L))

Check for
Updates

High-performance Architecture Aware Sparse Convolutional
Neural Networks for GPUs

Lizhi Xiang P.Sadayappan Aravind Sukumaran-Rajam
University of Utah University of Utah Meta Platforms
Salt Lake City, Utah, USA Salt Lake City, Utah, USA San Francisco, California, USA
xianglizhi456 @gmail.com saday@cs.utah.edu aravind_sr@outlook.com

ABSTRACT

Convolutional Neural Networks (CNN) are used to analyze data
with spatial/temporal structure. In recent years, CNN’s popularity
has increased exponentially by virtue of its accuracy and appli-
cability. Due to its massive deployment scale, especially in the
automotive industry, image analytics, and portable devices, even
fractional improvement in performance and power consumption
can lead to enormous savings. In this work, we focus on exploiting
the sparsity of feature maps and reducing the required number
of computations and data movement, leading to improved perfor-
mance. Compared to kernel sparsity, where the sparsity structure is
known apriori, the feature map sparsity is only known during run-
time, making this a challenging optimization problem, especially
for GPUs. In this paper, we develop a GPU-friendly Sparse CNN
framework capable of handling feature map sparsity. The efficacy
of our approach is demonstrated by comparing the performance of
our implementation with the state-of-the-art implementations. Our
approach can also be extended to support upcoming techniques
such as feature map pruning and submanifold sparse convolutional
Networks.

ACM Reference Format:

Lizhi Xiang, P.Sadayappan, and Aravind Sukumaran-Rajam. 2022. High-
performance Architecture Aware Sparse Convolutional Neural Networks for
GPUs. In International Conference on Parallel Architectures and Compilation
Techniques (PACT ’22), October 8-12, 2022, Chicago, IL, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3559009.3569667

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are widely used in many
domains (3, 7, 10, 14, 25, 29, 30, 33, 35]. The improvement of per-
formance of popular CNN pipelines is of significant interest. The
exploitation of sparsity in the CNN computation is one approach to
reducing the number of executed operations, where only non-zero
elements (or elements with values above some threshold) are explic-
itly stored and used in the computations. However, just reducing
the number of executed arithmetic operations is not sufficient to
reduce execution time.

For example, while it is common to achieve well over 90% of ma-
chine peak performance for dense matrix/tensor computations, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT ’22, October 8-12, 2022, Chicago, IL, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9868-8/22/10...$15.00
https://doi.org/10.1145/3559009.3569667

265

highest performing Top500 entry for the HPCG (High-Performance
Conjugate Gradient) benchmark, a key algorithm in scientific com-
puting that is dominated by sparse matrix computations, achieves
only 3.6% of machine peak in recent Top500 results (June 2022 [20]).
Very effective sparse data structures and architecture-conscious
design and implementation of the sparse kernels are essential for
achieving lower execution time than the dense versions currently
used in DNN pipelines.

The exploitation of sparsity in CNNs has been the subject of
many research efforts, but the majority of them have focused on
kernel sparsity [8, 9, 12, 15, 16, 18, 21, 23, 32], where kernel weights
that are below some threshold are pruned away, retaining only a
fraction of the weights. A challenge with exploiting kernel sparsity
is the trade-off between sparsity and accuracy - by pruning away
more kernel weights, the number of operations can be reduced,
but model accuracy may suffer. In this paper, we focus on the
much less addressed option of exploiting sparsity in feature maps
[6, 19]. A significant challenge with this option is that feature-
map sparsity is dynamic, i.e., unknown for each feature-map in
a pipeline until it is produced. This is in contrast to exploiting
kernel sparsity because kernel weights stay unchanged once trained
and are repeatedly used for each sample processed through the
DNN pipeline, allowing for expensive one-time off-line analysis and
optimization of the sparse representation. However, a significant
benefit in exploiting feature-map sparsity is that there is no trade-
off with accuracy - it just turns out that a significant fraction of
pixels in feature-maps at intermediate layers in image processing
pipelines are zero because of the ReLU operators commonly used in
these pipelines. Fig. 1 shows the structure of a block in two popular

| |
—_— Input
& & e BatchNorm
lL t Relu -
@e Convolution
»L i [m Concate/Add
|
&
*

Figure 1: Block structure of DenseNet (left) and ResNet (right)

image-processing pipelines, DenseNet [13] and ResNet [11]. These

https://doi.org/10.1145/3559009.3569667
https://doi.org/10.1145/3559009.3569667
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569667&domain=pdf&date_stamp=2023-01-27

PACT °22, October 8-12, 2022, Chicago, IL, USA

= densenet201 = resnet152 vgg19

100.00%

75.00%

e

0.00%
0

50.00%

Sparsity

25.00%

20 40 60 80

Conv Id

Figure 2: Sparsity as a function of convolution id (DenseNet
201, Resnet152, VGG19)

® 0%-50% ® 50%-70% = 70%-90% = 90%-99% = Non Conv Layers

—

0% 25% 50% 75%

densenet169
densenet201
resnet50
resnet152
vgg16
vgg19

Figure 3: Ratio of execution time: sparse vs. dense layers

DNN pipelines have a sequence of many such blocks, with the sizes
of kernels and feature-maps changing through the pipeline. The
total execution time is dominated by the Convolution layers. It may
be seen that between a pair of successive convolution operators,
there is always a non-linear ReLU operator, which performs an
element-wise operation of “rectifying” the values — convert it to a
zero if negative or just pass it on unchanged if positive. The ReLU
operator is the reason why a significant fraction of elements in an
input feature-map for a convolution operation can be zero. Fig. 2
shows the fraction of zero elements in feature-maps at the input
of each convolution layer for three DNN pipelines: DenseNet201,
Resnet152, and Vgg19. (1x1 convolutions are omitted, since they
consume significantly less time compared to other convolution
layers). It may be seen that the sparsity (fraction of zero elements in
the feature-maps) is over 50% for the majority of layers for all three
DNN pipelines, and often above 75%. Fig. 3 shows the measured
distribution of execution time attributable to different layers as a
function of feature-map sparsity on a 2080Ti GPU using cuDNN
library. The blue bars at the left represent the total fraction of time
spent in the convolution layers with under 50% sparsity (i.e., with
the relatively dense feature-maps) and can be seen to be only a small
fraction of total time, especially with Densenet. Also notable in
this figure is the dominance of the time taken by the convolutional
layers relative to the other non-convolutional layers (the orange
bars at the right), especially for Densenet and Resnet.

Key New Direction: A fundamental challenge in achieving high-
performance while exploiting feature-map sparsity is that we do not
know until run-time which elements of a feature-map will be zero or
non-zero. The efficient dynamic creation and use of compact sparse

266

Lizhi Xiang et al.

data structures for the feature-maps poses many challenges, includ-
ing controlling overheads of dynamic memory management, the
overheads of synchronization/coordination among parallel threads
to collectively generate the compact sparse representation for a
sparse output feature-map, and efficient execution of the sparse
convolution operation using it as an input feature-map at a follow-
ing layer. To overcome these challenges, we develop a novel sparse
tensor representation called COO*, along with associated kernels
to perform sparse convolution operations.

The main design ideas are summarized below:
Space-Time Trade-off: We design a sparse tensor representation
COO* (Fig 6) which can accommodate an arbitrary number of
nonzero elements, including the extreme case of 0% sparsity. By
doing so, we completely eliminate the overheads of dynamic deter-
mination of space requirements and dynamic memory management
of such space. Although maximal space is allocated to accommo-
date any dynamic sparsity, the actual volume of data movement
will only correspond to the actual non-zero elements. Sparse tensor
representations generally use much less space than dense represen-
tation. While COO” storage requires slightly more storage than a
dense representation, the performance benefits outweigh the slight
increase in storage cost. Moreover, the feature map space is gen-
erally reused across multiple layers, whereas the kernel weights
are kept stationary. Hence the kernel tensor requires much more
storage space than feature maps. Therefore, a slight increase in
feature map space does not create any practical memory constraint.
Tiling and trade-off between load-imbalance and data move-
ment: Tiling is used to address the problem of minimizing syn-
chronization/coordination overheads among parallel threads. A
performance model is developed to choose tile sizes that judiciously
balance the trade-off between increasing load-imbalance as tile size
is increased and increase in data movement from global memory
as tilesize is decreased.(Sec 3.5)
Architecture-conscious microkernel design: Customized ker-
nels using the COO* data representation are designed for convo-
lution and ReLU operators, taking into consideration various key
factors in optimizing performance on GPUs (Sec 3.4) .

The paper makes several contributions:
i) It develops a novel sparse representation (COO*) for efficient
processing of sparse tensors whose sparsity structure can only be
dynamically known at runtime.
ii) It develops optimized kernels for tiled execution of CNN image
processing pipelines where feature-map sparsity is effectively ex-
ploited, even when the sparsity factor is as low as 50%.
iii) It demonstrates significant end-to-end performance on several
DNN image-processing pipelines (ResNet, Vgg, DenseNet) over
dense baselines using the state-of-the-art cuDNN library.

2 RELATED WORK

Convolutions can be implemented using different high-level algo-
rithms such as direct convolution, Winograd, and FFT methods.
Liu et al. [22] propose using the Winograd algorithm to accelerate
convolutions with sparse kernels.

Several existing works have attempted to increase the efficiency
of convolutions by exploiting the sparsity structure of kernels. The
Tiramisu Compiler [2] is a polyhedral model-based compiler for

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

sparse and dense data-parallel algorithms. The user has to specify
the required optimizations manually, and the performance of the
framework is entirely dependent on this specification. The distribu-
tion includes an optimization specification for convolutions with
sparse kernel on CPUs; however, it does not include sparse feature
map optimization configurations for CPUs or GPUs.

The sparsity of the kernels and thereby performance, can be
increased using weight pruning [8, 9, 12, 15, 16, 18, 21, 23, 32].
Park et al. [26] propose an efficient sparse-dense multiplication
based solution for sparse convolution. The kernel is treated as a
sparse matrix/tensor, and the feature map is considered as a dense
matrix/tensor. A guided pruning based scheme is used to make
the kernel sparse. In [4] Chen proposes a GPU based scheme for
convolutions with sparse kernels. Graham et al. [6] propose a sparse
convolutional neural network framework that tries to increase the
feature map’s sparsity using pruning. Since pruning may affect the
accuracy, they retrain their model using the pruned sparse feature
maps. In contrast to these approaches, the approach we develop
exploits sparsity in the input feature maps and therefore has no
negative impact on accuracy.

In [34] Xu developed a feature map-based sparse convolution
scheme on GPUs, which also tries to make use of the sparse fea-
ture map to accelerate the convolution. However, their method
outperforms the dense version only when the feature map is at
least 90% sparse, and the convolution feature map dimensions are
small. Their approach is based on an SpMV formulation, which also
makes the prepossessing expensive.

In [19], Liang et al. proposed dynamic feature map pruning. At
runtime, they check whether all the values corresponding to a
given feature map channel is less than or equal to a given threshold
(€) € {0,0.1,0.2,0.3,0.4,0.5}. If so, the entire channel is removed.
However, the benefits are only applicable if the entire channel can
be removed. This is also demonstrated in their experiments (only
1.6% of all channels were pruned for Resnet50). Moreover, since they
rely on cuDNN, a new input tensor and kernel must be constructed
to reflect the channel removal, introducing additional overhead.
End-to-end experiments on CNN pipelines were not demonstrated.

In some cases, such as handwriting recognition, the input image
itself is sparse. Since each output is computed based on its receptive
field on input (e.g., 3X 3 kernel), after some convolution layers,
the entire feature map will become relatively dense. In [21], Lui
et al. proposed submanifold sparse convolution to maintain the
spatial sparsity. This work only exploits layer-wise sparsity — the
computation and associated data-movement can only be removed
if all the input elements in a given feature layer is zero.

In many applications, prior knowledge can be used to reason
about the sparsity structure. This information can be used to mask
unnecessary computations. Ren et al. [27] propose a masking based
sparse-blocks convolution network. In comparison, our approach
does not rely on any prior knowledge of sparsity structure and does
not require sparse blocks.

Open source frameworks such as Tensorflow [1, 17] also support
many sparse machine learning primitives. However, they do not sup-
port sparse convolutions. Theano [31] has support for convolutions
with sparse feature maps. However, it only supports single-channel
feature maps. The significant difference between these prior efforts

267

PACT °22, October 8-12, 2022, Chicago, IL, USA

and our work in this paper is the ability to handle arbitrary dynamic
sparsity in feature maps.

3 CUSNN: SPARSE CONVOLUTION NEURAL
NETWORK

3.1 Overview

The fundamental objective of this work is to design a high-performance
sparse convolution framework, which accepts a fully trained CNN
network, analyzes the feature-map sparsity based on activations,
and produces a high-performance GPU CNN network, where our
high-performance kernels replace convolution layers with high
sparsity.

Table 1: Notation summary.

B | batch size p density

C | #i/p channels | N # o/p channels
H | image height | W | image width
R | stencil height | S stencil width
I | input tensor o output tensor
K | kernel tensor | nnz | # non-zeros

Figure 4 provides a high-level illustration of the cuSNN approach.
It involves two phases (i) an offline code generation phase and (ii) an
online adaptive kernel selection phase. In the offline phase (shown
at the top of the figure), the network summary (topology, layer sizes,
types, etc.) of a CNN network as taken as an input and customized
sparse kernel code versions are generated for each CNN layer, with
distinct versions for different sparsity thresholds. As described later
(section 3.5), different register-level tile sizes are used for different
sparsity levels in the input feature maps, based on an analytical cost
model. Further, the code versions are executed and the minimum
level of sparsity is determined for which the execution time of the
sparse kernel is less than the cuDNN kernel’s execution time for
dense convolution at that CNN layer. The offline processing is only
performed once per CNN layer.

In the online phase that is executed during use of cuSNN for
inference, each CNN stage is executed using either one of the cus-
tomized sparse code versions (marked code cache in the figure) or
the cuDNN library kernel, based on a fast dynamic selector that
determines the sparsity fraction of the input feature map. We note
that the sparse/dense dynamic selector is very lightweight and
can be integrated into the previous layer’s RELU operator by only
adding a zeros counter when it scans the output tensor. If the input
feature map is not above the minimum needed sparsity threshold
for that layer, the cuDNN library kernel is invoked using a stan-
dard dense representation of the input feature map. Otherwise, a
sparse representation is created in a new COO* format for the input
feature map (details in section 3.4), which is then processed by a
customized sparse kernel variant best suited for the specific sparsity
fraction of the input feature map. (The dense to the sparse COO*
representation overhead is included in our evaluation.)

For the rest of the paper we use ‘B’ to represent the batch, ‘N’ to
represent the output channels, ‘H’ and ‘W’ to represent the image
height and width, ‘R’ and ‘S’ to represent the kernel height and
width, and ‘C’ to represent the input features. Tensor I represents

PACT °22, October 8-12, 2022, Chicago, IL, USA

tile size
Problem prediction
—— —

I
I
I
I
I
: sizes
I
I
I
I

feature map
of layer i

ey SParse/dense

Online: Adaptive kernel selection phase

Lizhi Xiang et al.

m code cache

code cache

code cache I
code cache I

code cache

1 .
dense

sparse

classifier

> cuUSNN (our)
kernel

Figure 4: Overview of cuSNN framework

the input feature map, tensor K represents the kernel (weight),
and tensor O represents the output feature map. p represents the
sparsity of the input tensor (). The dense convolution using the
above notation can be expressed as:

O(b,n,hyw) = Zg:ol 25;01 Zf;ol I(bye,h+r,w+s)xXK(n,c,r,s)

3.2 Challenges

Achieving high performance for sparse computations on GPUs is a
challenging task. Compared to other architectures such as CPUs,
GPUs have less circuitry dedicated to optimizing control flow (e.g.,
branch prediction) and lower per-thread cache capacity. Hence,
careful software design is vital to achieving high performance on
GPUs. Data movement, load-imbalance, and the number of atomic
operations are critical factors that determine sparse computations’
performance on GPUs.

The GPU memory hierarchy consists of global memory (DRAM),
shared L2 cache, a programmable thread block private cache called
shared-memory, L1 cache (in some architectures, the shared-memory
and L1 cache use the same physical hardware), and thread private
registers. Accessing global memory is very expensive, and the ca-
pacity of the shared L2 cache is tiny compared to the total number
of cores (1.3 KB/core in Nvidia GTX 2080 Ti). Hence, utilizing the
shared memory/L1 cache and registers is pivotal to achieving good
performance. Since all threads share shared-memory/L1 cache in
a thread block, it is beneficial to keep intra thread block shared
objects in shared memory. Registers are the fastest entities in the
memory hierarchy. While sparse convolutions can have a high
degree of data reuse, exploiting sparsity is not trivial. The irregu-
lar memory access pattern poses a formidable challenge for data
reuse. For example, current GPU compilers won’t place typical data
structures, even dense data structures such as arrays, in registers
when they are associated with sparse computations (due to non-
uniform accesses, unknown loop bounds, etc.). Hence meticulous

268

sparsity aware and GPU architecture conscious microkernel design
is required to achieve good performance.

Tiling is one way to achieve good data reuse and is employed in
many dense computations. However, in sparse convolutions, tiling
can lead to severe thread idling. The GPU thread hierarchy consists
of a group of threads called warps (32 in current architectures),
which are aggregated to form thread blocks, which in turn are
aggregated to form the grid. All threads in a warp should execute
in a lock-step manner (modern GPUs have some relaxation for this
criterion). Consider a design where each warp process a tile of the
input tensor, and different threads within a warp process different
points within the tile. If the number of elements in a tile is much
smaller than the number of threads in a warp, the majority of the
threads will be idle — even though the overall processing of the
tile is not yet done. In summary, tiling helps to achieve good data
reuse for this scheme but causes load imbalance and thread idling.
Weighing the interplay between these factors is vital in a practical
design. A performance model that can quickly determine effective
tiles sizes can aid the code generation and provide a high-level cost
metric to external tools.

Efficient data representation is another factor that affects data
movement. Typical convolutional networks have a chain of convo-
lution layers separated by filtering functions (e.g., ReLU), where
the output of one layer feeds the next layer’s input. Hence, to avoid
data format conversion costs, the output format (including data lay-
out) must be the same as the input, unless different convolutional
primitives are used for different convolutional layers. Hence we
need to design data structures that are both read and write friendly.
Moreover, in practice, a sparse layer could be followed by a dense
layer and vice-versa. We need to develop data structures that reduce
data movement as well as support efficient dense/sparse format
conversion.

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

Kernel Stationary

Input Stationary

Input Kernel
Threads T‘l('?2 "ra Threads T, T, T,
Kernel Input
Output Output
Output StFtionary
Input 1 | Ib
a) |)Input
Scan input inacsivel
Collect active outputs
Scan P ‘ 1
ol fol: @ |
A Ees e 1
| Threads T T, T
¥
active 1 Output
1
Input |
| P T T
| (\ Threadidle
| Tmeeea-- -
Comp |
|
Threads T1 T 1
Output '

Figure 5: Design exploration

3.3 Design Exploration

To achieve good performance, we have to get maximal reuse of
all tensors. However, for ease of understanding, this subsection
explains the design considerations assuming that the objective is to
maximize the reuse of a single tensor. Note that the actual design,
described in section 3.4, tries to get maximal reuse across all tensors
and considers load-balancing and thread-idling.

One strategy is to maximize the reuse of kernel elements. Dif-
ferent kernel elements can be distributed across different threads;
each thread can load the kernel element(s) in its responsibility to its
register(s) (or shared-memory) once and make all the corresponding
contributions to the output tensor. This kernel stationary strategy
is illustrated at the top left in Fig. 5. However, this approach has two
fundamental problems: (i) resource utilization and (ii) synchroniza-
tions/atomic operations. If the kernel size is small, distributing it
across multiple thread blocks will not achieve the required amount
of parallelism in GPUs, resulting in under-utilization of the re-
sources (a form of load-imbalance). Moreover, the partial results
generated by different threads may contribute to the same output
location. Hence, expensive atomic operations and/or synchroniza-
tions are required.

Similarly, maximal reuse of input tensor can be achieved by
loading the corresponding into shared-memory (or registers). Such
a input stationary strategy is illustrated at the top right in Fig. 5.
Like the maximal kernel reuse case, the contributions from the same
input spans across multiple output locations; Hence sophisticated

269

PACT °22, October 8-12, 2022, Chicago, IL, USA

designs must be explored to minimize or eliminate the cost of atomic
operations and/or synchronizations.

Targeting maximal reuse of the output tensor is another possibil-
ity. Each thread can load an output element once to its register (or
shared-memory), compute all contributions and write it out. The
major challenge here is that the information regarding whether an
output element is active or is not known a priori and is determined
entirely by the input sparsity structure. One way to overcome this
challenge is to perform an initial scan of the input sparsity struc-
ture to determine the output structure and distribute the threads
only among the active output elements. Output Stationary (a) in
Figure 5 depicts this scheme. The other way is to assign a thread to
each output element, irrespective of whether it is active or not, and
ignore computations to inactive elements. Output Stationary (b)
in Figure 5 depicts this scheme. The former suffers from the initial
scan cost, and the latter suffers from wasted resources as many
threads would be idle, especially if the sparsity is high.

Achieving good performance requires sufficient reuse of all ten-
sors and not just one. Every operation requires one operand from
each of the three tensors; even fetching a single operand from
global memory per operation will expose memory latency and
thereby drastically impact performance. Any approach that targets
the reuse of multiple tensors should simultaneously handle the chal-
lenges associated with the reuse of each tensor described earlier.
Our sparse kernel design, described in detail in the next subsection,
uses an output stationary strategy at the register level, an input
stationary strategy at the shared-memory level, as well as sufficient
register-level reuse for each global-memory load for the weights.
The design also ensures good intra-warp, intra-thread block, and
inter-thread-block load balance.

3.4 cuSNN kernel design

Data Structure:

The format in which the sparse tensors are kept plays a sig-
nificant role in determining the runtime efficiency. Several prior
works have studied efficient sparse formats in the context of graph
primitives and machine learning primitives such as recommender
systems. Most of these works assume that the sparse matrix struc-
ture is either known apriori or the same sparse matrix is used multi-
ples times. If the structure is known apriori, then expensive offline
decisions can determine which format is the best. If the structure
is not known apriori, but the same sparse matrix is used multiple
times (e.g., Pagerank), the new format’s performance can amortize
the one-time format conversion cost. Both these approaches are
not suitable for the input/output feature maps whose structure is
neither known apriori nor is used multiple times. In addition, the
data structure should allow quick conversion between the sparse
and dense data formats.

One possibility is to keep the image in dense format and to check
if the value is non-zero. Such an approach can reduce the number
of floating-point operations required, but not data movement. Note
that each input feature map element has R * S = N uses, and hence
during convolution, the zero values could be unnecessarily read
multiple times from global memory. It could also lead to thread-
idling as some threads may not have work. Another possibility is
to extend the standard Coordinate format (COO) to represent the

PACT °22, October 8-12, 2022, Chicago, IL, USA

Input feature map

W
' | row | col |value

o 1 a
1 4 b
H 2 ‘ 3 c
3 3 d
e 4 | 4 e

a) Conceptual View (Th =3,Tw = 3) ib) Standard COO format

Lizhi Xiang et al.

i Tilel Tile2

+ 2 HE

c) COO* format(single channel)

Channell

vals

hw_ids

/Cw Channel2
nnz_count n .-

Channel2

hw_id=h*Tw+w

d) COO* format(two channels)

Figure 6: Data representation of sparse feature maps

sparse tensor. Standard COO format represent the matrix as a set
of triples (h,w,x), where x is a non-zero entry in the matrix and
h,w represent the row and column indices(See Figure 6 (b)). Similar
to the row-pointer in CSR format, each channel will have a start
pointer, which points to the first non-zero element in that channel.
The ‘value’, x’, and ‘y’ coordinates are kept in the COO format.
While this format seems reasonable, it suffers from high format
conversion overhead. To convert elements from the dense format
to sparse format, we have to place non-zeros in the first channel
contiguously. This is followed by placing non-zeros in the second
channel and then non-zeros in the third channel and so. In order
to do this, we need to find all the non-zero elements first and then
compute its prefix sum to figure out where each channel should
begin. This requires two passes over the data, which increases
the data movement and requires synchronization, which exposes
latency.

A simple but powerful extension to the COO format can solve
the latter issue — the COO* format that we propose in this paper.
Our format is motivated by the fact that the ultimate goal of sparse
representation for CNNs is to remove unnecessary computation
and reduce global memory data movement. In COO* format, each
channel is allocated memory, assuming that it is fully dense; this re-
moves the need for prefix computation to find the starting location
and does not require expensive synchronization. However, we only
store the number of non-zero values and the values themselves. The
remaining space is left unused. A count array (nnz_count) keeps
track of the number of nnz elements in each channel. Figure 6 (c)
shows the proposed format corresponding to Figure 6 (a) which
only has one channel. Figure 6 (d) shows how multiple channels can

270

be represented using our format. COO* representation requires two
major buffers, the first buffer is to store the non-zero elements. As-
suming that the data type is float (4 bytes), the storage requirement
for storing non-zero elements is given below:

H w C
L H LW e 1
cezl(T)Xcell(T)Xcell(TC)X(THXTWXTC)X4. (1)

The second buffer is the index_buffer which indicates the po-
sitions of the non-zeros. The indexing buffer compress the (h,w)
coordinator into one linear index. Hence, it takes same amount of
words compare with the nnz_buffer. However, we can use char (1
byte) as the data type for the index_buffer. The memory required
for index_buffer in bytes is shown below:

H w C
Lo H LW . C 2
cezl(T)Xcell(T)Xcezl(TC)X(THXTWXTC). ®)]

If we ignore the ceiling operation in Eq 1, COO* sparse data repre-
sentation takes 1.25X memory space compare with dense format
tensor. With this format, each thread block (or warp) can read all
values corresponding to a particular channel from the dense format
and save them in the sparse format very efficiently (format conver-
sion friendly). Since the number of non-zeros is known apriori, the
total work can be efficiently distributed between threads. Moreover,
during convolution, each thread block (or warp) can read all non-
zero values corresponding to a particular channel from COO* for-
mat efficiently. Furthermore, during convolution, the zero elements
(unused space) are not read from the global memory, thereby reduc-
ing data movement. The COO* format also allows us to keep the
sparse tensor in tiled form. Algorithm 1 shows the dense to sparse

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

feature map conversion algorithm. Essentially, for each element in
the input tensor, we decompose its co-ordinates to corresponding
intra-tile iterators (th, tw, tc) and inter-tile iterators(h, w, ¢), where
th, tw, tc are the tile sizes along H, W, and C, respectively. For each
non-zero element, we update the len[tileld], which corresponds to
the number of non-zero elements in that tile. The value returned
by the atomicAdd operation (old value at len[tileld]) is used as the
index of the current non-zero element within the tile. Once the
index is identified, we write the co-ordinate information and values
in the corresponding arrays. The significant difference between this
algorithm and typical formats like COO is in computing the output
write location. Consider unordered COO format, which uses a global
counter used to determine the write location. This global counter is
incremented to add a new element, and the updated counter value
(or the previous value) is used to determine the write location. The
key here is that any element can be written in any position in the
array and hence is not directly compatible with tiling. While it is
not impossible to support tiling in COO format, as discussed earlier
the cost of prefix sum required to determine the write location
will overpower any practical benefit. As shown in Algorithm 1,
figuring out the write location in our format is straightforward. We
can efficiently determine the tileid for a given element, and the
element can only be placed in that tile. A counter maintains the
active number of elements in each tile.

Algorithm 1: Dense to COO* format conversion

Input: Dense feature map (1)

Output: Sparse feature map (S7) in COO” representation

parameter : thread block size (BlkSize),thread
blocks(NumBlks)

index = blockId * BlkSize + threadld

while index < C*H*W do

v = I [index]

if v! =0 then

¢ = index / (H*W)

h = (index - ¢ * H * W)/W

w = (index - ¢ *H * W) - h*W

th = h - floor(4)*TH

tw = w - floor(7y)" TW

tc = ¢ - floor(7)*TC

: * H « W h « W
tileld= 7% * 77 " 7w + TH ~ Tw * 797
writePos = atomicAdd(len[tileld],1)
ST val[tileld* TH*TW*TC+writePos] = v

ST h[tileld*TH*TW*TC+writePos] = h
ST .witileld*TH*TW*TC+writePos] = w
end
index += NumBlks * BlkSize
end
Kernel:

Our scheme targets good reuse of all the three tensors (input,
output, and kernel) either from shared-memory/L1 cache or regis-
ters. We tile the sparse input feature map along all three dimensions
(H, W, and C). We employ uniform tiling on the iteration space re-
sulting in tiles of shape TH*TW »TC. Each such tile is then mapped

271

PACT °22, October 8-12, 2022, Chicago, IL, USA

to a thread block. Each thread will iterate over the R, S, and TC di-
mensions sequentially. Different threads are mapped to different
output channels. Each thread does the following computation:

1R-1

TC-1R-15-1
O(n,th,tw) = Z Z](c,th—r,tw—s) x K(n,c,r,s)
c=0 r=0 s=0

If the number of output channels (N) is higher than the thread
block size, we will use thread coarsening along the output channel
dimension. Le., each thread will process ﬁ output channels
sequentially. The threads in a thread block will read the input tile
to shared memory in a coalesced manner. The kernel elements
are streamed to shared-memory and are double-buffered. Each
input gets full reuse from the shared-memory. For each output
element, the total number of expected intra-tile reuses is p * TC =
R % S. In order to maximize the performance and minimize data
movement, we need to keep the partial output as close to the cores
as possible. Shared-memory is one option, but its bandwidth is less
than registers. Moreover, in modern GPUs, the shared-memory
capacity is less than the collective register capacity. Using a smaller
memory will force us to choose smaller tile sizes, which will result
in reduced data reuse. Hence it is vital to keep the output elements
in registers. In our scheme, each thread will hold a buffer of size
TH = TW in registers, which are used to store the intermediate
output elements. In addition to data reuse, there are several benefits
to this strategy. One significant advantage is that we get perfect
intra warp level load-balance, inter warp level load-balance, zero
warp diverge, and zero write collisions. We also achieve good input
coalescing and output coalescing.
1 //Input: Sparse input feature map J , Dense kernel K
2 / Output: Sparse output feature map O
3 shared input_val [TH+ITW+«TC], input_h[TH«TW+TC],
4 input_w [TH«TW+TC]
5 float temp_result [TH][TW], kernel[R][S]
¢ unsigned int tile_id = blockId%(H/TH « W/TW)
7 unsigned int batch_id = blocklId/(H/TH « W/TW)

s unsigned int output_n = threadldx.x
9 //copy kernel elements from global to shared
10 copy(input_val ,input_h ,input_w, glnput_val ,...)

11 syncthreads () //synchronize all threads in a thread block
12 for ¢ = 0 to TC:

13 copy(kernel , gKernel ,n)

14 for (v,h,w) in (input_val,input_h,input_w):

15 for y_out = max(0,h-R+1) to min(h,H)

16 for x_out = max(0,w-S+1) to min(w,W)

17 y_kernel = y - y_out

18 x_kernel = x - x_out

19 result = v » kernel[y_kernel][x_kernel]

20 temp_result[y_out+«TW+x_out] += result result
21 Write the output back to memory

22 for th to TH:

23 for tw to TW:

24 y = tile_id /(W/TW)«TH+th

25 x = tile_id %(W/TW) «+TW+tw

26 O[batch_id «H«sWxN+y+W«N+x+«N+n]+=temp_result [th«TW+tw]

Listing 1: Simplified psuedocode corresponding to our
approach

Listing 1 shows the simplified pseudocode corresponding to
our sparse feature map-dense kernel approach. Figure 7 illustrates
the data tiling, shared-memory usage and work division used in

PACT °22, October 8-12, 2022, Chicago, IL, USA

vais|a | b |c [d [e|f [g|h
H | x1[x2 |x3 |xa |x5 |x6 |x7 |x8
w | v1|y2|y3 [v4 |y5 |v6 [y7 |v8

Thread block

thl th2 th3 tha ..

Figure 7: Illustration of Listing 1. Each tile includes a copy
of the halo region.

Input data volume | H*W «Cxp

Kernel data volume % * % *R+S+Cx*N
Output data volume | H =« W « N x T—CC

Total threads %*%*% * BlkSize
#Atomic operations | H * W % N * T_CC

Table 2: Parameters that affect performance and the corre-
sponding values parametrized by tile-sizes.

Listing 1. We use blockDim to denote the number of threads in a
thread block and threadId to denote the id of the thread within
a thread block. Line 7 and 8 computes the batch id and channel id
that a particular thread is responsible for. The temp_result is a
temporary array to hold the output result. Loop in line 12 is the
coarsening loop which iterates over the input channel. In line 13 we
load the kernel elements from global memory and the loopnest in
line performs the actual computations. Once all the computations
are done, the results from temp_result are written back to memory
(loopnest in line 22).

Micro-kernel: The key challenge in listing 1 is to ensure that
the temp_result array, which corresponds to the output elements,
stays in registers. Unfortunately, GPUs do not explicitly allow us to
place data directly in registers, and ensuring that the compiler does
the right data placement is a non-trivial task. In order to ensure
that temp_result is placed in registers, all the access functions cor-
responding to it should be statically resolvable — all array iterators
should have compile-time constant loop bounds, and the access
function should be a non-parametric affine function of the array
iterators or constants. A direct translation of the code in listing 1
wont place the temp_result in registers (the y_out and x_out ar-
ray iterators that are used to access temp_result does not have
constant loop bounds). Hence we carefully designed a micro-kernel
that satisfies all the constraints that the compiler requires to place
the temp_result array (output) elements in registers. We ensured
that the compiler does the right job by checking the SASS code. This
micro-kernel design achieves a 2x to 4x performance improvement
over the original code.

272

Lizhi Xiang et al.

Load Balance: As explained earlier, since we distribute the threads
in a thread block across different output channels, all the threads
in the same thread block have the same amount of work. Hence
our strategy has good inter and intra thread block load balance.
However, if the number of output channels is lower than the block
dimension, we assign different warps to process different input
feature map tiles to prevent thread idling. In order to achieve good
load balance, all the threads in a thread-block collectively bring all
input feature map elements corresponding to their share of tiles.
We then compute a prefix sum of the elements across all the tiles
and divide the work evenly. The cost of prefix operations is small
compared to the performance gained from load balancing.

Code generation: We developed a python based code generator
that emits CUDA code. Since the actual sparsity of the feature map
is not known during the offline phase, we first generate a sparsity
list that consists of numbers in the [0.4 to 0.9] range in steps of
0.05. Each entry in this list and the layer dimensions are fed to the
analytical model, which predicts the best possible code configura-
tion (tile sizes and other parameters). The predicted configuration
is passed to the code generator, and the generated code is saved in
the code cache to be used at runtime. On average, the time for this
one-time pre-processing step is around 15ms per layer of the DNN
pipeline, which includes the modeling and code generation time.

3.5 Tile size selection

Selecting the right tile-sizes at register level and shared-memory
level is crucial in determining the data-reuse potential and occu-
pancy and thus plays a big role in determining the performance.

Table 2 shows the relationships between data movement and tile
size along with number of atomic operations. Apart from data move-
ment and atomic operations, the tile-sizes also affect the achievable
occupancy and concurrency. For example, as TH and TW increase,
the data reuse of the kernel also increases which decrease the data
movement volume for the kernel. However, this will also increase
the register usage, ultimately reducing the occupancy(concurrency).
Thus a code version with optimal data-movement may not be the
best performing one. We also need to ensure that all GPU cores
have some work assigned to them. A low TH and TW will increase
the total number of thread blocks and thereby increase concurrency
(at the cost of data movement). Tile size along the input channels
(TC) also has a similar effect. A low TC enables more concurrency,
but a high TC enables more output reuse and will reduce the total
number of required atomic operations. In addition to tile size pa-
rameters, execution parameters such as block size also play a role
in determining the performance.

A straight forward way to select the tile size is to do an exhaustive
search. For a given convolution layer, we can obtain the average
sparsity for this layer by feeding sample images to the network. We
can using this information to an exhaustively try all possible code
configurations to determine the best candidate. However such an
approach is very expensive. Moreover, using average sparsity may
degrade the performance of some images.

Instead, our approach is based on analytical cost modeling. We
propose a three-stage model. First, we enumerate all possible con-
figurations, which is the cross-product of all possible tile sizes and
execution parameters. In stage 1, we eliminate all configurations

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

with low occupancy (occupancy < 50%). We can estimate the occu-
pancy based on the shared-memory and register level tile sizes.

In stage 2, we estimate the total data movement of each con-
figuration based on the equations provided in Table 2. We select
the top one third configurations with the least data movement.
Stage 1 and 2 ensure that the selected configurations have low data
movement and high occupancy. Stage 3 estimates the time of each
configuration using our analytical model as follows. Let num_blks
represent the number of thread blocks required to process a given
input activation for a given tile size. It can be computed as

w C
TH Tw TC

Let occupancy represent the occupancy corresponding to a given
code configuration and p represent the density.

Let max_ths, comp_thr represent the maximum number of si-
multaneous threads allowed by the GPU hardware and theoretical
compute throughput of the GPU respectively. Let waves represent
the number of computational waves required for the kernel.

®)

num_blks =

waves = ceil ((max_ths X occupancy) /(num_blks X blk_dim))
4)

Let blks_wave represent the number of thread blocks can be run
concurrently in each wave.

blks_wave = (max_ths X occupancy)/blk_dim

®)

Let flops_blk to represent the total number of floating point
operations inside each thread block and flops_wave to represent
the number of flops in a full wave.

flops_blk =2XTHXTW XTCXN X p (6)

flops_wave = blks_wave X flops_blk (7)

Let time_wave to represent the estimated runtime for each wave.

time_wave = flops_wave/(comp_thr X occupancy)

®

The execution time of a kernel is determined by the time at
which last wave finish execution. This can be computed as

estimated_time = time_wave X waves

©)

We compute the estimated time for all configurations remain-
ing after state two and select the configuration with the lowest
predicted execution time.

3.6 Discussion

We believe our approach can be extended to current and upcoming
architectures. (i) Most architectures share a common cache, and
each core has a private cache. Hence our micro-kernel design prin-
ciples are directly applicable. (i) We can also extend the cost model
to support new architects as the basic principles remain the same.
(iif) COO* format can also be used in spatial array architectures.

273

PACT °22, October 8-12, 2022, Chicago, IL, USA

One advantage of the COO” format on these architectures is that
the PEs do not have to communicate to determine the output loca-
tion. Without this format, the PEs would initially have to determine
the number of non-zeros each PE will generate, communicate with
other PEs to determine the output location, and then perform the
actual computation. Such a scheme will significantly impact the
synchronization and communication costs.

We also believe that our approach can be beneficial for graph
applications. An example of a pertinent graph application is GNN
(Graph Neural Networks). SpMM (Sparse-dense Matrix Multiplica-
tion) is the most time consuming kernel in GNNs. If we set R=S=1
for the sparse convolution kernel developed in this paper, we es-
sentially have an SpMM operation. With GNNs, the randomized
sampling of the edges of the graph results in dynamic sparsity
patterns similar to the dynamic sparsity of the input feature maps
handled in this PACT submission.

4 EXPERIMENTAL EVALUATION

4.1 Software and Hardware Configuration

We use two machines for benchmarking i) Nvidia GTX 2080 Ti ma-
chine(68 SMs, 11 GB running Ubuntu 20.04 LTS and, ii) Nvidia Volta
V100(84 SMs, 32GB) machine running Ubuntu 18.04.4 LTS. We used
CUDA 11.0 paired with cuDNN 8.0.2 on the 2080Ti machine and
CUDA 10.2 paired with cuDNN 7.6.5 on the V100 machine. These
machines represent two different GPU architectures (Volta and Tur-
ing) and are designed for two different user groups (enterprise,
consumer).

4.2 Networks and Dataset

We used two DenseNet[13] networks (169, 201), two ResNet[11]
networks(50, 152) for evaluation , and two VGG[28] networks (16,
19) all of which are widely used. We extracted the kernel weights
from the corresponding pre-trained network in Tensorflow. We
used the images from the ImageNet [5] database for evaluations.
We analyzed the sparsity structure and time fraction by from 100000
images from the traning set of Imagenet[5] (Figure 2 and Figure 3).
Note that all the input images are dense. For reporting performance,
we randomly selected 10000 images from the test set of Imagenet [5].
Note that the set of images used to analyze the sparsity structure
and the set of images used for testing are disjoint.

4.3 Effectiveness of Analytical Modeling

Before presenting experimental data comparing performance of
cuSNN against cuDNN, we first assess the effectiveness of our
approach to selection of code version via analytical modeling. For
each input activation at a given layer, our objective is to select the
best possible configuration - either dense execution or one among
the set of pre-compiled sparse kernels corresponding to different
register-tile sizes. We compare our analytical modeling approach
for this selection with two exhaustive search approaches:

Offline Exhaustive Search: In figure 8, we compare the execution
time (average over 100000 test images) per convolution layer for
the choice of code version made by our analytical modeling versus
one based on offline exhaustive search. This search was done by
evaluating the performance of all code configurations on a set of
sample images and then selecting the configuration with minimal

PACT °22, October 8-12, 2022, Chicago, IL, USA

Lizhi Xiang et al.

0.15
a) = Offline exhaustive search = Analytical modeling
@ 0.10
@
E
E 0.05
“ T il
won LN AL RERERAR AR R
0.15
b)
= 0.10
o
z
E
g) ‘ I\“ II“ ‘\J‘ “J‘ ‘ | “‘I‘l‘l
= 23 4 5 6 7 B 8 10111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50
Convolution ID
Figure 8: Run-time comparison: offline exhaustive search vs. modeling V100 for (a) DenseNet 201 and (b) ResNet 152
0.15
a) = Online exhaustive search(oracle) = Analytical modeling
z
& o0
£
[
E
= 005
b) 0.15
7 0.10
2
E
T 005
E
=
0.00

12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Convolution ID

Figure 9: Run-time comparison: online exhaustive search (oracle) vs. modeling V100 for (a) DenseNet 201 and (b) ResNet 152

average cost across the images. Clearly, there is no guarantee that
this on-average best configuration is the best for a given test image.
Indeed, in some cases, the average execution time using the con-
figuration from offline exhaustive search is worse than that from
our analytical modeling. Overall, our model is better or comparable
to selection via offline exhaustive search. The same performance

274

characteristics hold for the remaining networks. The trends on the
2080Ti machine are similar and omitted for brevity.

Online Exhaustive Search: Figure 9 compares our modeling
against dynamic online exhaustive search (oracle). In this test, for
each test image, we measure the performance of all configurations
by actually executing all of them and select the best-performing

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

PACT °22, October 8-12, 2022, Chicago, IL, USA

= 2080Ti = V100 sparsity
6 1
a) .
] ors
4 R =ee
5 =11 z
5 — — ?
§3 | 1 == 1 0.5 i
w , i i L
— W 0.25
1 -
°ﬂ"l“|l|*'~°*:eetezmmz&;sﬁs%:29:2;333258%3%:2&.’:&;:g’ss;ss; °
9 1
b)
7 0.75
6
g - e 2
o - X 7]
@ 4 — s 11 . (. s
5 S R g
2 - | I . N 0.25
A e EENT S a il |I ||‘ ‘ ’
o LTI A nmnmnmnmnmmmmmnmrmrmrmrmrnrmmrmmwmn,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ConvolutionID

Figure 10: Runtime comparison (cuSNN vs cuDNN): DenseNet-201 (a) on 2080 Ti (average speedup is 3.23) and V100 (average

speedup is 3.11); ResNet-152 (b) on 2080 Ti (average speedup is 3.

configuration per image. Online exhaustive search is of course not
practical for the real inference use case, but serves as a lower bound
on performance if a perfect oracle could select the best code config-
uration for each image. Figure 9 shows that the loss of performance
over the ideal choice by using our analytical modeling approach is
low for most layers.

4.4 Performance Comparison with cuDNN

In this subsection, we compare cuSNN against cuDNN, the state-
of-the-art convolution library from Nvidia. We use FP32 datatype
for all experiments.

Evaluation Metric: We use the execution time of GPU kernel(s)
as the evaluation metric. We also compare the energy consumption
of different approaches. We measure the execution time using cuda
events and energy using the NVML API [24]. cuDNN requires a
warmup run, however, for fairness, we don’t include the warmup
time in our experiments. Any overhead such as dense-sparse con-
version associated with our approach is also included in the mea-
surement.

Layer wise evaluation: First, we demonstrate the effectiveness
of our approach by comparing the run-time of individual layers.
Figure 10 shows our layer-wise speedup over cuDNN on different
networks on different machines with the layers’ sparsity overlapped
(also shown in Fig.2). The X-axis shows the layer id, the left Y-axis
shows the speedup and the right Y-axis shows the sparsity. The
dotted yellow line shows the sparsity across all convolution layers
for DenseNet-201(a) and ResNet-152(b). The solid yellow line shows
the sparsity trend for all convolution layers, the solid blue line
shows the speedup trend on the 2080Ti machine, and the solid red
lines show the speedup trend on the v100 machine. The solid black
line corresponds to a speedup of one. The speedup has a similar

275

5) and V100 (average speedup is 2.83)

trend as the sparsity, increasing towards the later layers. On the
2080Ti GPU, we achieve better speedup in the middle layer since
cuDNN performance is low in these layers. The other networks
follow a similar trend. Figure 11 shows the effect of different batch
sizes (V100 results are omitted for brevity).

- batchSize1 -b ize2

30 50

40

10 20

ConvolutionID

Figure 11: Speedup for different batch sizes for (a) Densenet
201 and (b) Resnet 152: 2080 Ti

Whole-Network Evaluation: In order to show that our sparse
convolution is impactful, we present the full network evaluation of

PACT °22, October 8-12, 2022, Chicago, IL, USA

= 2080Ti = V100

0.5

speedup

0.0

resnet152 vgg16 vgg19

Figure 12: Full network evaluation on 2080 Ti and V100 GPUs
using analytical model for tile size selection

different networks and show the overall performance improvement
(includes all non-convolution as well as convolution layers). We
constructed the six networks using our cuSNN kernels and compare
them with cuDNN kernels. For all non convolution layers such as
batchnorm, fully connected layer, etc. and for dense convolutions
we used the cuDNN implementation. Figure 12 shows the corre-
sponding results use analytical modeling tile-size selection. The
X-axis shows the network name, and the y-axis shows the speedup.
On the 2080Ti machine, cuSNN achieved 1.24X speedup on aver-
age for the two DenseNet architectures, 1.26X speedup on average
for Resnet, and 1.2X speedup on average for VGG. On the V100
machine, the corresponding speedup are 1.23X,1.3X and 1.12X. For
offline exhaustive search tile-size selection, the speedup on 2080Ti
is (1.32X, 1.26X, 1.27X), and V100 is (1.18X, 1.32X, 1.18X), these are
also on average speedup for each two DenseNet, Restnet and VGG.
We note that our average speedup for whole-network evaluation
is lower than that reported earlier for layer-wise evaluation. Since
we only optimize the convolution layers and other layers such as
BatchNorm, Pooling, and FullyConnected layers take a non-trivial
amount of time, the overall speedup is reduced.

=cuSNN =cuDNN
2000

1500
1000

500

energy consumption(milli-joule)

resnet152

vgg16 vgg19

Networks

Figure 13: Energy consumption comparsion of cuSNN and
cuDNN across the six networks on V100 machine

Energy evaluation: Figure 13 compares the total energy con-
sumption characteristics of different implementations on the V100
machine. The X-axis shows the networks we evaluated. The Y-
axis shows the energy consumed in millijoules by each frame-
work(cuDNN vs. cuSNN). On average, cuSNN consumes 19% less
energy when compared with cuDNN across the six networks.

276

Lizhi Xiang et al.

5 CONCLUSION

In this paper, we designed and developed a high-performance GPU
implementation for sparse feature map convolutions. Our design
considers various performance bottlenecks in GPUs and success-
fully mitigates them. The result section shows that, on real bench-
marks with real datasets, our approach achieves substantial speedup
over the state-of-the-art implementations. We believe that our de-
sign’s efficacy can be adapted to other machine learning and graph
computation primitives.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable feedback that helped
us improve the paper. The support and resources from the Center
for High Performance Computing at the University of Utah are
gratefully acknowledged. We are also very thankful for the use of
the RI2 compute cluster in the CSE Department at the Ohio State
University. Work at the University of Utah was supported in part
by the National Science Foundation through awards 2018016.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-
ware available from tensorflow.org.

R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe. Tiramisu: A polyhedral compiler for expressing
fast and portable code. In 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 193-205, 2019.

K. Behrendt, L. Novak, and R. Botros. A deep learning approach to traffic lights:
Detection, tracking, and classification. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 13701377, 2017.

Xuhao Chen. Escort: Efficient sparse convolutional neural networks on gpus.
CoRR, abs/1802.10280, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolu-
tional networks. CoRR, abs/1706.01307, 2017.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 6645-6649, 2013.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding,
2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 1135-1143. Curran Associates, Inc., 2015.

P. Harar, R. Burget, and M. K. Dutta. Speech emotion recognition with deep
learning. In 2017 4th International Conference on Signal Processing and Integrated
Networks (SPIN), pages 137-140, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700-4708, 2017.

Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayam-
pallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue,
Fernando A. Mujica, Adam Coates, and Andrew Y. Ng. An empirical evaluation
of deep learning on highway driving. CoRR, abs/1504.01716, 2015.

2

—

B3

=

[4

flam

[5]

G

=

[7]

(8]

[

—

(10]

[11]

[12]

(13]

[14]

High-performance Architecture Aware Sparse Convolutional Neural Networks for GPUs

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

Yani Ioannou, Duncan P. Robertson, Roberto Cipolla, and Antonio Criminisi.
Deep roots: Improving CNN efficiency with hierarchical filter groups. CoRR,
abs/1605.06489, 2016.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolu-
tional neural networks with low rank expansions. ArXiv, abs/1405.3866, 2014.
F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe. Taco: A tool to
generate tensor algebra kernels. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 943-948, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. CoRR, abs/1608.08710, 2016.

Tailin Liang, Lei Wang, Shaobo Shi, and John Glossner. Dynamic runtime feature
map pruning. arXiv preprint arXiv:1812.09922, 2018.

Top 500 list. Top 500: HPCG - june 2022. https://www.top500.org/lists/hpcg/
2022/06/, 2022.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.
Sparse convolutional neural networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Efficient sparse-winograd
convolutional neural networks. CoRR, abs/1802.06367, 2018.

[23] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method

[24]

[25]

for deep neural network compression. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

Nvidia. Nvidia management library. https://developer.nvidia.com/nvidia-
management-library-nvml.

D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and
Learning Systems, pages 1-21, 2020.

[26] Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep Dubey.

Holistic sparsecnn: Forging the trident of accuracy, speed, and size. CoRR,

277

[27

(28]

[29

[30

[31

(32

(33]

PACT °22, October 8-12, 2022, Chicago, IL, USA

abs/1608.01409, 2016.

Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. Sbnet: Sparse
blocks network for fast inference. CoRR, abs/1801.02108, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

K. Sirinukunwattana, S. E. A. Raza, Y. Tsang, D. R. J. Snead, I. A. Cree, and N. M.
Rajpoot. Locality sensitive deep learning for detection and classification of nuclei
in routine colon cancer histology images. IEEE Transactions on Medical Imaging,
35(5):1196-1206, 2016.

Wenging Sun, Bin Zheng, and Wei Qian. Computer aided lung cancer diagnosis
with deep learning algorithms. In Georgia D. Tourassi and Samuel G. Armato III,
editors, Medical Imaging 2016: Computer-Aided Diagnosis, volume 9785, pages
241 - 248. International Society for Optics and Photonics, SPIE, 2016.

Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, page 2082-2090,
Red Hook, NY, USA, 2016. Curran Associates Inc.

Tao Xu, Han Zhang, Xiaolei Huang, Shaoting Zhang, and Dimitris N. Metaxas.
Multimodal deep learning for cervical dysplasia diagnosis. In Sebastien Ourselin,
Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, and William Wells, editors, Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2016, pages 115—
123, Cham, 2016. Springer International Publishing.

Weizhi Xu, Shengyu Fan, Hui Yu, and Xin Fu. Accelerating convolutional neural
network by exploiting sparsity on gpus. arXiv preprint arXiv:1909.09927, 2019.
T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learn-
ing based natural language processing [review article]. IEEE Computational
Intelligence Magazine, 13(3):55-75, 2018.

https://www.top500.org/lists/hpcg/2022/06/
https://www.top500.org/lists/hpcg/2022/06/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

PACT °22, October 8-12, 2022, Chicago, IL, USA

A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains the scripts and data required to reproduce
the experimental results in the PACT 2022 paper titled “High-
performance Architecture Aware Sparse ConvolutionalNeural Net-
works for GPUs”. The git repository contains:
o The cuSNN generated source code for sparse convolution
layers;
o The cuSNN generated code for end2end network evaluation;
o The scripts to run layer wise performance comparison and
end2end inference time comparison(cuSNN vs cuDNN) ;

A.2 Artifact check-list (meta-information)

e Run-time environment:
CUDA: 10.2(v100), CUDA:11.0(2080Ti), cuDNN:7.6.5(v100),
cuDNN: 8.0.2(2080Ti), Linux platform such as Ubuntu or
CentOS.

278

Lizhi Xiang et al.

e Hardware: Nvidia 2080Ti or Nvidia V100.

e How much disk space required (approximately)?: > 50
GB.

e How much time is needed to complete experiments
(approximately)?: Should be less than 1 hour.

e Publicly available?: Yes

A.3 Installation and Run
Clone the repository (recursively):

https://github.com/aGoodCat/PACT-CUSNN.git
See README in our repo for instructions to build and run:

A.4 Evaluation and Expected Result

The run-time of individual layers(densenet201, resnet152) compari-
son(cuSNN vs cuDNN). Entire network evaluation for densenet(121,
169, 201), resnet(101, 152) using sparse convolution kernel code
generated by cuSNN analytical modeling.

	Abstract
	1 Introduction
	2 Related Work
	3 cuSNN: Sparse Convolution Neural Network
	3.1 Overview
	3.2 Challenges
	3.3 Design Exploration
	3.4 cuSNN kernel design
	3.5 Tile size selection
	3.6 Discussion

	4 Experimental Evaluation
	4.1 Software and Hardware Configuration
	4.2 Networks and Dataset
	4.3 Effectiveness of Analytical Modeling
	4.4 Performance Comparison with cuDNN

	5 Conclusion

	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Installation and Run
	A.4 Evaluation and Expected Result

