IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 43, NO. 4, APRIL 2024 1
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Abstract—System on Chips (SoCs) are now designed with
their own Al accelerator segment to accommodate the ever-
increasing demand of Deep Learning (DL) applications. With
powerful Multiply and Accumulate (MAC) engines for matrix
multiplications, these accelerators show high computing per-
formance. However, because of limited memory resources (i.e.,
bandwidth and capacity), they fail to achieve optimum system
performance during large batch training and inference. In this
work, we propose a memory system with high on-chip capacity
and bandwidth to shift the gear of AI accelerators from memory-
bound to achieving system-level peak performance. We develop the
memory system with Design Technology Co-optimization (DTCO)-
enabled customized Spin Orbit Torque (SOT)-MRAM as large
on-chip memory through System Technology Co-optimization
(STCO) and detailed characterization of the DL workloads. Our
workload-aware memory system achieves 8x energy and 9x
latency improvement on Computer Vision (CV) benchmarks
in training and 8x energy and 4.5x latency improvement on
Natural Language Processing (NLP) benchmarks in training while
consuming only around 50% of SRAM area at iso-capacity.

Index Terms—DTCO, STCO, AI Accelerator, SOT-MRAM.

I. INTRODUCTION

HE proliferation of Artificial Intelligence (AI) and Deep

Learning (DL) has precipitated the computing hardware
community to continually design innovative AI/DL accelerators
with large data processing capabilities. Research shows that
the AI/DL model accuracy improves as training data set size
grows [1]. With increasing data set, model size also grows.
Consequently, memory demand in AI/DL accelerators will also
grow asymptotically linearly with model and data size [1] [2].
As a result, the bottleneck for state-of-the-art AI/DL models
in the accelerator hardware is now memory rather than data
and compute availability, and we expect this trend to worsen
in the future [2] [3] [4].

The lack of efficient and high-performance data flow between
the computing and memory element (i.e., the memory wall or
memory bottleneck) masks the improvement coming from the
efficient compute system [5]. One promising solution to the
memory bottleneck of Al-specific workload is to increase the
on-chip memory capacity [6]. For both training and inference,
the on-chip memory capacity in the accelerator needs to be
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increased to ensure that the intermediate activations, as well
as the weights of the current layer, can be loaded. Moreover,
significantly more memory is required during training to store
the gradients and optimizer states. Inadequate on-chip memory
capacity causes frequent DRAM accesses which exacerbates
energy costs, as well as stalls the compute cores of AI/DL
accelerator until the data is fetched. Because of this large
capacity demand, an SRAM-based on-chip memory system
can be detrimental due to leakage energy and area inefficiency.

The promising features, such as high density, near-zero
leakage power, immunity against radiation-induced soft errors,
and CMOS compatibility of emerging Spin-based non-volatile
(NVM) magnetic memory (i.e., MRAM) technologies, attracted
researchers from academia and industry [7]. Spin Transfer
Torque (STT) MRAM, has already shifted its gear from
the R&D phase to commercialization as the NAND-based
embedded flash replacement [8] [9]. However, MRAM in its
regular form cannot be used in Al accelerators due to its slow
write speed and high write energy [9] [10].

STT-MRAM, a two-terminal magnetic memory with Mag-
netic Tunnel Junction (MTJ) as the storing element, flows a
bidirectional spin-polarized current through the MTJ for read-
write operation [11]. The major challenges of STT-MRAM
- poor write performance, Read Disturbance (RD), retention
failure, [9] [12] - stem from two main reasons. First, the high
write current flowing through the MTJ accounts for almost
10x energy consumption as SRAM. Large write delay (> ns
range) resulting from spin injection symmetry in switching
the magnetic orientation of free layer belittles STT-MRAM’s
feasibility as an on-chip cache [13]. The stress on the dielectric
oxide of the MTJ due to the large write current accelerates the
time-dependent wear out of the cell [14]. Second, its shared
read-write path makes it vulnerable to RD.

SOT MRAM, considered the next generation of STT-MRAM,
offers high performance without compromising reliability issues
such as RD. SOT-MRAM is a three-terminal memory cell that
uses MTJ as the storing element [15]. By splitting the read-
write path and using a different switching scheme, SOT-MRAM
resolves all the challenges of STT-MRAM while retaining its
every benefit [9] [12] [13] [14] [16]. Isolate read and write
path allows the designer to optimize the read and write path
independently, decreasing the write current and increasing
the read-write operating margin, thus solving the RD-induced
reliability issues. Though lacking mass-scale production from
foundries due to early-stage manufacturing challenges, [9] [10]
[12] [13] [16] [17] have demonstrated the successful fabrication
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of SOT-MRAM with attractive specifications. Its attractive
features, such as high density, reliability and endurance, zero
leakage, read-write latency comparable to SRAM, and research
effort to enable mass production make it one of the best
candidates for Al accelerator memory system where large
on-chip memory is a must for training and inference.

The performance of an Al accelerator depends on both
the compute and memory throughput of the device. While
most accelerators have enough compute throughput, their
performance is limited by memory throughput operating in the
memory bound region. To address the memory bound problem
of the AI hardware, in this paper, we perform a closed-loop
STCO on Al workloads and DTCO on SOT-MRAM to present
a hybrid memory system. To our knowledge, this is the first
work that analyzes and evaluates the performance of SOT-
MRAM as the on-chip memory of Al accelerators targeting
both inference and training. The STCO-DTCO methodology
is shown in Fig. 1, and the key contributions of the paper are
highlighted as follows

system and the proposed DTCO-STCO optimized hybrid
memory system for Al accelerators.

The rest of the article is organized as follows. Section
IT discusses the background. In Section III, we present the
analytical model for DNN workload profiling, followed by
the DTCO of SOT-MRAM in Section IV. Sections V and VI
present the results & analysis, and related works, respectively,
following the conclusion in Section VII.

II. BACKGROUND
A. AI/DL Applications

1) Computer Vision (CV) and Pattern Recognition: CV
models, also called Convolutional/Deep Neural Networks
(CNN/DNN), are the stacks of convolution layers connected
straight and/or through residual connection [18] to extract the
objects’ features, and a few Fully Connected (FC) layers at
the end to classify the objects. Image classification, captioning,
reconstruction and object/instance segmentation are the scopes

« We present a power and performance-optimized hybrid
memory system for Deep Learning (DL) accelerators
through a workload-aware STCO and DTCO. Comprised
of off-chip HBM3 DRAM, on-chip SRAMs, and DTCO-
enabled SOT-MRAM, the hybrid memory system can
support the training and inference of DL workloads.
We perform a closed-loop STCO and DTCO by taking
into account the (i) System performance attributes (e.g.,
throughput and energy cost); (ii) Architectural and micro-
architectural attributes (e.g., compute resources utilization,
memory bandwidth) (iii) Workload attributes at both train-
ing and inference (e.g., runtime action counts, dataflow
and data reuse) to reach the Pareto optimal solution.

o Using the Deep Learning models’ execution profiles,
DTCO enables device and circuit level customization
of read/write bandwidth, retention time, and capacity of
SOT-MRAM memory banks to meet the bandwidth and
capacity demands of DL workloads. To achieve dynamic
runtime optimization of the power and performance of
the accelerator hardware for diverse workloads, memory
banks are individually optimized with various bandwidths
and capacities.

o Finally, using various DNN benchmarks, we provide a
comparative analysis of the existing SRAM-based memory

of CV models. Deep Residual Networks, having convolutional
layers at their core, dominate the CV domain. The input images
are convolved with the filter weights to produce the output
feature map (OFMAP). The OFMAP goes through the pooling
and normalization layers to act as input (/FMAP) to the next
layer. The linear and softmax layer at the end finally recognizes
the image (Fig. 2). The size of each data entity (IFMAP,
OFMAP, and Weights) depend on the model architecture.

2) Natural Language Processing (NLP): Language model-
ing deals with processing sequential data. Recurrent Neural
Networks (RNN), Long Short Term Memory (LSTM), and
Gated Recurrent Unit (GRU) have been used in language
modeling until the state-of-the-art Transformer [19] model
is introduced. NLP models are used in machine translation,
text summarization, speech recognition, syntactic and semantic
parsing, question answering, dialog system etc. In Transformer-
based models [19], the input sequence propagates through the
embedding layer and different sublayers of the encoder stacks to
extract different linguistic features and inter-token dependency
of the input sequence. The decoder stacks then generate the
output sequence by taking the encoded input sequence from the
encoder stack and the output sequence generated by itself in
the previous timesteps (Fig 3). The input sequence multiplied
by different layer weights takes different activation names and
shapes throughout the model operation.
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Fig. 3.| Transformer model workflow breakdown

B. AI/DL Accelerators

At the core of AI/DLs is the matrix-matrix/vector multi-
plication (GEMM) with massive parallelism. Exploiting this
parallelism, Systolic Array (SA) based architecture [3] have
been used to accelerate the computations. Different dataflows,
such as row stationary, output stationary, weight stationary,
have been evolved to maximize the reuse and reduce the data
movement. Off-chip DRAM access being 100-200 times more
energy and latency expensive than any ALU operation or
on-chip access [20] plays a crucial role in determining the
overall system performance. Another non-conventioanl type of
architecture, In-Memory Computing (IMC) [21] has recently
evolved to address the data communication cost for DNN
accelerators. However, in this work, we focus on reducing
the off-chip memory access for conventional DNN accelerator
architectures [3], [20] [22] by increasing the on-chip Global
Buffer (GLB) size with SOT-MRAM.

C. SOT-MRAM

1) Physical Structure: With MTJ [11] as storing element,
the SOT-MRAM is a three terminal device. Depending on
the type of bit cell, there are three to four lines to control
the read-write operation. In this work, we consider a two
transistor one SOT (2T1SOT) bit cell architecture that requires
two access transistors, (i) Read Wordline (RWL), (ii) Write
Wordline (WWL), (iii) Bit Line (BL), and (iv) source Line (SL)
to accommodate separate read-write access path [15] [23] (Fig.
4). The MT]J stack, with its free layer at the interface, is placed
on top of a SOT layer (i.e., channel) to ensure SOT-induced

CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers with residual/skip connection tollowed by fully connected (FC
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Fig. 4. Physical structure of a SOT-MRAM bit cell highlighting separate read
(along blue line) and write (along red line) path

switching. The SOT layer is composed of heavy metals or
topological insulators [24].

2) Read-Write Operation: Upon the activation of RWL, a
small amount of current is passed through BL and grounded SL.
The resistive state of the MTJ is captured by sensing the voltage
across it and comparing the voltage with a reference value
[12]. Low resistive state (Rp) and high resistive state (Rap)
represents bit 0 and 1 respectively. The write operation of MTJ-
based MRAM involves switching the resistive status of MTJ.
In SOT-MRAM, switching occurs due to Spin Orbit Torque
(SOT) effect. Unlike STT-MRAM, a current is passed through
the SOT layer to change the MTJ resistive state by switching
the magnetic orientation of the free layer. A bidirectional write
current flows through BL and SL during write operation. The
potential of BL and SL changes depending on the bit value
written in the cell. For example, to write ‘1°, current flows
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from BL to SL and vice versa to write ‘0’ [12] [14].

CNN AND SYSTOL

TABLE I
IC ARRAY PARAMETERS NOMENCLATURE

IIT. DNN WORKLOAD PROFILING

Profiling the target workload is a prerequisite for designing
an accelerator for the target workload. Assuming that we
have a powerful computing system to handle the exhaustive
computations of the DL workload, we focus on providing
efficient data movement between the compute and memory
system to ensure 100% utilization of computing resources by
introducing the workload-aware hybrid memory system. We
propose the hybrid memory system by analyzing the Deep
Learning model workloads from CV and NLP domain. We
analytically model the on-chip bandwidth requirement and
memory access patterns of different parts of the workload
during inference and training, Memory and Compute Model, to
develop the memory system for TPU-like [3] DNN accelerators.

[ == PERegfile —= MAC E=— PE Unit |

%%E -

Global Buffer Ha

(MRAM) ol % ? ? %l
DRAM [*T -
(HBM3) SRAM Buffer
Special Function PEC
Unit (SFU) @re
DL Accelerator

Fig. 5. Block diagram of Accelerator architecture

A. Memory Bandwidth Expression

We express the required bandwidth (BW) as a function of
compute resources and workload. BW (bytes/sec) is defined as
the rate at which data needs to be transferred to/from memory
by a processor to utilize the computation resources of the
processor fully. Mathematically,

F,

BW = — 1
oI ey
Where [}, = Theoretical peak performance (ops/sec) = number
of operations the accelerator performs per sec. The F), of a

H 4 x W4 Processing Element (PE) array (Fig. 5):

Fp:HA*WA*Facc (2)

F,.. = Operating frequency of the accelerator. O = Opera-
tional Intensity of Workload (ops/byte) = number of operations
performed per byte accessed. It is a measure of parallelism of
the workload. In the subsequent subsections, we will formulate
the OI of Conv. and FC layer to find their BW, respectively.
Note that the read and write bandwidth will not be the same
for these workloads.

1) Read Bandwidth (BWgp) of Conv. layer: To formulate
an expression for OI of convolution workload: First, we deter-
mine the total number of MAC operations, Ts a¢, performed
by a Hq x W4 PE array per clock cycle

Wa,Hp Accelerator array width & height (PEs)
kw, kn Kernel width & height

ofw,0fn Output feature map width & height

i fw, i fn Input feature map width & height

Nich, Nocn | No. of input & output channel

Ny Batch size

Nfe, Mfe No. of neurons in input & output FC layer

Second, we figure out how many bytes should be read from

memory to utilize all

In a row stationary d

ofw) * d,, bytes of d
BF16 etc.) and #(of

PEs of the accelerator in one clock cycle.
ataflow [20], it takes (kp, * ki + ofp *
ata (d,, = data type in bytes, i.e., FP32,

% 0fy * kp, % k) PEs to generate the

partial ofmaps corresponding to one input channel. Depending

on the size of the PE
of accelerator), multi

array, in each iteration (one complete use
ple input channels can be fit. The input

channels (i.e., no. of partial ofmaps) computed by the PE array

in each iteration:

Nich_per__

Total bytes read from
H A X

HaxWy
Ofn * 0fw * kpn % ky
memory to utilize all PEs:
Wa

stp —

“

k (kp # ko 4 0fn xifw) * dy

Tbyte =

kp * ky % afp % 0fy

&)

We divide the total number of MAC operations, T 4c, by the

total bytes accessed,

Tyyte, to find OI:
kp x ky % 0fpn * 0fy

Ol =

Substituting the expre
as a function of array

(kh * kw

ssion of OI in equation (1) gives BWgp
size and workload:

Fifn *ifu)*dy

BWrp = Ky *

For the symbol mean
2) Write Bandwidt

x* Hoax Wy x Fyee

)
ings, please see Fig. 2 and Table I.
1 (BWw r) of Conv. Layer: Partial ofmap

h*ofh*ofw

of a single input channel requires #(ofy, * of,, * kp, * ky,) PEs.

Therefore, Hy x W4

PEs generate (Ha * Wa)/(ofn * 0fy *

kp, x ky,) ofmaps in each iteration. Each partial ofmap contains

ofyn * of,, elements.

The total output bytes generated by the

PE array in one iteration is, equivalently, the write bandwidth:

BWwgr =

HA*WA*Facc*dw
k‘h*k‘w

®)

3) BWgrp & BWwr of FC layer: The systolic array is
a widely used architecture to perform GEMM operation [3].
Depending on the array dimension (/{4 X W,4) and operand

matrix dimension (inp
and output matrix: K|
Write GLB bandwidth

dimensions (both) ar¢

(M < Hg, N < W

ut matrix: K x M, weight matrix: M X N,
x N), we formulate required Read and
for four different cases: (i) Weight matrix
less than the systolic array dimensions
1), (i1) Height of weight matrix is less

Tyac =Ha x Wy 3)

than the height of s

ystolic array, but the width of weight

matrix is larger than or equal to the width of the systolic
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TABLE II
RD/WR BANDWIDTH EXPRESSION OF FC LAYER FOR DIFFERENT CASES
Cases BWgrbD BWwr
M*N+KxM K*N
M<Ha N<W K <Wjy N+K 2xN+EK—1
As A K>W M*xN+W %M WpoxN
Z WA N+W4 %N+EK—1
M*sWp+K+xM K*xW A
M<HasN>W K <Wa N+K xWatK—1
A=A K>W MxW 4+W 4 %M W42
- A 2xWp 2xWpa+K—1
HyxN+K*Hy KxN
M>HaN<W K <Wa N+K AN+ E—1
= A A K>W HAxN+Wa*H 4 W4 *N
Z WA WaA+N 2%N+E—1
HAsWA+WaxH 4 WaxN
M>HaN>W K <Wa Wa+K 2xN+EK—1
> Hy > Wa
’ K> W, | HarWa+WasHy w3
= 2+Wy %W +K—1
TABLE III

PARAMETER NOMENCLATURE FOR ALGORITHM | AND 2

1,0,W ifmap, ofmap, weight size in MB

RDpram DRAM Read access counts

WRpRrAM DRAM Write access counts

RDgLB GLB Read access counts

WRaLB GLB Write access counts

GI,GO,GW | ifmap,ofmap,weight Gradient size in MB

mbpa MB of data fetched per memory access

layer_f Layer size (MB) combining i fmap, ofmap &
weights

layer_b Layer size (MB) in backprop combining upstream,
ofmap & weight gradient

cum layer Cummulative size of layer

rd_f,rd_b DRAM read access during forward & backward pass

wr_f,wr_b DRAM write access during forward & backward pass

array (M < Ha, N > W,), (iii) Height of weight matrix is
larger than or equal to the height of systolic array, but width
of the weight matrix is less than the width of the systolic

array (M > H4, N < Wy), and (iv) Both height and width of

weight matrix are larger than or equal to the height and width
of systolic array respectively (M > Ha, N > Wy).

In a weight stationary dataflow, it takes N clock cycles to

load the weight matrix into the systolic array. Once the weights

are loaded, the input matrix is streamed from left to right and
the outputs are collected downward. The input matrix’s first

Algorithm 1: DRAM & GLB access count at Inference

1 for i =1 to no. of layers do

e e N ! kR W N

_- =
= =

30
31 end

RDGLB «—

. ti
o mbpagr B
if i = 1 then
_1i+0;
.VVRGLB N mbpagr B
if (I; + W;) < GLB then
RDpRrAM < Gppan
else
I,+W; I;+W;—-GLB
RD R i bpa;
‘ DRAM mbpapRrAM mbpaprAM
end
else
WRaLp « __O;
! mbpagL B
if O;_1 < UB then
if W, < GLB then
Wi
D Wi
‘ RDpram < mbpapRrAM
else
W W;—GLB
RD — : >
‘ DRAM mbpaprAM + mbpapRrAM
end
else
I,+W; (I;+W;)—GLB
RD it Tibpa
‘d DRAM mbpapRrAM + mbpapRrAM
en

end
if i = no. of layers then
WRpraM <
se
if O; > GLB then
WRpRraM <
else

| WRpram <0
end

i
mbpaprAM

0,-UB
mbpaprAM

end

column reaches the weight matrix’s last column at 2N clock
cycles. The last (or K thy column of the input matrix reaches
the last column of weight matrix after 2N + K — 1 clock
cycles and generates the output matrix, K x N. Based on the
above dataflow and mapping, the peak read-write bandwidth

per clock cycle for different cases is summarized in Table II.

The expressions are shown for weight stationary dataflow.
From the transformer-based NLP model architecture (Fig.

3), we observe that the dominant operations are the GEMM

operations. As a result, we model the read-write bandwidth

same

requirement for different layers of the transformer-based model

as the read-write bandwidth of FC layer. Another
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Algorithm 2: DRAM & GLB access count at Training
1 cum layer < 0;

2 tmp <+ 0;

3 for i = 1 to no. of layers do

4 layer_f; < I, + O; + W; ;
5 layer_b; < GI; + GO; + GW; ;
6 layer (i) < layer_f; + layer_b; ;
7 cum layer(i) < tmp + layer (3) ;
8 tmp < cum layer(i) ;
*1; P *W;
9 RDgpp + 21itQits«W; ;L?OJQ';BW%
10 WRGLB <~ 72*11.;3;(1&?2*”/’.
1 if cum layer(i) < GLB then
12 if i = 1 then
; Li+W;
B ‘ rd_f(i) « mbpaprAM
14 end
15 if i = no. of layers then
; 0;
16 ‘ wr_f(i) < mbpaprAM
17 end
. w;
18 rd_f (i) Ty
19 rd_b(i) < 0 ;
20 wr_f(i) < 0;
21 else
2 if (i # 1) AND (O;_1 < GLB) then
. W,
23 rd_f (i) « PP D AN
24 else
25 if I; + W; < GLB then
; Li+W;
. | S 6) < S
27 else
. Li+W; I,4+W;—GLB
2 ‘ Td_f(l) A ""bpaDRA]W + mbpaDRA]VI
29 end
30 end
31 if (GI; + GO; + GW; < GLB) then
32 wr_f(i) < 0
33 rd_b(i) < 0
34 else
. GL;+GO;+GW;
) WSO i,
36 rd_b(i) « SLEEGEL
37 end
38 end
. w;
39 wr_b(i) < b peracs
40 end

dominant operation after GEMM is softmax operation. Softmax

operation is performed mostly on the scaled attention filter
AF;;

matrix, AF of size Nyy X Nggi; o(AF)ij = e Y

The softmax operation is generally performed in tthSpecial
Function Unit (SFU) [4] (Fig. 5). The bandwidth requirement
of the softmax operation depends on the hardware architecture,
mapping, and AF matrix dimension. Assuming that the SFU
contains 1 X H 4 units, each capable of performing one expo-
nential operation, followed by an accumulator for accumulating
the exponentials, and a regular ALU for performing the division
the bandwidth of softmax operation on SFU is estimated as
BWsoftmaa: =dy * Ha.

N A
sql LAF;;

B. Memory Access Patterns

Our proposed memory system consists of HMB3 (off-chip
DRAM memory), a large GLB with multiple SOT-MRAM
banks, a smaller double-buffered SRAM, and PE reg file
specific to each PE unit (Fig. 5). The banks inside SOT-MRAM
are optimized through a DTCO between the SOT-MRAM
parameters and the workload requirements. The double-buffered

SRAM holds the weights and partial outputs. In this subsection,
we analyze the memory access patterns of CV and NLP models
for the proposed memory system.

The required number of main memory accesses depends on
the GLB size, weight, activation size, and dataflow. Assuming
a fixed dataflow, weight stationary in this case, we model
the memory access counts during inference and training as
a function of the model’s workloads and the GLB size in
Algorithm 1, and 2 for inference and training, respectively.
During inference, inputs (e.g., images, tokens) are read from
HBM3, written to GLB, and read from GLB to be operated
inside PEs core. The read-only weights are directly loaded from
HBM3 to the register file of each PE unit, bypassing the GLB.
Using double-buffered SRAM, while the array is computing
with loaded weights, the next set of weights is temporarily
written to the SRAM buffer to hide the off-chip access latency
behind the PE array computation latency. Suppose the GLB
size is large enough to hold all samples in the minibatch. In
that case, the data entity can be read all at once, resulting in the
memory accesses equal to the algorithmic minimum memory
accesses. Algorithmic minimum memory access represents the
number of elements in the data entity [25]. For weight gradient
calculation, during backpropagation of the training, the inputs
are read from GLB to PE core, assuming that the GLB is
large enough to hold the input images along with the generated
ofmap of the current layer, thus avoiding the DRAM accesses
during backward pass. In convolution, the inputs can be reused
multiple times for convolutional and filter reuse. It can also
be reused multiple times during backpropagation to calculate
the gradients of different filters. In Transformer-based NLP
models, the embedded input can be reused thrice as input to
Key, Query, and Value linear layer. It can also be reused thrice
during backpropagation to calculate the weight gradient of the
Key, Query, and Value linear layer. The training workflow is
complicated and requires many more memory accesses (both
off-chip and on-chip) compared to inference. For example, to
calculate the weight gradients of Layer 1, it requires the current
layer’s activation gradient %, input (ag), next layer’s weight
(W53) and the upstream gradient from Layer 2 (d1) (Fig. 6).

The pseudo code of Alg. 1 models the inference memory
access patterns. The inputs and weights must be loaded from
DRAM for the first layer. Depending on the combined size of
input & weight matrix size, and GLB size, it requires either
algorithmic minimum read accesses or more than that (lines
3-9 of Alg. 1). For the rest of the layers, if the ofmap of
the previous layer can fit in GLB, then no read accesses are
required for input activation, as the ofmap of the previous
layer will act as the i fmap to the next layer. Only the weights
are read from DRAM for such layers (lines 12-20 of Alg. 1).
The opposite case applies to write accesses: the ofmap of the
last layer must be written to the DRAM. For other layers, it
needs to be written to DRAM depending on its size and GLB
size (lines 22-30 of Alg. 1). No write accesses are required for
weight matrices during inference. As the weights bypass the
GLB during inference, the GLB read accesses are calculated
from the i fmap size for each layer (line 2). The write accesses
are calculated from the ofmap except for the 1st layer (line
11, 4). See Table III for symbol meanings.
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The pseudo code of Algorithm 2 models the training behavior.
We initialize several temporary variables: layer_f; (comprising
of i fmap, ofmap, and weight matrices of i*" layer), layer_b;
(comprising of upstream gradient, o fmap, and weight matrix
gradients of i*" layer), and layer; (combining layer_f; and
layer_b;) as shown in lines 4-6 in Alg. 2. cum layer(i)
contains all layers’ all entities up to i layer (line 7-8, Alg. 2).
If the GLB is large enough to hold cum layer (i), we just need
to read the 7 fmap of the first layer & weight of all layers from
DRAM during the forward pass and write all layers’ updated
weight during the backward pass and last layer’s ofmap to
DRAM during the forward pass (lines 11-20 & 39, Alg. 2).
Otherwise, the forward pass is the same as the inference (lines
22-30, Alg. 2). During the backward pass, depending on the
size of upstream gradients, ofmap, and weight gradients, it
accesses the gradients from DRAM (lines 31-37, Alg. 2). The
GLB read-write accesses are shown in lines 9-10 in Alg. 2.
The i fmap of each layer needs to be read twice, once during
the forward pass and once during the backward pass. The
upstream gradient, equal in size as i fmap, must be read once
during the backward pass. The ofmap is read once during the
backward pass to calculate the upstream gradient. The weight
is read 5 times (once during the forward pass, 4 times during
the backward pass). The i fmap and ofmap are written twice,
once during the forward pass and once during the backward
pass. The weight is written thrice, twice during forward pass
and once during backward pass.

IV. DTCO oF SOT-MRAM

To ensure overall system performance for Al workloads, the
memory system should have large on-chip memory to avoid
frequent DRAM accesses, and the on-chip memory should have
high bandwidth to prevent the system from being memory-
bound while being energy efficient. In this section, we perform
a DTCO of SOT-MRAM in bit-cell level based on the workload
profiling done in section III.

A. Optimizing critical switching current I,

In SOT-MRAM, the magnetic orientation of the free layer
is switched by Spin-Orbit Torque induced by spin Hall and
interfacial effects between the channel (i.e., SOT layer) and
free layer (FL) of MTJ. An in-plane charge current is flown
through the channel to generate a spin current that exerts a
spin torque on the free layer, which rotates the free layer’s
magnetic orientation. The critical current density required to
switch the magnetic orientation of FL is expressed as [26]

. 2epoMs prirr Hiepr Ha
Je = a 7)
hOsu 2 V2

Where Hj .rr is the effective anisotropy field, H, is the
applied field, M r, is the saturation magnetization of free
layer, and tpy is its thickness. Our interest is in lowering
the switching current to achieve low write energy. Here, the
free layer thickness tr; and spin Hall efficiency fgpy act
as a control knob for critical switching current. fgpy is a
material-specific parameter and its higher value is expected
to reduce the switching current. The typical value of fgp in

©))

heavy metal alloys ranges between 0.1 to 0.5 [24]. However,
recent topological insulators as SOT layer can have a very large
Osp. [27] demonstrated gy = 152 with Bi.Sb thin films.

B. Optimizing read-write pulse width

1) Read pulse width: The reading of SOT-MRAM involves
sensing the resistance of the MTJ. A small amount of current
is passed through the MTJ stack and the voltage across the
stack Vijgta+ or Vgatq— is compared against a reference voltage
Vier = %(Vdata+ + Viata— ) to read out the stored bit. The read
Sensing Margin SM = |V,.c; — Vaata| is typically very small.
Sensing and amplifying this small difference requires a strong
and complex Sense Amplifier that contributes to most of the
read latency and energy. The SM is determined by the Tunnel
Magneto Resistance ratio (I'M R ratio = RAEi;RP) of MTJ.
A higher TMR ratio produces a larger SM by making V,¢q+
higher and V,:,— lower. Thus the TMR ratio is inversely
proportional to the read latency [28]. The higher the TMR
window, the higher the read speed and the less effort required
on the periphery. The typical range of the TMR ratio is between
100 to 300%. The TMR is tunable by oxide thickness [29] as
shown in Fig. 15 (a). In SOT-MRAM, we can increase the
oxide thickness, thanks to the decoupled read-write path of
SOT-MRAM, to achieve a high TMR and increase the read
speed without worrying about the large incubation time [30].

TABLE IV
DTCO CONTROL PARAMETERS & THEIR IMPACT ON POWER,
PERFORMANCE AND AREA (PPA)

DTCO Parameters
Spin Hall angle 0z
Free layer thickness trr,
SOT layer dimension
Asor

Oxide thickness trrg0

Impact on PPA
Osm T, je |, Switching energy |
trr 4, Je 4, Switching energy |, Area |

Asor 4. Tp ., Area |, Write Bandwidth 1
targo T, TMR 71, Read Bandwidth 1

2) Write pulse width 1,: The width of the write current
pulse for switching is inversely proportional to the magnitude
of the applied current density in the SOT layer j,,, [24]

! (10)

Jsw

As the area of the SOT layer (Agsor) is scaled down,
the effective current density increases, jsw o 1/(Asor).
Successful switching should take place when jg, > j.. We
can increase jg, by reducing the SOT layer dimension and
decrease j. by increasing fgy or by decreasing ¢py. Thus
we can achieve successful switching in much shorter pulse
width (equation 10). [31] demonstrated the switching at 180ps,
[32] at 400ps, and [33] at 210ps. Switching in shorter pulse
width ensures larger write bandwidth which is essential for
memory systems used in Al/Deep Learning hardware. The key
DTCO parameters of SOT-MRAM and their impact on Power,
Performance and Area (PPA) are listed in Table IV.

Tp X

V. RESULTS AND ANALYSIS

In this section, we provide the results and analysis of
the STCO on the CV and NLP workloads during inference
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and training and present the optimum Power, Performance,
and Area results by performing the DTCO of SOT-MRAM.
We developed a MATLAB-based framework to implement
our analytical Memory and Compute Model to capture the
relationship between the memory access counts and the memory
hierarchy sizes in typical systolic array based Al accelerators.
Unlike ScaleSim [34] and Timelooop [25] simulator, which
only support profiling DNN workloads in inference mode to
date, our model captures both training and inference behavior
of CV and NLP models. We also verified our model’s results
with Timeloop in inference mode.

A. Bandwidth Demand
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Fig. 7. Bandwidth requirement of CV models for different PE array size. (a)
Read Bandwidth, (b) Write Bandwidth.
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Fig. 8. Bandwidth requirement of NLP models for different PE array size. (a)
Read Bandwidth (for GEMM and softmax operation), (b) Write Bandwidth.

In Fig. 7 (a), (b), we plot the read-write on-chip bandwidth
demand in bytes/cycle of 18 widely used CV models. Re-
senet101 and Resnet50 running on a 256256 PE array will
demand the highest read bandwidth, 4017 bytes/cycle, from
GLB, whereas Squeezenet will demand the lowest bandwidth,
1028 bytes/cycle. Naturally, as the PE array size increases,
the computation capacity per cycle Thsac increases which
demands more data from memory to keep all PEs active.
From the workload perspective, we observe that the most
contributing factor to the read bandwidth demand is its inverse
relationship with the filter and ofmap size. We explain the
inverse relationship of filter and ofmap size with the read
bandwidth using the convolutional reuse concept. As the filter
size decreases, the scope of convolutional reuse decreases. The
ofmap again depends on the filter and ifmap size. With the

decrease of filter size and ofmap size, the convolutional reuse
decreases, giving rise to more bandwidth demand. The layer of
Resnet101 that requires the most bandwidth (4017 bytes/cycle)
has the ofmap dimension (7x7) and filter dimension (1x1).
On the other hand, the most demanding (1028 bytes/cycle)
layer of Squeezenet has the ofmap dimension (18x18) and
filter dimension (1x 1). Another observation is that though 1x1
convolution reduces the computation complexity, it requires
more bandwidth from memory, i.e., becomes memory intensive.
The write bandwidth is also inversely proportional to the filter
size. However, in 1x 1 convolutions, it depends on the number
of outputs generated by the PE array. The write bandwidth is
always smaller than the read bandwidth (Fig. 7 (b)) as it takes
more than one operands to generate one output. For example,
in a 3x3 convolution, it takes 18 operands to generate a single
output; in a 1x 1 convolution, it takes two operands.

As mentioned in section III-A3, the bandwidth requirement
for transformer-basded model are calculated using the expres-
sions of Table II. The dimension of the operand matrices is
larger than the PE array dimension, hence following Case IV
(Table II, Section III-A3), the read bandwidth of all models
depends on the PE array size (Fig. 8 (a)). The write bandwidth
depends on the PE array dimension and the input sequence
length. The softmax read bandwidth depends on the SFU width,
and matches with the GEMM read bandwidth. As different
models are trained with different input sequence lengths [35],
their write bandwidth demand is not the same across all models.
The parameter sizes and settings of the models used in this
work are shown in Table V. The models having the highest
sequence length (2048) have the lower write bandwidth demand
102 bytes/cycle running on a 256x256 PE array (Fig. 8 (b)).

B. Impact of on-chip memory

Compared to a GLB size of 2MB, the DRAM access counts
for all CV models decrease significantly if we increase the GLB
size. In inference, reaching the 100% reduction in access means
it only needs to read the initial inputs, weights for each layer,
and write the final layer output, no DRAM access is needed for
the intra and inter-layer operations. Further increase in GLB
size will not improve the performance in these cases. For 16
samples, DRAM access is reduced by 100% for 14 models
at 128MB, and most models experience a reduction of >80%
at 64MB (Fig. 9 (a)). Fig. 9 (b), (c) show the performance
speed up and energy saving coming from these DRAM access
reductions.

We observe a slower improvement in the DRAM access
reduction during training unless the GLB size is large enough,
at least 256MB for most models (Fig. 9 (d)). However, even the
smaller percent reduction in DRAM access results in significant
performance and energy improvement (Fig. 9 (e), (f)). This
is because training requires at least 2x DRAM accesses as
inference. The smaller percent reduction of a large number of
DRAM accesses translates to a significant energy and latency
improvement. A similar trend is observed for NLP models.
Transformer-based NLP models are usually larger than the
CV models. This is the reason we achieve more performance
speedup and energy reduction even at smaller DRAM access
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TABLE V
PARAMETERS OF NLP MODELS

Word Embedding | Intermediate dimension | Seq. length | Vocab. size
Model Enc. 1 Dec. I Attn. head
ode fio. Tayer oo, ayer - fed (Nem) (dff) (qul) (N'Uocab)
Transformer 12 6 8 512 2048 1024 37000
BERT 12 - 12 768 3072 512 30522
Distil BERT 6 - 12 768 3072 512 30522
Mobile BERT 24 - 4 128 512 512 30522
Squeeze BERT 12 - 12 768 3072 512 30522
Visual BERT 12 - 12 512 3072 512 30522
GPT - 12 12 768 2048 512 40478
GPT-2 - 12 12 768 2048 1024 50257
GPT-3 - 96 96 12288 49152 2048 50257
GPT-Neo - 24 16 2048 8192 2048 50257
GPT-J - 28 16 4096 16384 2048 50400
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Fig. 9. Impact of larger GLB memories on performance and energy efficiency for CV models at inference and training. Percentage reduction in DRAM
accesses at inference (a) and training (d). Performance Speedup from DRAM access reductions at inference (b) and training (e). Energy savings from reduced
DRAM accesses at inference (c) and training (f). Both cases compare results to a baseline of 2MB GLB running 16 samples.
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achieve latency and energy reduction. insulators as the SOT layer to achieve a lower switching current.
o Next, we analyze the impact of SOT layer geometry on the
C. DTCO of SOT for PPA Optimization switching current (Fig. 13 (b), (c)). I. scales down linearly

From section V-B we see that the GLB size of 64MB (for with the decrease of SOT layer width, and wgor can be
inference) and 256MB (for training) offer significant energy set to desired value based on the performance and reliability
and performance improvement. However, it is not feasible requirement (Fig. 13 (b)). While I, scales linearly with the
and efficient to use such large SRAMs because of its area width of the SOT layer, the thickness of the SOT layer has
and leakage power, even if the low-power techniques are an interesting effect on the switching current. The SOT layer
employed. Section V-A implies that we need approximately should be relatively thin but bulk enough for heavy metal layers
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Fig. 10. Impact of batch size on performance and energy efficiency for CV models at inference and training. Percentage increase in DRAM accesses at
inference (a), at training (d). Performance slowdown (latency increase) from extra DRAM accesses at inference (b), at training (e). Energy increase from extra
DRAM accesses at inference (c), at training (f). In both cases, results are compared to a baseline of 16 samples running with 4MB GLB.
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Fig. 11. Impact of larger GLB memories on performance and energy efficiency for NLP models at inference and training. Percentage reduction in DRAM
accesses at inference(a), at training (d). Performance Speedup from DRAM access reductions at inference (b), at training (e). Energy savings from reduced
DRAM accesses at inference (c), at training (e). In both cases, results are compared to a baseline of 2MB GLB running 16 samples

to experience the bulk effect to achieve high SOT efficiency.
Once it crosses optimum thickness, which is 3nm (Fig. 13
(c)), many of the charges that are injected into the metal do
not contribute to the switching, and I, increases.

The smaller the free layer thickness, ¢, the smaller the
switching current (Fig. 13 (d)). We also scale the diameter of
MT]J, dpsr g, to reduce the MTJ area. However, with the scaling
down of dp;r s together with ¢, the thermal stability factor
A also scales down, reducing the memory’s data retention time
tret- Non-volatility is a great feature of MRAM, but it can be
compromised to achieve higher density, higher bandwidth, and
lower energy when the target application is a cache. Because,
in the cache even for AI workloads, the data lifetime is much
shorter, typically in the seconds range [38]. Fig. 14(b) shows
A and t,..; as functions of free layer volume. While scaling
down tpy, to optimize I., and dy;p s to optimize area, we keep
an eye on the reliability of the stored data. We consider a
retention failure rate of 10~ (i.e., 1 bit flip per billion).

2) Bandwidth optimization: As shown in Fig. 15 (a), TMR
ratio of the MTJ device can be increased by increasing the

oxide thickness [29]. We increase the oxide thickness to
decrease the read latency (Fig. 15 (b)). The write pulse width is
inversely proportional to the applied switching current. While
we want to lower the applied current to achieve low energy, the
higher amplitude of the applied current is required for faster
magnetization reversal. However, switching occurs at smaller
pulse width at the iso-current if we scale down the SOT layer
width. This is because of the smaller critical current at smaller
geometry (Fig. 13 (b,d)). Fig. 14(a) shows that switching pulse
width can be reduced significantly by scaling down the SOT
layer width. Thus, we can achieve higher write bandwidth
by scaling down the SOT layer width to meet the high BW
demand from AI workloads.

D. Process & Temperature Variation and Bitcell Simulation

In this subsection, we perform Process and Temperature
variation on the DTCO-optimized parameters, design the
peripheral circuits, and test the read-write operation on the bit
cell at scaled parameters.
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Fig. 12. Impact of batch size on performance and energy efficiency for NLP models at inference and training. Percentage increase in DRAM accesses,
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extra DRAM accesses at inference (c), at training (f). Results are compared to a baseline of 16 samples running with 4MB GLB.
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Fig. 14. (a) Switching pulse width 7, vs applied switching current Is,,. (b)
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Fig. 15. Impact of, (a) oxide thickness on TMR. (b) TMR on read latency.

1) Process and Temperature variation: To incorporate
process variations, we model MTJ diameter, free layer thickness,
and SOT layer width as Gaussian variables in the Verilog A
model of SOT-MT]J [15]. We assume standard deviations (o)
as 5% of their respective means (1) and perform Monte Carlo
simulations with 5000 samples within 40 variation. We also
consider the temperature variations. The extreme point at the

right side of the scaled target parameter is p + 4o, T.q (Fig.
16). From equations 9 and 10, I, and 7, are independent of
Temperature. As a result, the worst case for write operation
(highest I, and longest 7,) is at j1+40. This point is, however,
benign to the read operation and retention failure. As we scale
down dpsry and tpr, A also reduces, reducing t,.¢, and Iygiq-
A reduces further as temperature increases [11]. Thus, the
worst case for read operation (smallest /;4¢,) and retention
failure (smallest £,..¢) is at p — 40, Thor (see Fig. 16). As Lja1q
reduces, the difference between ;4141 and Iz4:q0 becomes
even smaller and difficult to sense.

To ensure the reliability of the SOT-MRAM bit cell, we add
a 30% guard band on the scaled SOT device parameters: 20%
for process variation and 10% for temperature variation. The
optimized DTCO parameters after adding the PT induced 30%
guard-band are shown in Table VL.

2) Write operation: To write SOT-MRAM bitcell, we bias
BL with the data-to-be-written and SL with the complement
of data-to-be-written. Assuming that the magnetization state of
the Reference layer is -1, to write 1 into the MTJ bitcell, we
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Fig. 16. Impact and distribution of Process and Temperature variation on
scaled parameters.

switch the magnetic orientation of the Free layer to +1 state
resulting in a high resistive state. To achieve this state, we turn
on the WWL, connect BL to VDD and SL to the ground. The
resultant current switches the free layer’s magnetic orientation
from -1 to +1. The opposite bias is applied to write 0. We
do not need any additional peripheral circuits for the write
operation of SOT-MTJ.

3) Read operation: Read operation involves sensing the
current passing through MTJ at P and AP states. For our
SOT-MRAM bitcell, with the parameters shown in Table
VI, Tgata0 = 20uA and Iggea1 = 33uA. We design and
optimize the read circuitry to sense this small differential
current, as shown in Fig. 17. Our proposed read sensing
circuit only contains an additional current mirror block (to
amplify current), and it does not require the precharge circuits
compared to SRAM. Hence, there is no additional area overhead
in the periphery compared to SRAM. The dynamic power
consumption are shown in Table VII

To capture the stochastic nature of MTJ switching, we
simulate the bit cell for 1000 bitstream. We achieve a read and
write yield of 100%, and at 250ps and 520ps, respectively. This
results in read bandwidth of 4 Gbps and a write bandwidth of
1.9 Gbps. We then dynamically allocate the memory bus width
on-demand to satisfy the bandwidth requirement for different
workloads and PE array size stated in section V-A.

TABLE VII
DYNAMIC POWER CONSUMPTION (IN UW) OF SRAM AND SOT-MRAM.
(1/0) MEANS THE CORRESPONDING POWER TO ACCESS BIT 1 AND 0.

Read(1/0) | Write(1/0)
SRAM 426 373
SOT-MRAM 150/368 325/300

E. System level performance evaluation of SOT-MRAM based
Memory

In this subsection, we analyze the PPA (Power, Performance,
and Area) metrics at the system level on the DNN/CNN
benchmarks with SRAM, SOT-MRAM, and DTCO-optimized-
SOT-MRAM. We use the Destiny [39] memory simulator to
find the array-level data for both SRAM and SOT-MRAM.
We modify Destiny source code to reflect: (i) SOT switching
mechanism, (ii) special read sensing circuit for SOT-MRAM,
and (iii) 14nm CMOS technode. Then, we feed the extracted

sL BL
T RWL |

i
Current
mirror 1:

SEen
Sense amplifier &
latch

Fig. 17. SOT-MT]J bitcell with read sensing circuitry.

bitcell-level data of SOT-MRAM in the .cell file to find the
PPA at the desired memory capacity.

Based on the array-level results from Destiny, and DRAM &
GLB access counts from Algorithms 1, and 2, we estimate the
system-level power and performance. Finally, we analyze the
area of the memory modules of different technologies (14nm
SRAM, SOT-MRAM, and DTCO-opt-SOT-MRAM) at iso-
capacity. This analysis only incorporates the PPA metrics from
the memory system (DRAM and GLB), assuming that the PPA
of the compute unit is constant. With SOT-MRAM as GLB, we
see significant energy and latency improvement over SRAM at
64MB (for inference) and 256MB (for training) (see Fig. 18
(a-d) for DNN benchmarks and (e-h) for NLP benchmarks). On
average, the 64MB SOT-MRAM offers 5x energy reduction
and 2x latency reduction over 64MB SRAM across all CNN
models at inference. Our DTCO-optimized-SOT-MRAM offers
further improvement, 7x energy, and 8x latency reduction
over SRAM at iso-capacity. For latency improvement, the
most contributing factor is the DRAM access reduction with
large GLB and the smaller read/write latency of SOT-MRAM
at larger capacity compared to SRAM. At smaller capacity,
SRAM is way faster than SOT-MRAM [10], [14]. We observe
that the most contributing factor in energy reduction (>50%) is
the near-zero leakage power of SOT-MRAM compared to high
leakage power of SRAM. The improvement is even more in
training mode; 6x (8x with SOT-opt.) energy reduction and
2x (9% with SOT-opt.) latency reduction. With 64MB SOT-
MRAM, NLP models in inference mode experience 2x (3x
with SOT-opt.) energy reduction and 2x (4x with SOT-opt.)
latency reduction than 64MB SRAM. Like CV benchmarks,
with 256MB SOT-MRAM, NLP benchmarks also experience
more energy improvement, 6x (8 x with SOT-opt.), and latency
improvement, 2.5x (4.5x with SOT-opt.), in training mode.
The more improvement in training mode is because of two
reasons: (1) GLB size increases from 64MB to 256MB, and
(ii)) GLB access counts are significantly large (at least 5x) in
training. Our DTCO-opt-SOT-MRAM further adds value to
PPA by its smaller silicon area, 0.54x at 64MB and 0.52x at
256MB of 14nm SRAM at iso-capacity (Fig. 19).
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Fig. 18. System level energy improvement with SOT-MRAM and DTCO-optimized-SOT-MRAM over SRAM at the same size for CV (a-d) and NLP (e-h)
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VI. RELATED WORK

SOT-MRAMs have been widely studied as the next gener-
ation of STT-MRAM to leverage all benefits of MRAMs as
embedded memory [9] [10] [12] [13] [16] [17]. However,
very few studies have evaluated the performance of SOT-
MRAM as on-chip memory in system-level for Al accelerators.
[14] and [40] demonstrated the performance improvement
of SOT-MRAM as L2 data cache compared to SRAM L2
cache on MiBench, SPEC2000 and SPEC2006 benchmarks.
SOT-MRAMs have also been explored in the context of
DL accelerators as a promising technology for In-Memory
Computing (IMC) or Computing-In Memory (CIM) [41] [42]
[43] [44] [45]. IMC/CIM over conventional Al accelerator has
pros and cons, and the detailed comparison between these two
domains is outside the scope of this work. Our work, where
we use SOT-MRAM as the cache storage element, differs from
crossbar-based in-memory computing. While the scope of SOT-
MRAM has been explored both as regular CPU cache and
IMC for DL accelerator to some extent, to the best of our
knowledge, unlike IMC, this is the first work that presents a
comprehensive analysis of SOT-MRAM as on-chip memory
for application in AI/DL accelerators.

VII. CONCLUSION

In this research, we presented a System and Design Tech-
nology Co-optimization methodology for efficient and high-
performance memory system design with SOT-MRAM for

The top plots show energy (a, e) and latency (b, f) for inference, and the bottom plots show energy (c, g) and latency (d,h) for training.

modern Al accelerators. Guided by detailed target workload
characterization, our memory system comprises of HBM3
DRAM, a DTCO-enabled SOT-MRAM GLB and a small
SRAM buffer. Our large SOT-MRAM GLB significantly
reduces the energy and latency by reducing expensive DRAM
accesses while still having acceptable on-chip access energy
and latency, achieving overall system-level high performance.
We finally demonstrate that our memory system performs 8x
and 9x better in terms of energy and latency respectively on CV
benchmarks in training (7 and 8 times better in inference) and
8x and 4.5x better in terms of energy and latency respectively
on NLP benchmarks in training (3 and 4 times better in
inference) while consuming only around 50% of SRAM area
at iso-capacity.
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