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Abstract—Driven by the end of Moore’s law, heteroge-
neous architectures, particularly GPUs, are experiencing
a surge in demand and utilization. While these platforms
hold the potential for achieving high performance, their
programming remains challenging and requires extensive
hardware knowledge. This complexity is further exacer-
bated by the different proprietary languages utilized by
various vendors. In this paper, we conduct a performance-
portability study on two portable languages, SYCL and
Kokkos. Specifically, we focus on the case study of tensor
contractions and employ COGENT, a DSL compiler for
tensor contractions, to generate CUDA code for the 48
different tensor contractions in the TCCG benchmark
suite. We extend COGENT to produce Kokkos code, and
use Hipify and SycloMatic, which are tools that convert
CUDA code to HIP and SYCL. Our analysis involves a
comparison of the performance of each framework on
both Nvidia and AMD GPUs. Our experiments show
that identically tiled tensor contraction kernels in Kokkos
and SYCL can exhibit significant performance differences
compared to the corresponding CUDA/HIP program, re-
spectively on Nvidia/AMD GPUs. The main reason for the
performance differences arise from differences in register
usage and the management of register spills to thread-
private stack memory, affecting overall degree of thread-
level concurrency and the volume of data movement
to/from GPU DRAM.

Keywords-Performance portability; GPUs; Tensor con-
tractions; Kokkos; SYCL

I. INTRODUCTION

GPUs have become the primary hardware platform
for high-performance machine learning and also for
many applications in scientific computing. However, a
significant software challenge has emerged with mul-
tiple proprietary GPU programming languages, e.g.,
CUDA for Nvidia GPUs, HIP for AMD GPUs, and a
different programming model like OpenMP for CPUs.
Maintaining multiple versions of an application code
for different hardware platforms is highly undesirable.
Portable programming models like Kokkos [11]and
SYCL [5] seek to address this software challenge. A
number of prior efforts have performed evaluations on
the effectiveness of such portable programming models.
In this paper, we undertake a performance portability
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study of Kokkos and SYCL using 48 tensor contraction
benchmarks from the TCCG benchmark suite [17].

To achieve performance portability, the programming
model must provide an abstract way of expressing
concurrency and parallelism, which can be mapped to
the parallel features of the underlying hardware by the
implementation. The range of implementation options
for both expressing parallelism and mapping to the
hardware can impact the degree to which performance
portability is achieved.

SYCL is a portable parallel programming model
that offers a range of abstraction levels for develop-
ing parallel applications, including data-parallel kernels,
hierarchical parallelism, SIMT-style NDRange kernels,
and high-level task-based concurrency. Several imple-
mentations of the SYCL specification exist, including
hipSYCL and Intel oneAPI DPC++.

Kokkos is a portable programming model that pro-
vides a range of abstraction levels for developing par-
allel applications, including data-parallel kernels, hier-
archical parallelism, and task parallelism. Kokkos is
designed to support the development of performance
portable applications that can run efficiently on different
architectures, including CPUs, GPUs, and accelerators.
It accomplishes this by providing a single-source pro-
gramming model that can be compiled and executed
on different architectures without the need for signifi-
cant modifications. Multiple backends are available for
the Kokkos programming model, including those for
CUDA, HIP, OpenMP, and SYCL.

This paper aims to evaluate the effectiveness of
Kokkos and SYCL in enabling performance portability
for high-performance tensor computations and to iden-
tify potential opportunities for improvement. While a
number of prior efforts have performed studies to eval-
uate performance-portable frameworks [9], [10], [12],
[13], they have generally focused on one or a very
small number of kernels. In contrast, this study uses
a large number of GPU kernels for tensor contractions,
featuring tensors and iteration spaces of different dimen-
sionality. Further, most prior performance portability



studies [9], [10], [12], [13] appear to have focused
mainly on bandwidth-limited GPU kernels/applications
where observed performance differences across portable
frameworks like Kokkos/SYCL and native GPU pro-
gramming models like CUDA/HIP were not very sig-
nificant.

Our experiments with the tensor contraction bench-
marks showed much greater variability across frame-
works and target platforms than previous performance
portability studies. Some high-level observations from
our study are listed below.

e Unlike with bandwidth-limited GPU kernels stud-
ied in prior studies in the literature, optimized
GPU kernels for tensor contraction use fairly large
register tiles for data locality optimization. The
management of thread-local data (scalar intermedi-
ates and the variables associated with register-tiles)
in the generated code by different frameworks re-
sults in significant performance differences across
frameworks and hardware platforms.

o Register usage with Kokkos tends to be higher than
both CUDA and HIP, resulting in lower thread
occupancy and lower performance. On Nvidia
GPUs, the use of launch bounds directives is very
helpful in increasing Kokkos performance, raising
performance to even higher levels than CUDA for
many of the benchmarks. On AMD GPUs, launch
bounds did not improve performance of Kokkos
kernels.

o Achieved thread occupancy on Nvidia GPUs was
quite consistently higher for SYCL than Kokkos
but SYCL performance was often worse than
kokkos performance due to significantly higher
global-memory data writes due to register spilling
into the thread’s stack memory.

e SYCL performance relative to the native program-
ming model (CUDA/HIP) differed quite signifi-
cantly on the Nvidia GPU compared to the AMD
GPU, being considerably worse than CUDA on the
former and overall better than HIP on the latter.

II. PROGRAMMING MODELS AND PERFORMANCE
PORTABILITY

Performance portability is an important concern in
high-performance computing, where applications need
to be able to run efficiently on different hardware archi-
tectures. To address this challenge, various performance
portability tools have been developed in recent years. In
the following we go through some of the state of the
art performance portability frameworks/interfaces.
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1) Kokkos: Kokkos[11] is a widely used program-
ming framework created at the U.S. Department of
Energy’s Sandia National Laboratories. It enables the
development of performance-portable applications that
can run efficiently on various computer architectures
such as CPUs, GPUs, and other accelerators. Kokkos
uses a parallel programming model based on C++ tem-
plates and provides a high-level programming interface
that is independent of hardware. It is widely used in sci-
entific computing, engineering, and high-performance
computing applications, and is incorporated into more
than 100 software components and applications, achiev-
ing performance portability on at least 5 of the top
10 supercomputers. Users write their applications using
Kokkos abstractions, and performance portability is au-
tomatically enabled across different hardware platforms,
including multi-core CPUs and GPUs.

The Kokkos programming model provides a range
of features for developing high-performance scientific
applications across a variety of hardware platforms. One
of the key features of recent Kokkos versions is the ca-
pability of describing multi-dimensional iteration spaces
using the MDRangePolicy, which is an execution policy
that defines the iteration space and thread mapping for
parallel constructs like parallel_for and parallel_reduce
[18]. The MDRange (Multi-Dimensional Range) policy
enables users to specify the iteration space by defining
the lower and upper bounds for each dimension, as well
as the degree of parallelism or the number of threads
used to execute the parallel construct. Kokkos maps
threads to the iteration space, dividing the space into
smaller tiles and assigning one thread to each element
in the tile. The number of threads used for parallel
execution can be specified by providing a third argument
to the policy constructor, called the tileSize [18]. This
approach helps improve performance by leveraging the
underlying hardware’s parallelism and memory hierar-
chy. The MDRange policy plays a vital role in managing
parallel execution in Kokkos, allowing users to exploit
the full potential of modern high-performance com-
puting architectures.This flexibility allows developers
to write efficient and portable code that can be opti-
mized for specific hardware architectures. Furthermore,
Kokkos provides a range of tools and libraries to help
developers optimize their code for performance, such
as the Kokkos Profiling Interface (KPI) and the Kokkos
Core library.

2) SYCL: SYCL[5] is a C++ abstraction layer for
developing portable heterogeneous applications that can
run on multiple hardware platforms, including CPUs,
GPUs, FPGAs, and other accelerators. It is a standard



programming model developed by the Khronos Group,
and it provides a unified programming interface for
developers to write parallel code that can be executed
on different hardware architectures.

SYCL is based on a single-source programming
model, where a single C++ source code can be written
for both host and device. SYCL programs are written
using standard C++ and can be compiled using standard
C++ compilers. SYCL provides an interface for ex-
pressing data parallelism and task parallelism using the
concept of command groups and kernels, respectively.
SYCL is supported by various vendors, including Intel,
AMD, and Xilinx, and it is integrated with various pro-
gramming frameworks, such as TensorFlow, PyTorch,
and OpenCV. The features in SYCL for specifying
multi-level parallelism have been heavily influenced
by Kokkos and are conceptualy very similar to those
discussed in this Section for Kokkos.

SYCLomatic[8] is a code conversion tool designed
to help developers convert code written in different
programming languages to SYCL. While the tool can
assist with code migration, the final verification and
editing process is still manual and must be performed by
the developer. To make the migration process as simple
as possible, developers can use the “c2s” command
to migrate existing CUDA codebases to SYCL. Once
code is migrated to SYCL, it can be compiled and
executed using any compiler that implements the SYCL
specification.

3) HIP: HIP (Heterogeneous-Compute Interface for
Portability)[2] is a C++-based language developed by
AMD that provides an interface for writing code that
can run on different heterogeneous compute systems,
including both CPUs and GPUs [2]. The language
is designed to be familiar to developers who have
experience with CUDA. With HIP, developers can write
code once and target different hardware architectures
without significant changes to the code.

HIP provides a set of tools for compiling, debugging,
and profiling HIP code, including the HIP runtime
library, which allows for easy runtime deployment of
HIP code, and the ROCm software stack, which is
designed to provide optimized GPU acceleration for
machine learning and scientific computing applications.

Hipify is an open-source tool provided by AMD’s
ROCm platform that allows developers to automatically
convert CUDA code to HIP code, making it easier to
port their applications to AMD GPUs. Hipify works by
parsing the input CUDA code and transforming it into
equivalent HIP code. The tool can handle most common
CUDA constructs, such as kernels, device functions, and
CUDA libraries. It also provides a set of command-
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line options that allow developers to customize the
transformation process, including choosing the target ar-
chitecture, enabling/disabling specific transformations,
and specifying custom header files.

4) CUDA: The CUDA programming model, devel-
oped by NVIDIA, is a proprietary technology that has
been widely used. CUDA, short for Compute Unified
Device Architecture, is designed for massively parallel
computing on NVIDIA GPUs [1].

With CUDA, developers can take advantage of the
processing power of NVIDIA GPUs to accelerate com-
putationally intensive tasks. This is achieved by utilizing
the thousands of cores available on a GPU, which are
optimized for data-parallel operations.

III. CODE GENERATION FOR TENSOR
CONTRACTIONS

This section provides a brief background on tensor
contractions and outlines the process of generating
contraction code in various programming languages.

A. Tensor Contractions

Tensor contractions can be viewed as a generalization
of matrix multiplication to higher dimensions. Consider
the following Einstein notation for contracting two 4D
tensors A and B to produce another 4D tensor C' which
represents ), . Ala, e, b, f] x Bld, f,c,el:

Cla,b,c,d] = Ala, e, b, f] * Bd, f,c, €] (IIL.1)

The indices e and f are the contraction indices
(internal indices), while a, b, ¢, and d are the external
indices. In the Einstein index convention, summation
(contraction) is implied for indices not appearing in the
left-hand side tensor.

Ng
= I T, X T, x T,
8 Ty x Ty X Ty

Figure 1: Illustration of Tiled-Execution of Tensor Con-
traction



We utilize COGENT [15], a CUDA code generator
for tensor contractions based on the direct contraction-
based approach. COGENT’s contraction scheme in-
volves streaming input tensors using shared memory and
registers, while the output stays stationary in registers.
Initially, a multidimensional slice of each input tensor
is brought into shared memory. Next, the data in shared
memory is sliced, and a column slice of input tensor
A and a row slice of tensor B are loaded into registers
from shared memory. These slices are subjected to outer
product, and the partial results are stored in registers.
All remaining input slices required to form the output
are similarly streamed via shared memory and registers.
Once all outer products are completed, the final output
is written back to shared memory. Figure 1 provides a
high-level overview of COGENT’s contraction scheme.

In this work, we extend COGENT to generate HIP
code and Kokkos code. We also tried using hipify to
generate hip code from CUDA. We used SYCLomatic
to convert CUDA code to SYCL.

B. Kokkos code generation

To generate Kokkos code, we utilized a similar ap-
proach to the original COGENT, but we adapted the
code generator to utilize Kokkos constructs. Kokkos
provides two primary mechanisms for specifying par-
allel execution patterns: TeamPolicy and MDRange.
We selected TeamPolicy due to its ability to enable
control over shared memory usage. Specifically, we used
TeamPolicy to regulate the league_size (i.e., grid size)
and team_size (analogous to grid and thread blocks in
CUDA terminology). A team is similar to a CUDA
block and is a collection of Kokkos threads that can
synchronize and exchange data through a shared scratch
pad (akin to shared memory in CUDA terminology) [3].
To represent the tensors (which were previously repre-
sented by raw pointers in COGENT’s CUDA code), we
utilized Kokkos::View. We launched a kernel using the
‘Kokkos::parallel_for’ function, and the Team_rank()
function enabled us to obtain the thread identifier in
Kokkos, which corresponds to threadldx.y in CUDA.

C. SYCL code generation

To facilitate the generation of SYCL code, we em-
ployed the SYCLomatic tool, which automatically trans-
lates CUDA code to SYCL. However, we encountered
difficulties with certain benchmarks that utilized con-
stant memory, as SYCLomatic was unable to properly
handle this code and generated runtime errors. To ad-
dress this issue, we manually modified the translated
code by converting the constant memory to regular
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global memory. This modification enabled the bench-
marks to execute successfully in the SYCL program-
ming model.

D. HIP code generation

Given the syntactical similarities between HIP and
CUDA, it is relatively straightforward to migrate code
between the two platforms. For instance, code elements
such as cudaMemcpy, __global__, cudaStream_t can
be replaced with their equivalent counterparts in HIP,
namely hipMemcpy, __global__ _ host__, and hip-
Stream_t, respectively. Therefore, we adapted COGENT
to directly generate HIP code, while also investigating
the use of the hipify code converter to generate HIP code
from existing CUDA code. Our experimental results
show that the performance characteristics of the code
generated via both approaches are very similar.

IV. EXPERIMENTAL EVALUATION

In this section, we present an in-depth evaluation
of the performance characteristics of Kokkos, SYCL,
HIP, and CUDA on an Nvidia and AMD platform.
We benchmarked various frameworks using 48 distinct
tensor contractions from the TCCG suite [17], which
represent contractions arising in practical applications.
The corresponding contraction equations are listed in
Table I:

« 1 to 8: eight tensor contractions representing tensor
computations in machine learning domain.

9 to 11: three tensor contractions used to transform
a set of two-electron integrals from an atomic
orbital basis to a molecular orbital basis.

e 12 to 30: nineteen tensor contractions from the
CCSD method.

31 to 48: eighteen tensor contractions from the
CCSD(T) method.

Table I provides the dimensions of each tensor, the
permutation of indices, and the total number of opera-
tions involved. The ‘Tensor Contraction’ column shows
the Einstein representation of the contraction — the first
group of letters corresponds to the indices of the output
tensor, the second and third groups of letters correspond
to the indices of the two tensors being contracted. For
instance, in TCCG-2 (#2), two tensors [d, ¢, a] and [b, d]
are contracted to generate the output matrix [a, b, ¢],
where d is the contraction index.

Performance evaluation was conducted on two sys-
tems: (1) Nvidia RTX 3060 (12 GB) GPU paired with an
AMD Ryzen 7 3700x CPU, running Ubuntu 20.04 OS
with CUDA version 11.6 and ROCm 5.3, and (2) AMD
W6800 GPU (32 GB) paired with 10th Gen Intel(R)
Core i9-10980X, running Ubuntu 20.04 OS with ROCm
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Figure 2: Percentage of peak GFLOPS achieved, Achieved Occupancy, and DRAM Bytes Write Per Operations on

NVIDIA.

5.4 (for HIP and Kokkos) and ROCm 4.5.2 (SYCL). We
had to use two versions of ROCm for W6800 as Kokkos
was not compatible with ROCm 4.5.2 and SYCL was
not compatible with ROCm 5.4.

We used DPC++ CUDA plugin from CodePlay [7]
to run SYCL implementation of Intel oneAPI DPC++
(latest 2023.0.0 version) and DPC++ HIP plugin from
CodePlay (2023.0.0 Beta) [6] on AMD machine. We
used KOKKOS v3.7 [4]. Nsight was used to extract
kernel time and collect performance metrics on the
Nvidia platform, and ROC-profiler (rocprof 4.5.2) on
the AMD platform. However, we could only obtain
limited metrics on the AMD platform due to ROC-
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profiler’s limited support on consumer cards W6800
with rocm-4.5.

Figure 2 presents a comparison of the achieved
GFLOPS by different frameworks, relative to the peak
GFLOPS, along with the achieved occupancy and the
dram-bytes written per arithmetic operation (inverse of
arithmetic intensity). CUDA and HIP achieves simi-
lar performance on the Nvidia platform. In general,
KOKKOS outperforms SYCL, but performs less effi-
ciently than CUDA/HIP. Our adapted COGENT code
generator produces HIP code with similar performance
characteristics to the HIP code generated by the hipfy
tool for converting CUDA code. Therefore, we will fo-
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Figure 3: Achieved Occupancy versus Total Number of Registers Used on NVIDIA RTX3060

cus our studies on the COGENT-generated HIP code.To
gain a better understanding of the performance differ-
ences, we conducted an analysis of the achieved oc-
cupancy and global memory (DRAM) data movement.
Occupancy, defined as the ratio of the maximum number
of active threads to the number of active threads, is
an important metric that reflects the degree to which
a GPU’s computational resources are being utilized.
A higher occupancy indicates that more threads are
active, which can help in hiding memory latency and
improving performance. In general, higher occupancy
correlates with higher performance, except for SYCL,
which has higher occupancy than KOKKOS but poorer
performance due to the high data movement. This higher
data movement is attributable to the use of local memory
transactions in SYCL.

The occupancy of COGENT-generated code is
mainly determined by register usage and shared
memory usage. As shown in Figure 3, occupancy
is well-correlated with register usage. We observed
that KOKKOS typically uses a much higher number
of registers than other frameworks. To better tune
resource usage based on the launch configuration,
we used launch_bounds. The “_ launch_bounds__
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primitive in the CUDA programming language enables
us to inform the compiler of the launch configuration.
The “__launch_bounds__(Max_Threads_Per_Block,
Min_Blocks_Per_SM)” construct takes two
parameters: maximum number of threads per thread
block and minimum number of blocks per SM.
KOKKOS exposes launch bound control using the
Kokkos::LaunchBounds construct. We evaluated several
{Max_Threads_Per_Block, Min_Blocks_Per_SM}
configurations of the form {128, x} where x € {2,
4, 6, 8, 10, 12}, {256, y} where y € {2, 3, 4, 5, 6},
and {512, z} where z € {2, 3, 4}. This tuning process
aims to identify the optimal values for these parameters
that result in higher occupancy, which can lead to
improved performance for each specific TCCG cases.
Figure 4 shows the impact of launch bound tuning.
The geomean speedup of KOKKOS tuned over the
base version is ~ 1.34z and for CUDA is ~ 1.02z. We
observed that for certain case like 32 the performance
gain was %120. As seen on Fig.4, we gain up to 2x
speed up by tuning Kokkos implementation over all
TCCG benchmark. For instance, TCCG benchmark
case 15 and case 36, which represent a problem in
CCSD and CCSD-T methods in chemistry, we get



Table I: TCCG Benchmark Tensor Contraction

| # | Tensor Contraction | Extents | ops |
1 abc-bda-dc 312 312 24 312 1.46e+9
2 abc-dca-bd 312 24 296 312 1.38e+9
3 abcd-dbea-ec 7272247272 1.29¢+9
4 abcd-deca-be 7224727272 1.29e+9
5 abcd-ebad-ce 7272247272 1.29¢+9
6 abcde-efbad-cf 48 32 24 32 48 32 3.62e+9
7 abcde-ecbfa-fd 48 32 32 24 48 48 5.44e+9
8 abcde-efcad-bf 48 24 32 32 48 32 3.62e+9
9 abcd-ea-ebed 7272727272 3.87e+9
10 abcd-eb-aecd 7272727272 3.87e+9
11 abcd-ec-abed 7272727272 3.87e+9
12 ab-ac-cb 5136 5120 5136 2.70e+11
13 ab-acd-dbc 312 296 296 312 1.71e+10
14 ab-cad-dcb 312 296 312 312 1.80e+10
15 abc-acd-db 312 296 296 312 1.71e+10
16 abc-ad-bdc 312 312 296 296 1.71e+10
17 abc-adc-bd 312 312 296 296 1.71e+10
18 abc-adc-db 312 296 296 312 1.71e+10
19 abc-adec-ebd 7272727272 3.87e+9
20 abcd-aebf-dfce 727272727272 2.79e+11
21 abcd-aebf-fdec 727272727272 2.79e+11
22 abcd-aecf-bfde 727272727272 2.79+11
23 abcd-aecf-fbed 727272727272 2.79%+11
24 abcd-aedf-bfce 727272727272 2.79e+11
25 abcd-aedf-fbec 727272727272 2.79%+11
26 abcd-aefb-fdce 727272727272 2.79%+11
27 abcd-aefc-fbed 727272727272 2.79e+11
28 abcd-eafb-fdec 727272727272 2.79+11
29 abcd-eafc-bfde 727272727272 2.79e+11
30 abcd-eafd-fbec 727272727272 2.79e+11
31 abcdef-dega-gfbe 24 16 16 24 16 16 24 1.81e+9
32 abcdef-degb-gfac 24 16 16 24 16 16 24 1.81e+9
33 abcdef-degc-gfab 2416 16 24 16 16 24 1.81e+9
34 abcdef-dfga-gebc 2416 16 24 16 16 24 1.81e+9
35 abcdef-dfgb-geac 2416 16 24 16 16 24 1.81e+9
36 abcdef-dfgc-geab 2416 16 24 16 16 24 1.81e+9
37 abcdef-efga-gdbe 24 16 16 16 24 16 24 1.81e+9
38 abcdef-efgb-gdac 24 16 16 16 24 16 24 1.81e+9
39 abcdef-efgc-gdab 24 16 16 16 24 16 24 1.81e+9
40 abcdef-gdab-efge 24 16 16 16 24 16 24 1.81e+9
41 abcdef-gdac-efgb 2416 16 16 24 16 24 1.81e+9
42 abcdef-gdbc-efga 2416 16 16 24 16 24 1.81e+9
43 abcdef-geab-dfge 2416 16 24 16 16 24 1.81e+9
44 abcdef-geac-dfgb 2416 16 24 16 16 24 1.81e+9
45 abcdef-gebe-dfga 24 16 16 24 16 16 24 1.81e+9
46 abcdef-gfab-degc 24 16 16 24 16 16 24 1.81e+9
47 abcdef-gfac-degb 24 16 16 24 16 16 24 1.81e+9
48 abcdef=gfbc-dega 24 16 16 24 16 16 24 1.81e+9

%120 and %50 improvement respectively. The original
Kokkos implementation for Case-15 used 106 registers,
resulting in an occupancy of 33% only. However, when
the maximum number of threads per block was set
to 128 and minimum number of active blocks per
streaming multiprocessor (SM) was set to 8, the register
usage decreased to 64 and the occupancy increased to
66%, significantly boosted the performance from 1316
to 2859 GFLOPS.

Despite having similar register usage compared to
several other benchmarks, all frameworks demonstrated
lower performance on case 13 and 14. The reason for
this can be attributed to a smaller grid size (number of
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thread blocks) leading to low occupancy and underuti-
lization of resources.

Figure 5 shows the percentage of peak GFLOPS
achieved by SYCL, HIP, and Kokkos on AMD W6800.
In many cases, SYCL outperforms Kokkos and even
HIP on this platform. Unfortunately, we could not
reliably collect performance metrics using ROC-prof on
AMD W6800.

Figures 6 and 7 provide a comprehensive overview of
SYCL and Kokkos performance on different platforms.
It is worth noting that Figure 6 did not utilize launch
bounds tuning due to the unavailability of an interface
to tune it in SYCL, whereas Figure 7 presents results
after launch bounds tuning. Overall, the performance
of SYCL is better on the AMD W6800 platform,
and in most cases, it performs comparably or better
than HIP. However, SYCL’s performance on the Nvidia
RTX3060 platform is significantly lower than that of
CUDA. Conversely, Kokkos demonstrates the opposite
trend, where it performs relatively well on the Nvidia
RTX3060 platform compared to the AMD W6800.

V. RELATED WORK

Dufek et al. [10] conducted an extensive case study
investigating the effectiveness of Kokkos and SYCL as
performance-portable frameworks for the Milc-Dslash
benchmark, focusing on NVIDIA, AMD, and Intel
GPUs. The authors primarily developed a GPU parallel
implementation for the Milc-Dslash application and
assessed its performance portability using the widely
recognized Kokkos and SYCL frameworks. By testing
the implementations on GPUs from three major ven-
dors—NVIDIA, AMD, and Intel— Dufek et al. [10]
aimed to highlight the advantages of using performance-
portable frameworks for achieving cross-platform com-
patibility and comparable performance levels. Their
work provides valuable insights into the potential of
Kokkos and SYCL for simplifying the development pro-
cess and minimizing the need for platform-specific op-
timizations, while maintaining high-performance com-
puting capabilities across various GPU architectures.

Several studies have been conducted to evaluate
the performance of HPC-style SYCL applications in
comparison to traditional programming models like
OpenMP, CUDA, and OpenCL. McIntosh-Smith et. al.
[9] examine the performance of three SYCL appli-
cations (BabelStream, Heat and CloverLeaf) from the
high-performance computing (HPC) domain across var-
ious CPU and GPU architectures. Similarly, Milthorpe
et. al. [14] evaluates 38 different kernels on SYCL
with several SYCL implementation including DPC++,
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Figure 7: Correlation of Kokkos with MAX-Performing launch-bound versus CUDA, and AMD-Kokkos versus HIP

ComputeCPP, OpenSYCL(HipSYCL) and triSYCL on
several architectures.

In recent works, several researchers have explored
the migration of CUDA implementations to SYCL and
oneAPI programming models for better performance
portability on GPUs.

Jin et al. [12] discuss the conversion of a CUDA
implementation of a high-order epistasis detection al-
gorithm to SYCL and the evaluation of its performance
on an NVIDIA V100 GPU. The paper covers various
aspects of the migration process, including memory
management, intrinsic and arithmetic functions, atomic
functions, and kernel execution. The authors note that
while the pointer-based memory management interfaces
in SYCL make integration with existing CUDA pro-
grams easier, loop unrolling must be applied manually
for comparable performance in SYCL. Additionally, the
performance of the reduction operation within a group
in the SYCL library depends on the problem size and
work-group size. The study concludes that the highest
performance is achieved when parallelized with four
OpenMP threads and GPU processing concurrently.

In another work [13], Jin et al. explore the per-
formance portability of SYCL kernels on a GPU by
migrating representative kernels from CUDA to SYCL
in bioinformatics applications, evaluating their perfor-
mance on an NVIDIA GPU, and analyzing performance
gaps through profiling and analyses. The findings pro-
vide suggestions for improving performance portability,
such as optimizing address generation for shared local
memory and evaluating the performance of a SYCL li-
brary interface. While the experimental results are based
on a limited number of bioinformatics applications,
they may be representative of kernels using optimized
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memory footprints and global memory accesses, shared
local memory, loop(s) for iterating over attributes and
elements, fast math library, or vendor-specific libraries
for productivity and performance.

A study by Sakiotis et al.[16] discuss porting of
optimized CUDA implementations to oneAPI, focusing
on numerical integration use cases. Challenges included
differences in registers, compiler optimizations, and
mapping of CUDA library calls to oneAPI equivalents.
After addressing the challenges, the performance of
oneAPI implementations was found to be comparable
to CUDA versions, at most 10% slower. The paper
discusses the need for performant multi-platform execu-
tion, the development of portable programming models
such as RAJA, Kokkos, and oneAPI, and the challenges
faced during the porting process. The authors conclude
that oneAPI is a viable platform for attaining perfor-
mance on Nvidia GPUs.

VI. CONCLUSION

We compared the performance of tensor contractions
implemented using various programming languages
such as SYCL, Kokkos, HIP, and CUDA on Nvidia and
AMD platforms. Our findings indicate that vendor lan-
guages (CUDA, HIP) outperformed SYCL and Kokkos.
Our detailed analysis identified occupancy and data
movement arising from the use of local memory as the
primary factors contributing to this gap. Tuning launch
bounds helped to reduce the performance gap between
Kokkos and the native implementations. Our observa-
tions hint that a domain specific code generator which
can directly emit portable code or a domain specific
code generator paired with code convertors together
with a tuning framework can strike the right balance be-
tween, programmability, productivity and performance.
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