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Abstract. We develop a novel computational framework to approximate solution operators of
evolution partial differential equations (PDEs). By employing a general nonlinear reduced-order
model, such as a deep neural network, to approximate the solution of a given PDE, we realize that
the evolution of the model parameters is a control problem in the parameter space. Based on this
observation, we propose to approximate the solution operator of the PDE by learning the control
vector field in the parameter space. From any initial value, this control field can steer the parameter
to generate a trajectory such that the corresponding reduced-order model solves the PDE. This
allows for substantially reduced computational cost to solve the evolution PDE with arbitrary initial
conditions. We also develop comprehensive error analysis for the proposed method when solving
a large class of semilinear parabolic PDEs. Numerical experiments on different high-dimensional
evolution PDEs with various initial conditions demonstrate the promising results of the proposed
method.
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1. Introduction. Partial differential equations (PDEs) are ubiquitous in model-
ing and are vital in numerous applications from finance, engineering, and science [23].
As the solutions of many PDEs lack analytical form, it is necessary to use numerical
methods to approximate the solutions [4, 23]. Traditional numerical methods such as
finite difference and finite element methods rely upon the discretization of problem
domains, which does not scale to high-dimensional problems due to the so-called curse
of dimensionality.

In recent years, deep neural networks (DNNs), which can be thought of as a type
of nonlinear reduced-order models, have emerged as powerful tools for solving high-
dimensional PDEs [5, 16, 21, 32, 33, 35, 46, 73]. For example, in [5, 16, 21, 73, 93],
the solution of a given PDE is parameterized as a DNN, and the network parameters
are trained to minimize potential violations (in various definitions) to the PDE. These
methods have shown numerous successes in solving a large variety of PDEs empirically.
Their successes are partly due to the provable universal approximation power of DNNs
[36, 52, 92]. On the other hand, these methods aim at solving specific instances of
PDEs, and as a consequence, they need to start from scratch for the same PDE
whenever the initial and/or boundary value changes.
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C156 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

There have also been recent studies to find solution operators of PDEs [50, 57].
These methods aim at finding the map from the problem's parameters to the cor-
responding solution. Finding solution operators has substantial applications, as the
same PDE may need to run many times with different initial or boundary value config-
urations. However, existing methods fall short in tackling high-dimensional problems,
as many require spatial discretization to represent the solution operators using DNNs.

In this paper, we propose a new approach to find solution operators of high-
dimensional evolution PDEs. For a given PDE, we first parameterize its solution as
a general reduced-order model, such as a DNN, whose parameters, denoted as \theta , are
to be determined. Then we seek to find a vector field on the parameter space which
describes how \theta evolves in time. This vector field essentially acts as a controller on
the parameter space, steering the parameters so that the induced DNN evolves and
approximates the PDE solution for all time. Once such a vector field is found, we can
easily change the initial conditions of the PDE by simply starting at a new point in
the parameter space. Then we follow the control vector field to find the parameter
trajectory, which gives an approximation of the time-evolving solution. Thus, different
initial conditions can be considered for the same PDE without solving it repeatedly.
Our contributions can be summarized as follows.

1. We develop a new computational framework to find the solution operator of
any given initial value problem (IVP) defined by high-dimensional nonlinear
evolution PDEs. This framework is purely based on the evolution PDE itself
and does not require any solutions of the PDE for training. Once we find
the solution operator, we can quickly compute solutions of the PDE with any
initial value at a low computational cost.

2. We provide comprehensive theoretical analysis to establish error bounds for
the proposed method when solving linear PDEs and some special nonlinear
PDEs.

3. We conduct a series of numerical experiments to demonstrate the effectiveness
of the proposed method in solving a variety of linear and nonlinear PDEs.

The remainder of this paper is organized as follows. In section 2, we provide an
overview of recent neural network based numerical methods for solving PDEs. We
outline the fundamentals of our proposed approach in section 3.1 and provide details
of our method and its key characteristics in section 3.2. We conduct comprehensive
error analysis in section 3.3. We demonstrate the performance of the proposed method
on several linear and nonlinear evolution PDEs in section 4. Some variations and
generalizations of the proposed approach are given in section 5. Finally, section 6
concludes this paper.

2. Related work.

2.1. Classical methods for solving PDEs. Classical numerical methods for
solving PDEs, such as finite difference [84] and finite element methods [42], discretize
the spatial domain using mesh or triangulation. These methods convert a PDE to its
discrete counterpart, which is a system of algebraic equations with a finite number
of unknowns, and solve the system to obtain approximate solution on the grid points
[1, 22, 70, 83]. These methods have been significantly advanced in the past decades,
and they are able to handle complicated situations such as irregular domains. How-
ever, they severely suffer the curse of dimensionality when applied to high-dimensional
problems---the number of unknowns increases exponentially fast with respect to spa-
tial dimension, which renders them computationally intractable for many problems.
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C157

2.2. Neural network based methods for solving PDEs. Early attempts
using neural networks to solve PDEs can be seen in [17, 46, 47, 48]. DNNs emerged
in recent years and demonstrated striking power in solving PDEs through various
approaches [5, 7, 21, 65, 73, 78, 90, 93]. DNNs, which are the key machinery of deep
learning, have demonstrated extraordinary potential in solving many high-dimensional
nonlinear PDEs, which were considered computationally intractable using classical
methods. For example, a variety of DNN based methods have been proposed based
on the strong form [7, 17, 43, 61, 63, 66, 67, 73, 74], variational form [21], and weak
form [5, 93] of PDEs. They are considered with adaptive collocation strategies [3],
adversarial inference procedures [91], oscillatory solutions [12], and multiscale methods
[13, 55, 85]. Improvements of these methods with adaptive activation functions [41],
networks structures [26, 27, 38], boundary conditions [18, 60], and structure probing
[38], as well as their convergence [59, 77], are also studied. Readers interested in these
methods can also refer to [53, 74, 86, 87, 90, 94]. Further, there are methods that can
solve inverse problems such as parameter identifications

For a class of high-dimensional PDEs which have equivalent backward stochastic
differential equation (SDE) formulations due to Feynman--Kac theory, deep learning
methods have been applied by leveraging such correspondences [6, 20, 25, 32, 33, 34, 39,
40, 69]. These methods are shown to be good even in high dimensions [33, 39, 69];
however, they are limited to solving the special type of evolution equations whose
generator function has a corresponding SDE.

For evolution PDEs, parameter evolution algorithms [2, 10, 19] have also been
considered. These methods parameterize the PDE solution as a neural network [10, 19]
or an adaptively chosen ansatz as discussed in [2]. In these methods, the parameters
are evolved forward in time through a time marching scheme, where at each step a
linear system [10, 19] or a constrained optimization problem [2] needs to be solved.

2.3. Learning solution operator of PDEs. The aforementioned methods aim
at solving a specific instance of a given PDE, and they need to be rerun from scratch
when any of the problem configurations (e.g., initial value, boundary value, problem
domain) changes. In contrast, the solution operator of a PDE directly maps a problem
configuration to its corresponding solution. To this end, several methods have been
proposed to approximate Green's functions for some linear PDEs [8, 9, 54, 82], as
solutions to such PDEs have explicit expression based on their Green's functions.
However, this approach only applies to a small class of linear PDEs whose solution can
be represented using Green's functions. Moreover, Green's functions have singularities
and it requires special care to approximate them using neural networks. For example,
rational functions are used as activation functions of DNNs to address singularities in
[8]. In [9], the singularities are represented with the help of fundamental solutions.

For general nonlinear PDEs, DNNs have been used for operator approximation
and metalearning for PDEs [30, 50, 57, 58, 62, 76, 88, 89]. For example, the work
[30] considers solving parametric PDEs in low dimension (d \leq 3 for the examples
in the paper). Their method requires discretization of the PDE system and needs
to be supplied by many full-order solutions for different combinations of time dis-
cretization points and parameter selections for their network training. Then their
method applies proper orthogonal decomposition to these solutions to obtain a set
of reduced basis to construct solutions for new problems. The work [76] requires a
massive amount of pairs of ODE/PDE control and the corresponding system out-
puts, which are produced by solving the original ODE/PDE system; then the DNN
is trained on such pairs to learn the mapping between these two subjects, which are
discretized as vectors by evaluating the functions only at grid points in the domain.
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C158 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

DeepONets [57, 58, 88] seek to approximate solution mappings by use of a ``branch""
and ``trunk"" network. FNOs [50, 89] use Fourier transforms to map a neural net-
work to a low-dimensional space and then back to the solution. In addition, several
works apply spatial discretization of the problem or transform domains and use con-
volutional neural networks (CNNs) [31, 75, 95] or graph neural networks (GNNs)
[45, 51, 56]. Interested readers may also refer to generalizations and extensions of
these methods in [11, 14, 15, 24, 44, 51, 58, 62, 66]. A key similarity of all these
methods is that they require certain domain discretization and often a large number
of labeled pairs of IVP initial conditions (or PDE parameters) and the corresponding
solution obtained through other methods for training. This limits their applicability
to high-dimensional problems where such training data is unavailable or the mesh is
prohibitive to generate due to cures of dimensionality.

2.4. Differences between our proposed approach and existing ones. Dif-
ferent from all existing approaches, we propose to approximate solution operators
of evolution PDEs in a control framework in parameter spaces induced by general
reduced-order models such as DNNs. Unlike the existing solution operator approxi-
mation methods (e.g., DeepONet [57] and FNO [50]), which seek to directly approxi-
mate the infinite-dimensional operator, our approach is based on the relation between
evolving solutions and their projected trajectories in the parameter space. This leads
us to convert the problem of finding a solution operator over infinite-dimensional func-
tion space into a control vector field optimization problem over a finite-dimensional
parameter space. As a result, the problem of solving an evolution PDE in continuous
space is reduced to numerically solving a system of ODEs, which can be done accu-
rately with very low computation complexity. Moreover, our approach neither requires
spatial discretization in any problem or transformed domain, nor does it need any ba-
sis function representation throughout problem formulation and computation. We
provide mathematical insights into the parameter submanifold and its tangent spaces
and establish their connection to the finite-dimensional parameter space. These new
insights led us to the proposed approach, which approximates solution operators of
PDEs by controlling network parameters in the parameter space. These new features
also enable our approach to solving evolution PDEs in high-dimensional cases. This is
a significant advantage over existing operator learning methods such as DeepONet or
FNOs, as their spatial discretization schemes, which are used to generate the training
data, hinder their application to high-dimensional cases.

3. Proposed method. The main goal of this paper is to develop a new compu-
tational framework to approximate the solution operator for IVPs of high-dimensional
evolution PDEs. The solution operator is a procedure that, once known, can efficiently
map an arbitrarily given initial value g to the solution of the IVP without solving the
PDE again. We first propose to parameterize u as a nonlinear reduced-order model,
such as a DNN, which is denoted by u\theta with parameters \theta ; i.e., u\theta is a parametric
function determined by the value of its finite-dimensional parameters \theta , and u\theta is used
to approximate u.

To find the solution operator, we propose to build a control vector field V in the
parameter space \Theta where \theta resides. Then the solution operator can be implemented
as a fast numerical solver of the ODE defined by V . More precisely, we first find the
parameters \theta 0 such that u\theta 0 approximates g, and then we follow the control vector
field V to obtain a trajectory \{ \theta t | 0\leq t\leq T\} in \Theta with very low computational cost,
which automatically induces a trajectory u\theta t to approximate the true solution u of
the IVP with the initial value g. We provide details of these constructions in the
following subsections.
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C159

3.1. Nonlinear reduced-order models and parameter submanifold. DNNs,
which can be viewed as nonlinear reduced-order models, have emerged as powerful
tools to solve high-dimensional PDEs in recent years [5, 21, 32, 71, 72, 73, 93]. Math-
ematically, a DNN can be expressed as the composition of a series of simple linear and
nonlinear functions. In the deep learning context, a typical building block of DNNs is
called a layer, which is a mapping h :Rd \rightarrow Rd\prime 

for some compatible input dimension
d and output dimension d\prime :

h(z;W,b) := \sigma (Wz + b),(3.1)

where z \in Rd is the input variable of h, the matrix W \in Rd\prime \times d and vector b \in Rd\prime 
are

called the weight and bias, respectively, and \sigma : R \rightarrow R is a nonlinear function that
operates componentwise on its d\prime -dimensional argument vector Wz + b (hence \sigma is

effectively a mapping from Rd\prime 
to Rd\prime 

). Common choices of activation functions in-
clude the hyperbolic tangent (tanh) and rectified linear unit (ReLU) \sigma (z) =max(0, z).
We only consider smooth activation functions \sigma hereafter. A commonly used DNN
structure u\theta , often called a feed-forward network (FFN), is defined as the composition
of multiple layer functions of form (3.1) as follows:

u\theta (x) := u(x; \theta ) =w\top zL + b,(3.2)

where z0 = x, zl = hl(zl - 1) := h(zl - 1;Wl, bl), l= 1, . . . ,L,

and the lth hidden layer h(\cdot ;Wl, bl) :Rdl - 1 \rightarrow Rdl is determined by its weight and bias
parameters Wl \in Rdl\times dl - 1 and bl \in Rdl for l = 1, . . . ,L and d0 = d. Here the output
of u\theta is set to the affine transform of the last hidden layer zNN = hL(zL - 1) using
weight w \in RdL and bias b \in R. The network parameters \theta refer to the collection of
all learnable parameters (stacked as a vector in Rm) of u\theta , i.e.,

\theta := (w, b,WL, bL, . . . ,W1, b1)\in Rm,(3.3)

and training the network u\theta refers to finding the minimizer \theta of some properly designed
loss function.

Remark 3.1. DNNs are shown to be very powerful in approximating high-
dimensional functions in a vast amount of studies in recent years; see, e.g., [28, 29,
36, 37, 49, 52, 68, 92]. For example, it is shown in [28] that for any M,\varepsilon > 0, k \in N,
p \in [1,\infty ], and \Omega = (0,1)d \subset Rd, we denote \scrF := \{ f \in W k,p(\Omega ;R) | \| f\| Wk,p(\Omega ) \leq M\} ,
and then there exists a DNN structure u\theta of form (3.2) with sufficiently large m
and L (which depend on M , \varepsilon , d, and p only), such that for any f \in \scrF , there is
\| u\theta  - f\| Wk,p(\Omega ) \leq \varepsilon for some \theta \in Rm. This result suggests that DNNs are suitable to
approximate solutoins of PDEs. We note that this is one of the many error bounds
of DNN approximations established in recent years, and such bounds are still being
continuously improved nowadays.

Our approach relies on the key relation between the parameters \theta and the reduced-
order model u\theta . More specifically, we identify the finite-dimensional parameter space
\Theta \subset Rm to which \theta belongs and the submanifold \scrM of functions defined by

\scrM :=
\bigl\{ 
u\theta : \Omega \rightarrow R | \theta \in \Theta 

\bigr\} 
.(3.4)

As we can see, u\theta defines a mapping from the parameter space \Theta to the submanifold
\scrM of the infinite-dimensional function space. We call \scrM the parameter submanifold
determined by u\theta .
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C160 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

To approximate a time-evolving function u\ast (\cdot , t), e.g., the solution of an evolution
PDE, over time horizon [0, T ] using the reduced-order model u\theta , we need to find a
trajectory \{ \theta t \in \Theta | 0\leq t\leq T\} in the parameter space \Theta so that u\theta t(\cdot ) is close to u\ast (\cdot , t)
in the function space for every t \in [0, T ]. For example, if we consider L2(\Omega ) as the
function space, by closeness we mean \| u\theta t  - u\ast (\cdot , t)\| L2(\Omega ) is small for all t (hereafter
we denote \| \cdot \| p = \| \cdot \| Lp(\Omega ) for notation simplicity). Notice that \{ u\theta t | 0\leq t\leq T\} is a
trajectory on \scrM , whereas u\ast (\cdot , t) is a trajectory in the full space L2(\Omega ).

3.2. Proposed methodology. Let \Omega be an open bounded set in Rd and F
be a nonlinear differential operator of functions u : \Omega \rightarrow R with necessary regularity
conditions; then we consider the IVP of the evolution PDE defined by F with arbitrary
initial value as follows:\Biggl\{ 

\partial tu(x, t) = F [u](x, t), x \in \Omega , t\in (0, T ],

u(x,0) = g(x), x\in \Omega ,
(3.5)

where T > 0 is some prescribed terminal time, and g : Rd \rightarrow R stands for an initial
value. For ease of presentation, we assume zero Dirichlet boundary condition u(x, t) =
0 for all x \in \=\Omega and t \in [0, T ] (for compatibility, we henceforth assume g(x) has zero
trace on \partial \Omega ) throughout this paper. We denote by ug the solution to the IVP (3.5)
with this initial g. The solution operator \scrS F of the IVP (3.5) is thus the mapping
from the initial g to the solution ug:

\scrS F :C2(\=\Omega )\rightarrow C2,1(\=\Omega \times [0, T ]), such that g \mapsto \rightarrow \scrS F (g) := ug,(3.6)

where C2(\=\Omega ) :=C(\=\Omega )\cap C2(\Omega ) for short. Our goal is to find a numerical approximation
to \scrS F . Namely, we want to find a fast computational scheme \scrS F that takes any initial
g as input and accurately estimate ug with low computation complexity.

It is important to note the substantial difference between solving (3.5) for any
given but fixed initial value g and finding the solution operator (3.6) that maps any
g to the corresponding solution ug. In the literature, most methods are developed
for solving IVP (3.5) with a fixed g, such as traditional finite difference and finite
element methods, as well as many state-of-the-art machine learning based methods.
However, these methods are computationally expensive if (3.5) must be solved with
many different initial values, and they need to start from scratch for every new g. In
a sharp contrast, our goal is to find an approximation to the solution operator \scrS F

which, once found, can help us to compute ug for any given g at relatively much lower
computational cost.

For ease of presentation, we use autonomous, second-order nonlinear differential
operators F [u] = F (x,u,\nabla xu,\nabla 2

xu) as an example and take \Omega = (0,1)d in (3.5) to
describe our main idea below. Extensions to general nonautonomous nonlinear differ-
ential operators and PDEs defined on open bounded set \Omega \subset Rd with given boundary
values will be discussed in section 5.

To approximate the solution operator \scrS F in (3.6), we propose a control mechanism
in the parameter space \Theta of a prescribed reduced-order model u\theta . Specifically, we first
determine a reduced-order model u\theta to represent solutions of the IVP. We allow any
parametric form of u\theta but only assume that u\theta (x) = u(x; \theta ) is C1 smooth with respect
to \theta . This is a mild condition satisfied by the commonly used reduced-order models:
if u\theta is a linear combination of basis functions and \theta represents the combination
coefficients, then u\theta is linear and hence smooth in \theta ; and if u\theta is a DNN as in (3.2),
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C161

then u\theta is smooth in \theta as long as all activation functions \sigma are smooth. Suppose
there exists a trajectory \{ \theta t | 0 \leq t \leq T\} in the parameter space \Theta such that its
corresponding u\theta t approximates the solution of the IVP; then we must have\Biggl\{ 

\partial tu\theta t(x) =\nabla \theta u(x; \theta t) \cdot \.\theta t = F [u\theta t ](x) \forall x\in \Omega , t\in (0, T ],

u\theta 0(x) = g(x) \forall x\in \Omega .
(3.7)

To compute u\theta t , it is sufficient to find a control vector (velocity) field VF : \Theta \rightarrow Rm,
in the sense of \.\theta t = VF (\theta t), that steers the trajectory \theta t along the correct direction
starting from the initial \theta 0 satisfying u\theta 0(x) = g(x).

This observation suggests a new approach to solving the IVP with a fixed evolution
PDE but varying initial values g: for the evolution equation in (3.7) to hold, it suffices
to find a vector field VF such that

\nabla \theta u\theta \cdot VF (\theta ) = F [u\theta ](3.8)

for all \theta \in \Theta . It is important to note that VF only depends on the nonlinear differential
operator F of the original evolution PDE but not any actual initial value g of the IVP.
Once this is achieved, we can effectively approximate the solution of the IVP with
any initial value g: we first set \theta 0 = \theta g, where \theta g denotes the parameters such that
u\theta g fits g, and then we numerically solve the following ODE in the parameter space
\Theta (which can be fast) using the control vector field VF :\Biggl\{ 

\.\theta t = VF (\theta t) \forall t\in (0, T ],

\theta 0 = \theta g.
(3.9)

The solution trajectory \{ \theta t | 0\leq t\leq T\} of the ODE (3.9) induces a path \{ u\theta t | 0\leq t\leq 
T\} in \scrM as an approximation to the solution of the IVP. The computational cost is
thus composed of two parts: finding the parameters \theta g of u\theta to fit g and numerically
solving the ODE (3.9), both of which are substantially cheaper than solving the IVP
(3.5).

The main question is how to get the control vector field VF in (3.9). As an explicit
form of VF is unknown, we choose to express VF in a general parametric form V\xi with
parameters \xi to be determined. Specifically, we propose to set V\xi as another DNN
where \xi represents the set of learnable network parameters in V\xi . A schematic plot of
the pullback mechanism and the control vector field in \Theta is provided in Figure 1. We
call V\xi the neural control field. We learn the parameters \xi by minimizing the following
loss function:

\ell (\xi ) :=

\int 
\Theta 

\| \nabla \theta u\theta \cdot V\xi (\theta ) - F [u\theta ]\| 22 d\theta .(3.10)

In practice, we approximate the integral in \ell by Monte Carlo integration. We sample
K points \{ \theta k | k = 1, . . . ,K\} uniformly from \Theta (here the subscript k in \theta k stands for
the kth point among the K points sampled in \Theta ) and form the empirical loss function

\^\ell (\xi ) =K - 1 \cdot 
K\sum 

k=1

\| \nabla \theta u\theta k \cdot V\xi (\theta k) - F [u\theta k ]\| 22.(3.11)

Then we minimize \^\ell (\xi ) with respect to \xi , where the L2 norm is also approximated by
Monte Carlo integration on \Omega . The training of V\xi is summarized in Algorithm 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 1. Schematic plot of pulling back trajectories (solid and dashed blue curves) in \scrM = \{ u\theta :
\theta \in \Theta \} to trajectories in the parameter space \Theta . Here each trajectory in \scrM represents the reduced-
order model (e.g., DNN) u\theta (t)(\cdot ) approximating the PDE solution u\ast (t, \cdot ) starting from a given
initial, and it is pulled back to the trajectory \theta (t) (we use \theta (t) := \theta t as a trajectory here to avoid
confusion with components \theta 1, . . . , \theta m) in \Theta ; and V\xi is a DNN approximating the control vector field
VF in \Theta .

Algorithm 3.1. Training neural control V\xi .

Input: Reduced-order model structure u\theta and parameter set \Theta . Control vector field
structure V\xi . Error tolerance \varepsilon .

Output: Optimal control parameters \xi .
1: Sample \{ \theta k\} Kk=1 uniformly from \Theta and \{ xn\} Nn=1 from \Omega .

2: Form empirical loss \^\ell (\xi ) as in (4.2).

3: Minimize \^\ell with respect to \xi using any optimizer (e.g., ADAM or AdaGrad)

until \^\ell (\xi )\leq \varepsilon .

Algorithm 3.2. Implementation of solution operator \scrS F of the IVP (3.5) using
trained control V\xi .

Input: Initial value g and tolerance \varepsilon 0. Reduced-order model u\theta and trained neural
control V\xi .

Output: Trajectory \^\theta t such that u\^\theta t
approximate the solution \scrS F [g] of the IVP

(3.5).
1: Compute initial parameters \theta 0 such that \| u\theta 0  - g\| 2 \leq \varepsilon 0.

2: Use any ODE solver to compute \^\theta t to solve (3.9) with approximate field V\xi and
initial \theta 0.

Once we have trained the vector field V\xi , we can implement the solution operator
\scrS F in the following two steps: we first find a \theta 0 such that u\theta 0 fits g, i.e., find a \theta 0 that
minimizes \| u\theta  - g\| 2. This can be done by sampling \{ xn\} Nn=1 from \Omega and minimizing
the empirical squared L2 norm (1/N) \cdot 

\sum N
n=1 | u\theta (xn)  - g(xn)| 2 with respect to \theta .

Then we solve the ODE (3.9) using any numerical ODE solver (e.g., Euler, 4th-order
Runge--Kutta, predictor-corrector) with \theta 0 as the initial value. Both steps can be
done efficiently, and the total computational cost is substantially lower than that of
solving the original IVP (3.5) again. We summarize how neural control solves IVPs
in Algorithm 3.2. Further details on the practical implementation of Algorithms 3.1
and 3.2 are discussed in section 4.

3.3. Error analysis. In this subsection, we develop an error estimate of the
proposed method. We first focus on the error due to projection onto the tangent space

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Tu\theta 
\scrM in the L2 space in section 3.3.1. Then we establish the solution approximation

error for linear and semilinear parabolic PDEs in section 3.3.2. For ease of discussion,
we again assume zero Dirichlet boundary condition u(x, t) = 0 for all x \in \=\Omega and
t \in [0, T ], and we let \Omega = (0,1)d \subset Rd be the unit open cube in Rd and \Theta some open
bounded set in Rm (note that our analysis below applies as long as \Omega is open and
bounded). We let F [u] := F (u,\nabla u,\nabla 2u) be a nonlinear differential operator with
necessary regularity conditions to be specified later and which allows for a unique
solution to the PDE for each initial. Additional requirements on the regularity of u\theta 
will be given when needed.

3.3.1. Approximation error of control vector field. We first investigate
the main source of error when using a reduced-order model to approximate the time-
evolving solution of the given PDE. We show that this error is due to the imperfect
representation of F [u\theta ] using \nabla \theta u\theta in (3.8). Specifically, due to the approximation of
reduced-order models, Tu\theta 

\scrM is only a finite-dimensional subspace of L2, and thus we
can only approximate the projection of F [u\theta ] onto this tangent space. We will need
the following assumptions on the regularity of u\theta and F .

Assumption 1. The reduced-order model u\theta (\cdot ) \in C3(\Omega ) \cap C(\=\Omega ) for every \theta \in \=\Theta 
and u(x; \cdot )\in C2(\Theta )\cap C( \=\Theta ). Moreover, there exists L> 0 such that for all \theta \in \=\Theta 

F [u\theta ]\in \scrF L := \{ f \in C1(\Omega )\cap C(\=\Omega ) : \| f\| \infty \leq L, \| \nabla f\| \infty \leq L\} .(3.12)

Assumption 1 provides some sufficient regularity conditions on the reduced-order
model u\theta and boundedness of F [u\theta ] and its gradient to be used in our error estimates.
Notice that we consider F as second-order differential operator here and therefore
the assumption u\theta \in C3(\Omega ) ensures that u\theta (x),\nabla u\theta (x),\nabla 2u\theta (x) are all sufficiently
smooth. The regularity condition on F in Assumption 1 requires that the mapping
F [u\theta ](x) is a C1 function and has magnitudes and gradients bounded by L over \=\Omega .
These assumptions are generally mild, as we will use reduced-order models smooth in
(x, \theta ), e.g., a DNN with smooth activation functions, and the operator F is sufficiently
regular.

Assumption 2. For any \=\varepsilon > 0, there exist a reduced-order model u\theta and a bounded
open set \Theta \subset Rm, such that for every \theta \in \=\Theta there exists a vector \alpha \theta \in Rm satisfying

\| \alpha \theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \=\varepsilon .

Assumption 2 provides an upper bound on the error when projecting F [u\theta ] onto
the tangent space Tu\theta 

\scrM , which is spanned by the functions in \nabla \theta u\theta . This error bound
is determined by the choice of the reduced-order model u\theta and the parameter set \Theta .
As will be demonstrated in our numerical experiments, a small projection error can
be achieved by using a standard DNN as reduced-order model u\theta . As such, an error
is difficult to analyze due to the complex structures of general DNNs. We provide an
example reduced-order model with special structure to justify the reasonableness of
Assumption 2.

Example 3.2. Let \=\varepsilon > 0, and let \{ \varphi j\} \infty j=1 be a complete smooth orthonormal basis
(e.g., generalized Fourier basis) for L2(\Omega ). Suppose there exist C > 0, \gamma > 1, and
C0 > 0 such that for all u\in C3(\Omega )\cap C(\=\Omega ) and \| u\| 22 \leq C0 we have

F [u]\in \scrG C,\gamma :=
\bigl\{ 
f \in C1(\Omega )\cap C(\=\Omega ) : | \langle f,\varphi j\rangle | 2 \leq Cj - \gamma \forall j \geq 1

\bigr\} 
.(3.13)
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Then there exists m = m(\=\varepsilon ,C,\gamma ) \in N such that
\sum \infty 

j=m+1Cj
 - \gamma < \=\varepsilon 2. Consider u\theta =

\theta \cdot \varphi =
\sum m

j=1 \theta j\varphi j . We denote f\theta := F [u\theta ] for short. Then \nabla \theta u\theta = \varphi = (\varphi 1, . . . ,\varphi m)

and for \alpha f\theta = (\alpha f\theta 
1 , . . . , \alpha 

f\theta 
m ) with \alpha f\theta 

j := \langle f\theta ,\varphi j\rangle , there is

\| \alpha f\theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 22 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
j=1

\alpha f\theta 
j \varphi j  - f\theta 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

=
\infty \sum 

j=m+1

| \langle f\theta ,\varphi j\rangle | 2 \leq \=\varepsilon 2.

Therefore, the reduced-order model u\theta = \theta \cdot \varphi with \Theta = \{ \alpha \in Rm : | \alpha | 2 < C0\} and
\alpha \theta = \alpha f\theta satisfies Assumption 2.

This example can be modified to use a more general form of reduced-order model
u\theta , such as a DNN. To see this, we first repeat the procedure above but with \=\varepsilon replaced
by \=\varepsilon /2. Then the universal approximation theorem [36, 92] and the continuity of
DNNs in its parameters imply that there exist DNNs \{ \^\varphi j : 1 \leq j \leq m\} , whose

network parameters are collectively denoted by \eta \in Rm\prime 
, which satisfy \| \^\varphi j  - \varphi j\| \infty \leq 

\=\varepsilon /(2
\sqrt{} 
mC0| \Omega | ) and hence \| \^\varphi j  - \varphi j\| 2 \leq \=\varepsilon /(2

\surd 
mC0) for all \eta in an open set H \subset Rm\prime 

.
Consider the DNN u\theta = c \cdot \^\varphi with parameters \theta = (c, \eta ) \in Rn, where n = m +m\prime .
Then \nabla cu\theta (x) = ( \^\varphi 1, . . . , \^\varphi m). Using the example above, we know that for any f\theta :=
F [u\theta ]\in \scrG C,\gamma , there exists \alpha f\theta \in Rm such that \| \alpha f\theta \cdot \varphi  - F [u\theta ]\| 2 \leq \=\varepsilon /2. Therefore, we

use (\alpha f\theta ,0), which concatenates \alpha f\theta and 0 \in Rm\prime 
as the combination coefficients of

\nabla \theta u\theta to obtain

\| (\alpha f\theta ,0) \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 = \| \alpha f\theta \cdot \nabla cu\theta  - F [u\theta ]\| 2
\leq \| \alpha f\theta \cdot \^\varphi  - \alpha f\theta \cdot \varphi \| 2 + \| \alpha f\theta \cdot \varphi  - F [u\theta ]\| \infty 

\leq 
m\sum 
j=1

| \alpha f\theta 
j | \| \^\varphi j  - \varphi j\| 2 +

\=\varepsilon 

2

\leq 
\sqrt{} 
mC0 \cdot 

\=\varepsilon 

2
\surd 
mC0

+
\=\varepsilon 

2

= \=\varepsilon .

Therefore, the DNN u\theta = c \cdot \^\varphi with \Theta = \{ (c, \eta ) : | cj | 2 <C0, \eta \in H\} and \alpha \theta = (\alpha f\theta ,0)
satisfies Assumption 2.

Before proving the main proposition of this section, we will need the following
lemma.

Lemma 3.3. Suppose Assumptions 1 and 2 are satisfied. For all \varepsilon > \=\varepsilon , there exists
v : \=\Theta \rightarrow Rm such that v is bounded over \=\Theta and the value of v at \theta , denoted by v\theta ,
satisfies

\| v\theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \varepsilon \forall \theta \in \=\Theta .

Proof. Let \varepsilon > \=\varepsilon , and let \delta \in (0, \varepsilon  - \=\varepsilon ). By Assumption 2, for all \theta \in \Theta there exists
an \alpha \theta \in Rm coefficient such that

\| \alpha \theta \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \=\varepsilon .

As F [u\theta ] and \nabla \theta u\theta are continuous in \theta and \Omega is bounded, we associate to each \theta 
and each coefficient \alpha \theta the open set U\theta containing \theta , small enough, such that for all
\theta \prime \in U\theta we have

\| \alpha \theta \nabla \theta u\theta \prime  - \alpha \theta \nabla \theta u\theta \| 2 + \| F [u\theta ] - F [u\theta \prime ]\| 2 \leq \delta (3.14)
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C165

and hence

\| \alpha \theta \cdot \nabla \theta u\theta \prime  - F [u\theta \prime ]\| 2 \leq \| \alpha \theta \nabla \theta u\theta \prime  - \alpha \theta \nabla \theta u\theta \| 2 + \| \alpha \theta \nabla \theta u\theta  - F [u\theta ]\| 2
+ \| F [u\theta ] - F [u\theta \prime ]\| 2 \leq \delta + \=\varepsilon .

(3.15)

Therefore, \cup \theta \in \=\Theta U\theta is an open cover of \=\Theta . As \=\Theta is compact, this open cover has a finite
subcover \cup N

i=1U\theta i for particular \theta i's. Define v : \=\Theta \rightarrow Rm such that v\theta := v(\theta ) = \alpha \theta i if
\theta \in U\theta i (if \theta is in the intersection of multiple U\theta i 's, we choose a single \alpha \theta i arbitrarily).
We see from this construction that v\theta is uniformly bounded over \=\Theta as the range of v\theta 
is finite. From (3.15) we have

\| v\theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \delta + \=\varepsilon \leq \varepsilon .

With Assumptions 1 and 2 and Lemma 3.3 we can prove the existence of an
accurate neural control field V\xi parameterized as a neural network, as shown in the
next proposition.

Proposition 3.4. Suppose Assumptions 1 and 2 hold. Then, for any \varepsilon > 0, there
exists a differentiable vector field parameterized as a neural network V\xi : \=\Theta \rightarrow Rm with
parameters \xi , such that

\| V\xi (\theta ) \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \varepsilon 

for all \theta \in \=\Theta .

Proof. We first show that there exists a differentiable vector-valued function V :
\=\Theta \rightarrow Rd such that

\| V (\theta ) \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq 
\varepsilon 

2
(3.16)

for all \theta \in \=\Theta . To this end, we choose \=\varepsilon 0 \in (0, \varepsilon /2) and \=\varepsilon \in (\=\varepsilon 0, \varepsilon /2); then by Assump-
tion 2 and Lemma 3.3 we know that there exist a reduced-order model u\theta , a bounded
open set \Theta \subset Rm, and Mv > 0 such that there exists a vector-valued function \theta \mapsto \rightarrow v\theta ,
where for any \theta \in \=\Theta we have | v\theta | <Mv and

\| v\theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \=\varepsilon .

Note that v\theta is not necessarily differentiable with respect to \theta . To obtain a differen-
tiable vector field V (\theta ), for each \theta \in \=\Theta we define the function \psi \theta by

\psi \theta (w) := \| w \cdot \nabla \theta u\theta  - F [u\theta ]\| 22 =w\top G(\theta )w - 2w\top p(\theta ) + q(\theta ),

where

G(\theta ) :=

\int 
\Omega 

\nabla \theta u\theta (x)\nabla \theta u\theta (x)
\top dx, p(\theta ) :=

\int 
\Omega 

\nabla \theta u\theta (x)F [u\theta ](x)dx,(3.17)

q(\theta ) :=

\int 
\Omega 

F [u\theta ](x)
2 dx.

Then we know that

\psi \ast 
\theta := \psi \theta (v\theta ) = \| v\theta \cdot \nabla \theta u\theta  - F [u\theta ]\| 22 \leq \=\varepsilon 2.(3.18)

It is also clear that G(\theta ) is symmetric and positive semidefinite. Moreover, due to
the compactness of \=\Omega and \=\Theta , as well as the fact that \nabla \theta u\in C(\=\Omega \times \=\Theta ), we know there
exists \lambda G > 0 such that
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C166 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

\| G(\theta )\| 2 \leq \lambda G

for all \theta \in \=\Theta . Therefore, \psi \theta is a convex function and the Lipschitz constant of \nabla \psi \theta is
uniformly upper bounded by \lambda G over \=\Theta . Now, for any w \in Rm, h> 0, and K \in N (we
reuse the letter K as the iteration counter instead of the number of sampling points
in this proof), we define

\scrO K,h
\theta (w) :=wK , where wk =wk - 1  - h\nabla \psi \theta (wk - 1), w0 =w, k= 1, . . . ,K.

Namely, \scrO K,h
\theta is the oracle of executing the gradient descent optimization scheme on

\psi \theta with step size h> 0 for K iterations.
Next, we slightly modify the standard convergence result of gradient descent in

convex optimization [64, Theorem 2.1.14] and obtain Lemma A.1 in Appendix A.
Notice that \psi \theta is convex and differentiable and that \nabla \psi \theta is Lipschitz continuous with
its Lipschitz constant upper bounded by \lambda G. Therefore, applying Lemma A.1 with
y= v\theta , f =\psi \theta , and the gradient descent scheme for K iterations (K to be determined
soon) with initial 0 and any fixed step size h\in (0,1/\lambda G) to \psi \theta directly yields an error
bound for \psi \theta (\scrO K,h

\theta (0)):

\psi \theta (\scrO K,h
\theta (0)) - \psi \ast 

\theta \leq 
| 0 - v\theta | 2

2Kh
.(3.19)

Combining this with the bound | v\theta | <Mv, we choose any

K \geq M2
v

2h((\varepsilon /2)2  - \=\varepsilon 2)
,

and there exists

\psi \theta (\scrO K,h
\theta (0)) - \psi \ast 

\theta \leq 
M2

v

2Kh
\leq 
\Bigl( \varepsilon 
2

\Bigr) 2

 - \=\varepsilon 2.(3.20)

Notice that \scrO K,h
\theta is a differentiable vector-valued function of \theta because K and h

are fixed. Therefore, combining (3.18) and (3.20) yields

0\leq \psi \theta (\scrO K,h
\theta (0)) = (\psi \theta (\scrO K,h

\theta (0)) - \psi \ast 
\theta ) + \psi \ast 

\theta \leq (\varepsilon /2)2  - \=\varepsilon 2 + \=\varepsilon 2 = (\varepsilon /2)2.

As this inequality holds for all \theta \in \=\Theta , we set V (\theta ) =\scrO K,h
\theta (0), which is a differentiable

function of \theta satisfying (3.16).
By the universal approximation theorem of neural networks [28] (see also Re-

mark 3.1), we know there exists a differentiable vector-valued function parameterized
as a neural network V\xi with parameters \xi such that

| V\xi (\theta ) - V (\theta )| \infty \leq \varepsilon /(2B)

for all \theta \in \=\Theta , where B := max\theta \in \=\Theta \| \nabla \theta u\theta \| 2 <\infty and | \cdot | \infty stands for the \infty norm of
vectors. Hence, we know that

\| V\xi (\theta ) \cdot \nabla \theta u\theta  - F [u\theta ]\| 2 \leq \| V\xi (\theta ) \cdot \nabla \theta u\theta  - V (\theta ) \cdot \nabla \theta u\theta \| 2 + \| V (\theta ) \cdot \nabla \theta u\theta  - F [u\theta ]\| 2
\leq B \cdot \varepsilon 

2B
+
\varepsilon 

2
= \varepsilon .

This completes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
24

 to
 4

5.
17

.7
4.

20
3 

by
 X

ia
oj

in
g 

Y
e 

(x
ye

@
gs

u.
ed

u)
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y
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Remark 3.5. It is important to note that the geometry of \scrM , especially its dimen-
sionality, is complex and highly dependent on the structure of u\theta and the parameter
space \Theta . In particular, we can show that the tangent space Tu\theta 

\scrM = span(\nabla \theta u\theta ) at
any u\theta \in \scrM is in the L2 space, where \nabla \theta u\theta = (\partial \theta 1u\theta , . . . , \partial \theta mu\theta ) for \theta = (\theta 1, . . . , \theta m).
(Here we use discrete indices 1, . . . ,m as subscripts of \theta to indicate its components for
notation simplicity. This is to be distinguished from the subscript t in \theta t which stands
for time of the trajectory \theta t.) However, dim(Tu\theta 

\scrM ) may vary across different u\theta on
\scrM . For example, consider the reduced-order model u\theta parameterized as a DNN as
in (3.2): when w = 0, we have \theta = (0, b, . . . ), and hence \partial Wl

u\theta = 0 and \partial blu\theta = 0 for
all l= 1, . . . ,L. In this case, the m components of \nabla \theta u\theta are not linearly independent,
and dim(Tu\theta 

\scrM )<m for such \theta 's. This distinguishes our parameter submanifold from
existing ones, such as in [2], which assumes that the tangent space is always of full
dimension m at any point of the submanifold. In our case, however, challenges and
complications in dealing with the parameter submanifold \scrM could be avoided if we
made such an assumption, but it will lead to incorrect analysis and error estimation,
which poses a major technical challenge for the proposed framework. Specifically, we
note that the rank of G(\theta ) varies across \Theta , and therefore the pseudoinverse G(\theta )+

may be discontinuous. A major theoretical merit of Proposition 3.4 is that we can
still ensure the existence of a differentiable control vector field in such a case.

3.3.2. Error analysis in solving (semi-)linear parabolic PDEs. Now we
are ready to provide error bounds of our method in solving a large class of linear and
semilinear parabolic PDEs. This class of PDEs covers many types of reaction-diffusion
equations, such as heat equations, Fisher's equation, or the Allen--Cahn equation. The
differential operator F in linear and semilinear parabolic PDEs has the form

F [u] =\nabla \cdot (A\nabla u) + b \cdot \nabla u+ f(u),

where A : \Omega \rightarrow Rd\times d and b : \Omega \rightarrow Rd are continuous, and f : R \rightarrow R is Lf -Lipschitz
and acts on u(x) for each x. Moreover, we assume that there exist \lambda \geq 0 and B \geq 0
such that

z\top A(x)z \geq \lambda | z| 2 \forall z \in Rd, x\in \Omega ,(3.21)

and

\| \nabla \cdot b\| \infty \leq B.(3.22)

Furthermore, due to the smoothness of V\xi and compactness of \=\Theta , we know there
exist MV > 0 and LV > 0 such that

max
\theta \in \=\Theta 

| V\xi (\theta )| \leq MV and max
\theta \in \=\Theta 

| \nabla \theta V\xi (\theta )| \leq LV .(3.23)

Theorem 3.6. Suppose Assumptions 1 and 2 hold. Then there exists control field
V\xi such that for any u\ast satisfying the evolution PDE in (3.5) there exists

\| u\theta t(\cdot ) - u\ast (\cdot , t)\| 2 \leq e(Lf+B/2 - \lambda /Cp)t(\varepsilon 0 + \varepsilon t)(3.24)

for all t as long as \theta t \in \=\Theta , where \theta t is solved from the ODE (3.9) with V\xi and initial
\theta 0 satisfying \| u\theta 0(\cdot ) - u\ast (\cdot ,0)\| 2 \leq \varepsilon 0. Here Cp is a constant depending only on \Omega .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
24

 to
 4

5.
17

.7
4.

20
3 

by
 X

ia
oj

in
g 

Y
e 

(x
ye

@
gs

u.
ed

u)
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



C168 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

Proof. We denote the residual

r(x, t) :=\nabla \theta u\theta t(x) \cdot V\xi (\theta t) - F [u\theta t ](x).

Then by Proposition 3.4 we have \| r(\cdot , t)\| 2 \leq \varepsilon for all t. Furthermore, we denote

\delta (x, t) := u\theta t(x) - u\ast (x, t)

for all (x, t)\in \=\Omega \times [0, T ] and D(t) := \| \delta (\cdot , t)\| 2, and then there exists

D\prime (t) =

\biggl\langle 
\delta (\cdot , t)

\| \delta (\cdot , t)\| 2
, \partial t\delta (\cdot , t)

\biggr\rangle 
.(3.25)

Here we use the convention that \delta (\cdot , t)/\| \delta (\cdot , t)\| 2 = 0 if \delta (\cdot , t) = 0 a.e. By the definition
of \delta , we have

\partial t\delta (x, t) = \partial tu\theta t(x) - \partial tu
\ast (x, t)

=\nabla \theta u\theta t(x) \cdot \.\theta t  - F [u\ast ](x, t)

=\nabla \theta u\theta t(x) \cdot V\xi (\theta t) - F [u\ast ](x, t)

= F [u\theta t ](x) - F [u\ast ](x, t) + r(x, t)

=\nabla \cdot (A(x)\nabla \delta (x, t)) + b(x) \cdot \nabla \delta (x, t) + f(u\theta t(x)) - f(u\ast (x, t)) + r(x, t).

Therefore, we have

\langle \delta (\cdot , t), \partial t\delta (\cdot , t)\rangle =
\int 
\Omega 

\delta (x, t) (\nabla \cdot (A(x)\nabla \delta (x, t)) + b(x) \cdot \nabla \delta (x, t)) dx

+

\int 
\Omega 

\delta (x, t)(f(u\theta t(x)) - f(u\ast (x, t)) + r(x, t))dx(3.26)

=: I(t) + J(t).

Because u\theta t(\cdot )| \partial \Omega = u\ast (\cdot , t)| \partial \Omega = 0, we know that \delta (\cdot , t)| \partial \Omega = 0. Thus, we have

I(t) =

\int 
\Omega 

\delta (x, t) (\nabla \cdot (A(x)\nabla \delta (x, t)) + b(x) \cdot \nabla \delta (x, t)) dx

= - 
\int 
\Omega 

\nabla \delta (x, t)\top A(x)\nabla \delta (x, t)dx - 1

2

\int 
\Omega 

(\nabla \cdot b(x))\delta (x, t)2 dx(3.27)

\leq  - \lambda 
\int 
\Omega 

| \nabla \delta (x, t)| 2 dx - 1

2

\int 
\Omega 

(\nabla \cdot b(x))\delta (x, t)2 dx

\leq  - \lambda 

Cp

\int 
\Omega 

| \delta (x, t)| 2 dx+ B

2

\int 
\Omega 

| \delta (x, t)| 2 dx,

where the first equality is just by the definition of I(t), the second equality is obtained
by integrating by parts on both terms and using \delta (\cdot , t)| \partial \Omega = 0, the first inequality is
due to (3.21), and the last inequality is due to Poincare's inequality

\| \delta (\cdot , t)\| 2 \leq Cp\| \nabla \delta (\cdot , t)\| 2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

6/
24

 to
 4

5.
17

.7
4.

20
3 

by
 X

ia
oj

in
g 

Y
e 

(x
ye

@
gs

u.
ed

u)
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y
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as \delta (\cdot , t)| \partial \Omega = 0 for all t (here Cp is Poincare's constant depending on \Omega only) and the
bound (3.22). We can also obtain

J(t) =

\int 
\Omega 

\delta (x, t)(f(u\theta t(x)) - f(u\ast (x, t)) - r(x, t))dx

\leq 
\int 
\Omega 

| \delta (x, t)| \cdot | f(u\theta t(x)) - f(u\ast (x, t)) - r(x, t)| dx

\leq 
\int 
\Omega 

| \delta (x, t)| \cdot (Lf | \delta (x, t)| + | r(x, t)| )dx(3.28)

\leq Lf\| \delta (x, t)\| 22 + \| r(\cdot , t)\| 2\| \delta (\cdot , t)\| 2
\leq Lf\| \delta (x, t)\| 22 + \varepsilon \| \delta (\cdot , t)\| 2,

where the first identity is by the definition of J(t), and the second inequality is due to
the Lipschitz condition of f . Combining (3.25), (3.26), (3.27), and (3.28), we obtain

D\prime (t)\leq 
\biggl( 
Lf +

B

2
 - \lambda 

Cp

\biggr) 
D(t) + \varepsilon .

By Gr\"onwall's inequality, we deduce that

D(t)\leq e(Lf+B/2 - \lambda /Cp)t(D(0) + \varepsilon t).

Recalling that

D(0) = \| \delta (\cdot ,0)\| 2 = \| u\theta 0(\cdot ) - u\ast (\cdot ,0)\| 2 = \| u\theta 0(\cdot ) - g(\cdot )\| 2 \leq \varepsilon 0,

we thus have

\| u(\cdot , \theta (t)) - u(\cdot , t)\| 2 =D(t)\leq e(Lf+B/2 - \lambda /Cp)t(\varepsilon 0 + \varepsilon t)

for all time t, which completes the proof.

The error estimate in Theorem 3.6 indicates that the approximation error is de-
termined by three factors: (i) the approximation error \varepsilon 0 of the reduced-order model
to the initial value g, (ii) the local approximation error \varepsilon of the projection of F [u\theta ]
onto the tangent space of \scrM at u\theta ; and (iii) the irregularity of the differential operator
F itself. While the error from (iii) is determined by the given PDE, we can make an
effort to suppress (i) and (ii) in practice by robust architecture of u\theta and the training
of V\xi . We note the error estimate provided in Theorem 3.6 is an upper bound of the
approximation error.

Remark 3.7. While we assumed f to be globally Lipschitz, the result in Theo-
rem 3.6 still holds locally with the local Lipschitz condition of f . For example, in the
case of the Allen--Cahn example, we know that if our initial function is bounded by
1, the true trajectories will remain bounded, allowing the results of Theorem 3.6 to
apply.

Corollary 3.8. Suppose the conditions in Theorem 3.6 hold. Let \^\theta t be the
numerical solution to the ODE (3.9) obtained by using the Euler scheme with step
size h> 0. Then

\| u\^\theta t
(\cdot ) - u\ast (\cdot , t)\| 2 \leq 

LVMV | \Omega | h
2

(eLV t  - 1) + e(Lf - B/2+\eta /Cp)t(\varepsilon 0 + \=\varepsilon t)(3.29)

for all t as long as \theta t \in \=\Theta .
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Proof. Given the estimate provided in Theorem 3.6, we only need to show that

\| u\^\theta t
(\cdot ) - u\theta t(\cdot )\| 2 \leq 

LVMV | \Omega | h
2

(eLV t  - 1),(3.30)

since combined with (3.24) it yields the claimed estimate (3.29). To show (3.30), we
notice that

\"\theta t =
d

dt
V\xi (\theta t) =\nabla \theta V\xi (\theta t) \cdot \.\theta t =\nabla \theta V\xi (\theta t) \cdot V\xi (\theta t).

Therefore, we have

| \"\theta t| = | \nabla \theta V\xi (\theta t) \cdot V\xi (\theta t)| \leq LVMV ,

where LV and MV are defined in (3.23). Hence, by the standard results for Euler's
method [4, p. 346]), we know the numerical solution \^\theta t satisfies

| \^\theta t  - \theta t| \leq 
hMV

2

\bigl( 
eLV t  - 1

\bigr) 
(3.31)

for all t. Therefore, we obtain

\| u\^\theta t
 - u\theta t\| 2 =

\biggl( \int 
\Omega 

| u\^\theta t
(x) - u\theta t(x)| 2 dx

\biggr) 1/2

=

\biggl( \int 
\Omega 

| \nabla \theta u\~\theta t
(x) \cdot (\^\theta t  - \theta t)| 2 dx

\biggr) 1/2

\leq LV | \Omega | | \^\theta t  - \theta t| \leq 
LVMV | \Omega | h

2
(eLV t  - 1),

where the second equality is due to the fact that u\theta is C1 in \theta and hence the mean
value theorem applies to u\theta (here \~\theta t is some point on the line segment between \^\theta t and
\theta t).

The proof above can be modified if a different numerical ODE solver is employed.
In that case, one can obtain an improved upper bound and order in step size h in
(3.31).

4. Numerical results.

4.1. Implementation of the training process of control field \bfitV \bfitxi . In sec-
tion 3.2, we have shown that the neural control field V\xi is parameterized as a deep
network, and its parameters \xi can be learned by solving

min
\xi 

\biggl\{ 
\ell (\xi ) :=

\int 
\Theta 

\| V\xi (\theta ) \cdot \nabla \theta u\theta  - F [u\theta ]\| 22 d\theta 
\biggr\} 
.

The first-order optimality condition of this minimization problem is given by G(\theta )V\xi (\theta ) =
p(\theta ), where G(\theta ) and p(\theta ) are defined in (3.17). The objective function \ell (\xi ) above
shares the same minimizers as the following one:

\=\ell (\xi ) :=

\int 
\Theta 

| G(\theta )V\xi (\theta ) - p(\theta )| 2 d\theta .(4.1)

In our numerical experiments, we use \=\ell defined in (4.1), as we can train towards the
optimal solution V\xi =G+(\theta )p(\theta ) as the optimal value, which seems to produce lower
error empirically. Moreover, we know the minimum loss value of (4.1) is 0, which is
in contrast to (3.10), where the minimum loss value is often unknown.
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In practice, as the dimension of \theta and \Omega could be large, we have to approximate
(4.1) using techniques such as Monte Carlo integration. This leads to the approximate
forms

\~G(\theta ) =
1

Nx

Nx\sum 
i=1

\nabla \theta u\theta (xi)\nabla \theta u\theta (xi)
\top , \~p(\theta ) =

1

Nx

Nx\sum 
i=1

\nabla \theta u\theta (xi)F [u\theta ](xi),

where xi, i = 1, . . . ,Nx, are sampled from \Omega . By also drawing samples from \Theta , we
arrive at our empirical loss function defined by

\ell 1(\xi ) :=
1

N\theta 

N\theta \sum 
j=1

| \~G(\theta j) \cdot V\xi (\theta j) - \~p(\theta j)| 2.(4.2)

To improve the training of V\xi , we also augment the loss function \ell 1 in (4.2)
with an additional term following a data-driven approach. Specifically, we follow the
methods in [10, 19] to generate multiple sample trajectories starting from randomly

sampled initial values \{ \theta (i)0 : i \in [M ]\} in \Theta . For the ith trajectory, a sequence of

directions \{ v(i)j : j = 0,1 . . . ,Nt\} is solved from linear systems \~G(\theta 
(i)
j )v

(i)
j = \~p(\theta 

(i)
j )

and the discrete-time points on the trajectory are obtained by \theta 
(i)
j+1 = \theta 

(i)
j + hv

(i)
j for

j = 0,1, . . . ,Nt  - 1. We add the augment loss term

\ell 2(\xi ) :=
1

NtM

M\sum 
i=1

Nt\sum 
j=1

| V\xi (\theta (i)j ) - v
(i)
j | 2.(4.3)

Combining with (4.2), we obtain our final loss function

\ell total(\xi ) = \ell 1(\xi ) + \zeta \ell 2(\xi ),(4.4)

where \zeta is a weight parameter. In our experience, parabolic linear PDEs using only \ell 1
is sufficient to generate a good result. For the nonlinear case, adding \ell 2 substantially
improves training results empirically, as network parameters may move far away from
those we sampled near the initial parameters.

4.2. Experimental setting. To demonstrate the performance of the proposed
method, we test it on three different PDEs: a 10-dimensional (10D) transport equa-
tion, a 10D heat equation, and a 2D Allen--Cahn equation. Both the transport equa-
tion and the heat equations are linear PDEs, while the Allen--Cahn one is a highly
nonlinear PDE. In fact, we also tested a 10D Allen--Cahn equation but only present
the result of the 2D one here. This is because the true solution of the Allen--Cahn
equation does not have closed form, and we have to employ a classical finite difference
method, which does not scale to the 10D case, to produce a reference solution for com-
parison. In contrast, we have closed-form solutions of the IVPs with transport and
heat equations, and hence we can use them as the true solution for direct comparison.
In our tests, we employ the following structure of our reduced-order model:

u\theta (x) = \alpha (x)zL(x, \theta )(4.5)

for the heat equation and Allen--Cahn equation. We use the following network struc-
ture:

u\theta (x) = zL(\beta (x), \theta )(4.6)
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Table 1
Problem settings, network structures, and the number of training trajectories/samples in nu-

merical experiments. Here M is the number of trajectories used from \Theta and N\theta is the total number
of samples from \Theta .

Problem Dim. d u\theta width/depth V\xi width/depth M N\theta 

Transport Equation 10 12/4 1,500/4 0 160,000
Heat Equation 10 12/5 2,000/10 600 200,000

Allen--Cahn Equation 2 10/3 2,000/5 200 200,000

for the transport equation. In (4.5), \alpha (x) is a distance function of \partial \Omega such that it
satisfies the zero boundary condition, and in (4.6), \beta (x) is a function chosen to satisfy
a periodic boundary condition as in [19]. This aligns with our choice of u\theta in (4.5)
and (4.6), as the IVP with heat and Allen--Cahn equations has zero boundary value,
whereas the IVP with a transport equation has a periodic boundary value in our
experiments. In both (4.5) and (4.6), zL is the neural network and is defined by

zL =wLzL - 1, zl = zl - 1 + \sigma (Wlzl - 1 + bl), l= 1, . . . ,L - 1,(4.7)

and z0 = \sigma (W0x+ b0). Here \sigma is a user-chosen activation function (we use tanh or

ReLU in our experiments), where Wl \in Rd\prime \times d\prime 
are the weight matrices and bl \in Rd\prime 

are the bias vectors, and W0 \in Rd\prime \times d and wL \in R1\times d; all of these matrices and
vectors make up the parameter vector \theta . Networks such as in (4.7) are often called
residual neural networks (ResNet) and have been shown to perform better than FFNs
in function approximation [80]. The values of L and d\prime in our experiments are shown
in Table 1. They are selected manually to balance the depth L and width d\prime so that
u\theta does not have too many neurons but still remains expressive. We use a similar
structure for the vector field V\xi but adjust the layers to be \eta l = \eta l - 1 +GeLU( \=Ul\theta +
\=bl) tanh(Ul\eta l - 1+bl). Here GeLU(x) = x\Phi (x), where \Phi (x) is the standard Gaussian cdf.
This is a slight modification of the network architecture proposed in [79] for improved
effectiveness in training by gradient descent. We selected this network structure by
starting with a ResNet with small width and depth and ReLU activation, and then
we gradually increased the width and depth until the improvement in the final loss
value became insignificant. Finally, we attempted a few different activation functions
and network architectures for this width and depth and selected the aforementioned
structure, which appeared to perform slightly better. This process was by no means
exhaustive.

Other network architectures can be used as well. The width and depth of our
network are reported in Table 1. Information about the number of trajectories used
for (4.3) is also collected in Table 1. For all of the experiments, we set the weight
\zeta = 0.1 in (4.4) to reflect the scale difference of the two loss terms and use the standard
ADAM optimizer with learning rate 0.001, \beta 1 = 0.9, \beta 2 = 0.999. We terminate the
training process when the empirical loss \ell total(\xi )< 0.1 or when the percent decrease
of the empirical loss is less than 0.1\% averaged over the past 100 steps. Once V\xi is
learned, we use the 4th-order Runge--Kutta method with a step size of T/200 (T is
determined from the problem) to solve \theta t from the ODE in (3.9) in Algorithm 3.2 and
compare the corresponding u\theta with the reference solutions. All the implementations
and experiments are performed using PyTorch in Python 3.9 in Windows 10 OS on
a desktop computer with an AMD Ryzen 7 3800X 8-Core Processor at 3.90GHz,
16GB of system memory, and an Nvidia GeForce RTX 2080 Super GPU with 8GB
of graphics memory. The total computational time is split between three unique
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C173

activities: (i) the generation of N\theta samples for \ell 1 in (4.2); (ii) the generation of the
M trajectories for \ell 2 in (4.3); and (iii) the training of the network V\xi . Parts (i) and
(ii) can be parallelized offline to speed up the process. We discuss the specific time
cost of the implementation of our method in the examples below.

We also provide a few remarks on the sampling strategy in \Theta . While one can draw
\theta uniformly from \Theta , adding samples \theta corresponding to some example solutions to
the PDE may further improve training efficiency. In practice, we use both uniformly
sampled \theta 's and those close to the \theta 's corresponding to some randomly chosen initial
functions. These initial functions are only used to help the loss function weigh more
on the regions that are potentially more important than others in \Theta ; but they are
not among the randomly chosen initial functions used for any testing. Details on
samplings are given below.

4.3. Numerical results on transport equation. We first consider the IVP
defined by a 10D transport equation with periodic boundary conditions as follows:\Biggl\{ 

\partial tu(x, t) = - 1 \cdot \nabla xu(x, t) \forall x\in \Omega , t\in [0, T ],

u(x,0) = g(x) \forall x\in \=\Omega ,
(4.8)

where \Omega = (0,1)10, T = 1, 1 is the vector whose components are all ones, and the
boundary value u(x, t) = 0 for all x\in \partial \Omega and t\in [0, T ]. This IVP has the true solution
u\ast (x, t) = g(x - 1\cdot t). We obtain the solution operator of the IVP (4.8), and we use (4.6)
as the reduced-order model u\theta . Although our error analysis requires certain regularity
on the initial and solution of PDEs, we test on the case where both are only Lipschitz
continuous but not differentiable for this transport equation. To this end, we set the
activation of u\theta to ReLU. Further, define \beta (x) = (cos(2\pi (x  - b)), sin(2\pi (x  - b)))\top ,
where b \in R10 is a trainable parameter with sin and cos acting componentwise to
x. This means that the first hidden layer uses W0 \in R12\times 20. For this example, we
shall set \Theta = [ - 1,1]m, where m are the number of parameters in u\theta . Then we train
the neural control vector field V\xi by minimizing (3.10) with the number of sampled
\theta drawn uniformly from \Theta shown in Table 1. We note that this equation performed
equally well with or without the loss \ell 2 in (4.3). As such, we need not generate any
trajectories and this is reflected in Table 1.

After the control V\xi is obtained, we test the performance of V\xi on a variety of
initial values g by uniformly sampling \theta 0 \in \Theta . We emphasize that the \theta 0's corre-
sponding to these initial values are not used in the training process. We show three
approximate solutions for three random initials in Figure 2. For the first random ini-
tial g1 determined by the random \theta 0, we plot the corresponding true solution u\ast (\cdot , t),
the approximate solution u\theta t(\cdot ) obtained by Algorithm 3.2, and their pointwise ab-
solute difference | u\theta t(x) - u\ast (x, t)| from row 1 to row 3 in Figure 2, respectively, for
t = 0,0.15,0.5,0.85,1. The plots for the second and third g2 and g3 random ini-
tials are shown in rows 4--6 and 7--9 in Figure 2, respectively. From Figure 2, we
can see that the reduced-order model u\theta t with \theta t controlled by the trained vector
field V\xi closely approximates the true solution u\ast (\cdot , t) with low absolute errors (note
that the scale of the error is different from that of u\ast (\cdot , t) and u\theta t(\cdot )). Figures 3(a)
and 3(b) plot the mean of the absolute error \| u\ast (\cdot , t) - u\theta t(\cdot )\| 22 and the relative error
\| u\ast (\cdot , t)  - u\theta t(\cdot )\| 22/\| u\ast (\cdot , t)\| 22, respectively, over 100 randomly chosen initials, while
the standard deviation is shaded in. We see mean errors < 1\%, even though the ini-
tial functions considered are not smooth. This suggests that the proposed model can
generalize to the case where the initial and solution of the PDEs are not sufficiently
smooth.
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C174 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

Fig. 2. (Transport equation). Comparison between the true solution u\ast (\cdot , t), the approximation
u\theta t (\cdot ), and their pointwise absolute difference | u\theta t (x) - u\ast (x, t)| for times t= 0,0.15,0.5,0.85,1 for
IVPs with the first initial (rows 1--3), second initial (rows 4--6), and third initial (rows 7--9) given
by u\theta with \theta randomly drawn from [ - 1,1]m.
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Fig. 3. Comparison of the mean relative error \| u\ast (\cdot , t)  - u\theta t (\cdot )\| 22/\| u\ast (\cdot , t)\| 22 (top) and the
mean absolute \| u\ast (\cdot , t) - u\theta t (\cdot )\| 22 (bottom) versus time t for 100 different initial conditions of the
transport (a)--(b), heat (c)--(d), and Allen--Cahn (e)--(f) equations. Shaded areas indicate the standard
deviation over the 100 results.

We now discuss the computational cost of the method. In our tests, it took 1.78
hours to generate \~G and \~p from the samples in \Theta used for training. Once generated,
the training of V\xi (i.e., minimizing the loss function \ell total in (4.4)) took 5 minutes
to complete. Testing each initial condition by solving (3.9) using a 4th-order Runge--
Kutta (RK4) solver with step size 0.005 took an average of 2.1 seconds per initial. We
note that no time is needed in this case to fit an initial, as \theta 0 is chosen randomly.

The proposed method has evident improvement on computational cost over exist-
ing methods that only solve specific instances of the PDEs. In this test, we compare
the computational cost with PINN [73] and a time marching (TM) [19] method. We
use the same structure of u\theta for PINN and time marching as used by our method. We
sample 10,000 points (x, t) \in (0,1)10\times [0,1] for PINN and 10,000 points x\in (0,1)10 for
each step of the time marching method. We train PINN using its default parameters
until convergence. For TM, we use RK4 with the same step size 0.005 and its default
linear system solver for each step. We follow all other implementation steps of both
PINN and TM as described in their original papers. For a single initial g, PINN, TM,
and the proposed method took 116.5s, 16.7s, and 2.1s, respectively, to obtain the
solution. This significant time reduction is due to the fact that the proposed method
has learned the control field in the parameter space and thus can compute the solution
of the PDE by solving an ODE which has very low computation complexity. The im-
provement is more significant for higher-order PDEs because PINN and TM require
more time to compute the differential operator, whereas the computation complexity
of the proposed method remains the same.

The proposed method is capable of approximating solution operators of high-
dimensional PDEs, whereas existing methods cannot. This is because existing so-
lution operator learning methods, such as DeepONet, require spatial discretization,
and thus the network size and sampling amounts grow exponentially fast in problem
dimensions. For example, for a one-dimensional (d = 1) evolution PDE, DeepONet
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C176 NATHAN GABY, XIAOJING YE, AND HAOMIN ZHOU

[57] requires 100 sample solutions (which must be generated by another numerical
method), each evaluated at 104 grid points in the (x, t) domain in R\times R+. Thus, the
size of their trunk network alone is already 10 times larger than our V\xi in the 10D
case. When the problem dimension d becomes over 3, DeepONet will be infeasible
computationally. In addition, our method does not require sample solutions which
could be unavailable or difficult to obtain in practice.

4.4. Heat equation. Next, we consider an IVP with heat equation in 10 di-
mensions: \Biggl\{ 

\partial tu(x, t) =\Delta u(x, t) \forall x\in \Omega , t\in [0, T ],

u(x,0) = g(x) \forall x\in \=\Omega ,
(4.9)

where \Omega = (0,1)10 and the boundary value u(x, t) = 0 for all x\in \partial \Omega and t\in [0, T ]. As
most of the initial conditions we consider have rapid evolution in a short time, we use
T = 0.01 in this test. For neural networks, we use (4.5), with \alpha (x) = \Pi 10

i=14(xi  - x2i )
and tanh activation.

In order to have a class of analytical examples against which to compare, we use
the base functions

g1(x) =\Pi 10
i=1 sin(\pi xi),

g2(x) = sin(2\pi x1)\Pi 
10
i=1 sin(\pi xi),

g3(x) = sin(2\pi x2)\Pi 
10
i\not =2 sin(\pi xi),

g4(x) = sin(2\pi x1) sin(2\pi x2)\Pi 
10
i=3 sin(\pi xi)

(4.10)

to generate a class of initial conditions \scrG := \{ 
\sum 4

i=1 cigi : ci \in [ - 1,1]\} . To train

our method, we drew 600 samples from \scrG and found a corresponding \theta 
(j)
0 for each

sample. We set the parameter space to be \Theta := \{ \theta (j)0 + \delta : | \delta | \leq 3, j = 1, . . . ,600\} .
We then uniformly sampled 200,000 points from this set \Theta and generated paths for
(4.2) from the 600 centers to train V\xi . We then tested the method on a new set of 100
initials randomly drawn from \scrG by following the method outlined in Algorithm 3.2.
We randomly select three from the test set containing the 100 initials and plot the
result using our method in Figure 4. In addition, Figures 3(c) and 3(d) show the
mean and standard deviations of the relative and absolute errors versus time t. We
notice that the relative error increases while absolute error decreases: this is because
the true solution u\ast (t, \cdot ) gradually vanishes in time, and hence it is easy to cause large
relative error even when the absolute error is small.

In this test, it took 2.64 hours to generate \~G and \~p for (4.2) and 1.33 hours to
generate the trajectories for (4.3). This time cost is significantly higher than the trans-
port equation, as the heat equation requires the computation of the Laplacian which
is second-order. Once the samples were generated, training V\xi took approximately
10 minutes. For testing, it took an average of 25 seconds to train a \theta 0 to a sampled
g and an average of 2.6 seconds to then solve (3.9) using a 4th-order Runge--Kutta
solver with step size 0.0001. This amounts to less than 30 seconds in time per initial
for the testing stage.

4.5. Allen--Cahn equation. In this test, we consider the IVP with the nonlin-
ear Allen--Cahn equation given by\Biggl\{ 

\partial tu(x, t) = \epsilon \Delta u(x, t) + 3
2

\bigl( 
u(x, t) - u(x, t)3

\bigr) 
\forall x\in \Omega , t\in (0, T ],

u(x,0) = g(x) \forall x\in \=\Omega ,
(4.11)
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NEURAL CONTROL FOR HIGH-DIMENSIONAL EVOLUTION PDEs C177

Fig. 4. (Heat equation). Comparison between the true solution u\ast (\cdot , t), the approxi-
mation u\theta t (\cdot ), and their pointwise absolute difference | u\theta t (x)  - u\ast (x, t)| for times t =
0,0.004,0.008,0.012,0.015 for IVPs with the first (rows 1--3), second (rows 4--6), and third initial
(rows 7--9) drawn from the set \scrG := \{ 

\sum 4
i=1 cigi : ci \in [ - 1,1]\} , where gi is defined in (4.10).
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where \Omega = ( - 1,1)2, \epsilon = 0.0001, and the boundary value u(x, t) = 0 for all x\in \partial \Omega and
t\in [0, T ]. As the Allen--Cahn PDE does not have an analytical solution against which
to compare, we resort to the classical implicit-explicit scheme (see, e.g., [81]) with a
100 \times 100 grid and 2000 time points to generate a reference solution for comparison
in the 2D case only, despite the fact that our method can be applied to a higher-
dimensional case. In this test, we use (4.5) with \alpha (x) = (1 - x21)(1 - x22) as our neural
network. We let Ti : R \rightarrow R represent the ith-order Chebyshev polynomial. We
generate a class of initial conditions

\scrG :=

\Biggl\{ 
(1 - x21)(1 - x22)

m\sum 
k=1

ckTik(x1)Tjk(x2) : ik, jk \in \{ 0, . . . ,6\} , m\leq 36, | ck| \leq 1

\Biggr\} 
.

(4.12)

We see that \scrG is a space of all combinations of Chebyshev polynomials up to degree
6 multiplied by a boundary function. This set is chosen to represent a diverse spread
of initials that can be approximated by our neural network from (4.5). We drew

200 samples from \scrG and found a corresponding \theta 
(j)
0 for each sample. Then, as in

the case of heat equations above, we generated the parameter set \Theta := \{ \theta (j)0 + \delta :
| \delta | \leq 3, j = 1, . . . ,200\} . We sampled from \Theta uniformly and generated paths from
the 200 centers to train V\xi . We again tested the method on a new set of 100 initials
from \scrG . The results of the proposed method at times t = 0,0.15,0.3,0.45,0.6 for
three random initials are shown in Figure 5. In Figures 3(e) and 3(f), we again plot
the mean relative and absolute errors versus time, which demonstrate the promising
approximation performance of our method.

Figure 3(e) shows some challenges in the relative error as time advances. This
is because the solution to the Allen--Cahn equation for this initial value has fast-
increasing derivatives as time progresses, which poses a challenge to all numerical
methods, including ours in solving Allen--Cahn equations in general. Specifically, such
large derivatives force the parameters \theta of the neural network to blow up quickly, and
hence the trajectory \theta t may rapidly escape from the prescribed \Theta over which we
trained the vector field V\xi . This is a challenge that remains to be overcome by using
more adaptive training methods and sampling strategies.

For this experiment, generating \~G and \~p for (4.2) took 1.04 hours, while the gen-
eration of the trajectories for (4.3) took only 15 minutes. The much lower dimension
of this problem compared to the transport and heat equation examples accounted for
the speedup in the generation of samples. Similar to the transport equation, training
V\xi took only 7 minutes. For testing, it took an average of 21 seconds to train a \theta 0
to a sampled g and an average of 2.1 seconds to then solve (3.9) using a 4th-order
Runge--Kutta solver with step size 0.002. This amounts to less than 24 seconds in
total time per initial for the testing stage.

5. Variations and generalizations. In this section, we briefly discuss modifi-
cations of the proposed approach so that it can be applied to some other problems
involving evolution PDEs. In particular, we consider the following two cases: general
time-dependent PDEs and IVPs with time-varying boundary conditions.

Applications to general time-dependent PDEs. Our approach can be readily ap-
plied to a large variety of time-dependent PDEs. The reason is that these PDEs can
be converted to the exact form of (3.5) for which our method is designed. To avoid
overloading the bracket notation, we temporarily use F (u) and F (t, u) to represent
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Fig. 5. (Allen--Cahn equation). Comparison between the true solution u\ast (\cdot , t), the ap-
proximation u\theta t (\cdot ), and their pointwise absolute difference | u\theta t (x)  - u\ast (x, t)| for times t =
0,0.004,0.008,0.012,0.015 for IVPs with the first (rows 1--3), second (rows 4--6), and third initial
(rows 7--9) drawn from the set \scrG defined in (4.12).
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F [u] and Ft[u] (differential operator that explicitly depends on time t). We first note
that one can convert any nonautonomous evolution PDE into an autonomous one:

\partial tu= F (t, u) \Leftarrow \Rightarrow \partial t\~u= \~F (\~u), where \~u := [t;u], \~F (\~u) :=
\bigl[ 
1;F (u)

\bigr] 
,(5.1)

and [\cdot ; \cdot ] means to stack the two arguments vertically to form a single one. We can also
consider PDEs involving higher-order time derivatives and convert them to first-order
PDE systems by noticing equivalency as follows:

\partial ttu= F (u) \Leftarrow \Rightarrow \partial t\~u= \~F (\~u), where \~u := [u;v], \~F (\~u) :=
\bigl[ 
v;F (u)

\bigr] 
.(5.2)

History-dependent PDEs can also be considered: denote Hu(t) := \{ u(\cdot , s) | 0\leq s\leq t\} 
as the trajectory recording the path of u up to time t and F a nonlinear operator
on path Hu; then we can set Hu(t) as an auxiliary variable and convert the problem
\partial tu= F [Hu] to an autonomous evolution PDE of [u;Hu].

Evolution PDEs with boundary conditions. We can also modify our method to
solve IVPs with different boundary conditions. Let (g,\phi ) be the pair of initial and
boundary values of the IVP. That is, u(x,0)| \=\Omega = g and u(x, t)| \partial \Omega \times [0,T ] = \phi . In this
case, we can parameterize u\theta (x) = \varphi \eta (x)+\alpha (x)\psi \zeta (x) with \theta = (\eta , \zeta ), where \varphi \eta and \psi \zeta 

are two reduced-order models (e.g., neural nets) with parameters \eta and \zeta , respectively,
and \alpha (x) is a prescribed smooth function such that \alpha (x)> 0 if x \in \Omega and \alpha (x) = 0 if
x \in \partial \Omega . Here \varphi \eta is to fit the boundary value \phi without interference from \alpha \psi \zeta as the
latter vanishes on the boundary \partial \Omega .

6. Conclusion and future work. We have shown a novel strategy for solving
linear and nonlinear evolution PDEs numerically. Specifically, we propose to use
DNNs as nonlinear reduced-order models to represent PDE solutions and learn a
control vector field to steer the network parameters so that the induced time-evolving
neural network can approximate the solution accurately. The proposed method allows
a user to quickly solve an evolution PDE with different initial values without the need
to retrain the neural network. Error estimates of the proposed approach are also
provided.

We implemented the nonlinear reduced-order models as generic deep networks
which yield promising results. We expect that the accuracy and effectiveness can be
further improved by incorporating structural information and prior knowledge about
the PDE and its solutions into the design of these networks. Training of control vector
fields can also be made more efficient by integrating informative sample trajectories
of \theta t. These improvements can potentially make the proposed method very effective
in solving evolution PDEs in specified application domains.

Appendix A. Proof of (3.19). In the proof of Proposition 3.4, we need
(3.19). This can be obtained by applying the lemma below, whose proof is a slight
modification of the proof of [64, Theorem 2.1.14].

Lemma A.1. Let f : Rd \rightarrow R be a differentiable convex function and \nabla f be L-
Lipschitz continuous for some L> 0. Define the gradient descent iterates by

xi = xi - 1  - h\nabla f(xi - 1)

with x0 \in Rd. Let y \in Rd and 0<h< 1
L ; then for any k\geq 1 there exists

f(xk) - f(y)\leq | x0  - y| 2

2kh
.
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Proof. Following the standard steps in the proof of [64, Theorem 2.1.14] and using
0<h< 1/L, we can derive the bound

f(xi) - f(xi - 1)\leq  - h
\biggl( 
1 - 1

2
hL

\biggr) 
| \nabla f(xi - 1)| 2 \leq  - h

2
| \nabla f(xi - 1)| 2.(A.1)

Since f is convex, there exists

f(x)\leq f(y) +\nabla f(x)\top (x - y) \forall x\in Rd.

Combining this with x= xi - 1 and (A.1), we derive

f(xi) - f(y)\leq \nabla f(xi - 1)
\top (xi - 1  - y) - h

2
| \nabla f(xi - 1)| 2

=
1

2h

\bigl( 
2h\nabla f(xi - 1)

\top (xi - 1  - y) - h2| \nabla f(xi - 1)| 2

+| xi - 1  - y| 2  - | xi - 1  - y| 2
\bigr) 

=
1

2h

\bigl( 
| xi - 1  - y| 2  - | xi - 1  - h\nabla f(xi - 1) - y| 2

\bigr) 
=

1

2h

\bigl( 
| xi - 1  - y| 2  - | xi  - y| 2

\bigr) 
.

We can now bound the telescoping sum

k\sum 
i=1

(f(xi) - f(y))\leq 1

2h

k\sum 
i=1

(| xi - 1  - y| 2  - | xi  - y| 2)\leq 1

2h
| x0  - y| 2.

By (A.1), we know that f(xk)\leq f(xk - 1)\leq \cdot \cdot \cdot \leq f(x0) and therefore

f(xk) - f(y)\leq 1

k

k\sum 
i=1

(f(xi) - f(y))\leq | x0  - y| 2

2hk
.
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