
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 1

System and Design Technology Co-optimization of
SOT-MRAM for High-Performance AI Accelerator

Memory System
Kaniz Mishty and Mehdi Sadi, Member, IEEE,

Abstract—System on Chips (SoCs) are now designed with
their own AI accelerator segment to accommodate the ever-
increasing demand of Deep Learning (DL) applications. With
powerful Multiply and Accumulate (MAC) engines for matrix
multiplications, these accelerators show high computing per-
formance. However, because of limited memory resources (i.e.,
bandwidth and capacity), they fail to achieve optimum system
performance during large batch training and inference. In this
work, we propose a memory system with high on-chip capacity
and bandwidth to shift the gear of AI accelerators from memory-
bound to achieving system-level peak performance. We develop the
memory system with Design Technology Co-optimization (DTCO)-
enabled customized Spin Orbit Torque (SOT)-MRAM as large
on-chip memory through System Technology Co-optimization
(STCO) and detailed characterization of the DL workloads. Our
workload-aware memory system achieves 8× energy and 9×
latency improvement on Computer Vision (CV) benchmarks
in training and 8× energy and 4.5× latency improvement on
Natural Language Processing (NLP) benchmarks in training while
consuming only around 50% of SRAM area at iso-capacity.

Index Terms—DTCO, STCO, AI Accelerator, SOT-MRAM.

I. INTRODUCTION

THE proliferation of Artificial Intelligence (AI) and Deep
Learning (DL) has precipitated the computing hardware

community to continually design innovative AI/DL accelerators
with large data processing capabilities. Research shows that
the AI/DL model accuracy improves as training data set size
grows [1]. With increasing data set, model size also grows.
Consequently, memory demand in AI/DL accelerators will also
grow asymptotically linearly with model and data size [1] [2].
As a result, the bottleneck for state-of-the-art AI/DL models
in the accelerator hardware is now memory rather than data
and compute availability, and we expect this trend to worsen
in the future [2] [3] [4].

The lack of efficient and high-performance data flow between
the computing and memory element (i.e., the memory wall or
memory bottleneck) masks the improvement coming from the
efficient compute system [5]. One promising solution to the
memory bottleneck of AI-specific workload is to increase the
on-chip memory capacity [6]. For both training and inference,
the on-chip memory capacity in the accelerator needs to be

The authors are with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849 USA
E-mail: kzm0114@auburn.edu; mehdi.sadi@auburn.edu

This work was supported in part by the National Science Foundation (NSF)
under Grant Number CRII-2153394.

Manuscript received June 26, 2023; revised October 06, 2023 and November
11, 2023. Accepted November 14, 2023

increased to ensure that the intermediate activations, as well
as the weights of the current layer, can be loaded. Moreover,
significantly more memory is required during training to store
the gradients and optimizer states. Inadequate on-chip memory
capacity causes frequent DRAM accesses which exacerbates
energy costs, as well as stalls the compute cores of AI/DL
accelerator until the data is fetched. Because of this large
capacity demand, an SRAM-based on-chip memory system
can be detrimental due to leakage energy and area inefficiency.

The promising features, such as high density, near-zero
leakage power, immunity against radiation-induced soft errors,
and CMOS compatibility of emerging Spin-based non-volatile
(NVM) magnetic memory (i.e., MRAM) technologies, attracted
researchers from academia and industry [7]. Spin Transfer
Torque (STT) MRAM, has already shifted its gear from
the R&D phase to commercialization as the NAND-based
embedded flash replacement [8] [9]. However, MRAM in its
regular form cannot be used in AI accelerators due to its slow
write speed and high write energy [9] [10].

STT-MRAM, a two-terminal magnetic memory with Mag-
netic Tunnel Junction (MTJ) as the storing element, flows a
bidirectional spin-polarized current through the MTJ for read-
write operation [11]. The major challenges of STT-MRAM
- poor write performance, Read Disturbance (RD), retention
failure, [9] [12] - stem from two main reasons. First, the high
write current flowing through the MTJ accounts for almost
10× energy consumption as SRAM. Large write delay (> ns
range) resulting from spin injection symmetry in switching
the magnetic orientation of free layer belittles STT-MRAM’s
feasibility as an on-chip cache [13]. The stress on the dielectric
oxide of the MTJ due to the large write current accelerates the
time-dependent wear out of the cell [14]. Second, its shared
read-write path makes it vulnerable to RD.

SOT MRAM, considered the next generation of STT-MRAM,
offers high performance without compromising reliability issues
such as RD. SOT-MRAM is a three-terminal memory cell that
uses MTJ as the storing element [15]. By splitting the read-
write path and using a different switching scheme, SOT-MRAM
resolves all the challenges of STT-MRAM while retaining its
every benefit [9] [12] [13] [14] [16]. Isolate read and write
path allows the designer to optimize the read and write path
independently, decreasing the write current and increasing
the read-write operating margin, thus solving the RD-induced
reliability issues. Though lacking mass-scale production from
foundries due to early-stage manufacturing challenges, [9] [10]
[12] [13] [16] [17] have demonstrated the successful fabrication

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 2

System Technology Co-Optimization
(STCO)

Design Technology Co-Optimization
(DTCO)

On-chip Memory
Banks (BW adjustable)

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

SoT bit cell

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

SoT bit cell

MB1MB1 MB2MB2

MB3MB3 MB4MB4

On-chip Memory
Banks (BW adjustable)

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

SoT bit cell

MB1 MB2

MB3 MB4

System Technology Co-Optimization
(STCO)

Design Technology Co-Optimization
(DTCO)

On-chip Memory
Banks (BW adjustable)

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

SoT bit cell

MB1 MB2

MB3 MB4

Closed Loop STCO and DTCO for Power and Performance Optimized AI/Deep Learning Accelerator Design

 MLP
Bottom
 MLP
Bottom

 MLP
Top

 MLP
Top

Concat.Concat.
Pairwise Pairwise
interaction
Pairwise
interaction

Embedding
tables

Embedding
tables

output

 MLP
Bottom

 MLP
Top

Concat.
Pairwise
interaction

Embedding
tables

output

features
numerical categorical

features
Deep Learning

Recommender System
Deep Learning

Recommender System

 MLP
Bottom

 MLP
Top

Concat.
Pairwise
interaction

Embedding
tables

output

features
numerical categorical

features
Deep Learning

Recommender System

AI/Deep Learning Model Architectures

encoderencoder

encoderencoder

encoderencoder

output

input

Transformer

Linear & softmaxLinear & softmax

decoderdecoder

decoderdecoder

decoderdecoderencoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
nv

1
co

nv
1

co
nv

2
co

nv
2

co
nv

3
co

nv
3

co
nv

4
co

nv
4

po
ol

co
nv

0
co

nv
0

residual block1

re
sid

ua
l

bl
co

k2
re

sid
ua

l
bl

co
k2

re
sid

ua
l

bl
co

k#
N

re
sid

ua
l

bl
co

k#
N

lin
ea

r
lin

ea
r

ou
tp

ut

ResNet

im
ag

e

co
nv

1

co
nv

2

co
nv

3

co
nv

4

po
ol

co
nv

0

residual block1

re
sid

ua
l

bl
co

k2

re
sid

ua
l

bl
co

k#
N

lin
ea

r

ou
tp

ut

ResNet

 MLP
Bottom

 MLP
Top

Concat.
Pairwise
interaction

Embedding
tables

output

features
numerical categorical

features
Deep Learning

Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
nv

1

co
nv

2

co
nv

3

co
nv

4

po
ol

co
nv

0

residual block1

re
sid

ua
l

bl
co

k2

re
sid

ua
l

bl
co

k#
N

lin
ea

r

ou
tp

ut

ResNet

 MLP
Bottom

 MLP
Top

Concat.
Pairwise
interaction

Embedding
tables

output

features
numerical categorical

features
Deep Learning

Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
nv

1

co
nv

2

co
nv

3

co
nv

4

po
ol

co
nv

0

residual block1

re
sid

ua
l

bl
co

k2

re
sid

ua
l

bl
co

k#
N

lin
ea

r

ou
tp

ut

ResNet

Workload

Image, Text,
Speech,
Patterns,

Graphs, etc.
Workload

Image, Text,
Speech,
Patterns,

Graphs, etc.

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

On-chip Memory
(SRAM, SOT-MRAM)

On-chip Memory
(SRAM, SOT-MRAM)

Off-chip Memory
(HBM3)

Off-chip Memory
(HBM3)

Memory system

On-chip Memory
(SRAM, SOT-MRAM)

Off-chip Memory
(HBM3)

Memory system

AI/Deep Learning
Accelerator Hardware

On-chip Memory
(SRAM, SOT-MRAM)

Off-chip Memory
(HBM3)

Memory system

AI/Deep Learning
Accelerator Hardware

Compute CoreCompute Core

On-chip Memory
(SRAM, SOT-MRAM)

Off-chip Memory
(HBM3)

Memory system

AI/Deep Learning
Accelerator Hardware

Compute Core

System Technology Co-Optimization
(STCO)

Design Technology Co-Optimization
(DTCO)

On-chip Memory
Banks (BW adjustable)

Read Line

Channel

Body

M
TJ

R
ea

d
Pa

th

W
rit

e
Pa

th

SoT bit cell

MB1 MB2

MB3 MB4

Closed Loop STCO and DTCO for Power and Performance Optimized AI/Deep Learning Accelerator Design

 MLP
Bottom

 MLP
Top

Concat.
Pairwise
interaction

Embedding
tables

output

features
numerical categorical

features
Deep Learning

Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
nv

1

co
nv

2

co
nv

3

co
nv

4

po
ol

co
nv

0

residual block1

re
sid

ua
l

bl
co

k2

re
sid

ua
l

bl
co

k#
N

lin
ea

r

ou
tp

ut

ResNet

Workload

Image, Text,
Speech,
Patterns,

Graphs, etc.

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

On-chip Memory
(SRAM, SOT-MRAM)

Off-chip Memory
(HBM3)

Memory system

AI/Deep Learning
Accelerator Hardware

Compute Core

Fig. 1. Workflow of closed-loop analysis for system and device level optimization for AI/Deep Learning Accelerator Design

of SOT-MRAM with attractive specifications. Its attractive
features, such as high density, reliability and endurance, zero
leakage, read-write latency comparable to SRAM, and research
effort to enable mass production make it one of the best
candidates for AI accelerator memory system where large
on-chip memory is a must for training and inference.

The performance of an AI accelerator depends on both
the compute and memory throughput of the device. While
most accelerators have enough compute throughput, their
performance is limited by memory throughput operating in the
memory bound region. To address the memory bound problem
of the AI hardware, in this paper, we perform a closed-loop
STCO on AI workloads and DTCO on SOT-MRAM to present
a hybrid memory system. To our knowledge, this is the first
work that analyzes and evaluates the performance of SOT-
MRAM as the on-chip memory of AI accelerators targeting
both inference and training. The STCO-DTCO methodology
is shown in Fig. 1, and the key contributions of the paper are
highlighted as follows.

• We present a power and performance-optimized hybrid
memory system for Deep Learning (DL) accelerators
through a workload-aware STCO and DTCO. Comprised
of off-chip HBM3 DRAM, on-chip SRAMs, and DTCO-
enabled SOT-MRAM, the hybrid memory system can
support the training and inference of DL workloads.
We perform a closed-loop STCO and DTCO by taking
into account the (i) System performance attributes (e.g.,
throughput and energy cost); (ii) Architectural and micro-
architectural attributes (e.g., compute resources utilization,
memory bandwidth) (iii) Workload attributes at both train-
ing and inference (e.g., runtime action counts, dataflow
and data reuse) to reach the Pareto optimal solution.

• Using the Deep Learning models’ execution profiles,
DTCO enables device and circuit level customization
of read/write bandwidth, retention time, and capacity of
SOT-MRAM memory banks to meet the bandwidth and
capacity demands of DL workloads. To achieve dynamic
runtime optimization of the power and performance of
the accelerator hardware for diverse workloads, memory
banks are individually optimized with various bandwidths
and capacities.

• Finally, using various DNN benchmarks, we provide a
comparative analysis of the existing SRAM-based memory

system and the proposed DTCO-STCO optimized hybrid
memory system for AI accelerators.

The rest of the article is organized as follows. Section
II discusses the background. In Section III, we present the
analytical model for DNN workload profiling, followed by
the DTCO of SOT-MRAM in Section IV. Sections V and VI
present the results & analysis, and related works, respectively,
following the conclusion in Section VII.

II. BACKGROUND

A. AI/DL Applications

1) Computer Vision (CV) and Pattern Recognition: CV
models, also called Convolutional/Deep Neural Networks
(CNN/DNN), are the stacks of convolution layers connected
straight and/or through residual connection [18] to extract the
objects’ features, and a few Fully Connected (FC) layers at
the end to classify the objects. Image classification, captioning,
reconstruction and object/instance segmentation are the scopes
of CV models. Deep Residual Networks, having convolutional
layers at their core, dominate the CV domain. The input images
are convolved with the filter weights to produce the output
feature map (OFMAP). The OFMAP goes through the pooling
and normalization layers to act as input (IFMAP) to the next
layer. The linear and softmax layer at the end finally recognizes
the image (Fig. 2). The size of each data entity (IFMAP,
OFMAP, and Weights) depend on the model architecture.

2) Natural Language Processing (NLP): Language model-
ing deals with processing sequential data. Recurrent Neural
Networks (RNN), Long Short Term Memory (LSTM), and
Gated Recurrent Unit (GRU) have been used in language
modeling until the state-of-the-art Transformer [19] model
is introduced. NLP models are used in machine translation,
text summarization, speech recognition, syntactic and semantic
parsing, question answering, dialog system etc. In Transformer-
based models [19], the input sequence propagates through the
embedding layer and different sublayers of the encoder stacks to
extract different linguistic features and inter-token dependency
of the input sequence. The decoder stacks then generate the
output sequence by taking the encoded input sequence from the
encoder stack and the output sequence generated by itself in
the previous timesteps (Fig 3). The input sequence multiplied
by different layer weights takes different activation names and
shapes throughout the model operation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 3

BN +
pooling
BN +

poolingConv 0Conv 0 Conv 1Conv 1 Conv 2Conv 2 Conv 3Conv 3 Conv 4Conv 4 Conv nConv n FCFC softmaxsoftmax
Input

(image)
Output

(classification
prediction)

.

.
.
.

n1
n2

nfc

m1

mfc

m2.
.

.

.

n1
n2

nfc

m1

mfc

m2

ifmap
ofw

ofh

ofw

ofh

ofmap
ofw

ofh

ofmap
ofw

ofh

ofmapfilter
ifw

ifh

ifw

ifh

ifmap
ofw

ofh

ofmapfilter
ifw

ifh

ifmap
ofw

ofh

ofmapfilter
ifw

ifh

Residual/skip connection

Fig. 2. CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers with residual/skip connection followed by fully connected (FC) layer/s.
For symbol meaning please see Table I.

Inputs

Multi-head AttentionMulti-head Attention

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Encoder #2Encoder #2

Encoder #nEncoder #n

N
sq

l

Nem

N
sq

l

Nem
(Input + Positional)

Embeddings
(Input + Positional)

Embeddings

En
co

de
r #

1

QNsql

d_q
QNsql

d_q
KNsql

d_k
KNsql

d_k
VNsql

d_v
VNsql

d_v

ZiNsql

Nem /h
ZiNsql

Nem /h

* N
em

d_q

* N
em

d_q

* N
em

d_q

* N
em

d_v

* N
em

d_v

* N
em

d_v

Nsql

Nem

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

AF

N
sq

l

Nsql

*Q KT

MatMul
*Q KT

MatMul

Scale &
Softmax
Scale &
Softmax

*
MatMul

*
MatMul

AFAF VV*
MatMul

AF VAF

N
sq

l

Nsql

*Q KT

MatMul

Scale &
Softmax

*
MatMul

AF V

ConcatenateConcatenate Nsql

Nem

Nsql

Nem

ZNsql

Nem

Z *

Nem

N
em

Nem

N
em

Linear

Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

Nsql

Nem

ENsql

Nem

E

LinearLinear
* N

em

d_k

* N
em

d_k

Linear
* N

em

d_k

(Output + Positional)
Embeddings

(Output + Positional)
Embeddings

Outputs (shifted right)

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Add & NormAdd & Norm

Encoder-Decoder AttentionEncoder-Decoder Attention D
ec

od
er

 #
1

Decoder #nDecoder #n

Output (Probabilities)

Linear and Softmax

Multi-head AttentionMulti-head Attention

Decoder #2Decoder #2

(Output + Positional)
Embeddings

Outputs (shifted right)

Add & Norm

Feed Forward NN

Add & Norm

Add & Norm

Encoder-Decoder Attention D
ec

od
er

 #
1

Decoder #n

Output (Probabilities)

Linear and Softmax

Multi-head Attention

Decoder #2

N
sq

l

Nem

N
sq

l

Nem

Inputs

Multi-head Attention

Add & Norm

Feed Forward NN

Add & Norm

Encoder #2

Encoder #n

N
sq

l

Nem
(Input + Positional)

Embeddings

En
co

de
r #

1

QNsql

d_q
KNsql

d_k
VNsql

d_v

ZiNsql

Nem /h

* N
em

d_q

* N
em

d_v

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

*Q KT

MatMul

Scale &
Softmax

*
MatMul

AF V

Concatenate Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

E

Linear
* N

em

d_k

(Output + Positional)
Embeddings

Outputs (shifted right)

Add & Norm

Feed Forward NN

Add & Norm

Add & Norm

Encoder-Decoder Attention D
ec

od
er

 #
1

Decoder #n

Output (Probabilities)

Linear and Softmax

Multi-head Attention

Decoder #2

N
sq

l

Nem

Fig. 3. Transformer model workflow breakdown

B. AI/DL Accelerators

At the core of AI/DLs is the matrix-matrix/vector multi-
plication (GEMM) with massive parallelism. Exploiting this
parallelism, Systolic Array (SA) based architecture [3] have
been used to accelerate the computations. Different dataflows,
such as row stationary, output stationary, weight stationary,
have been evolved to maximize the reuse and reduce the data
movement. Off-chip DRAM access being 100-200 times more
energy and latency expensive than any ALU operation or
on-chip access [20] plays a crucial role in determining the
overall system performance. Another non-conventioanl type of
architecture, In-Memory Computing (IMC) [21] has recently
evolved to address the data communication cost for DNN
accelerators. However, in this work, we focus on reducing
the off-chip memory access for conventional DNN accelerator
architectures [3], [20] [22] by increasing the on-chip Global
Buffer (GLB) size with SOT-MRAM.

C. SOT-MRAM

1) Physical Structure: With MTJ [11] as storing element,
the SOT-MRAM is a three terminal device. Depending on
the type of bit cell, there are three to four lines to control
the read-write operation. In this work, we consider a two
transistor one SOT (2T1SOT) bit cell architecture that requires
two access transistors, (i) Read Wordline (RWL), (ii) Write
Wordline (WWL), (iii) Bit Line (BL), and (iv) source Line (SL)
to accommodate separate read-write access path [15] [23] (Fig.
4). The MTJ stack, with its free layer at the interface, is placed
on top of a SOT layer (i.e., channel) to ensure SOT-induced

Channel

WWL
BL

M
TJ

W
rit

e
Pa

th

SO
T

pr
oc

es
s

C
M

O
S

pr
oc

es
s

= Via
= Metal layers
= p/n diffusion

= Fixed Layer

= Oxide Barrier

= Free Layer

RWL

BL

SL

tSOT

tFL WSOT

Read Path

tMgO

Fig. 4. Physical structure of a SOT-MRAM bit cell highlighting separate read
(along blue line) and write (along red line) path

switching. The SOT layer is composed of heavy metals or
topological insulators [24].

2) Read-Write Operation: Upon the activation of RWL, a
small amount of current is passed through BL and grounded SL.
The resistive state of the MTJ is captured by sensing the voltage
across it and comparing the voltage with a reference value
[12]. Low resistive state (RP) and high resistive state (RAP)
represents bit 0 and 1 respectively. The write operation of MTJ-
based MRAM involves switching the resistive status of MTJ.
In SOT-MRAM, switching occurs due to Spin Orbit Torque
(SOT) effect. Unlike STT-MRAM, a current is passed through
the SOT layer to change the MTJ resistive state by switching
the magnetic orientation of the free layer. A bidirectional write
current flows through BL and SL during write operation. The
potential of BL and SL changes depending on the bit value
written in the cell. For example, to write ‘1’, current flows

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 4

from BL to SL and vice versa to write ‘0’ [12] [14].

III. DNN WORKLOAD PROFILING

Profiling the target workload is a prerequisite for designing
an accelerator for the target workload. Assuming that we
have a powerful computing system to handle the exhaustive
computations of the DL workload, we focus on providing
efficient data movement between the compute and memory
system to ensure 100% utilization of computing resources by
introducing the workload-aware hybrid memory system. We
propose the hybrid memory system by analyzing the Deep
Learning model workloads from CV and NLP domain. We
analytically model the on-chip bandwidth requirement and
memory access patterns of different parts of the workload
during inference and training, Memory and Compute Model, to
develop the memory system for TPU-like [3] DNN accelerators.

PE Core
DL Accelerator

SRAM BufferSRAM Buffer

Global Buffer
(MRAM)

CPUCPU

DRAM
(HBM3) Special Function

Unit (SFU)
Special Function

Unit (SFU)

HA

WA

PE Core
DL Accelerator

SRAM Buffer

Global Buffer
(MRAM)

CPU

DRAM
(HBM3) Special Function

Unit (SFU)

HA

WA

 PE Reg file PE Reg file MAC MAC PE Reg file MAC PE Unit PE Unit PE Reg file MAC PE Unit

Fig. 5. Block diagram of Accelerator architecture

A. Memory Bandwidth Expression

We express the required bandwidth (BW) as a function of
compute resources and workload. BW (bytes/sec) is defined as
the rate at which data needs to be transferred to/from memory
by a processor to utilize the computation resources of the
processor fully. Mathematically,

BW =
Fp

OI
(1)

Where Fp = Theoretical peak performance (ops/sec) = number
of operations the accelerator performs per sec. The Fp of a
HA ×WA Processing Element (PE) array (Fig. 5):

Fp = HA ∗WA ∗ Facc (2)

Facc = Operating frequency of the accelerator. OI = Opera-
tional Intensity of Workload (ops/byte) = number of operations
performed per byte accessed. It is a measure of parallelism of
the workload. In the subsequent subsections, we will formulate
the OI of Conv. and FC layer to find their BW, respectively.
Note that the read and write bandwidth will not be the same
for these workloads.

1) Read Bandwidth (BWRD) of Conv. layer: To formulate
an expression for OI of convolution workload: First, we deter-
mine the total number of MAC operations, TMAC , performed
by a HA ×WA PE array per clock cycle

TMAC = HA ∗ WA (3)

TABLE I
CNN AND SYSTOLIC ARRAY PARAMETERS NOMENCLATURE

WA, HA Accelerator array width & height (PEs)
kw, kh Kernel width & height
ofw, ofh Output feature map width & height
ifw, ifh Input feature map width & height
Nich, Noch No. of input & output channel
Nbt Batch size
nfc,mfc No. of neurons in input & output FC layer

Second, we figure out how many bytes should be read from
memory to utilize all PEs of the accelerator in one clock cycle.
In a row stationary dataflow [20], it takes (kh ∗ kw + ofh ∗
ofw) ∗ dw bytes of data (dw = data type in bytes, i.e., FP32,
BF16 etc.) and #(ofh ∗ ofw ∗ kh ∗ kw) PEs to generate the
partial ofmaps corresponding to one input channel. Depending
on the size of the PE array, in each iteration (one complete use
of accelerator), multiple input channels can be fit. The input
channels (i.e., no. of partial ofmaps) computed by the PE array
in each iteration:

Nich_per_stp =
HA ∗WA

ofh ∗ ofw ∗ kh ∗ kw
(4)

Total bytes read from memory to utilize all PEs:

Tbyte =
HA ∗WA

kh ∗ kw ∗ ofh ∗ ofw
∗ (kh ∗ kw + ifh ∗ ifw) ∗ dw

(5)
We divide the total number of MAC operations, TMAC , by the
total bytes accessed, Tbyte, to find OI:

OI =
kh ∗ kw ∗ ofh ∗ ofw

dw ∗ (kh ∗ kw + ifh ∗ ifw)
(6)

Substituting the expression of OI in equation (1) gives BWRD

as a function of array size and workload:

BWRD =
(kh ∗ kw + ifh ∗ ifw) ∗ dw

kw ∗ kh ∗ ofh ∗ ofw
∗HA ∗WA ∗ Facc

(7)
For the symbol meanings, please see Fig. 2 and Table I.

2) Write Bandwidth (BWWR) of Conv. Layer: Partial ofmap
of a single input channel requires #(ofh ∗ ofw ∗ kh ∗ kw) PEs.
Therefore, HA ×WA PEs generate (HA ∗WA)/(ofh ∗ ofw ∗
kh ∗ kw) ofmaps in each iteration. Each partial ofmap contains
ofh ∗ ofw elements. The total output bytes generated by the
PE array in one iteration is, equivalently, the write bandwidth:

BWWR =
HA ∗WA ∗ Facc ∗ dw

kh ∗ kw
(8)

3) BWRD & BWWR of FC layer: The systolic array is
a widely used architecture to perform GEMM operation [3].
Depending on the array dimension (HA ×WA) and operand
matrix dimension (input matrix: K×M , weight matrix: M×N ,
and output matrix: K ×N), we formulate required Read and
Write GLB bandwidth for four different cases: (i) Weight matrix
dimensions (both) are less than the systolic array dimensions
(M < HA, N < WA), (ii) Height of weight matrix is less
than the height of systolic array, but the width of weight
matrix is larger than or equal to the width of the systolic

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 5

𝛿3 𝛿2 𝛿1

Layer 2 backward Layer 3 backwardLayer 1 backward

Loss func.

actual class

Input

W1

Layer 1 Activation 1 z1 a1

W2

Layer 2 Activation 2
z2 a2

W3

Layer 3 Activation 3
z3 a3

WN

Layer N Activation N zN aN L
W4

Forward Pass

Backward Pass

𝑓ሺ𝛿2, 𝑎1ሻ 𝑓ሺ𝛿3, 𝑎2ሻ

Layer N backward

𝑓ሺ𝛿𝑁 ,𝑎𝑁െ1ሻ

𝛿𝑁
𝑓 ൬𝛿4,𝑊4,

𝑑𝑎3

𝑑𝑧3
൰ 𝑓 ൬

𝑑𝐿
𝑑𝑎𝑁

,
𝑑𝑎𝑁
𝑑𝑧𝑁

൰𝑓 ൬𝛿3,𝑊3,
𝑑𝑎2

𝑑𝑧2
൰𝑓 ൬𝛿2,𝑊2,

𝑑𝑎1

𝑑𝑧1
൰

𝜕𝐿
𝜕𝑊1

𝑓ሺ𝛿𝑘 , 𝑎𝑘െ1ሻ=𝑎𝑘െ1 ∗ 𝛿𝑘 𝛿𝑘െ1 ൌ 𝑓 ൬𝛿𝑘 ,𝑊𝑘 ,
𝑑𝑎𝑘
𝑑𝑧𝑘

൰ ൌ ሺ𝑊𝑘
′ ∗ 𝛿𝑘ሻሺ

𝑑𝑎𝑘
𝑑𝑧𝑘

ሻ ; 𝑓𝑜𝑟 1 ൑ 𝑘 ൑ 𝑁 ; 𝑓𝑜𝑟 2 ൑ 𝑘 ൑ 𝑁 െ 1
Backpropagation Equations:

𝜕𝐿
𝜕𝑊3

𝜕𝐿
𝜕𝑊2

𝜕𝐿
𝜕𝑊𝑁

𝛿𝑁 ൌ 𝑓 ቀ 𝑑𝐿
𝑑𝑎𝑁

, 𝑑𝑎𝑁
𝑑𝑧𝑁

ቁ= 𝑑𝐿
𝑑𝑎𝑁


𝑑𝑎𝑁
𝑑𝑧𝑁

a0

𝑓ሺ𝛿1,𝑎0ሻ

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑎

Fig. 6. Computational graph of DNN training

TABLE II
RD/WR BANDWIDTH EXPRESSION OF FC LAYER FOR DIFFERENT CASES

Cases BWRD BWWR

M < HA; N < WA

K < WA
M∗N+K∗M

N+K
K∗N

2∗N+K−1

K ≥WA
M∗N+WA∗M

N+WA

WA∗N
2∗N+K−1

M < HA;N ≥WA

K < WA
M∗WA+K∗M

N+K
K∗WA

2∗WA+K−1

K ≥WA
M∗WA+WA∗M

2∗WA

WA
2

2∗WA+K−1

M ≥ HA;N < WA

K < WA
HA∗N+K∗HA

N+K
K∗N

2∗N+K−1

K ≥WA
HA∗N+WA∗HA

WA+N
WA∗N

2∗N+K−1

M ≥ HA;N ≥WA

K < WA
HA∗WA+WA∗HA

WA+K
WA∗N

2∗N+K−1

K ≥WA
HA∗WA+WA∗HA

2∗WA

W2
A

2∗WA+K−1

TABLE III
PARAMETER NOMENCLATURE FOR ALGORITHM 1 AND 2

I,O,W ifmap, ofmap, weight size in MB
RDDRAM DRAM Read access counts
WRDRAM DRAM Write access counts
RDGLB GLB Read access counts
WRGLB GLB Write access counts
GI,GO,GW ifmap, ofmap,weight Gradient size in MB
mbpa MB of data fetched per memory access
layer_f Layer size (MB) combining ifmap, ofmap &

weights
layer_b Layer size (MB) in backprop combining upstream,

ofmap & weight gradient
cum layer Cummulative size of layer
rd_f, rd_b DRAM read access during forward & backward pass
wr_f, wr_b DRAM write access during forward & backward pass

array (M < HA, N ≥ WA), (iii) Height of weight matrix is
larger than or equal to the height of systolic array, but width
of the weight matrix is less than the width of the systolic
array (M ≥ HA, N < WA), and (iv) Both height and width of
weight matrix are larger than or equal to the height and width
of systolic array respectively (M ≥ HA, N ≥ WA).

In a weight stationary dataflow, it takes N clock cycles to
load the weight matrix into the systolic array. Once the weights
are loaded, the input matrix is streamed from left to right and
the outputs are collected downward. The input matrix’s first

Algorithm 1: DRAM & GLB access count at Inference
1 for i = 1 to no. of layers do
2 RDGLB ← Ii

mbpaGLB

3 if i = 1 then
4 WRGLB ← Ii+Oi

mbpaGLB

5 if (Ii +Wi) ≤ GLB then
6 RDDRAM ← Ii+Wi

mbpaDRAM

7 else
8 RDDRAM ← Ii+Wi

mbpaDRAM
+ Ii+Wi−GLB

mbpaDRAM

9 end
10 else
11 WRGLB ← Oi

mbpaGLB

12 if Oi−1 ≤ UB then
13 if Wi ≤ GLB then
14 RDDRAM ← Wi

mbpaDRAM

15 else
16 RDDRAM ← Wi

mbpaDRAM
+ Wi−GLB

mbpaDRAM

17 end
18 else
19 RDDRAM ← Ii+Wi

mbpaDRAM
+

(Ii+Wi)−GLB
mbpaDRAM

20 end
21 end
22 if i = no. of layers then
23 WRDRAM ← Oi

mbpaDRAM

24 else
25 if Oi > GLB then
26 WRDRAM ← Oi−UB

mbpaDRAM

27 else
28 WRDRAM ← 0
29 end
30 end
31 end

column reaches the weight matrix’s last column at 2N clock
cycles. The last (or Kth) column of the input matrix reaches
the last column of weight matrix after 2N + K − 1 clock
cycles and generates the output matrix, K ×N . Based on the
above dataflow and mapping, the peak read-write bandwidth
per clock cycle for different cases is summarized in Table II.
The expressions are shown for weight stationary dataflow.

From the transformer-based NLP model architecture (Fig.
3), we observe that the dominant operations are the GEMM
operations. As a result, we model the read-write bandwidth
requirement for different layers of the transformer-based model
same as the read-write bandwidth of FC layer. Another

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 6

Algorithm 2: DRAM & GLB access count at Training
1 cum layer ← 0;
2 tmp← 0;
3 for i = 1 to no. of layers do
4 layer_fi ← Ii +Oi +Wi ;
5 layer_bi ← GIi +GOi +GWi ;
6 layer (i)← layer_fi + layer_bi ;
7 cum layer(i)← tmp+ layer (i) ;
8 tmp← cum layer(i) ;
9 RDGLB ← 3∗Ii+Oi+5∗Wi

mbpaGLB

10 WRGLB ← 2∗Ii+2∗Oi+3∗Wi
mbpaGLB

11 if cum layer(i) ≤ GLB then
12 if i = 1 then
13 rd_f(i)← Ii+Wi

mbpaDRAM

14 end
15 if i = no. of layers then
16 wr_f(i)← Oi

mbpaDRAM

17 end
18 rd_f(i)← Wi

mbpaDRAM
;

19 rd_b(i)← 0 ;
20 wr_f(i)← 0 ;
21 else
22 if (i ̸= 1) AND (Oi−1 ≤ GLB) then
23 rd_f(i)← Wi

mbpaDRAM

24 else
25 if Ii +Wi ≤ GLB then
26 rd_f(i)← Ii+Wi

mbpaDRAM

27 else
28 rd_f(i)← Ii+Wi

mbpaDRAM
+ Ii+Wi−GLB

mbpaDRAM

29 end
30 end
31 if (GIi +GOi +GWi ≤ GLB) then
32 wr_f(i)← 0
33 rd_b(i)← 0
34 else
35 wr_f(i)← GIi+GOi+GWi

mbpaDRAM

36 rd_b(i)← GIi+GOi+GWi
mbpaDRAM

37 end
38 end
39 wr_b(i)← Wi

mb_per_acs
40 end

dominant operation after GEMM is softmax operation. Softmax
operation is performed mostly on the scaled attention filter
matrix, AF of size Nsql × Nsql; σ(AF)ij = eAFij∑Nsql

i=1 eAFij
.

The softmax operation is generally performed in the Special
Function Unit (SFU) [4] (Fig. 5). The bandwidth requirement
of the softmax operation depends on the hardware architecture,
mapping, and AF matrix dimension. Assuming that the SFU
contains 1×HA units, each capable of performing one expo-
nential operation, followed by an accumulator for accumulating
the exponentials, and a regular ALU for performing the division
the bandwidth of softmax operation on SFU is estimated as
BWsoftmax = dw ∗HA.

B. Memory Access Patterns

Our proposed memory system consists of HMB3 (off-chip
DRAM memory), a large GLB with multiple SOT-MRAM
banks, a smaller double-buffered SRAM, and PE reg file
specific to each PE unit (Fig. 5). The banks inside SOT-MRAM
are optimized through a DTCO between the SOT-MRAM
parameters and the workload requirements. The double-buffered

SRAM holds the weights and partial outputs. In this subsection,
we analyze the memory access patterns of CV and NLP models
for the proposed memory system.

The required number of main memory accesses depends on
the GLB size, weight, activation size, and dataflow. Assuming
a fixed dataflow, weight stationary in this case, we model
the memory access counts during inference and training as
a function of the model’s workloads and the GLB size in
Algorithm 1, and 2 for inference and training, respectively.
During inference, inputs (e.g., images, tokens) are read from
HBM3, written to GLB, and read from GLB to be operated
inside PEs core. The read-only weights are directly loaded from
HBM3 to the register file of each PE unit, bypassing the GLB.
Using double-buffered SRAM, while the array is computing
with loaded weights, the next set of weights is temporarily
written to the SRAM buffer to hide the off-chip access latency
behind the PE array computation latency. Suppose the GLB
size is large enough to hold all samples in the minibatch. In
that case, the data entity can be read all at once, resulting in the
memory accesses equal to the algorithmic minimum memory
accesses. Algorithmic minimum memory access represents the
number of elements in the data entity [25]. For weight gradient
calculation, during backpropagation of the training, the inputs
are read from GLB to PE core, assuming that the GLB is
large enough to hold the input images along with the generated
ofmap of the current layer, thus avoiding the DRAM accesses
during backward pass. In convolution, the inputs can be reused
multiple times for convolutional and filter reuse. It can also
be reused multiple times during backpropagation to calculate
the gradients of different filters. In Transformer-based NLP
models, the embedded input can be reused thrice as input to
Key, Query, and Value linear layer. It can also be reused thrice
during backpropagation to calculate the weight gradient of the
Key, Query, and Value linear layer. The training workflow is
complicated and requires many more memory accesses (both
off-chip and on-chip) compared to inference. For example, to
calculate the weight gradients of Layer 1, it requires the current
layer’s activation gradient da1

dz1
, input (a0), next layer’s weight

(W2) and the upstream gradient from Layer 2 (δ1) (Fig. 6).
The pseudo code of Alg. 1 models the inference memory

access patterns. The inputs and weights must be loaded from
DRAM for the first layer. Depending on the combined size of
input & weight matrix size, and GLB size, it requires either
algorithmic minimum read accesses or more than that (lines
3-9 of Alg. 1). For the rest of the layers, if the ofmap of
the previous layer can fit in GLB, then no read accesses are
required for input activation, as the ofmap of the previous
layer will act as the ifmap to the next layer. Only the weights
are read from DRAM for such layers (lines 12-20 of Alg. 1).
The opposite case applies to write accesses: the ofmap of the
last layer must be written to the DRAM. For other layers, it
needs to be written to DRAM depending on its size and GLB
size (lines 22-30 of Alg. 1). No write accesses are required for
weight matrices during inference. As the weights bypass the
GLB during inference, the GLB read accesses are calculated
from the ifmap size for each layer (line 2). The write accesses
are calculated from the ofmap except for the 1st layer (line
11, 4). See Table III for symbol meanings.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 7

The pseudo code of Algorithm 2 models the training behavior.
We initialize several temporary variables: layer_fi (comprising
of ifmap, ofmap, and weight matrices of ith layer), layer_bi
(comprising of upstream gradient, ofmap, and weight matrix
gradients of ith layer), and layeri (combining layer_fi and
layer_bi) as shown in lines 4-6 in Alg. 2. cum layer(i)
contains all layers’ all entities up to ith layer (line 7-8, Alg. 2).
If the GLB is large enough to hold cum layer(i), we just need
to read the ifmap of the first layer & weight of all layers from
DRAM during the forward pass and write all layers’ updated
weight during the backward pass and last layer’s ofmap to
DRAM during the forward pass (lines 11-20 & 39, Alg. 2).
Otherwise, the forward pass is the same as the inference (lines
22-30, Alg. 2). During the backward pass, depending on the
size of upstream gradients, ofmap, and weight gradients, it
accesses the gradients from DRAM (lines 31-37, Alg. 2). The
GLB read-write accesses are shown in lines 9-10 in Alg. 2.
The ifmap of each layer needs to be read twice, once during
the forward pass and once during the backward pass. The
upstream gradient, equal in size as ifmap, must be read once
during the backward pass. The ofmap is read once during the
backward pass to calculate the upstream gradient. The weight
is read 5 times (once during the forward pass, 4 times during
the backward pass). The ifmap and ofmap are written twice,
once during the forward pass and once during the backward
pass. The weight is written thrice, twice during forward pass
and once during backward pass.

IV. DTCO OF SOT-MRAM

To ensure overall system performance for AI workloads, the
memory system should have large on-chip memory to avoid
frequent DRAM accesses, and the on-chip memory should have
high bandwidth to prevent the system from being memory-
bound while being energy efficient. In this section, we perform
a DTCO of SOT-MRAM in bit-cell level based on the workload
profiling done in section III.

A. Optimizing critical switching current Ic
In SOT-MRAM, the magnetic orientation of the free layer

is switched by Spin-Orbit Torque induced by spin Hall and
interfacial effects between the channel (i.e., SOT layer) and
free layer (FL) of MTJ. An in-plane charge current is flown
through the channel to generate a spin current that exerts a
spin torque on the free layer, which rotates the free layer’s
magnetic orientation. The critical current density required to
switch the magnetic orientation of FL is expressed as [26]

jc =
2eµ0Ms,FLtFL

h̄θSH
(
Hk,eff

2
− Hx√

2
) (9)

Where Hk,eff is the effective anisotropy field, Hx is the
applied field, Ms,FL is the saturation magnetization of free
layer, and tFL is its thickness. Our interest is in lowering
the switching current to achieve low write energy. Here, the
free layer thickness tFL and spin Hall efficiency θSH act
as a control knob for critical switching current. θSH is a
material-specific parameter and its higher value is expected
to reduce the switching current. The typical value of θSH in

heavy metal alloys ranges between 0.1 to 0.5 [24]. However,
recent topological insulators as SOT layer can have a very large
θSH . [27] demonstrated θSH = 152 with BiSb thin films.

B. Optimizing read-write pulse width

1) Read pulse width: The reading of SOT-MRAM involves
sensing the resistance of the MTJ. A small amount of current
is passed through the MTJ stack and the voltage across the
stack Vdata+ or Vdata− is compared against a reference voltage
Vref = 1

2 (Vdata++Vdata−) to read out the stored bit. The read
Sensing Margin SM = |Vref − Vdata| is typically very small.
Sensing and amplifying this small difference requires a strong
and complex Sense Amplifier that contributes to most of the
read latency and energy. The SM is determined by the Tunnel
Magneto Resistance ratio (TMR ratio = RAP−RP

RP
) of MTJ.

A higher TMR ratio produces a larger SM by making Vdata+

higher and Vdata− lower. Thus the TMR ratio is inversely
proportional to the read latency [28]. The higher the TMR
window, the higher the read speed and the less effort required
on the periphery. The typical range of the TMR ratio is between
100 to 300%. The TMR is tunable by oxide thickness [29] as
shown in Fig. 15 (a). In SOT-MRAM, we can increase the
oxide thickness, thanks to the decoupled read-write path of
SOT-MRAM, to achieve a high TMR and increase the read
speed without worrying about the large incubation time [30].

TABLE IV
DTCO CONTROL PARAMETERS & THEIR IMPACT ON POWER,

PERFORMANCE AND AREA (PPA)

DTCO Parameters Impact on PPA
Spin Hall angle θSH θSH ↑, jc ↓, Switching energy ↓
Free layer thickness tFL tFL ↓, jc ↓, Switching energy ↓, Area ↓
SOT layer dimension
ASOT

ASOT ↓, τp ↓, Area ↓, Write Bandwidth ↑

Oxide thickness tMgO tMgO ↑, TMR ↑, Read Bandwidth ↑

2) Write pulse width τp: The width of the write current
pulse for switching is inversely proportional to the magnitude
of the applied current density in the SOT layer jsw [24]

τp ∝ 1

jsw
(10)

As the area of the SOT layer (ASOT) is scaled down,
the effective current density increases, jsw ∝ 1/(ASOT).
Successful switching should take place when jsw > jc. We
can increase jsw by reducing the SOT layer dimension and
decrease jc by increasing θSH or by decreasing tFL. Thus
we can achieve successful switching in much shorter pulse
width (equation 10). [31] demonstrated the switching at 180ps,
[32] at 400ps, and [33] at 210ps. Switching in shorter pulse
width ensures larger write bandwidth which is essential for
memory systems used in AI/Deep Learning hardware. The key
DTCO parameters of SOT-MRAM and their impact on Power,
Performance and Area (PPA) are listed in Table IV.

V. RESULTS AND ANALYSIS

In this section, we provide the results and analysis of
the STCO on the CV and NLP workloads during inference

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 8

and training and present the optimum Power, Performance,
and Area results by performing the DTCO of SOT-MRAM.
We developed a MATLAB-based framework to implement
our analytical Memory and Compute Model to capture the
relationship between the memory access counts and the memory
hierarchy sizes in typical systolic array based AI accelerators.
Unlike ScaleSim [34] and Timelooop [25] simulator, which
only support profiling DNN workloads in inference mode to
date, our model captures both training and inference behavior
of CV and NLP models. We also verified our model’s results
with Timeloop in inference mode.

A. Bandwidth Demand

Al
ex
ne
t

VG
G1

9
Ef
fic
ien

tn
etb

0
Da

rk
ne
t5
3

Da
rk
ne
t1
9

Na
sn
etL

ar
ge

Na
sn
etM

ob
ile

Sh
uf
fle
Ne

t

In
ce
pt
io
nR

es
ne
tv
2

Xc
ep
tio
n

Re
sn
et1

01
Re
sn
et5

0
Re
sn
et1

8
M
ob
ile
ne
tv
2

De
ns
en
et2

01
In
ce
pt
io
nv
3

Go
og
len

et
Sq
ue
ez
en
et

100

1000

4000

B
yt
es
/C
yc
le

Al
ex
ne
t

VG
G1

9
Ef
fic
ien

tn
etb

0
Da

rk
ne
t5
3

Da
rk
ne
t1
9

Na
sn
etL

ar
ge

Na
sn
etM

ob
ile

Sh
uf
fle
Ne

t

In
ce
pt
io
nR

es
ne
tv
2

Xc
ep
tio
n

Re
sn
et1

01
Re
sn
et5

0
Re
sn
et1

8
M
ob
ile
ne
tv
2

De
ns
en
et2

01
In
ce
pt
io
nv
3

Go
og
len

et
Sq
ue
ez
en
et

40

100

1000
256x256 100x100 64x64 32x32

(a) (b)

Fig. 7. Bandwidth requirement of CV models for different PE array size. (a)
Read Bandwidth, (b) Write Bandwidth.

Tr
an
sfo

rm
er

Di
sti
lB
ER

T
BE

RT
Sq
ue
ez
eB
ER

T
Vi
su
alB

ER
T

M
ob
ile
BE

RT GP
T

GP
T-
2

GP
T-
Ne

o
GP

T-
J

GP
T-
3

100

500

1000

B
yt
es
/C
yc
le

Tr
an
sfo

rm
er

Di
sti
lB
ER

T
BE

RT
Sq
ue
ez
eB
ER

T
Vi
su
alB

ER
T

M
ob
ile
BE

RT GP
T

GP
T-
2

GP
T-
Ne

o
GP

T-
J

GP
T-
3

100

101

102

256x256 100x100 64x64 32x32

(a) (b)

Fig. 8. Bandwidth requirement of NLP models for different PE array size. (a)
Read Bandwidth (for GEMM and softmax operation), (b) Write Bandwidth..

In Fig. 7 (a), (b), we plot the read-write on-chip bandwidth
demand in bytes/cycle of 18 widely used CV models. Re-
senet101 and Resnet50 running on a 256×256 PE array will
demand the highest read bandwidth, 4017 bytes/cycle, from
GLB, whereas Squeezenet will demand the lowest bandwidth,
1028 bytes/cycle. Naturally, as the PE array size increases,
the computation capacity per cycle TMAC increases which
demands more data from memory to keep all PEs active.
From the workload perspective, we observe that the most
contributing factor to the read bandwidth demand is its inverse
relationship with the filter and ofmap size. We explain the
inverse relationship of filter and ofmap size with the read
bandwidth using the convolutional reuse concept. As the filter
size decreases, the scope of convolutional reuse decreases. The
ofmap again depends on the filter and ifmap size. With the

decrease of filter size and ofmap size, the convolutional reuse
decreases, giving rise to more bandwidth demand. The layer of
Resnet101 that requires the most bandwidth (4017 bytes/cycle)
has the ofmap dimension (7×7) and filter dimension (1×1).
On the other hand, the most demanding (1028 bytes/cycle)
layer of Squeezenet has the ofmap dimension (18×18) and
filter dimension (1×1). Another observation is that though 1×1
convolution reduces the computation complexity, it requires
more bandwidth from memory, i.e., becomes memory intensive.
The write bandwidth is also inversely proportional to the filter
size. However, in 1×1 convolutions, it depends on the number
of outputs generated by the PE array. The write bandwidth is
always smaller than the read bandwidth (Fig. 7 (b)) as it takes
more than one operands to generate one output. For example,
in a 3×3 convolution, it takes 18 operands to generate a single
output; in a 1×1 convolution, it takes two operands.

As mentioned in section III-A3, the bandwidth requirement
for transformer-basded model are calculated using the expres-
sions of Table II. The dimension of the operand matrices is
larger than the PE array dimension, hence following Case IV
(Table II, Section III-A3), the read bandwidth of all models
depends on the PE array size (Fig. 8 (a)). The write bandwidth
depends on the PE array dimension and the input sequence
length. The softmax read bandwidth depends on the SFU width,
and matches with the GEMM read bandwidth. As different
models are trained with different input sequence lengths [35],
their write bandwidth demand is not the same across all models.
The parameter sizes and settings of the models used in this
work are shown in Table V. The models having the highest
sequence length (2048) have the lower write bandwidth demand
102 bytes/cycle running on a 256×256 PE array (Fig. 8 (b)).

B. Impact of on-chip memory

Compared to a GLB size of 2MB, the DRAM access counts
for all CV models decrease significantly if we increase the GLB
size. In inference, reaching the 100% reduction in access means
it only needs to read the initial inputs, weights for each layer,
and write the final layer output, no DRAM access is needed for
the intra and inter-layer operations. Further increase in GLB
size will not improve the performance in these cases. For 16
samples, DRAM access is reduced by 100% for 14 models
at 128MB, and most models experience a reduction of >80%
at 64MB (Fig. 9 (a)). Fig. 9 (b), (c) show the performance
speed up and energy saving coming from these DRAM access
reductions.

We observe a slower improvement in the DRAM access
reduction during training unless the GLB size is large enough,
at least 256MB for most models (Fig. 9 (d)). However, even the
smaller percent reduction in DRAM access results in significant
performance and energy improvement (Fig. 9 (e), (f)). This
is because training requires at least 2× DRAM accesses as
inference. The smaller percent reduction of a large number of
DRAM accesses translates to a significant energy and latency
improvement. A similar trend is observed for NLP models.
Transformer-based NLP models are usually larger than the
CV models. This is the reason we achieve more performance
speedup and energy reduction even at smaller DRAM access

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 9

TABLE V
PARAMETERS OF NLP MODELS

Model Enc. layer Dec. layer Attn. head Word Embedding
(Nem)

Intermediate dimension
(dff)

Seq. length
(Nsql)

Vocab. size
(Nvocab)

Transformer 12 6 8 512 2048 1024 37000
BERT 12 - 12 768 3072 512 30522

Distil BERT 6 - 12 768 3072 512 30522
Mobile BERT 24 - 4 128 512 512 30522
Squeeze BERT 12 - 12 768 3072 512 30522
Visual BERT 12 - 12 512 3072 512 30522

GPT - 12 12 768 2048 512 40478
GPT-2 - 12 12 768 2048 1024 50257
GPT-3 - 96 96 12288 49152 2048 50257

GPT-Neo - 24 16 2048 8192 2048 50257
GPT-J - 28 16 4096 16384 2048 50400

D
RA

M
 a

cc
es

s
Re

du
ct

io
n

(%
)

Pe
rf.

sp
ee

du
p

(in
 m

s)

Alex
ne

t
VGG19

Effi
cie

ntn
etb

0
Dark

ne
t53

Dark
ne

t19
Nasn

etL
arg

e

Nasn
etM

ob
ile

Sh
uff

leN
et

Inc
ep

tio
nR

esn
etv

2
Xce

pti
on

Resn
et1

01
Resn

et5
0

Resn
et1

8
M

ob
ile

ne
tv2

Den
sen

et2
01

Inc
ep

tio
nv

3
Goo

gle
ne

t
Sq

ue
ez

en
et

En
er

gy
sa

vi
ng

(in
 j)

Alex
ne

t
VGG19

Effi
cie

ntn
etb

0
Dark

ne
t53

Dark
ne

t19
Nasn

etL
arg

e

Nasn
etM

ob
ile

Sh
uff

leN
et

Inc
ep

tio
nR

esn
etv

2
Xce

pti
on

Resn
et1

01
Resn

et5
0

Resn
et1

8
M

ob
ile

ne
tv2

Den
sen

et2
01

Inc
ep

tio
nv

3
Goo

gle
ne

t
Sq

ue
ez

en
et

(a)

(b)

(c)

(d)

(e)

(f)

(a) (b) (c)

(d)
(e) (f)

Fig. 9. Impact of larger GLB memories on performance and energy efficiency for CV models at inference and training. Percentage reduction in DRAM
accesses at inference (a) and training (d). Performance Speedup from DRAM access reductions at inference (b) and training (e). Energy savings from reduced
DRAM accesses at inference (c) and training (f). Both cases compare results to a baseline of 2MB GLB running 16 samples.

reduction rate (Fig. 11).We also observe that DNN models
learn faster if we increase the batch size. However, for a fixed
GLB size, the DRAM access count increases significantly at
larger batch size, causing performance slowdown and more
energy consumption. Fig. 10 and Fig. 12 (a, b, c for inference
and d, e, f for training) show the increase in DRAM access
count and its associated impact on performance and energy for
CV and NLP models respectively at different batch sizes.

The key takeaway from this analysis is that we can reduce
the energy and latency associated with DRAM accesses if we
increase the GLB size. For larger batch sizes, the energy and
latency improvement is even more. Because at large batch
sizes, throughput increases at the cost of DRAM accesses. As
we increase the GLB size, DRAM accesses reduce, and we
achieve latency and energy reduction.

C. DTCO of SOT for PPA Optimization
From section V-B we see that the GLB size of 64MB (for

inference) and 256MB (for training) offer significant energy
and performance improvement. However, it is not feasible
and efficient to use such large SRAMs because of its area
and leakage power, even if the low-power techniques are
employed. Section V-A implies that we need approximately

4000bytes/cycle bandwidth between GLB and PE array for
larger array size (256×256). In this subsection, we provide
the SOT-MRAM DTCO results and observation meeting the
requirements stated in the above two subsections. We perform
the DTCO in Cadence Virtuoso tool using the compact SOT-
MRAM model from [15], and use Synopsys 14nm library [37]
for the CMOS transistors and peripheral circuits.

1) IC optimization: To realize the impact of SOT efficiency
θSH on Ic, we sweep θSH from 0.1 to 100 (Fig. 13 (a)).
With θSH ≥ 100, Ic goes as low as 0.5uA. Even though the
widely used SOT layers are made of heavy metal alloys having
smaller θSH (e.g., 0.1 to 0.5), recent advancement in material
engineering demonstrates that in topological insulator θSH

can go as high as 152 [27]. We recommend using topological
insulators as the SOT layer to achieve a lower switching current.

Next, we analyze the impact of SOT layer geometry on the
switching current (Fig. 13 (b), (c)). Ic scales down linearly
with the decrease of SOT layer width, and wSOT can be
set to desired value based on the performance and reliability
requirement (Fig. 13 (b)). While Ic scales linearly with the
width of the SOT layer, the thickness of the SOT layer has
an interesting effect on the switching current. The SOT layer
should be relatively thin but bulk enough for heavy metal layers

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 10

(a) (b) (c)

(d) (e) (f)

Fig. 10. Impact of batch size on performance and energy efficiency for CV models at inference and training. Percentage increase in DRAM accesses at
inference (a), at training (d). Performance slowdown (latency increase) from extra DRAM accesses at inference (b), at training (e). Energy increase from extra
DRAM accesses at inference (c), at training (f). In both cases, results are compared to a baseline of 16 samples running with 4MB GLB.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. Impact of larger GLB memories on performance and energy efficiency for NLP models at inference and training. Percentage reduction in DRAM
accesses at inference(a), at training (d). Performance Speedup from DRAM access reductions at inference (b), at training (e). Energy savings from reduced
DRAM accesses at inference (c), at training (e). In both cases, results are compared to a baseline of 2MB GLB running 16 samples

to experience the bulk effect to achieve high SOT efficiency.
Once it crosses optimum thickness, which is 3nm (Fig. 13
(c)), many of the charges that are injected into the metal do
not contribute to the switching, and Ic increases.

The smaller the free layer thickness, tFL, the smaller the
switching current (Fig. 13 (d)). We also scale the diameter of
MTJ, dMTJ , to reduce the MTJ area. However, with the scaling
down of dMTJ together with tFL, the thermal stability factor
∆ also scales down, reducing the memory’s data retention time
tret. Non-volatility is a great feature of MRAM, but it can be
compromised to achieve higher density, higher bandwidth, and
lower energy when the target application is a cache. Because,
in the cache even for AI workloads, the data lifetime is much
shorter, typically in the seconds range [38]. Fig. 14(b) shows
∆ and tret as functions of free layer volume. While scaling
down tFL to optimize Ic, and dMTJ to optimize area, we keep
an eye on the reliability of the stored data. We consider a
retention failure rate of 10−9 (i.e., 1 bit flip per billion).

2) Bandwidth optimization: As shown in Fig. 15 (a), TMR
ratio of the MTJ device can be increased by increasing the

oxide thickness [29]. We increase the oxide thickness to
decrease the read latency (Fig. 15 (b)). The write pulse width is
inversely proportional to the applied switching current. While
we want to lower the applied current to achieve low energy, the
higher amplitude of the applied current is required for faster
magnetization reversal. However, switching occurs at smaller
pulse width at the iso-current if we scale down the SOT layer
width. This is because of the smaller critical current at smaller
geometry (Fig. 13 (b,d)). Fig. 14(a) shows that switching pulse
width can be reduced significantly by scaling down the SOT
layer width. Thus, we can achieve higher write bandwidth
by scaling down the SOT layer width to meet the high BW
demand from AI workloads.

D. Process & Temperature Variation and Bitcell Simulation

In this subsection, we perform Process and Temperature
variation on the DTCO-optimized parameters, design the
peripheral circuits, and test the read-write operation on the bit
cell at scaled parameters.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 11

(a)

(d) (e)

(b)

(f)

(c)

Fig. 12. Impact of batch size on performance and energy efficiency for NLP models at inference and training. Percentage increase in DRAM accesses,
inference (a), and training (d). Performance slowdown (latency increase) from extra DRAM accesses at inference (b), at training (e). Energy increase from
extra DRAM accesses at inference (c), at training (f). Results are compared to a baseline of 16 samples running with 4MB GLB.

0.
1

0.
3

0.
5

0.
7

0.
9 1

5

10

20

40

60

80

10
0

SH

0.1
1

10
100
500

I c(u
A)

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

wSOT (nm)

0

50

100

150

0.
3

0.
5

0.
7

0.
9 1

3

5

10

tSOT (nm)

0

200

400

0.
2

0.
3

0.
5

0.
6

0.
7

0.
8

0.
9

10

tFL (nm)

0

200

400

(a) (b) (c) (d)

Fig. 13. Critical current vs θSH (a), wSOT (b), tSOT (c), and tFL(d).

80 100 120 140 160
Isw(uA)

0

200

400

600

800

p (p
s)

WSOT = 150nm
WSOT = 100nm

40 60 80
MTJ dimension (nm)

20

30

40

50

60

70

 (k
B

T)

102

109
1012
1015

1021

t re
t(s

)

(a) (b)

Fig. 14. (a) Switching pulse width τp vs applied switching current Isw . (b)
Thermal stability factor ∆ (left Y-axis) and retention time tret (right Y-axis) vs
MTJ dimension for a fixed retention failure rate, PRF = 10−9. At ∆ = 70,
MTJ dimension = 88nm, retention time is > 10 years [36].

1 1.5 2
tMgO (nm)

100

150

200

250

TM
R

 ra
tio

(%
)

120 160 200 240
TMR ratio(%)

200

220

240

260

280

R
ea

d
la

te
nc

y
(p

s)

(a) (b)

Fig. 15. Impact of, (a) oxide thickness on TMR. (b) TMR on read latency.

1) Process and Temperature variation: To incorporate
process variations, we model MTJ diameter, free layer thickness,
and SOT layer width as Gaussian variables in the Verilog A
model of SOT-MTJ [15]. We assume standard deviations (σ)
as 5% of their respective means (µ) and perform Monte Carlo
simulations with 5000 samples within 4σ variation. We also
consider the temperature variations. The extreme point at the

TABLE VI
SOT-MRAM DTCO OPTIMIZED PARAMETERS. 30% GUARD-BAND ARE

ADDED WITH THICKNESS AND WIDTH FOR PROCESS VARIATIONS.

Parameter Value Parameter Value
Spin Hall angle θSH 1 TMR 240%
Free layer thickness tFL 0.5nm MTJ diameter dMTJ 55nm
SOT width wSOT 130nm SOT thickness tSOT 3nm
Oxide thickness tMgO 3nm Thermal stability factor ∆ 45

right side of the scaled target parameter is µ+ 4σ, Tcold (Fig.
16). From equations 9 and 10, Isw and τp are independent of
Temperature. As a result, the worst case for write operation
(highest Isw and longest τp) is at µ+4σ. This point is, however,
benign to the read operation and retention failure. As we scale
down dMTJ and tFL, ∆ also reduces, reducing tret, and Idata.
∆ reduces further as temperature increases [11]. Thus, the
worst case for read operation (smallest Idata) and retention
failure (smallest tret) is at µ− 4σ, Thot (see Fig. 16). As Idata
reduces, the difference between Idata1 and Idata0 becomes
even smaller and difficult to sense.

To ensure the reliability of the SOT-MRAM bit cell, we add
a 30% guard band on the scaled SOT device parameters: 20%
for process variation and 10% for temperature variation. The
optimized DTCO parameters after adding the PT induced 30%
guard-band are shown in Table VI.

2) Write operation: To write SOT-MRAM bitcell, we bias
BL with the data-to-be-written and SL with the complement
of data-to-be-written. Assuming that the magnetization state of
the Reference layer is -1, to write 1 into the MTJ bitcell, we

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 12

(WSOT, tFL, dMTJ)scaled
Nominal Process &

Temp.
Process

variation
Temp.

reducing
Temp.

increasing
Process
variation

4σ 4σ

Worst case for
Write op. No impact on

Write op.; benign
to Read op.

Worst case for Read op.
& tret ; benign to Write op.

µ - 4σµ - 4σ, Thot µ + 4σ µ + 4σ, Tcoldµ
 Isw,τp increasing Idata, tret decreasing

Fig. 16. Impact and distribution of Process and Temperature variation on
scaled parameters.

switch the magnetic orientation of the Free layer to +1 state
resulting in a high resistive state. To achieve this state, we turn
on the WWL, connect BL to VDD and SL to the ground. The
resultant current switches the free layer’s magnetic orientation
from -1 to +1. The opposite bias is applied to write 0. We
do not need any additional peripheral circuits for the write
operation of SOT-MTJ.

3) Read operation: Read operation involves sensing the
current passing through MTJ at P and AP states. For our
SOT-MRAM bitcell, with the parameters shown in Table
VI, Idata0 = 20uA and Idata1 = 33uA. We design and
optimize the read circuitry to sense this small differential
current, as shown in Fig. 17. Our proposed read sensing
circuit only contains an additional current mirror block (to
amplify current), and it does not require the precharge circuits
compared to SRAM. Hence, there is no additional area overhead
in the periphery compared to SRAM. The dynamic power
consumption are shown in Table VII

To capture the stochastic nature of MTJ switching, we
simulate the bit cell for 1000 bitstream. We achieve a read and
write yield of 100%, and at 250ps and 520ps, respectively. This
results in read bandwidth of 4 Gbps and a write bandwidth of
1.9 Gbps. We then dynamically allocate the memory bus width
on-demand to satisfy the bandwidth requirement for different
workloads and PE array size stated in section V-A.

TABLE VII
DYNAMIC POWER CONSUMPTION (IN UW) OF SRAM AND SOT-MRAM.

(1/0) MEANS THE CORRESPONDING POWER TO ACCESS BIT 1 AND 0.

Read(1/0) Write(1/0)
SRAM 426 373

SOT-MRAM 150/368 325/300

E. System level performance evaluation of SOT-MRAM based
Memory

In this subsection, we analyze the PPA (Power, Performance,
and Area) metrics at the system level on the DNN/CNN
benchmarks with SRAM, SOT-MRAM, and DTCO-optimized-
SOT-MRAM. We use the Destiny [39] memory simulator to
find the array-level data for both SRAM and SOT-MRAM.
We modify Destiny source code to reflect: (i) SOT switching
mechanism, (ii) special read sensing circuit for SOT-MRAM,
and (iii) 14nm CMOS technode. Then, we feed the extracted

VREF
Vdata

RDEN
RDEN

SEEN

BLSL
RWL

WWL

SE
ou
t Dout

SOT bitcell

Current
mirror

Sense amplifier &
latch

MTJ

SEEN

La
tc

h

Fig. 17. SOT-MTJ bitcell with read sensing circuitry.

bitcell-level data of SOT-MRAM in the .cell file to find the
PPA at the desired memory capacity.

Based on the array-level results from Destiny, and DRAM &
GLB access counts from Algorithms 1, and 2, we estimate the
system-level power and performance. Finally, we analyze the
area of the memory modules of different technologies (14nm
SRAM, SOT-MRAM, and DTCO-opt-SOT-MRAM) at iso-
capacity. This analysis only incorporates the PPA metrics from
the memory system (DRAM and GLB), assuming that the PPA
of the compute unit is constant. With SOT-MRAM as GLB, we
see significant energy and latency improvement over SRAM at
64MB (for inference) and 256MB (for training) (see Fig. 18
(a-d) for DNN benchmarks and (e-h) for NLP benchmarks). On
average, the 64MB SOT-MRAM offers 5× energy reduction
and 2× latency reduction over 64MB SRAM across all CNN
models at inference. Our DTCO-optimized-SOT-MRAM offers
further improvement, 7× energy, and 8× latency reduction
over SRAM at iso-capacity. For latency improvement, the
most contributing factor is the DRAM access reduction with
large GLB and the smaller read/write latency of SOT-MRAM
at larger capacity compared to SRAM. At smaller capacity,
SRAM is way faster than SOT-MRAM [10], [14]. We observe
that the most contributing factor in energy reduction (>50%) is
the near-zero leakage power of SOT-MRAM compared to high
leakage power of SRAM. The improvement is even more in
training mode; 6× (8× with SOT-opt.) energy reduction and
2× (9× with SOT-opt.) latency reduction. With 64MB SOT-
MRAM, NLP models in inference mode experience 2× (3×
with SOT-opt.) energy reduction and 2× (4× with SOT-opt.)
latency reduction than 64MB SRAM. Like CV benchmarks,
with 256MB SOT-MRAM, NLP benchmarks also experience
more energy improvement, 6× (8× with SOT-opt.), and latency
improvement, 2.5× (4.5× with SOT-opt.), in training mode.
The more improvement in training mode is because of two
reasons: (1) GLB size increases from 64MB to 256MB, and
(ii) GLB access counts are significantly large (at least 5×) in
training. Our DTCO-opt-SOT-MRAM further adds value to
PPA by its smaller silicon area, 0.54× at 64MB and 0.52× at
256MB of 14nm SRAM at iso-capacity (Fig. 19).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 13

0

0.5

1
N
or
m
al
iz
ed

En
er
gy

(I
nf
er
)

0

0.5

1

N
or
m
al
iz
ed

En
er
gy

(T
ra
in
)

0

0.5

1

N
or
m
al
iz
ed

La
te
nc
y

(I
nf
er
)

Al
ex
ne
t

Da
rk
ne
t1
9

Da
rk
ne
t5
3

De
ns
en
et2

01
Ef
fic
ien

tn
etb

0
Go

og
len

et
In
ce
pt
io
nr
es
ne
tv
2

In
ce
pt
io
nv
3

M
ob
ile
ne
tv
2

Na
sn
etl
ar
ge

Na
sn
etm

ob
ile

Re
sn
et1

01
Re
sn
et1

8
Re
sn
et5

0
Sh
uf
fle
ne
t

Sq
ue
ez
en
et

Vg
g1
9

Xc
ep
tio
n

0

0.5

1

N
or
m
al
iz
ed

La
te
nc
y

(T
ra
in
)

0

0.5

1
SRAM_64MB SOT_64MB SOT-OPT_64MB

0

0.5

1

0

0.5

1
SRAM_256MB SOT_256MB SOT-OPT_256MB

Tr
an
sfo

rm
er

BE
RT

Di
sti
lB
ER

T
M
ob
ile
BE

RT
Sq
ue
ez
eB
ER

T
Vi
su
alB

ER
T

GP
T

GP
T-
2

GP
T-
3

GP
T-
Ne

o

GP
T-
J

0

0.5

1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 18. System level energy improvement with SOT-MRAM and DTCO-optimized-SOT-MRAM over SRAM at the same size for CV (a-d) and NLP (e-h)
models. The top plots show energy (a, e) and latency (b, f) for inference, and the bottom plots show energy (c, g) and latency (d,h) for training.

Fig. 19. Area improvement of SOT-MRAM and SOT-MRAM-OPT

VI. RELATED WORK

SOT-MRAMs have been widely studied as the next gener-
ation of STT-MRAM to leverage all benefits of MRAMs as
embedded memory [9] [10] [12] [13] [16] [17]. However,
very few studies have evaluated the performance of SOT-
MRAM as on-chip memory in system-level for AI accelerators.
[14] and [40] demonstrated the performance improvement
of SOT-MRAM as L2 data cache compared to SRAM L2
cache on MiBench, SPEC2000 and SPEC2006 benchmarks.
SOT-MRAMs have also been explored in the context of
DL accelerators as a promising technology for In-Memory
Computing (IMC) or Computing-In Memory (CIM) [41] [42]
[43] [44] [45]. IMC/CIM over conventional AI accelerator has
pros and cons, and the detailed comparison between these two
domains is outside the scope of this work. Our work, where
we use SOT-MRAM as the cache storage element, differs from
crossbar-based in-memory computing. While the scope of SOT-
MRAM has been explored both as regular CPU cache and
IMC for DL accelerator to some extent, to the best of our
knowledge, unlike IMC, this is the first work that presents a
comprehensive analysis of SOT-MRAM as on-chip memory
for application in AI/DL accelerators.

VII. CONCLUSION

In this research, we presented a System and Design Tech-
nology Co-optimization methodology for efficient and high-
performance memory system design with SOT-MRAM for

modern AI accelerators. Guided by detailed target workload
characterization, our memory system comprises of HBM3
DRAM, a DTCO-enabled SOT-MRAM GLB and a small
SRAM buffer. Our large SOT-MRAM GLB significantly
reduces the energy and latency by reducing expensive DRAM
accesses while still having acceptable on-chip access energy
and latency, achieving overall system-level high performance.
We finally demonstrate that our memory system performs 8×
and 9× better in terms of energy and latency respectively on CV
benchmarks in training (7 and 8 times better in inference) and
8× and 4.5× better in terms of energy and latency respectively
on NLP benchmarks in training (3 and 4 times better in
inference) while consuming only around 50% of SRAM area
at iso-capacity.

REFERENCES

[1] J. Hestness, N. Ardalani, and G. Diamos, “Beyond human-level accuracy:
Computational challenges in deep learning,” in 24th Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’19, 2019.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[3] N. Jouppi et al., “A Domain-Specific Architecture for Deep Neural
Networks.” ACM Communications, 2018.

[4] “NVIDIA Ampere100 GPU.” [Online]. Available: https://www.nvidia.
com/en-us/data-center/ampere-architecture/

[5] Q. Cao et al., “Are mobile dnn accelerators accelerating dnns?” in
International Workshop on Embedded and Mobile Deep Learning, 2021.

[6] J. Park et al., “Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware implications,”
arXiv preprint arXiv:1811.09886, 2018.

[7] H.-S. P. Wong et al., “Stanford Memory Trends,” 2020. [Online].
Available: https://nano.stanford.edu/stanford-memory-trends

[8] H. Li, M. Bhargav, P. N. Whatmough, and H. Philip Wong, “On-Chip
Memory Technology Design Space Explorations for Mobile Deep Neural
Network Accelerators,” in Design Automation Conference (DAC), 2019.

[9] T. Endoh, H. Honjo, K. Nishioka, and S. Ikeda, “Recent progresses
in stt-mram and sot-mram for next generation mram,” in 2020 IEEE
Symposium on VLSI Technology, 2020, pp. 1–2.

[10] M. Gupta et al., “High-density sot-mram technology and design specifica-
tions for the embedded domain at 5nm node,” in 2020 IEEE International
Electron Devices Meeting, 2020, pp. 24.5.1–24.5.4.

[11] A.V. Khvalkovskiy et al., “Basic principles of STT-MRAM cell operation
in memory arrays,” in Journal of Physics D: Applied Physics, 2013.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 14

[12] M. Natsui et al., “Dual-port field-free sot-mram achieving 90-mhz read
and 60-mhz write operations under 55-nm cmos technology and 1.2-v
supply voltage,” in IEEE Symposium on VLSI Circuits, 2020.

[13] K. Garello, F. Yasin, and G. S. Kar, “Spin-orbit torque mram for ultrafast
embedded memories: from fundamentals to large scale technology
integration,” in IEEE International Memory Workshop (IMW), 2019.

[14] F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation of
hybrid memory technologies using sot-mram for on-chip cache hierarchy,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 3, pp. 367–380, 2015.

[15] M. Kazemi et al., “Compact model for spin–orbit magnetic tunnel
junctions,” IEEE Transactions on Electron Devices, 2016.

[16] S.Z. Rahaman et al., “Size-dependent switching properties of spin-orbit
torque mram with manufacturing-friendly 8-inch wafer-level uniformity,”
IEEE Journal of the Electron Devices Society, vol. 8, pp. 163–169, 2020.

[17] H. Honjo et al., “First demonstration of field-free sot-mram with 0.35 ns
write speed and 70 thermal stability under 400°c thermal tolerance by
canted sot structure and its advanced patterning/sot channel technology,”
in 2019 IEEE International Electron Devices Meeting (IEDM), 2019.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[20] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,”
in IEEE JSSC, 2017.

[21] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
and P. Deaville, “In-memory computing: Advances and prospects,” IEEE
Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.

[22] “NVDLA.” [Online]. Available: http://nvdla.org
[23] Y. Seo, K.-W. Kwon, X. Fong, and K. Roy, “High performance and

energy-efficient on-chip cache using dual port (1r/1w) spin-orbit torque
mram,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 6, no. 3, pp. 293–304, 2016.

[24] A. Manchonet al., “Current-induced spin-orbit torques in ferromagnetic
and antiferromagnetic systems,” Reviews of Modern Physics, vol. 91,
no. 3, p. 035004, 2019.

[25] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE international symposium on performance
analysis of systems and software. IEEE, 2019, pp. 304–315.

[26] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, “Threshold current for
switching of a perpendicular magnetic layer induced by spin hall effect,”
Applied Physics Letters, vol. 102, no. 11, p. 112410, 2013.

[27] N. H. D. Khang, Y. Ueda, and P. N. Hai, “A conductive topological
insulator with large spin hall effect for ultralow power spin–orbit torque
switching,” Nature materials, vol. 17, no. 9, pp. 808–813, 2018.

[28] B. Wu et al., “Field-free 3t2sot mram for non-volatile cache memories,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,
no. 12, pp. 4660–4669, 2020.

[29] K. Tsunekawa et al., “Giant tunneling magnetoresistance effect in low-
resistance cofeb/ mgo (001)/ cofeb magnetic tunnel junctions for read-
head applications,” Applied Physics Letters, vol. 87, no. 7, 2005.

[30] K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic
memory: Stt-ram and beyond,” Journal of Physics D: Applied Physics,
vol. 46, no. 7, p. 074003, 2013.

[31] Garello, Kevin et al., “Ultrafast magnetization switching by spin-orbit
torques,” Applied Physics Letters, vol. 105, no. 21, 2014.

[32] Wu, YC et al., “Voltage-gate-assisted spin-orbit-torque magnetic random-
access memory for high-density and low-power embedded applications,”
Physical Review Applied, vol. 15, no. 6, p. 064015, 2021.

[33] Garello, Kevin et al., “Sot-mram 300mm integration for low power
and ultrafast embedded memories,” in 2018 IEEE Symposium on VLSI
Circuits. IEEE, 2018, pp. 81–82.

[34] A. Samajdar et al., “A systematic methodology for characterizing
scalability of dnn accelerators using scale-sim,” in IEEE International
Symposium on Performance Analysis of Systems and Software, 2020.

[35] “Hugging Face.” [Online]. Available: https://huggingface.co/
[36] Garello, K. et al., “Manufacturable 300mm platform solution for field-free

switching sot-mram,” in Symposium on VLSI Technology, 2019.
[37] “Synopsys.” [Online]. Available: https://www.synopsys.com//
[38] K. Mishty and M. Sadi, “Designing efficient and high-performance ai

accelerators with customized stt-mram,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 29, pp. 1730–1742, 2021.

[39] M. Poremba et al., “Destiny: A tool for modeling emerging 3d nvm and
edram caches,” in Design, Automation Test in Europe, 2015.

[40] Y. Seo, K.-W. Kwon, X. Fong, and K. Roy, “High performance and
energy-efficient on-chip cache using dual port (1r/1w) spin-orbit torque
mram,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 6, no. 3, pp. 293–304, 2016.

[41] L. Chang, X. Ma, Z. Wang, Y. Zhang, Y. Xie, and W. Zhao, “Pxnor-bnn:
In/with spin-orbit torque mram preset-xnor operation-based binary neural
networks,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 11, pp. 2668–2679, 2019.

[42] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: An energy-efficient
comparator-based processing-in-memory neural network accelerator,” in
55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018.

[43] H. Wang et al., “A new mram-based process in-memory accelerator for
efficient neural network training with floating point precision,” in IEEE
International Symposium on Circuits and Systems, 2020.

[44] G. Yuan, X. Ma, S. Lin, Z. Li, and C. Ding, “A sot-mram-based
processing-in-memory engine for highly compressed dnn implementation,”
arXiv preprint arXiv:1912.05416, 2019.

[45] Y. Luo et al., “Performance benchmarking of spin-orbit torque mag-
netic ram for deep neural network (dnn) accelerators,” in 2022 IEEE
International Memory Workshop (IMW), 2022, pp. 1–4.

Kaniz Mishty received the B.S. degree in Electronics
and Communication Engineering from Khulna Uni-
versity of Engineering and Technology, Bangladesh,
in 2018. She is currently working towards her Ph.D.
degree in ECE at Auburn University, AL, USA. Her
research interests are energy efficient AI hardware
design and AI/ML in CAD. She interned with Apple
Inc. in Summer ’22, 23 and Qualcomm in ’21 on AI
application in SoC and custom circuit design.

Mehdi Sadi (S’12-M’17) is an Assistant Profes-
sor at the Department of Electrical and Computer
Engineering at Auburn University, Auburn, AL. Dr.
Sadi earned his PhD in ECE from University of
Florida, Gainesville, in 2017, MS from University of
California at Riverside, USA in 2011 and BS from
Bangladesh University of Engineering and Technol-
ogy in 2010. Prior to joining Auburn University, he
was a Senior R&D SoC Design Engineer at Intel
Corporation in Oregon. Dr. Sadi‘s research focus
is on developing algorithms/CAD techniques for

implementation, design, reliability, and security of AI hardware. He was the
recipient of SRC best in session award, Intel Xeon Design Group recognition
awards, and National Science Foundation CRII award.

