volcanology, 84(10), 1–26. https://doi.org/10.1007/s00445‐022‐01589‐x
Anderson, K., Johanson, I., Patrick, M. R., Gu, M., Segall, P., Poland, M., et al. (2019). Magma reservoir failure and the onset of caldera collapse at

Kıl̄auea Volcano in 2018. Science, 366(6470). https://doi.org/10.1126/science.aaz1822
Anderson, K. R., Shea, T., Lynn, K. J., Montgomery‐Brown, E. K., Swanson, D. A., Patrick, M. R., et al. (2023). The 2018 eruption of Kıl̄auea:

Insights, puzzles, and opportunities for volcano science. Annual Review of Earth and Planetary Sciences, 52(1). https://doi.org/10.1146/
annurev‐earth‐031621‐075925

Bowman, F. (2012). Introduction to Bessel functions. Courier Corporation.
Cattania, C., & Segall, P. (2021). Precursory slow slip and foreshocks on rough faults. Journal of Geophysical Research: Solid Earth, 126(4),

e2020JB020430. https://doi.org/10.1029/2020jb020430
Christensen, R. (2012). Theory of viscoelasticity: An introduction. Elsevier.
Coppess, K. R., Dunham, E. M., & Almquist, M. (2022). Ultra and very long period seismic signatures of unsteady eruptions predicted from

conduit flow models. Journal of Geophysical Research: Solid Earth, 127(6), e2022JB024313. https://doi.org/10.1029/2022jb024313
Dawson, P., Chouet, B., Okubo, P., Villaseñor, A., & Benz, H. (1999). Three‐dimensional velocity structure of the Kıl̄auea Caldera, Hawaii.

Geophysical Research Letters, 26(18), 2805–2808. https://doi.org/10.1029/1999gl005379
Day, S. M. (1982). Three‐dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity. Bulletin of the

Seismological Society of America, 72(3), 705–727.
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5),

2161–2168. https://doi.org/10.1029/jb084ib05p02161
Dietterich, H. R., Diefenbach, A. K., Soule, S. A., Zoeller, M. H., Patrick, M. P., Major, J. J., & Lundgren, P. R. (2021). Lava effusion rate

evolution and erupted volume during the 2018 Kıl̄auea lower east rift zone eruption. Bulletin of Volcanology, 83(4), 1–18. https://doi.org/10.
1007/s00445‐021‐01443‐6

Dingwell, D. B., & Webb, S. L. (1989). Structural relaxation in silicate melts and non‐Newtonian melt rheology in geologic processes. Physics and
Chemistry of Minerals, 16(5), 508–516. https://doi.org/10.1007/bf00197020

Dumbser, M., Käser, M., & Toro, E. F. (2007). An arbitrary high‐order discontinuous Galerkin method for elastic waves on unstructured meshes‐
V. Local time stepping and p‐adaptivity. Geophysical Journal International, 171(2), 695–717. https://doi.org/10.1111/j.1365‐246x.2007.
03427.x

Acknowledgments
The project is funded by a Stanford‐USGS
fellowship to T.A.W. and National Science
Foundation Grants EAR‐2040425 and
EAR‐2231849 to P.S. and E.M.D.,
respectively. Thanks to Carsten Uphoff for
discussions on the implementation of
Generalized Maxwell Bodies in SeisSol
and William Ellsworth for discussions on
complexities in earthquake nucleation. The
manuscript improved from the thorough
reviews of Meredith Townsend and Daniel
Woodell. Lawrence Livermore National
Laboratory is operated by Lawrence
Livermore National Security, LLC, for the
U.S. Department of Energy, National
Nuclear Security Administration under
Contract DE‐AC5207NA27344. LLNL‐
JRNL‐856488.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028280

WANG ET AL. 30 of 32

 21699356, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028280 by Stanford U
niversity, W

iley O
nline Library on [03/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1038/35039604
https://doi.org/10.1007/s00445-022-01589-x
https://doi.org/10.1126/science.aaz1822
https://doi.org/10.1146/annurev-earth-031621-075925
https://doi.org/10.1146/annurev-earth-031621-075925
https://doi.org/10.1029/2020jb020430
https://doi.org/10.1029/2022jb024313
https://doi.org/10.1029/1999gl005379
https://doi.org/10.1029/jb084ib05p02161
https://doi.org/10.1007/s00445-021-01443-6
https://doi.org/10.1007/s00445-021-01443-6
https://doi.org/10.1007/bf00197020
https://doi.org/10.1111/j.1365-246x.2007.03427.x
https://doi.org/10.1111/j.1365-246x.2007.03427.x


Duputel, Z., & Rivera, L. (2019). The 2007 caldera collapse of Piton de la Fournaise volcano: Source process from very‐long‐period seismic
signals. Earth and Planetary Science Letters, 527, 115786. https://doi.org/10.1016/j.epsl.2019.115786

Ellsworth, W., & Beroza, G. (1995). Seismic evidence for an earthquake nucleation phase. Science, 268(5212), 851–855. https://doi.org/10.1126/
science.268.5212.851

Fichtner, A., & Tkalčić, H. (2010). Insights into the kinematics of a volcanic caldera drop: Probabilistic finite‐source inversion of the 1996
Bárðarbunga, Iceland, earthquake. Earth and Planetary Science Letters, 297(3–4), 607–615. https://doi.org/10.1016/j.epsl.2010.07.013

Fontaine, F. R., Roult, G., Hejrani, B., Michon, L., Ferrazzini, V., Barruol, G., et al. (2019). Very‐and ultra‐long‐period seismic signals prior to and
during caldera formation on La Réunion Island. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598‐019‐44439‐1

Geshi, N., Shimano, T., Chiba, T., & Nakada, S. (2002). Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bulletin of
Volcanology, 64(1), 55–68. https://doi.org/10.1007/s00445‐001‐0184‐z

Geubelle, P. H., & Breitenfeld, M. S. (1997). Numerical analysis of dynamic debonding under anti‐plane shear loading. International Journal of
Fracture, 85(3), 265–282. https://doi.org/10.1023/a:1007498300031

Gudmundsson, M. T., Jónsdóttir, K., Hooper, A., Holohan, E. P., Halldórsson, S. A., Ófeigsson, B. G., et al. (2016). Gradual caldera collapse at
Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 353(6296). https://doi.org/10.1126/science.aaf8988

James, M., Bagdassarov, N., Müller, K., & Pinkerton, H. (2004). Viscoelastic behaviour of basaltic lavas. Journal of Volcanology and Geothermal
Research, 132(2–3), 99–113. https://doi.org/10.1016/s0377‐0273(03)00340‐8

Krenz, L., Uphoff, C., Ulrich, T., Gabriel, A.‐A., Abrahams, L. S., Dunham, E. M., & Bader, M. (2021). 3D acoustic‐elastic coupling with gravity:
The dynamics of the 2018 Palu, Sulawesi earthquake and tsunami. In Proceedings of the international conference for high performance
computing, networking, storage and analysis (pp. 1–14).

Kumagai, H., Ohminato, T., Nakano, M., Ooi, M., Kubo, A., Inoue, H., & Oikawa, J. (2001). Very‐long‐period seismic signals and caldera
formation at Miyake Island, Japan. Science, 293(5530), 687–690. https://doi.org/10.1126/science.1062136

Lai, V. H., Zhan, Z., Sandanbata, O., Brissaud, Q., & Miller, M. S. (2021). Inflation and asymmetric collapse at Kıl̄auea summit during the 2018
eruption from seismic and infrasound analyses.

Lin, G., Shearer, P. M., Amelung, F., & Okubo, P. G. (2015). Seismic tomography of compressional wave attenuation structure for Kıl̄auea
Volcano, Hawai‘i. Journal of Geophysical Research: Solid Earth, 120(4), 2510–2524. https://doi.org/10.1002/2014jb011594

Lin, G., Shearer, P. M., Matoza, R. S., Okubo, P. G., & Amelung, F. (2014). Three‐dimensional seismic velocity structure of Mauna Loa and
Kıl̄auea volcanoes in Hawaii from local seismic tomography. Journal of Geophysical Research: Solid Earth, 119(5), 4377–4392. https://doi.
org/10.1002/2013jb010820

Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. https://doi.org/
10.1785/bssa0660030639

Mooney, H. M. (1974). Some numerical solutions for Lamb’s problem. Bulletin of the Seismological Society of America, 64(2), 473–491. https://
doi.org/10.1785/bssa0640020473

Neal, C. A., Brantley, S., Antolik, L., Babb, J., Burgess, M., Calles, K., et al. (2019). The 2018 rift eruption and summit collapse of Kıl̄auea
Volcano. Science, 363(6425), 367–374. https://doi.org/10.1126/science.aav7046

Okumura, S., Nakamura, M., Nakano, T., Uesugi, K., & Tsuchiyama, A. (2010). Shear deformation experiments on vesicular rhyolite: Impli-
cations for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. Journal of Geophysical Research, 115(B6), B06201.
https://doi.org/10.1029/2009jb006904

O’Reilly, O., Nordström, J., Kozdon, J. E., & Dunham, E. M. (2015). Simulation of earthquake rupture dynamics in complex geometries using
coupled finite difference and finite volume methods. Communications in Computational Physics, 17(2), 337–370. https://doi.org/10.4208/cicp.
111013.120914a

Patrick, M. R., Dietterich, H. R., Lyons, J. J., Diefenbach, A. K., Parcheta, C., Anderson, K., et al. (2019). Cyclic lava effusion during the 2018
eruption of Kıl̄auea Volcano. Science, 366(6470). https://doi.org/10.1126/science.aay9070

Peltier, A., Staudacher, T., Bachèlery, P., & Cayol, V. (2009). Formation of the April 2007 caldera collapse at Piton de La Fournaise volcano:
Insights from GPS data. Journal of Volcanology and Geothermal Research, 184(1–2), 152–163. https://doi.org/10.1016/j.jvolgeores.2008.
09.009

Pietruszka, A. J., & Garcia, M. O. (1999). The size and shape of Kıl̄auea Volcano’s summit magma storage reservoir: A geochemical probe. Earth
and Planetary Science Letters, 167(3–4), 311–320. https://doi.org/10.1016/s0012‐821x(99)00036‐9

Pinkerton, H., & Norton, G. (1995). Rheological properties of basaltic lavas at sub‐liquidus temperatures: Laboratory and field measurements on
lavas from Mount Etna. Journal of Volcanology and Geothermal Research, 68(4), 307–323. https://doi.org/10.1016/0377‐0273(95)00018‐7

Roman, A., & Lundgren, P. (2021). Dynamics of large effusive eruptions driven by caldera collapse. Nature, 592(7854), 392–396. https://doi.org/
10.1038/s41586‐021‐03414‐5

Saccorotti, G., Chouet, B., & Dawson, P. (2003). Shallow‐velocity models at the Kıl̄auea Volcano, Hawaii, determined from array analyses of
tremor wavefields. Geophysical Journal International, 152(3), 633–648. https://doi.org/10.1046/j.1365‐246x.2003.01867.x

Sandanbata, O., Watada, S., Satake, K., Kanamori, H., Rivera, L., & Zhan, Z. (2022). Sub‐decadal volcanic tsunamis due to submarine trapdoor
faulting at Sumisu Caldera in the Izu–Bonin arc. Journal of Geophysical Research: Solid Earth, 127(9), e2022JB024213. https://doi.org/10.
1029/2022jb024213

Savage, J. (1972). Relation of corner frequency to fault dimensions. Journal of Geophysical Research, 77(20), 3788–3795. https://doi.org/10.
1029/jb077i020p03788

Segall, P., & Anderson, K. (2021). Repeating caldera collapse events constrain fault friction at the kilometer scale. Proceedings of the National
Academy of Sciences of the United States of America, 118(30). https://doi.org/10.1073/pnas.2101469118

Segall, P., Anderson, K., Pulvirenti, F., Wang, T. A., & Johanson, I. (2020). Caldera collapse geometry revealed by near‐field GPS displacements
at Kıl̄auea Volcano in 2018. Geophysical Research Letters, 47(15), e2020GL088867. https://doi.org/10.1029/2020gl088867

Segall, P., Anderson, K., & Wang, T. A. (2022). Could Kıl̄auea’s 2020 post caldera‐forming eruption have been anticipated? Geophysical
Research Letters, 49(15), e2022GL099270. https://doi.org/10.1029/2022gl099270

Segall, P., Matthews, M. V., Shelly, D. R., Wang, T. A., & Anderson, K. R. (2024). Stress‐driven recurrence and precursory moment‐rate surge in
caldera collapse earthquakes. Nature Geoscience, 17(3), 1–6. https://doi.org/10.1038/s41561‐023‐01372‐3

Shelly, D. R., & Thelen, W. A. (2019). Anatomy of a caldera collapse: Kıl̄auea 2018 summit seismicity sequence in high resolution. Geophysical
Research Letters, 46(24), 14395–14403. https://doi.org/10.1029/2019gl085636

Tepp, G., Hotovec‐Ellis, A., Shiro, B., Johanson, I., Thelen, W., & Haney, M. M. (2020). Seismic and geodetic progression of the 2018 summit
caldera collapse of Kıl̄auea Volcano. Earth and Planetary Science Letters, 540, 116250. https://doi.org/10.1016/j.epsl.2020.116250

Ulrich, T., Gabriel, A.‐A., & Madden, E. H. (2022). Stress, rigidity and sediment strength control megathrust earthquake and tsunami dynamics.
Nature Geoscience, 15(1), 67–73. https://doi.org/10.1038/s41561‐021‐00863‐5

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028280

WANG ET AL. 31 of 32

 21699356, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028280 by Stanford U
niversity, W

iley O
nline Library on [03/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1016/j.epsl.2019.115786
https://doi.org/10.1126/science.268.5212.851
https://doi.org/10.1126/science.268.5212.851
https://doi.org/10.1016/j.epsl.2010.07.013
https://doi.org/10.1038/s41598-019-44439-1
https://doi.org/10.1007/s00445-001-0184-z
https://doi.org/10.1023/a:1007498300031
https://doi.org/10.1126/science.aaf8988
https://doi.org/10.1016/s0377-0273(03)00340-8
https://doi.org/10.1126/science.1062136
https://doi.org/10.1002/2014jb011594
https://doi.org/10.1002/2013jb010820
https://doi.org/10.1002/2013jb010820
https://doi.org/10.1785/bssa0660030639
https://doi.org/10.1785/bssa0660030639
https://doi.org/10.1785/bssa0640020473
https://doi.org/10.1785/bssa0640020473
https://doi.org/10.1126/science.aav7046
https://doi.org/10.1029/2009jb006904
https://doi.org/10.4208/cicp.111013.120914a
https://doi.org/10.4208/cicp.111013.120914a
https://doi.org/10.1126/science.aay9070
https://doi.org/10.1016/j.jvolgeores.2008.09.009
https://doi.org/10.1016/j.jvolgeores.2008.09.009
https://doi.org/10.1016/s0012-821x(99)00036-9
https://doi.org/10.1016/0377-0273(95)00018-7
https://doi.org/10.1038/s41586-021-03414-5
https://doi.org/10.1038/s41586-021-03414-5
https://doi.org/10.1046/j.1365-246x.2003.01867.x
https://doi.org/10.1029/2022jb024213
https://doi.org/10.1029/2022jb024213
https://doi.org/10.1029/jb077i020p03788
https://doi.org/10.1029/jb077i020p03788
https://doi.org/10.1073/pnas.2101469118
https://doi.org/10.1029/2020gl088867
https://doi.org/10.1029/2022gl099270
https://doi.org/10.1038/s41561-023-01372-3
https://doi.org/10.1029/2019gl085636
https://doi.org/10.1016/j.epsl.2020.116250
https://doi.org/10.1038/s41561-021-00863-5


Uphoff, C. (2020). Flexible model extension and optimisation for earthquake simulations at extreme scales (Unpublished doctoral dissertation).
Technische Universität München.

Uphoff, C., & Bader, M. (2016). Generating high performance matrix kernels for earthquake simulations with viscoelastic attenuation. In 2016
international conference on high performance computing & simulation (HPCS) (pp. 908–916).

Uphoff, C., Krenz, L., Ulrich, T., Wolf, S., Knoll, A., David, S., et al. (2022). SeisSol [Computer software]. https://github.com/SeisSol/SeisSol
U.S. Geological Survey. (1931). United States national strong‐motion network [Dataset]. International Federation of Digital Seismograph

Networks. https://doi.org/10.7914/SN/NP
USGS Hawaiian Volcano Observatory (HVO). (1956). Hawaiian volcano observatory network [Dataset]. International Federation of Digital

Seismograph Networks. https://doi.org/10.7914/SN/HV
USGS Hawaiian Volcano Observatory (HVO). (2008). Hawaii global positioning system network [Dataset]. GAGE Facility, GPS/GNSS Ob-

servations. https://doi.org/10.7283/T5RR1WGN
Wang, T. A., Coppess, K. R., Segall, P., Dunham, E. M., & Ellsworth, W. (2022). Physics‐based model reconciles caldera collapse induced static

and dynamic ground motion: Application to Kıl̄auea 2018. Geophysical Research Letters, 49(8), e2021GL097440. https://doi.org/10.1029/
2021gl097440

Wang, T. A., & Dunham, E. M. (2024). Scripts for optimizing for SeisSol input parameters approximating the relaxation functions of Maxwell
rheology and for demonstrating the effects of wave radiation on collapse earthquakes [Computer software]. Zenodo. https://doi.org/10.5281/
zenodo.10129848

Wang, T. A., Krenz, L., Abrahams, L. S., & Yoder, M. R. (2024). Input files to SeisSol simulations of caldera collapse earthquakes [Simulation
input]. Zenodo. https://doi.org/10.5281/zenodo.10128043

Wang, T. A., Segall, P., Hotovec‐Ellis, A. J., Anderson, K. R., & Cervelli, P. F. (2023). Ring fault creep drives volcano‐tectonic
seismicity during caldera collapse of Kıl̄auea in 2018. Earth and Planetary Science Letters, 618, 118288. https://doi.org/10.1016/j.
epsl.2023.118288

Wang, T. A., Zheng, Y., Pulvirenti, F., & Segall, P. (2021). Post‐2018 caldera collapse re‐inflation uniquely constrains Kıl̄auea’s magmatic
system. Journal of Geophysical Research: Solid Earth, 126(6), e2021JB021803. https://doi.org/10.1029/2021jb021803

Webb, S. L., & Dingwell, D. B. (1990). The onset of non‐Newtonian rheology of silicate melts: A fiber elongation study. Physics and Chemistry of
Minerals, 17(2), 125–132. https://doi.org/10.1007/bf00199663

Williams, D. M., Avery, V. F., Coombs, M. L., Cox, D. A., Horwitz, L. R., McBride, S. K., et al. (2020). US geological survey 2018 Kıl̄auea
Volcano eruption response in Hawai’i—After‐action review. (Technical Report). US Geological Survey.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028280

WANG ET AL. 32 of 32

 21699356, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028280 by Stanford U
niversity, W

iley O
nline Library on [03/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/SeisSol/SeisSol
https://doi.org/10.7914/SN/NP
https://doi.org/10.7914/SN/HV
https://doi.org/10.7283/T5RR1WGN
https://doi.org/10.1029/2021gl097440
https://doi.org/10.1029/2021gl097440
https://doi.org/10.5281/zenodo.10129848
https://doi.org/10.5281/zenodo.10129848
https://doi.org/10.5281/zenodo.10128043
https://doi.org/10.1016/j.epsl.2023.118288
https://doi.org/10.1016/j.epsl.2023.118288
https://doi.org/10.1029/2021jb021803
https://doi.org/10.1007/bf00199663

	description
	Dynamic Rupture Simulations of Caldera Collapse Earthquakes: Effects of Wave Radiation, Magma Viscosity, and Evidence of Co ...
	1. Introduction
	2. Simulation Method
	3. Control on Collapse Duration and Magnitude
	3.1. Magma Viscosity
	3.2. Seismic Wave Radiation Through the Magma Chamber and Ring Fault

	4. Application to Kı̄lauea Caldera Collapse in 2018
	4.1. Simulated Rupture Propagation and Collapse
	4.2. Interpretation of Seismic Wavefield in Terms of Collapse Dynamics

	5. Discussion
	5.1. Neglecting Seismic Radiation Overestimates Coseismic Chamber Pressure Increase and Interseismic Duration
	5.2. Earthquakes on the Northwest of the Kı̄lauea Caldera Exhibit Complex Nucleation Phase

	6. Conclusions
	Data Availability Statement



