
Programmable Analog System Benchmarks Leading to
Efficient Analog Computation Synthesis

JENNIFER HASLER and CONG HAO, Georgia Institute of Technology, USA

This effort develops the first rich suite of analog and mixed-signal benchmark of various sizes and domains,
intended for use with contemporary analog and mixed-signal designs and synthesis tools. Benchmarking
enables analog-digital co-design exploration as well as extensive evaluation of analog synthesis tools and the
generated analog/mixed-signal circuit or device. The goals of this effort are defining analog computation
system benchmarks, developing the required concepts for higher-level analog and mixed-signal tools to utilize
these benchmarks, and enabling future automated architectural design space exploration (DSE) to determine
the best configurable architecture (e.g., a new FPAA) for a certain family of applications. The benchmarks
comprise multiple levels of an acoustic, a vision, a communications, and an analog filter system that
must be simultaneously satisfied for a complete system.

CCS Concepts: • Hardware → Hardware-software codesign; Memory and dense storage; Analog and
mixed-signal circuit synthesis;

Additional Key Words and Phrases: Analog benchmarks, analog system synthesis, mixed-signal HLS, analog
computing

12
ACM Reference format:
Jennifer Hasler and Cong Hao. 2024. Programmable Analog System Benchmarks Leading to Eficient Analog
Computation Synthesis. ACM Trans. Reconfig. Technol. Syst. 17, 1, Article 12 (January 2024), 25 pages.
https://doi.org/10.1145/3625298

Benchmarks serve as indicators of the fundamental computations perceived within a specific com-
puting substrate. They allow new designers to envision potential applications of the technology
and establish connections to desired user core applications. Benchmarks offer performance com-
parisons and facilitate optimization of the configurable technologies that embody the given tech-
nology. Utilizing multiple benchmarks is essential for implementing a technology on a configurable
and programmable platform, ensuring that the technology is not optimized solely for a single
problem.

Digital design has always had stable benchmarks. Digital high-performance computing bench-
marks historically followed the solution of linear equations (A x = b) such as LINPAC [1] or re-
lated matrix operations (e.g., FFT, Neural Networks). Linear equations numerically match well
with digital computation’s (Figure 1) large initial precision and moderate accumulation of partial
results [2]. The resulting extensive digital system and tool benchmarks result in a stable landscape

Authors’ address: J. Hasler and C. Hao, Georgia Institute of Technology, Atlanta, Georgia 30332-0250; e-mails:
ph67@gatech.edu, callie.hao@gatech.edu.

This work i s licensed under a Creative Commons Attr ibution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1936-7406/2024/01-ART12 $15.00
https://doi.org/10.1145/3625298

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

https://orcid.org/0000-0002-6866-3156
https://orcid.org/0000-0002-2541-8767
https://doi.org/10.1145/3625298
fig:BenchmarkTopLevel01
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3625298

ponents. Analog designers often strug-
gle with significant parameter variation,

12:2 J. Hasler and C. Hao

[1, 3–22]. A great collection of design benchmarks aims at evaluating the hardware architecture,
e.g., embedded processors, Field-programmable Gate Arrays (FPGAs), Graphic Processing
Units (GPUs), and heterogeneous systems; representative examples include MediaBench [4], Ro-
dinia [11], OpenDwarfs [12], SHOC [13], CHO [10], Rosetta [7], ERCBench [23], and Koios [8],
which use OpenCL, high-level synthesis (HLS), or C/C++. Such designs cover a wide range
of applications, such as arithmetic operations, image processing (encoder, decoder), cryptogra-
phy (encryption, secure hash algorithms), processors (MIPS, RISC), signal processing (FFT, FIR),
merge and sort, graph operations (BFS, DFS, MapReduce), wireless communication (error correc-
tion), vector and matrix multiplications, and the most recent machine learning (ML) workloads. In
parallel, another category of benchmarks aims at evaluating computer-aided design (CAD)
tools, e.g., high-level, logic, and physical synthesis [3, 5, 24, 25], such as CHStone [3] and Mach-
Suite [5] for HLS, VPR benchmark suite for FPGA place and route [25], and EPFL benchmark for
logic synthesis and optimization [24]. These digital benchmarks not only extensively evaluate
hardware architectures and synthesis tools but also guide hardware-software co-design tradeoffs
(e.g., [26–29]).

On the other hand, analog bench-
marking has great challenges and has
not been fully developed for decades.
Analog and mixed-signal computing do
not have significant benchmarks result-
ing from a long history of nearly no the-
oretical framework for computation for
three important reasons. First, the lack
of automated analog design tools com-
pels most analog designers to heavily
rely on graphics-based layout and simu-
lation, demanding extensive manual ef-
fort with little generalization. Second,
unlike digital design, analog designers
must be aware of underlying technol-
ogy nodes and available analog com- Fig. 1. Development of Analog and Mixed-Signal Benchmarks

and resulting metrics. Benchmarks encapsulate what is cur-
rently understood of a particular technology.

making it dificult to design high-level
algorithms that do not expose lower-level analog components to users. Third, while digital bench-
marks and circuits can have almost infinite variations by reconfiguring parameters, analog designs
are typically case-by-case; one reconfiguration (parameter change) may require a whole new de-
sign, largely limiting the scalability and generality of benchmarks. Therefore, a representative and
rich analog benchmark suite has never been proposed or discussed.

Developments in analog and mixed-signal programmable and configurable systems, such as
large-scale Field Programmable Analog Arrays ((FPAA), e.g., [30]) and the SoC FPAAs
(Figure 2) [31], provided the opportunity for developing analog computing theory [2, 32–34] and
created the need for synthesis tools and benchmarks that guide the tool development. Reconfig-
urable analog systems, like FPAAs, are a mixture of reprogrammable values that determine net-
work topology as well as computation parameters. These devices have evolved without a set of
benchmarks. Analog computing theory has been recently developed [2, 32–34], built on rich user
experiences. Now that both the theory and reconfigurable FPAA platforms that implement these
concepts are both mature, this article defines the first analog benchmark suite.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:3

Fig. 2. SoC large-scale FPAA computational blocks and routing architecture. The Computational Ana-
log Blocks (CAB) are typical of earlier CAB designs, being combinations of transistors, OTAs, FG transis-
tors, OTAs, capacitors, T-gates, current mirrors, and signal-by-signal multipliers. The Computational Logic
Blocks (CLB) are 8, 4 input Boolean Logic Element (BLE) lookup tables with latch. The SoC FPAA em-
ploys an open-source MSP 430 microprocessor (μP) [35] with on-chip structures for 7bit signal DACs, a ramp
ADC, memory-mapped General Purpose (GP) IO, and related components.

This discussion aims to address these challenges based on the accumulated expertise in analog
reconfigurable devices (e.g., [30, 36]) and programmable circuit designs (e.g., [37, 38]) by propos-
ing the first representative and reconfigurable analog benchmark suite. The goal is to build an
ecosystem of analog design and benchmarking by defining standard benchmark format and scope.
This work formally defines the analog benchmark set at different levels, including application, al-
gorithm, and block levels. New analog synthesis tools and hardware benchmark implementations,
although currently being developed, will not be discussed as they are beyond the scope of this
article. The benchmark definitions can ease the effort of developing future analog synthesis tools
by clearly defining the interfaces to analog libraries and by decoupling HLS and low-level (circuit)
synthesis. The contributions and significance of this work are summarized as follows.

— This work proposes the first representative and rich set of analog benchmarks that are at
different levels of complexity and are expressive with reconfigurable and customizable
parameters.

— The proposed analog benchmarks arise heavily from analog computation capabilities. Ana-
log benchmarks require understanding the fundamentals of analog computation to abstract
circuit details into a meaningful top-down design flow.

— This work discusses the feasibility of the proposed benchmarks, demonstrating that they can
be synthesized into existing analog circuits, either reconfigurable FPAAs or an integrated
circuit (IC).

All designs, files, and reported numbers using these benchmarks are openly available.1 We hope
that the defined benchmarks in this work can provide standards for future analog synthesis (com-
pilation) tool development, as well as further analog benchmark development, which requires not
only effort from one group but from the entire community.

This discussion first overviews the current state of analog and mixed-signal systems and tools
(Section 1). Then the discussion abstracts the capabilities of analog computing (Section 2) to show

1https://hasler.ece.gatech.edu/AnalogBenchmarks

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

https://hasler.ece.gatech.edu/AnalogBenchmarks

12:4 J. Hasler and C. Hao

Fig. 3. The potential of scaled down FPAA devices, enabled through synthesis tools, from extrapolations
from experimental measurements and early studies of scaled down FG and FPAA devices (350 nm to 5 nm).
These opportunities motivate the need for synthesis tools to enable these new devices at commercial timescales. (a)
scaling of the resulting fabric computational bandwidth. (b) scaling of available analog FG devices, and,
therefore, the number of computational parameters and devices. (c) The computational and computational
efficiency opportunities for scaled down 5 × 5 mm2 FPAA devices. Existing FPAA systems (e.g., 350 nm CMOS)
enable significant computation (≈ 1 TMAC(/s), MAC = Multiply ACcumulate) and computation at low energy
levels (10 GMAC(/s) in 1 mW), scaled down FPAA devices enable embedded supercomputing capabilities in
mW power levels.

the resulting analog benchmarks (Section 3). These benchmarks are composed of an initial set of
analog and mixed-signal algorithm blocks that provide solutions for these particular benchmarks
(Section 4). Benchmarking (Section 5) also enables analog-digital co-design exploration and enables
automated architectural design space exploration (DSE) to determine the best configurable ar-
chitecture (e.g., a new FPAA) for a certain family of applications.

1 FPAA TECHNOLOGY AND TOOL OVERVIEW

The SoC FPAAs and earlier families of Floating-Gate (FG) enabled FPAAs demonstrated a num-
ber of core concepts, as elucidated from early large-scale FPAA techniques in 2002 [39] to to-
day’s devices (e.g., [30]). FPAAs have analog components with routing between analog and digital
components, similar to FPGAs. Early programmable analog arrays [40–42] and early commercial
devices (e.g., EPAC [43] or Anadigm [44]) were useful as glue logic and functions and for small
occasional computations. Today’s fully reconfigurable and nonvolatile FPAAs show considerable
capabilities in ultra-low power computation (1,000 × lower than digital [45] following Mead’s Hy-
pothesis [46]), signal processing, and embedded ML [30] from ICs fabricated in a 350 nm CMOS
process. Programmable analog FG techniques have demonstrated precision components [47] built
on work enabling programmable design for temperature [48]. FPAAs have also been integrated
with sensors, possibly fabricated on the FPAA fabric [49, 50].

Large-scale programmability is essential for these FPAA devices, typically instantiated us-
ing analog-programmable FG devices available in standard CMOS for the memory and routing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

used by an analog designer.

and high-level (e.g., Verilog) abstrac-

Programmable Analog System Benchmarks Leading 12:5

elements. Today’s SoC FPAA [31] utilizes 600,000 programmable parameters in 350 nm CMOS
(Figures 2 and 3). Analog programming of the single FG pFET device fabric enables computation
in routing fabric as well as Computational Analog Block (CAB) elements [51]. FG parameters
tend to provide a 1,000 × advantage over other Si memory approaches at roughly 8–10 bit level [30].
FG devices have demonstrated long-term (10-year) lifetime across multiple IC processes from 2 μm to
40 nm linewidths [47, 52, 53] with precision (e.g., 14-bit) targeted (re)programming of hetero-
geneous arrangements of FG devices [54]; FG devices enable the direct elimination of mismatches
or the setting of desired target values in the configurable structure. FPAA devices are capable of
secure operation [55].

From experimental measurements in scaled down processes (e.g., 14 nm or 40 nm, [56]), to-
morrow’s FPAAs [36] will use parallel operations available in energy-constrained environments
(Figure 3), enabling ubiquitous devices for embedded and high-performance applications. Pro-
grammable techniques have shown promise enabling scaled down analog design, avoiding device
mismatch dificulties in scaled process analog IC design [53, 56]. Besides higher density and lower
energy consumption, smaller CMOS linewidths (e.g., 40 nm) enable RF frequency signals (e.g., 4
GHz and higher) through FG routing fabric [53]. Current mixed-signal systems and designs are
highly restrictive of IC process choices, due to the manual design effort involved when moving to a
new IC node but not technical limitations.

The large system size makes design tools essential for FPAA system development, similar
to FPGAs, and the development of FPAA devices has been the motivation for the most ad-
vanced efforts in analog tool development. FPAA design tool development [57–59] gives users
an increased ability to create, model, and simulate analog and digital designs. High-level de-
sign tools implemented in Scilab/Xcos can automate the circuit compilation into a switch list,
the description of the programmed FPAA hardware [57]. These graphical tools correspond to
the natural analog dataflow computation, enabling a non-circuits expert, like a system appli-
cation engineer, to investigate particular algorithms. These tools also enable (Figure 4) system
level design and macromodeled simulation (level = 1) and circuit level design (level = 2) [59],
including both FPAA targeting and simulation [60]. The chip details are specified in architec-
ture files for the analog-digital SoC FPAA, enabling place and route [61] in a user transparent
process.

Synthesis tools can unlock the
potential of analog architectures to
achieve real-time computation, sig-
nal processing, and inference and
learning for low SWaP (Size, Weight,
and Power) systems in commer-
cial timescales (Figure 3). Empow-
ered by the initial FPAA design and
synthesis tools and recent develop-
ments for analog and mixed-signal
standard cell library formulation
and implementation [62, 63], op-
portunities exist for synthesis from
text-based behavioral (e.g., Python) Fig. 4. Review of the two levels of analog abstraction, level = 1 for

vectorized, voltage-mode, system level dataflow representations,

tions to configurable devices, cus- and level = 2 for full current-voltage analog cell representation

tom silicon IC layout (.gds), or the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:6 J. Hasler and C. Hao

design of new FPAA devices, as well as macromodeled simulation from these high-level
formulations.2

2 BASICS OF ANALOG COMPUTING

Configurable FPAA devices motivate the need for analog and mixed-signal benchmarks in using
and evaluating automated synthesis tools. Formulating these benchmarks require understanding
the nature of analog computation. The digital VLSI revolution [64] with IC process scaling [65–67] is
because of the well-developed digital theoretical foundations [68] and frameworks. However,
analog computation largely relies on artistic development, and, therefore, could not directly take
advantage of IC process scaling. The following four decades have seen the slow building of analog
computing concepts.

The initial FPAA successes made analog computing theory both a practical direction with re-
alistic technology considerations, as well as a necessary development for system design. Analog
computation nowadays has far exceeded its early state of a few passive components around some
op-amp blocks and goes beyond a few signal conditioning circuits using resistors around an op-
amp or a useful component used in digital infrastructure (e.g., PLL). Therefore, widespread pro-
grammability is essential for any computing approach and analog component design must avoid
being stuck in the artistic space where users need to be developing designs that fit well with the
larger system technology.

The development of analog abstraction and the design of modular analog computing compo-
nents directly come out of the FPAA tool development and enable the opportunities for bench-
mark systems [32]. The development of analog numerical analysis dispels the belief that ana-
log is an imprecise computing medium compared to pristine digital methods, but rather, digital
and analog computations have their own strengths in corresponding areas [2]. The development
of analog architectures gives a roadmap for eficient analog computation, showing that commu-
nication is the primary cost in analog computing given the local analog computing eficiency,
particularly communication with memory components [33]. These three parts enabled the devel-
opment of a real-valued Turing Machine model for analog computation, providing a theoretical
framework for these approaches [34]. The real-valued computation and theoretical modeling re-
veal the limitations of digital (integer-valued) simulation of analog computation: digital simulation
is not, and will not ever, be completely suficient for analog system design compared to physical
system implementations. These concepts begin to make analog computation a top-down design
methodology.

Analog Computation. Analog computation directly utilizes Ordinary Differential Equa-
tion (ODE) or Partial Differential Equation (PDE) computations in vector or matrix formu-
lations as a result of the ideal summation (enables long summations) and continuous-time
(CT) integration properties [2]. Both analog and digital computations compute Vector-Matrix
Multiplications (VMM) in an eficient form given their technology framework, where analog
VMM tends to be 1,000 × more energy eficient than digital (e.g., [45, 69]). The extension of
the dense mesh crossbars of FG elements for VMM computation started the Computing-in-
Memory (CIM) efforts in 2001 [38]. ODEs describe CT physical systems, such as electronic cir-
cuits, governed by physical laws. The integration of capacitors and currents is a physical law
with no inaccuracies [2]; the primary device mismatch is threshold voltage mismatch that is

2Multiple articles are currently in submission, and upon acceptance will be referenced in this section. We are enthusiastic
to provide accepted articles to the reviewers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:7

Fig. 5. Parallel FPGA and FPAA Levels of complexity. As FPGAs have algorithms that are composed of
modules utilizing one or multiple CLB that in turn utilize fundamental logic gates (e.g., LUTs) and com-
ponents, FPAAs have algorithms that are composed of blocks utilizing one or multiple CABs that in turn
utilize multiple components (e.g., transistors or Transconductance Amplifiers (TA)) or routing
elements.

directly addressed through FG programming. While a digital problem usually can be solved by
simplifying to A x = b, an analog problem can be solved by simplifying it to a set of ODEs. An
analog system can solve systems of linear equations by setting up a differential equation with a
steady-stated described by A x = b [70]), although an effective analog L U decomposi-tion still
remains an open question. Although the ODEs for these benchmark problems can be digitally
simulated, building the full system can enable complete characterization and thus is beneficial.

Analog Abstraction. Analog computation follows a flow-graph representation (e.g., Simulink
or Xcos) effectively assuming single-ended voltage-mode busses of signals. The levels of analog
components have similar parallels to digital components, where the point of connection and di-
rect comparison is at the algorithm level (Figure 5). These vectorized (Figure 6) signal busses re-
sult in eficient high-level graphical representations. These analog system level designs are built
from abstracted level = 1 blocks (Figure 4), enabling a dataflow graph of macromodelled single-
ended vectorized voltage input and output signals [32, 57, 59]. The capabilities to do classical
analog design are continued and enabled through level = 2 blocks that utilize the fullness of
the current-voltage implicit functionality of the available devices (Figure 4). These experimen-
tally demonstrated level = 2 devices would be the essential building blocks for new level = 1
devices when fully macromodelled and vectorized. The resulting system in the FPAA or in the
resulting structure will require known blocks for control flow and programmable infrastructure
components.

Analog Architecture. The proper analog or digital architecture [33] choices directly impact
the design of an eficient and high-performance system. For sensor systems, one wants an end-to-
end computation from analog input signals from a sensor interface to refined digital or near digital
classified outputs. Analog computation ideally operates at the speed of the input or output data,
since buffering (e.g., memories) is expensive due to the communication cost. Effectively, the com-
putation becomes free and communication is the primary issue, arguing for co-located memory
and computation. Other approaches, such as using an analog computation as a specialized routine
(or co-processor) to a main digital system, often are a mismatch to the technology (e.g., requiring
many DACs and ADCs at the boundary), to the numerics, as well as to the targeted application
problem (e.g., Mythic Semi [71]).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

spanning a wide application range with
different parameters and sizes (Case I to

12:8 J. Hasler and C. Hao

3 DEFINITION OF ANALOG BENCHMARKS

The proposed benchmark suite addresses
a wide range of analog and mixed-signal
computations (Figure 7). The develop-
ment of programmable and configurable
systems, whether digital or analog, re-
quires multiple benchmarks not to opti-
mize for a single computation but to en-
able wide applicability of the technology.
This benchmark suite could also be solved
using digital computation when including
the necessary data converters, providing
useful comparisons between digital and
analog designs and eventually co-design
opportunities.

Analog benchmarks must consider a
wide range of analog computations from
sensor signals, such as sound, image, or
communication. Benchmarks are end-to-
end definitions from sensors to refined
computation output, providing a fair com- Fig. 6. Development of Analog and Mixed-Signal Bench-
parison of analog computing approaches marks and resulting metrics. (a) Benchmarks encapsulate
with other technologies. Figure 7 gives what is currently understood of a particular technology.
an overview of our proposed benchmarks Analog Benchmarks build from the advantageous analog

computations. (b) Analog abstraction requires encapsulat-
ing analog computations into a dataflow framework, requir-

Case IV). There is one significant bench- ing a range of vectorized analog components.

mark in speech processing for acoustic processing (Section 3.1), one significant traditional analog
system design (a 10th order programmable CT filter, Section 3.4), one significant benchmark in
vision that includes image classification (Section 3.2), and one significant benchmark in commu-
nications (e.g., RF) computation (Section 3.3). Two of these benchmarks (acoustic and vision) uti-
lize embedded ML as part of their operation. The communication benchmark likely will use ML,
and the filter benchmark could be framed as an optimization problem solved through ML. The
labeled training and testing set applied to the sensor input specifies the benchmark inputs and
outputs. Part of the benchmark examples requires training the benchmark parameters for the ana-
log implementation. The training can be done either off-line or on-the-fly on the physical system;
on-chip learning has already been demonstrated for analog computation, including configurable
FPAA systems [72, 73]. One expects further benchmarks to be defined along these directions.

These benchmarks (Case I to Case IV) are designed for multiple problem sizes (Figure 7) to il-
lustrate as well as normalize between different IC technology nodes. One might find certain prob-
lem sizes that are not achievable by a 350 nm CMOS IC process, and yet might be achieved by a
130 nm, 40 nm, or 14 nm CMOS IC process. Reconfigurable applications directly connect to the
roadmap of what can be built in different CMOS linewidths, and the proposed benchmarks provide
system-level computational comparisons. All four benchmarks in a given case must be created and
characterized when evaluating a reconfigurable platform or analog synthesis tool. Cases I through
IV vary in levels of dificulty and complexity, showing different capabilities for a system satis-
fying all four benchmarks. For example, the SoC FPAA (350 nm CMOS) would handle the Case

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:9

Fig. 7. Creating the first Analog and Mixed-Signal Benchmarks. Defining the first benchmarks for analog and
mixed-signal computation requires encapsulating core analog computations. Analog computation centers
around solving differential equations using sensor inputs. These starting benchmarks can have additional
benchmarks added as technology continues to grow.

I benchmarks (e.g., [31, 73–75]), while further improvements could address some of the Case II
benchmarks. Scaled CMOS processes (e.g., 40 nm CMOS) are capable of reaching the Case III and
Case IV benchmarks (e.g., [53], Figure 3). Potentially, benchmarks in more complicated cases (e.g.,
Case V) can be defined on top of the success of earlier benchmarks. The important benchmark
measurements would be energy and/or power consumption, accuracy, and the area or resource
utilization for the computation. Another measurement (Imager Benchmark) identifies the amount
of required non-local communication, as well as intermediate memory storage, to minimize archi-
tectural costs when operating at the input (sensor-driven) and output (classification/computation).
Each benchmark uniquely stresses the analog programming capability of the resulting analog sys-
tem. The particular physical solution will depend on the available sensors (e.g., types of imagers,
types of microphones) to the engineers.

Analog circuit problems outside of these computing spaces would not make good benchmarks,
because they are often highly specialized analog design questions. For example, level-shifting (e.g.,
voltage) amplifiers that are often solved through specialized technologies (e.g., 100 V supply GaN
amplifiers) are not a useful benchmark; when needed, such devices can be integrated into modules
with a programmable device. Similarly, specialized sensor interface blocks or data converters might
be used in a benchmark system but are not considered as a benchmark. Other traditional analog
circuit blocks that assist in digital systems, such as Phase Locked Loops (PLL), are typically
blocks in a larger system (e.g., a standard-cell block), and thus are not a full benchmark either.
Analog computation benchmarks should focus on larger analog computing capabilities.

3.1 Acoustic Benchmark: Microphone to Word Classification

The first benchmark is a programmable end-to-end microphone-to-symbol keyword/word/
acoustic symbol classifier. The input bandwidth is 20 kHz for all problems, set by the input mi-
crophone sensors in the range of human hearing. Existing solutions use a filterbank of incoming
signals in a near exponential spacing of center frequencies (e.g., 50 Hz to 10 kHz) that model the
human cochlea dynamics (e.g., [31], preserving the highest signal and frequency information while
refining the data representation. Current solutions might take the raw microphone input
through a set of programmable parallel bandpass filters (16–24) followed by an amplitude detection
(Figure 8). The amplitude detection produces a set of analog signals indicating a filtered magnitude
of a set of frequencies. Some existing solutions implement additional dynamics or approximate
delays [75] before or in the classifier. Programmability enables repeatable front-end computing
structures by eliminating the effect of mismatch, resulting in a near-ideal transfer function for
each filter channel.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:10 J. Hasler and C. Hao

Fig. 8. Benchmark circuit for the command-word recognition benchmark (acoustic). Multiple existing phys-
ical implementations for the classifier block would include a VMM+WTA universal approximator classifier.

This benchmark classifies the sound signal
representations into words or other acoustic
symbols (Figure 8). Typical implementations of
such classifiers use a feedforward computation,
although recurrent architecture might present
significant performance improvement for dif-
ferent vocabularies with little additional sys-
tem cost to implement the resulting ODEs. The
classifier (Figure 8) could be implemented as a
multi-layer neural network (NN) (Figure 9),
or one or multiple layers comprised of VMM +
a Winner-Take-All (WTA) universal approxi-
mator/classifier. The quality of the programma-
bility available for an experimental solution
will directly impact the measured metrics to
this benchmark. The output is a binary digi- Fig. 9. Embedded NNs are essential for most of the tal
classification, or a low-bit (2–4bit, straight- benchmark problems, where a number of potential ar-
forward ADC) sparse representation that gives chitectures utilizing one to multiple layers might be a
confidence measure for the identified words. utilized.

The sparse output has a low sample rate for the
next system (e.g., 1–10 samples/s) that likely would be event encoded. The classified vocabulary
size (Case I: 4 Case II: 32 Case III: 128 Case IV: 1,000) shows the system classification capability.
The labeled input datasets for this benchmark are

— Case I: 4 words from TIMIT [76] or TI digits database [77].
— Case II: Speech Commands Dataset [78]: 32 labeled words from multiple (5) speakers (made

available through Google).
— Case III: 128 words from the labeled dataset LibriSpeech [79] (similar sized datasets are

possible).
— Case IV: 1,000 words from the labeled dataset LibriSpeech (similar-sized datasets are

possible).

One can find openly available versions of all these datasets. Forms of this benchmark (primarily
Case I) have been demonstrated within configurable platforms [31, 73, 80]. As one might only be
able to obtain a microphone with an LNA, any reported result must describe if the system uses a
raw microphone or microphone with LNA as well as the input signal SNR levels. The classified
output is defined through the labeled dataset. The users of a particular dataset will have to train
their network for the particular dataset, e.g., through ofline training. If users have technology
capable of on-platform training, that should also be identified with the resulting energy eficiency

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:11

Fig. 10. The vision and communication Benchmark circuits. (a) Vision benchmark circuit. (b) Communication
benchmark circuit.

of the training. Metrics for this benchmark include energy eficiency, accuracy of classification
starting from sensor input, and area of the resulting system.

3.2 Vision Benchmark: CMOS Imager to Classification

The large number (e.g., millions) of pixel sensors for vision classification challenges the analog
computational and communication complexity. The size of the image classification problem be-
comes the primary parameter, where the frame rate tends to be nearly fixed for most applications
looking for human-like performance. The classifier should operate at the input signal rate. The
system must start from a commercially available (e.g., production or R&D moving to production)
CMOS imager requiring an input signal that is a two-dimensional scan of the image plane or an
event representation of the image plane (Figure 10). This communication bottleneck significantly
constrains the computing architecture as one must minimize the movement of data into short-term
storage [33]. Many computations utilizing two-dimensional representations experience similar is-
sues. Commercial imagers have either digital or analog datapath out of the imager; having either
input signal into the analog processing is reasonable, even if an initial DAC is required to recover
the single analog signal. Communication from the imager is part of the benchmark measurements.
An imager die stacked on a configurable analog structure enables a number of different compu-
tational opportunities [36], although often with significant additional cost. The first two vision
processing Cases (I and II) are static image classification (Figure 9). The last two vision processing
Cases involve both image classification as well as motion processing (changes between images),
utilizing recurrence and dynamics in analog computation. The particular classifier builds up rep-
resentations (Figure 9), starting from symbols from initial local image refinement for the larger
image processing. The input would need to be projected on an imager module that must be large
enough for the entire image and then processed for the full benchmark problem to the classified
outputs. Identifying the imager device (e.g., commercial product, event imager, specially built de-
vice) allows for comparison of the resulting algorithm. The labeled datasets form the inputs and
resulting desired outputs for the benchmark; the labeled datasets would be:

— Case I and II: MNIST image dataset [81].
— Case II: COCO 2017 dataset [82], the dataset used in the ResNet [83] classification models.
— Case III and IV: SVD Video labeled dataset [84].

A particular labeled dataset requires training the physical computing system for that dataset as
classifier implementations are design dependent. Metrics for this benchmark include energy
eficiency (continuous-image classification), accuracy of classification starting from sensor input,
and area of the resulting system.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:12 J. Hasler and C. Hao

3.3 Communication Benchmark: Beamforming and Classification

The communication benchmark is a common module for RF-based communication systems from
sensors (e.g., Antenna structure) through classified output. Fundamental computations include
spatio-temporal filtering for beamforming and frequency shaping (e.g., equalization) and filtering,
potential channelization (linearly spaced bandpass filters), demodulation, and classification of the
resulting complex baseband signals. The spatio-temporal filtering requires approximate delay lines
or similar decompositions and a VMM (e.g., [75]). Symbol classification (Figure 9) includes identi-
fying the complex transmitted value in say a QAM64 or higher standard. The cases are scaled by
center bandwidth frequency, as a higher operating frequency significantly increases the system
complexity (Case I: 3 MHz Case II: 50 MHz Case III: 2 GHz Case IV: 20 GHz). The cases are scaled
by the number of input signals for a single element for the front-end spatio-temporal filtering
(Case I: 8 Case II: 16 Case III: 32 Case IV: 64). The resulting demodulated output then gets classi-
fied into symbols. The number of labeled communication (e.g., RF) datasets is limited, although a
few exist (e.g., [85]) to be used for this measurement. It is assumed that the output signals would
be coming out of a communication source (e.g., Antenna + LNA) and should be identified. Met-
rics for this benchmark include energy eficiency, accuracy of classification starting from multiple
voltage-signal inputs, and area of the resulting system.

3.4 Analog Benchmark: Low Power, High-SNR Programmable Filtering

The analog computation functions are balanced by a traditional analog computation problem of a
programmable low-power and high SNR 10th-order Low-Pass Filter (LPF). A BPF is already
addressed through the acoustic benchmark, therefore, this effort focuses on programmable LPF
filters. Existing solutions typically utilize a cascade of 2nd -order programmable filter blocks [86] or
a programmable ladder filter block [75]. This benchmark would be measured by the consumed
resources/area, circuit power, and achieved SNR. This benchmark will stress the programming
accuracy and capability of the solution; all circuits required for programming are addressed and
included in this benchmark.

The target frequency is the highest of all possible frequencies, although the filter needs to also
operate with 10 × and 100 × lower frequencies than the maximum case frequency with the same
specifications as a demonstration of the system’s programmability. The frequency range is the
filter bandwidth from DC to near DC to the frequency of interest for the passband region with a
passband ripple less than 2% (0.2 dB) with the stopband 1.2 × the passband frequency at a factor of
at least 100 (40 dB) lower than the passband gain. The test input into this system would be a
sinusoid measurement where the sinusoidal frequency is at the place of the highest distortion
(typically near the passband frequency edge) at the highest filter input amplitude. The output
measurement is a spectrum of the resulting output, illustrating the primary frequency amplitude,
the harmonic amplitudes, and the noise amplitude. From these measurements, one obtains the
noise floor, Signal-to-Noise Ratio (SNR), maximum input amplitude, and harmonic distortion,
as well as the resulting power and area consumed. These typically achievable measures will provide
a suficient test of the resulting analog filter design capabilities of the technology [87–89] as well as
the traditional analog circuit capabilities.

3.5 Analog Computation Design Pushed through Simultaneous Benchmarks

These benchmarks simultaneously push different characteristics important for reconfigurable com-
putational analog design as well as the tools for synthesizing a range of analog designs (Figure 11).
Many opportunities are possible with existing SoC FPAA devices (350 nm CMOS), and yet, each
benchmark problem shows particular design choices in an architecture exploration process. All
four benchmarks must be satisfied by a particular configurable system or synthesis tool, each at

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:13

Fig. 11. Tradeoffs between FPAA implementations and benchmark problems for particular cases (Case I
through Case IV). Upper Graph: Complexity for 2 × 3 mm2, 5 × 5 mm2, and 10 × 10 mm2 die sizes as a
function of process node, calling out the 350 nm, 130 nm, 40 nm, and 14 nm CMOS nodes. Fabric operating
frequency Lower Graph: Fabric operating frequency (frequency to near DC) as a function of process node,
calling out the 350 nm, 130 nm, 40 nm, and 14 nm CMOS nodes.

their particular Case level. Custom designs will have some similar tradeoffs when targeted and
will show design tool capabilities.

The communication benchmark pri-
marily pushes the fabric frequency
limitation (Figure 11). The size of the
spatio-temporal filter for Case IV is
possible in one to four SoC FPAA de-
vices, although the frequency limita-
tions around 50–60 MHz limit this
benchmark. The Case III frequency
metric (2 GHz) and spatio-temporal fil-
ter complexity were already exceeded
by a 2 mm × 3 mm, 40 nm CMOS FPAA
[53]. The Case IV metric should be eas-
ily satisfied at the 14 nm CMOS node.

The acoustic benchmark is not lim-
ited by frequency (kHz, very easy for
350 nm CMOS and scaled down tech-
nologies), but measures enabling par- Fig. 12. Block diagram for an arbitrary waveform generation

allel, real-time ML resources at this and following signal processing (e.g., modulation) functions.

operating frequency. The front-end

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

dt

12:14 J. Hasler and C. Hao

Fig. 13. An algorithm block is described by its computational function (physical devices), internal pro-
grammed parameters (e.g., FG values), and the signal busses of vectorized block inputs (e.g., Vin) and outputs
(e.g., Vout). This block description is formulated in a graphics-based formulation (e.g., Xcos and Scilab) where
the parameters are available graphically for each block, or are formulated in a text-based formulation that
includes the parameters (e.g., Python routine syntax). Both formulations enable straightforward methods
for macromodel simulations.

computation of 16 to 32 bands results in 16 to 32 CABs in the SoC FPAA with further optimizations
expected in next-generation FPAA designs. The classifier (e.g., VMM+WTA) support in the SoC
FPAA is 1 CAB per output symbol, although the next designs based on analog standard cells would
routinely expect 8 to 16 symbol outputs per CAB. The issue is building an ML classifier (40 nm, 5
mm × 5 mm) with 2.5 M classifier parameters (e.g., Weights) running the very low-power (μW) 2.5
GMAC(/s) algorithm (Figure 11).

The filter benchmark is not limited by the number of CAB components, where this design is
roughly 10 CABs of TA devices. This benchmark is limited by the fabric frequency, the quality of
the circuits (linear range, power supply rejection), and the precision setting parameters. The SoC
FPAA (350 nm) has suficient programming precision for these metrics. Case I (300 kHz) and
potentially Case II (3 MHz) are possible in an SoC FPAA. Scaled CMOS nodes (Figure 11) should
handle Case III (130 nm CMOS) and Case IV (40 nm CMOS).

The imager benchmark is limited by the CMOS imager choice and the number of parallel nodes
for image computation. Local motion processing using 10,000 CABs enables a 16 × 16 image block
within each CAB (3 MPixel imager), and in turn, enables a wide range of video/motion processing.
With smaller networks, motion issues will be constrained by full-image storage. Case I and Case
II focus on single image processing, while Case III and Case IV shift to motion/video processing
corresponding to FPAA structures at 10,000 CAB level (Figure 11).

3.6 Additional Potential Benchmarks

This initial set of benchmarks can be expanded in the future to evaluate additional analog and
mixed-signal computational aspects and likely will grow as computational algorithms grow
(Figure 7). A potential set of future benchmark problems is briefly discussed in the following next
paragraphs.

Generalized Linear and Nonlinear Dynamics: Analog computation enables a range of lin-
ear and nonlinear dynamics. The solution to A x = b problem through a differential equation τ dx

enables the construction of linear control systems as well as certain potential nonlinear dynam-
ical systems. These nonlinear dynamics could include optimization networks (e.g., Hopfield) or
coupled chaotic systems. The ODEs in analog computation can be extended to PDEs that could
be solved on configurable devices, including parabolic (e.g., diffusion/heat equation) or hyperbolic
(e.g., wave propagation) equations. These techniques show significant numerical advantages for
analog computation, as digital approaches require solving A x = b with a quadratically increasing
condition number [70].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

of the algorithm

Programmable Analog System Benchmarks Leading 12:15

Neuron Modeling and Neuromorphic Computation: These directions are an important
emerging application space (e.g., [90]) which are beyond discussions of VMMs, general ODE so-
lutions, and solutions of linear equations, but rather are focused on the further improvement of
neural algorithms toward engineering problems beyond the capability of analog computation [90].
Traditional easy models of rate-encoded signals and integrate and fire neurons are not the desired
model in these areas (e.g., [90]). The uncertain nature of these emerging computations makes defin-
ing benchmarks in this area premature, although certainly, they will arise with continued research.

Signal Generation and Computation: Many computations (analog or digital) require the gen-
eration of parallel arbitrary signals that are multiplied with one or multiple signals (Figure 12).
These techniques have multiple communication applications (e.g., OFDM, synchronized matched
filters, security keys) that require arbitrary waveform generators with modulators and filters. Ana-
log approaches can utilize dense memory elements where each stored analog value can be played
in sequence (e.g., [31, 91, 92]).

4 ANALOG ALGORITHMS ENABLING ANALOG BENCHMARKS

Between the Benchmarks and the configurable FPAA devices is the analog algorithm represen-
tation. The benchmark problems set some of the user-facing algorithm blocks that aggregate to
benchmark solutions, enabling a top-down design methodology for analog computation similar
to digital computational flows. These algorithm blocks make analog system design accessible to
digital algorithm designers. A designer only needs to understand a few additional concepts but not
the whole field of analog circuit design. These abstractable blocks, similar to digital computation,
are effectively considered recognizable computations. These algorithm definitions provide a set
of user-facing algorithms abstracting analog computation from most users. A coding framework
enables some level of benchmark portability, although the number of options for implementation
is small at the writing of this article (e.g., FPAAs, early synthesis); we expect that further tool devel-
opment can accelerate these opportunities and widen the use of these concepts. These algorithmic
functions transform the expected lived experience of analog design.

An algorithm
block can be rep-
resented either as
a text representa-
tion (e.g., a Python
function call) or as a
graphical represen-
tation (e.g., Xcos)
where the block
parameters can be
selected through the
graphical interface
(Figure 13). All Fig. 14. Benchmark or Application level and Algorithm level within a high-level

perspective of a programmable analog synthesis tool flow either to target an FPAA

blocks are vector- or to create the design for a new IC.

ized (buses are
abstracted, Figure 6) level = 1 (Figure 4) blocks with the expected vectorization that can have a
Python-level definition. Graphical blocks illustrate the computation dataflow (level = 1), although
the text-based formulation (Python functions) is functionally equivalent (Figure 13)). Each
block should have a macromodel for potential digital simulation. Traditional circuit design for
developing new algorithm blocks (level = 1) is enabled through separate level = 2 current-voltage

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:16 J. Hasler and C. Hao

representations and simulation, where eventually a resulting level = 1 block is defined and
macromodelled. Analog circuit design becomes complete when a circuit design is abstracted into a
tool f low.

The Benchmark application is instantiated into a sequence of algorithm-level blocks specified
either as a graphical or text framework. Graphical compilation from Xcos/Scilab graphical repre-
sentation (Figure 13) to targeted FPAA code [57, 61, 93] is a process utilized by multiple research
groups. Recent efforts have developed a generalized synthesis tool flow (Figure 14) from Python
to Verilog to Netlist to a switch list (targetable FPAA file) through an FPAA description file as
well as to IC layout (.gds) through programmable analog standard cells [62, 63].3 Algorithm blocks
enable the infrastructure for multiple levels of architectural exploration for developing new con-
figurable systems (e.g., for digital: OpenFPGA [94]) enabling high-level (algorithm simulation) and
lower-level (device simulation) comparisons.

The range of level = 1 algorithm computation (Figure 15) includes programmable first- and
second-order LPF and BPFs, a range of VMM-enabled computations, nonlinear dynamics, and util-
ity functions. These blocks have been implemented often on existing FPAAs (Figure 18), including
in the SoC FPAA. Each function has system parameters and circuit parameters, where the system
parameters can be lowered to the circuit parameters. The LPF includes HopfLPF second-order block
with programmable nonlinear dynamics and Ladder filter (LadderF, LadderFM) stages used for fil-
ters, delay stages, as well as computation for this effective 1-D space, 1-D time second-order PDE.
The BPF includes adaptive BPF elements (AdaptBPF) as well as elements that perform a tunable
amplitude detection after the BPF (AmplitudeBPF, AmplitudeAdaptBPF). A BPF element will have
system parameters (parameter vectors centerFreq, Q) that directly set programmable circuit biases
(parameter vectors Ibias1, Ibias2) for TA through other circuit parameters (e.g., load capacitances).
As a VMM operation typically has voltage-in and current-out of the crossbar, such a computation is
not a level = 1 operation [45, 59], requiring either a merge with the next level of computation (e.g.,
WTA: VMMWTA, sigmoid for NN: SigVMM) or a current-to-voltage (e.g., a transimpedance
am-plifier) to create voltage outputs. The freq parameter specifies the maximum operating
frequency and enables tools to convert the system parameters (W) to circuit parameters (Ibias)
through the circuit components (e.g., capacitance). A range of linear and nonlinear dynamics
are available through more advanced blocks, such as the linear equation solution
(LinearEqIterate) that also enables creating a linear system definition for control systems, the
Hodgkin-Huxley (HH) Neu-ron and synapses (NeuronHH), or using the SigVMM block to build
Hopfield recurrent dynamics. Several computation utilities (e.g., M2V = Matrix to Vector
transformation) enable reformatting the data where required. The blocks are not an exhaustive list
but are highly representative of cur-rently defined functions (Figure 15(a)); additional algorithm
blocks are expected moving forward. The physical implementation involves a range of CAB/CLB
utilization depending on the particular FPAA device (e.g., SoC FPAA, Figure 18) as well as various
areas depending on the programmable analog standard cell library available (e.g., [63]).

The algorithm blocks can fully specify solutions for the four benchmark problems. The vision
benchmark primarily uses the imager convolution algorithm, ImageVMM(), which performs a sep-
arable image transform. Commercial imagers communicate a single sample at a time by scanning
the entire image sensor array. The imaging architecture should utilize this data format as much
as possible to minimize the communication cost (e.g., [33, 74]). The first stage of these algorithms
is a set of 2-D separable transforms with a WTA block enabling the first layer of classification.
The resulting layers of transforms, classification, and compression reduce the image into a vector

3the synthesis flow to an FPAA or to a custom layout from these Python definitions is currently under review and will be
made available when they are accepted.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:17

Fig. 15. A partial list of algorithm functions for implementing benchmarks. (a) Several functions gather into
multiple function areas. (b) Greater detail on the algorithm (.py) level = 1 function definitions. Each of these
blocks would have a parallel definition for the highest level in Verilog-AMS with the same names. In addition to
these signal values, there are a number of parameter values for each function.

Fig. 16. Example Code Blocks for four benchmarks using analog algorithms, including a sample Acoustic,
Vision, Communication, and Analog Benchmark Code. These blocks include the parameters as well as the
computational flow.

metric, enabling a VMM+WTA classifier for the measured result. For the communication bench-
mark for a single input (all are defined for multiple inputs, so using LadderFM instead of LadderF), y1
is a vector (e.g., qw) corresponding to Ibias1 and Ibias2 creating delays along the line. These

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:18 J. Hasler and C. Hao

Fig. 17. Benchmark level lowering to Algorithmic Level example for an acoustic Case II implementation, clas-
sifying 32 command words from a microphone signal. This implementation uses 96 nulls, classified outputs
that are not the desired 32 command words, for increased system robustness, typical of other speech recog-
nition systems. Another user could choose to solve this benchmark application through other architectures.
Most commercially available microphones already contain a Low-Noise Amplifier (LNA), therefore, the
input sensor signal would come after this stage. This benchmark solution is composed of multiple algorithm-
level functions, with the resulting intermediate scalar (freq), vector (Ibias1, Ibias2, theta), and matrix (W)
parameters required for each stage. The flow illustrates the tool synthesis to either target an FPAA or fabri-
cate a new IC, including lowering the AmpitudeBPF block into its component (level = 1) Bandpass Filter and
Amplitude Detector block circuits, lowering the LadderFM block into its component Ladder Filter Stages,
and lowering the VMMWTA block into the crossbar VMM, often implemented in routing fabric, and WTA
node circuits.

spatio-temporal beamforming (VMM) are input into a parallel demodulation system (e.g., 32) and
are passed to a classifier to generate multiple classified output signal lines in a vector (e.g., 64). This
system also requires a demodulation signal (Signal1) that is an input modulation signal in the 2 to 2.5
GHz range. One can specify that all of the four benchmark cases (defined) have only a single analog
input (In). The imager input could be analog or digital, but given it is one signal, a single DAC can
handle the conversion, so we will consider all of the questions with a single scalar signal input (In).
The analog benchmark would have multiple of these parallel filters.

A high-level implementation example of one benchmark, the acoustic Case II benchmark, illus-
trates the steps starting from the benchmark instantiate in the algorithm code, and the lowering
and compilation strategy (Figure 17). The Python description gets lowered into Verilog AMS and
through the resulting tools to a switch list or a .gds output. For the Case II acoustic benchmark
(Figure 17), for single microphone input, y1 is an output vector corresponding to the output feed-
back vector (12 lines), y2 is an output vector corresponding to three approximate delays at each
BPF stage set through Ibias1 (e.g., 3 by 12) and Ibias2 (e.g., 3 by 12) creating delays (48 lines), and a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:19

Fig. 18. FPAA sizes for the partial list of algorithm (.py) function definitions at level = 1. The FPAA sizes are
baselined to the CABs in the SoC FPAA [31]. Previous CAB components were designed by intuition as most
system infrastructure was not available. New CABs and new FPAA architectures and designs will be
optimized utilizing benchmarks. Many functions utilize the CAB Routing (R for the computation. Some
internal functions have not yet been published at this stage.

48-input by 128-output VMM+WTA classifier stage with a 6,144 weight matrix. This system would
require more WTA stages than would fit on an SoC FPAA (barely), although such a design could
theoretically be implemented on two SoC FPAAs (350 nm CMOS), and potentially easily imple-
mented in a similar size 130 nm FPAA. Using 130 nm standard cells, this implementation would
roughly require an area of 250 μm × 300 μm. Functions can have parameters at a higher function
level, such as frequency or weights, or lowered values such as bias currents. Our synthesis tools
lower functionality from higher level to lower level parameters. This example explicitly shows
both cases.

5 ANALOG AND MIXED-SIGNAL SUMMARY AND DISCUSSION

This first analog and mixed-signal benchmark suite of various sizes and domains enables perfor-
mance evaluation and optimization with recent analog and mixed-signal design and synthesis
tools. These benchmarks comprise multiple levels of an acoustic system, a vision system, a com-
munications system, and a classical analog filter system that must be simultaneously satisfied
for a complete system. ML is essential in two systems, and can be utilized in the other two sys-
tems. Defining the analog computation system benchmark and its underlying computation enables
future automated architectural DSE, to determine the best configurable architecture (e.g., a new
FPAA) for a certain family of applications. The demonstration of the benchmarks will further show
the 1,000 × improvement (and more) that Mead originally discussed (1990) [46] and illustrate fur-
ther ways to utilize these concepts.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

code or even assembly code in
a larger Python project, or an

12:20 J. Hasler and C. Hao

Fig. 19. Similar to traditional programming which has a hierarchy and compilation flow from higher-level
languages (e.g., Python) to more machine-specific languages (e.g., C and assembly), digital and analog syn-
thesis for configurable structures has similar flows. If a component is not in the library so that the tools
cannot directly compile a block, it opens an opportunity for the design of a new module in a lower tool flow
and/or direct compilation of that block into a processor co-designed with the implementation.

Benchmarks are an indicator of the perceived fundamental computations of that particular com-
puting substrate. Although digital computing benchmarks mostly follow the solution of linear
equations, analog benchmarks utilize ODE, PDE, and some linear equation solutions. These ef-
forts enable the evaluation of targeted FPAAs, custom ICs, and new FPAA designs through recent
analog computing theory. Abstracting the capabilities of analog computing shows the resulting
analog benchmarks. These benchmarks are composed of an initial set of analog and mixed-signal
algorithm blocks that provide solutions for these particular benchmarks.

One expects analog synthesis
tools to eventually parallel dig-
ital and coding synthesis tools,
including enabling adding new
functionalities to the libraries at
different levels (Figure 19). The
lower-level tools exist to handle
functions or features that are not
currently in the algorithm library
(Figure 19). Tools enable build-
ing blocks with the full analog
circuit capability (e.g., level = 2,
[60]) that build up to new level
= 1 blocks as well as enabling
expert designers to utilize more
device-level features. A digital
programmer (Figure 19) might
utilize a similar flow utilizing C Fig. 20. Potential benchmark applications for application synthesis.

(a) Benchmarks enable the evaluation of analog tool synthesis to ei-
ther an FPAA or a new analog IC. (b) Benchmarks enable the design

FPGA designer might utilize Ver- of new FPAAs by enabling tool synthesis, evaluation, and redesign.
ilog or gate-level design in a C++

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

Programmable Analog System Benchmarks Leading 12:21

or Python-defined project. If an exp(·) or sin(·) function is not available for an FPGA or embedded
design, it could be built at a lower level and incorporated into the function library. The capability is
similar to analog computation and synthesis.

Benchmarks provide new FPAA devices metrics (e.g., scaled FPAA technologies), enabling op-
timizing synthesis procedures through analog-digital co-design space exploration (Figure 20). An
automated architectural DSE can determine the best architecture (e.g., a new FPAA) compared
to these benchmarks, adapting the compiled FPAA technology files for scaled FPAA devices
(Figure 20). The performance evaluation includes area and resource allocation, energy and power,
SNR, and delay and latency. Some metrics can be directly evaluated by the synthesis procedure,
while others require a level of circuit and system simulation to verify the synthesized performance.
Benchmarking evaluates the proposed automation tool as well as the generated analog/mixed-
signal circuit or device (Figure 20).

The mixture of potential analog computation, digital computation, and specialized digital com-
ponents (e.g., a μP) creates the analog-digital hardware-software co-design problem, a problem
that system performance against the benchmark suite will give some intuition for particular sys-
tems designs. When should an algorithm, or part of an algorithm, be performed on a μP, in dig-
ital fabric, and in analog fabric? For low-power computation, numerically intense computations
can shift to analog components, and the processor can address the control flow and movement
of data streams throughout the computation. Some functions will be explicitly specified by the
designer, whereas some functions will have characterized options for both digital and analog op-
tions. Some tool flows can be easily compiled from known routines, whereas some may require
more complex synthesis requiring designer interaction to utilize designers’ expertise in the opti-
mization. The question of choosing a particular resource for a function will require building a per-
formance estimation model, including the algorithmic and architecture complexity of the analog
and digital components, where the performance of various options is evaluated against the defined
benchmarks.

REFERENCES
[1] J. J. Dongarra, P. Luszczek, and A. Petitet. 2003. The LINPACK benchmark: Past, present and future. Concurrency

Computation Practice and Experience (2003), 803–820.
[2] J. Hasler. 2017. Starting framework for analog numerical analysis for energy eficient computing. Journal of Low

Power Electronics Applications 7, 17 (2017), 1–22.
[3] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. 2008. CHStone: A benchmark

program suite for practical c-based high-level synthesis. In Proceedings of the 2008 IEEE International Symposium on
Circuits and Systems (ISCAS). 1192–1195.

[4] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. 1997. Mediabench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings of the 30th Annual International Symposium on
Microarchitecture. IEEE, 330–335.

[5] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. 2014. Machsuite: Benchmarks for
accelerator design and customized architectures. In Proceedings of the 2014 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 110–119.

[6] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian Tenllado, and Francky Catthoor.
2013. Polyhedral parallel code generation for CUDA. ACM Transactions on Architecture and Code Optimization 9, 4
(2013), 1–23.

[7] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin, Joseph Featherston, Yi-Hsiang Lai,
Gai Liu, Gustavo Angarita Velasquez, Wenping Wang, and Zhiru Zhang. 2018. Rosetta: A realistic high-level synthesis
benchmark suite for software programmable FPGAs. In Proceedings of the FPGA.

[8] Aman Arora, Andrew Boutros, Daniel Rauch, Aishwarya Rajen, Aatman Borda, Seyed Alireza Damghani, Samidh
Mehta, Sangram Kate, Pragnesh Patel, Kenneth B. Kent, Vaughn Betz, and Lizy K. John. 2021. Koios: A deep learning
benchmark suite for FPGA architecture and CAD research. In Proceedings of the FPL.

[9] Dirk Stroobandt, Peter Verplaetse, and Jan Van Campenhout. 2000. Generating synthetic benchmark circuits for
evaluating CAD tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19, 9 (2000),
1011–1022.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

12:22 J. Hasler and C. Hao

[10] Geoffrey Ndu, Javier Navaridas, and Mikel Luján. 2015. CHO: Towards a benchmark suite for OpenCL FPGA accel-
erators. In Proceedings of the 3rd International Workshop on OpenCL. 1–10.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC). Ieee, 44–54.

[12] Konstantinos Krommydas, Wu-chun Feng, Christos D. Antonopoulos, and Nikolaos Bellas. 2016. Opendwarfs: Char-
acterization of dwarf-based benchmarks on fixed and reconfigurable architectures. Journal of Signal Processing Sys-
tems 85 (2016), 373–392.

[13] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju,
and Jeffrey S. Vetter. 2010. The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-purpose Computation on Graphics Processing Units. 63–74.

[14] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. 2016. Spector: An OpenCL FPGA benchmark suite.
In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT). IEEE, 141–148.

[15] Raphael Njuguna and Raj Jain. 2008. A survey of FPGA benchmarks. Project Report, November 24 (2008).
[16] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B. Brown. 2001.

MiBench: A free, commercially representative embedded benchmark suite. In Proceedings of the 4th Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE, 3–14.

[17] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H. Anderson, Stephen Brown,
and Tomasz Czajkowski. 2011. LegUp: High-level synthesis for FPGA-based processor/accelerator systems. In Pro-
ceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 33–36.

[18] Rehan Ahmed, Assem A. M. Bsoul, Steven J. E. Wilton, Peter Hallschmid, and Richard Klukas. 2014. High-level
synthesis-based design methodology for dynamic power-gated FPGAs. In Proceedings of the 2014 24th International
Conference on Field Programmable Logic and Applications (FPL). 1–4. DOI:http://dx.doi.org/10.1109/FPL.2014.6927433

[19] Vitis High-Level Synthesis. Retrieved from https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html. Accessed September 14, 2023.

[20] CIRCT Project under MLIR Framework. Retrieved from https://circt.llvm.org/. Accessed September 14, 2023.
[21] Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming Chen, and Wen-mei Hwu. 2021. Pylog: An

algorithm-centric python-based FPGA programming and synthesis flow. In Proceedings of the 2021 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. 227–228.

[22] Hanchen Ye, Cong Hao, Hyunmin Jeong, Jack Huang, and Deming Chen. 2021. ScaleHLS: Achieving scalable high-
level synthesis through MLIR. LATTE Workshop on Languages, Tools, and Techniques for Accelerator Design (2021).

[23] Daniel W. Chang, Christipher D. Jenkins, Philip C. Garcia, Syed Z. Gilani, Paula Aguilera, Aishwarya Nagarajan,
Michael J. Anderson, Matthew A. Kenny, Sean M. Bauer, and Michael J. Schulte. 2010. ERCBench: An open-source
benchmark suite for embedded and reconfigurable computing. In Proceedings of the 2010 International Conference on
Field Programmable Logic and Applications. IEEE, 408–413.

[24] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The EPFL combinational benchmark
suite. In Proceedings of the 24th International Workshop on Logic and Synthesis (IWLS).

[25] V. Betz. The FPGA Place-and-Route Challenge. Retrieved from http://www.eecg.toronto.edu/~vaughn/challenge/
challenge.html. Accessed September 14, 2023.

[26] Wolf. 1994. Hardware-software co-design of embedded systems. Proceedings of the IEEE (1994), 967–989.
[27] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi. 2013. An automatic FPGA design and implementation

framework. In Proceedings of the IEEE DAC.
[28] M. Weinhardt, A. Krieger, and T. Kinder. 2013. A framework for PC applications with portable and scalable FPGA

accelerators. In Proceedings of the IEEE DAC.
[29] D. Rossi, C. Mucci, M. Pizzotti, L. Perugini, R. Canegallo, and R. Guerrieri. 2014. Multicore signal processing platform

with heterogeneous configurable hardware accelerators. IEEE Transactions on VLSI 22, 9 (2014), 1990–2003.
[30] J. Hasler. 2020. Large-scale field programmable analog arrays. IEEE Proceedings 108, 8 (2020), 1283–1302.
[31] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, Wunderlich R, S. Nease, and S. Ramakrishnan. 2016. A

programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on VLSI 24, 6 (2016), 2253–2261.
[32] J. Hasler, S. Kim, and A. Natarajan. 2018. Enabling energy-eficient physical computing through analog abstraction

and IP reuse. Journal of Low Power Electronics Applications 8, 4 (2018), 1–23.
[33] J. Hasler. 2019. Analog architecture and complexity theory to empowering ultra-low power configurable analog and

mixed mode SoC systems. Journal of Low Power Electronics Applications 9, 1 (2019), 1–38.
[34] J. Hasler and E. Black. 2021. Physical computing: Unifying real number computation to enable energy eficient com-

puting. Journal of Low-Power Electronics Applications (2021), 1–21.
[35] OpenMSP430 Project: Open Core MSP430. Retrieved from http://opencores.org/projectopenmsp430. Accessed

September 14, 2023.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

http://dx.doi.org/10.1109/FPL.2014.6927433
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://circt.llvm.org/
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://opencores.org/projectopenmsp430

Programmable Analog System Benchmarks Leading 12:23

[36] Jennifer Hasler. 2022. The potential of SoC FPAAs for emerging ultra-low-power machine learning. Journal of Low
Power Electronics and Applications 12, 2 (2022).

[37] Hasler, B. Minch, and C. Diorio. 1999. Adaptive circuits using pFET floating-gate device. In Proceedings of the Ad-
vanced Research in VLSI. 215–229.

[38] M. Kucic, Hasler, J. Dugger, and D. Anderson. 2001. Programmable and adaptive analog filters using arrays of floating-
gate circuits. In Proceedings of the Advanced Research in VLSI. 148–162.

[39] T. Hall, D. Anderson, and Hasler. 2002. Field-programmable analog arrays: A floating-gate approach. In Proceedings
of the Field-Programmable Logic (FPL) and Applications. Springer-Verlag, Montpellier, France, 424–433.

[40] M. A. Brooke. 1988. A Reconfigurable General Purpose Analog Integrated Circuit. Ph.D. Dissertation. University South-
ern California.

[41] M. A. Sivilotti. 1991. Wiring Considerations in Analog VLSI Systems, With Application to Field-Programmable Networks
(VLSI). Ph.D., California Institute of Technology, Pasadena, CA.

[42] E. K. F. Lee and P. G. Gulak. 1991. A CMOS field programmable analog array. IEEE JSSC (1991), 1860–1867.
[43] H. W. Klein. 1992. The EPAC architecture: An expert cell approach to field programmable analog circuits. In Proceed-

ings of the IEEE Midwest CAS. 169–172.
[44] Anadigm. 2004. Specifically generic analog functions for FPAAs: Anadigm says. EE Times (2004).
[45] C. Schlottmann and Hasler. 2011. A highly dense, low power, programmable analog vector-matrix multiplier: The

FPAA implementation. IEEE Journal on Emerging CAS 1, 3 (2011), 403–411.
[46] C. Mead. 1990. Neuromorphic electronic systems. Proceedings of the IEEE 78 (1990), 1629–1636.
[47] V. Srinivasan, G. Serrano, C. Twigg, and Hasler. 2008. Floating-gate-based programmable CMOS reference. IEEE

Transactions CAS I 55, 11 (2008), 3448–3456.
[48] S. Shah, H. Toreyin, J. Hasler, and A. Natarajan. 2017. Models and techniques for temperature robust systems on a

reconfigurable platform. Journal of Low Power Electronics Applications 7, 21 (2017), 1–14.
[49] S. Y. Peng, G. Gurun, C. M. Twigg, M. S. Qureshi, A. Basu, S. Brink, Hasler, and Degertekin F. L. 2009. A large-scale

reconfigurable smart sensory chip. In Proceedings of the IEEE ISCAS. 2145–2148.
[50] M. Laiho, J. Hasler, J. Zhou, C. Du, W. Lu, E. Lehtonen, and J. H. Poikonen. 2014. FPAA/Memristor hybrid computing

infrastructure. IEEE Transactions CAS I (2014).
[51] C. Twigg, J. Gray, and Hasler. 2007. Programmable floating-gate FPAA switches are not dead weight. In Proceedings

of the IEEE ISCAS. 169–72.
[52] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler. 2007. A precision CMOS amplifier using floating-gate transistors

for offset cancellation. IEEE JSSC 42, 2 (2007), 280–291.
[53] J. Hasler and H. Wang. 2015. A fine-grain FPAA fabric for RF + Baseband. In Proceedings of the GOMAC.
[54] S. Kim, J. Hasler, and S. George. 2016. Integrated floating-gate programming environment for system-level ICs. IEEE

Transactions VLSI 24, 6 (2016), 2244–2252.
[55] J. Hasler and S. Shah. 2018. Security implications for ultra-low power configurable analog and mixed mode SoC

systems. Journal of Low Power Electronics and Applications (2018), 1–17.
[56] J. Hasler, S. Kim, and F. Adil. 2016. Scaling floating-gate devices predicting behavior for programmable and config-

urable circuits and systems. Journal of Low Power Electronics Applications (2016).
[57] M. Collins, J . Hasler, and S. George. 2016. An open-source toolset enabling analog–digital software codesign. Journal

of Low Power Electronics Applications 6, 1 (2016), 1–15.
[58] C. R. Schlottmann, C. Petre, and P. E. Hasler. 2011. Simulink framework for design to and automated conversion on

large-scale FPAA devices. IEEE Transactions VLSI (2011).
[59] C. Schlottmann and J. Hasler. 2014. High-level modeling of analog computational elements for signal processing

applications. IEEE Transactions VLSI 22, 9 (2014), 1945–1953.
[60] A. Natarajan and J. Hasler. 2017. Modeling, simulation and implementation of circuit elements in an open-source

tool set on the FPAA. Analog Integrated Circiuits and Signal Processing 91, 1 (2017), 119–130.
[61] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent,

J. Anderson, J. Rose, and V. Betz. 2014. VTR 7.0: Next generation architecture and CAD system for FPGAs. In
Proceedings of the IEEE ASIC Seminar. 6:1–6:30.

[62] J. Hasler. 2021. Defining analog standard cell libraries for mixed-signal computing enabled through educational
directions. In Proceedings of the IEEE ISCAS.

[63] J. Hasler, B. Muldrey, and P. Hardy. 2021. A CMOS programmable analog standard cell library in skywater 130nm
open-source process. In Proceedings of the WOSET.

[64] Carver Mead and Lynn Conway. 1980. Introduction to VLSI System Design. Addison-Wesley. Retrieved from http:
//ai.eecs.umich.edu/people/conway/VLSI/VLSIText/VLSIText.html

[65] G. E. Moore. 1965. Cramming more components onto integrated circuits. Electronics 38, 8 (1965).
[66] G. E. Moore. 1975. Progress in digital integrated electronics. IEEE IEDM (1975), 11–13.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

http://ai.eecs.umich.edu/people/conway/VLSI/VLSIText/VLSIText.html
http://ai.eecs.umich.edu/people/conway/VLSI/VLSIText/VLSIText.html

12:24 J. Hasler and C. Hao

[67] B. Hoeneisen and C. A. Mead. 1972. Fundamental limitations in microelectronics – I. MOS technology. Solid State
Electronics 15, 7 (1972), 819–829.

[68] R. Turing. 1937. On computable numbers. Proceedings of the London Mathematical Society (1937), 230–265.
[69] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler. 2004. A 531 nW/MHz, 128x32 current-mode pro-

grammable analog vector-matrix multiplier with over two decades of linearity. In Proceedings of the CICC. 651.
[70] J. Hasler and A. Natarajan. 2021. Continuous-time, configurable analog linear system solutions with transconduc-

tance amplifiers. IEEE Circuits and Systems I 68, 2 (2021), 765–775.
[71] Mike Demler. 2018. Mythic multiplies in a flash: Analog in-memory computing eliminates DRAM read/write cycles.

The Linley Group (2018).
[72] S. Brink, J. Hasler, and R. Wunderlich. 2014. Adaptive floating-gate circuit enabled large-scale FPAA. IEEE Transac-

tions on Very Large Scale Integration Systems 22, 11 (2014), 2307–2315.
[73] J. Hasler and S. Shah. 2018. SoC FPAA hardware implementation of a VMM+WTA embedded learning classifier. IEEE

Journal on Emerging CAS 8, 1 (2018), 28–37.
[74] Scott Koziol. 2013. Reconfigurable Analog Circuits for Autonomous Vehicles. Ph.D. Dissertation. Georgia Institute of

Technology.
[75] Jennifer Hasler and Sahil Shah. 2021. An SoC FPAA based programmable, ladder-filter based, linear-phase analog

filter. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 2 (2021), 592–602.
[76] John S. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, and N. Dahlgren. 1983. TIMIT acoustic-phonetic continuous

speech corpus. In Proceedings of the Linguistic Data Consortium, Philadelphia. Retrieved from https://github.com/
philipperemy/timit

[77] R. Gary Leonard and George R. Doddington. 1993. TI Digits Database. Retrieved from https://catalog.ldc.upenn.edu/
docs/LDC93S10/tidigits.readme.html. Accessed September 14, 2023.

[78] Pete Warden. 2018. Speech commands: A public dataset for single-word speech recognition. arXiv:1804.03209. Re-
trieved from https://arxiv.org/abs/1804.03209

[79] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech: An ASR corpus based on
public domain audio books. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 5206–5210. DOI:http://dx.doi.org/10.1109/ICASSP.2015.7178964

[80] S. Shah and J. Hasler. 2018. VMM + WTA embedded classifiers learning algorithm implementable on SoC FPAA
devices. IEEE Journal on Emerging CAS 8, 1 (2018), 65–76.

[81] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A. Muller, E. Sackinger, P. Simard, and
V. Vapnik. 1994. Comparison of classifier methods: A case study in handwritten digit recognition. In Proceedings of the
12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).
DOI:http://dx.doi.org/10.1109/ICPR.1994.576879

[82] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C.
Lawrence Zitnick. 2014. Microsoft COCO: Common objects in context. In Proceedings of the Computer Vision— ECCV
2014. David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.), Springer International Publishing, 740–755.

[83] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. DOI:http://dx.
doi.org/10.1109/CVPR.2016.90

[84] Qing-Yuan Jiang, Yi He, Gen Li, Lei Li Jian Lin, and Wu-Jun Li. 2019. SVD: A large-scale short video dataset for
near-duplicate video retrieval. In Proceedings of the International Conference on Computer Vision.

[85] Rakshith Rajashekar, Marco Di Renzo, K. V. S. Hari, and Lajos Hanzo. 2018. A beamforming-aided full-diversity
scheme for low-altitude air-to-ground communication systems operating with limited feedback. IEEE Transactions on
Communications 66, 12 (2018), 6602–6613. DOI:http://dx.doi.org/10.1109/TCOMM.2018.2864980

[86] J. Hasler. 2022. A programmable on-chip Hopf bifurcation circuit. IEEE CAS I, on IEEE Xplore (2022).
[87] Randall L. Geiger and Edgar Sánchez-Sinencio. 1985. Active filter design using operational transconductance ampli-

fiers: A tutorial. IEEE Circuits and Devices Magazine 1 (1985), 20–32.
[88] P. A. Allen and D. R. Holberg. 2002. CMOS Analog Circuit Design (2nd. ed.). Oxford University Press.
[89] C. Cuypers, Yoong Voo, Mykhaylo Teplechuk, and J. I. Sewell. 2005. General synthesis of complex analogue filters.

IEE Proceedings–Circuits, Devices and Systems 152 (2005), 7–15. DOI:http://dx.doi.org/10.1049/ip-cds:20040816
[90] Jennifer Hasler and H. Bo Marr. 2013. Finding a roadmap to achieve large neuromorphic hardware systems. Frontiers

in Neuroscience 7 (2013).
[91] C. Schlottmann, S. Shapero, S. Nease, and Hasler. 2012. A digitally-enhanced reconfigurable analog platform for

low-power signal processing. IEEE JSSC 47, 10 (2012), 2174–2184.
[92] Jennifer Hasler and Sahil Shah. 2018. Security implications for ultra-low power configurable analog and mixed mode

SoC systems. Journal of Low Power Electronics and Applications (2018), 1–17.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

https://github.com/philipperemy/timit
https://github.com/philipperemy/timit
https://catalog.ldc.upenn.edu/docs/LDC93S10/tidigits.readme.html
https://catalog.ldc.upenn.edu/docs/LDC93S10/tidigits.readme.html
https://arxiv.org/abs/1804.03209
http://dx.doi.org/10.1109/ICASSP.2015.7178964
http://dx.doi.org/10.1109/ICPR.1994.576879
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TCOMM.2018.2864980
http://dx.doi.org/10.1049/ip-cds:20040816

Programmable Analog System Benchmarks Leading 12:25

[93] Sihwan Kim, Sahil Shah, Richard Wunderlich, and Jennifer Hasler. 2021. CAD synthesis tools for floating-gate SoC
FPAAs. Design Automation for Embedded Systems (2021), 1–16.

[94] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere, and Pierre–Emmanuel Gaillardon. 2019.
OpenFPGA: An opensource framework enabling rapid prototyping of customizable FPGAs. In Proceedings of the
2019 29th International Conference on Field Programmable Logic and Applications (FPL). 367–374.

[95] Jennifer Hasler. 2023. A programmable adaptive-Q BPF circuit. Second Revision to IEEE CAS I (2023).
[96] S. Shah and J. Hasler. 2017. Tuning of multiple parameters with a BIST system. Journal of Low Power Electronics

Applications 64, 7 (2017), 1772–1780.
[97] Aishwarya Nagarajan and Jennifer Hasler. 2020. Built-in self-test of vector matrix multipliers on a reconfigurable

device. In Proceedings of the IEEE ISCAS.
[98] S. Shah and J. Hasler. 2017. Low power speech detector on a FPAA. In Proceedings of the IEEE ISCAS.
[99] Pranav Mathews and Jennifer Hasler. 2023. Physical computing for Hopfield networks on a reconfigurable analog

IC. In Proceedings of the IEEE ISCAS.
[100] Jennifer Hasler and Aishwarya Natarajan. 2021. Continuous-time, configurable analog linear system solutions with

transconductance amplifiers. IEEE Circuits and Systems I 68, 2 (2021), 765–775.
[101] Aishwarya Natarajan and Jennifer Hasler. 2019. Implementation of synapses with Hodgkin-Huxley neurons on the

FPAA. In Proceedings of the IEEE ISCAS.

Received 14 February 2023; revised 21 August 2023; accepted 2 September 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 12. Pub. date: January 2024.

