
A Performance Portability Study Using Tensor Contraction Benchmarks
(Invited Paper)

M. Emin Ozturk∗, Omid Asudeh∗, Gerald Sabin†, P. Sadayappan∗ Aravind Sukumaran-Rajam‡∗,
∗Kahlert School of Computing, University of Utah, Salt Lake City, Utah

†RNET Technologies, Dayton, Ohio
‡Meta Platforms , Menlo Park, California

Abstract—Driven by the end of Moore’s law, heteroge-
neous architectures, particularly GPUs, are experiencing
a surge in demand and utilization. While these platforms
hold the potential for achieving high performance, their
programming remains challenging and requires extensive
hardware knowledge. This complexity is further exacer-
bated by the different proprietary languages utilized by
various vendors. In this paper, we conduct a performance-
portability study on two portable languages, SYCL and
Kokkos. Specifically, we focus on the case study of tensor
contractions and employ COGENT, a DSL compiler for
tensor contractions, to generate CUDA code for the 48
different tensor contractions in the TCCG benchmark
suite. We extend COGENT to produce Kokkos code, and
use Hipify and SycloMatic, which are tools that convert
CUDA code to HIP and SYCL. Our analysis involves a
comparison of the performance of each framework on
both Nvidia and AMD GPUs. Our experiments show
that identically tiled tensor contraction kernels in Kokkos
and SYCL can exhibit significant performance differences
compared to the corresponding CUDA/HIP program, re-
spectively on Nvidia/AMD GPUs. The main reason for the
performance differences arise from differences in register
usage and the management of register spills to thread-
private stack memory, affecting overall degree of thread-
level concurrency and the volume of data movement
to/from GPU DRAM.

Keywords-Performance portability; GPUs; Tensor con-
tractions; Kokkos; SYCL

I. INTRODUCTION

GPUs have become the primary hardware platform

for high-performance machine learning and also for

many applications in scientific computing. However, a

significant software challenge has emerged with mul-

tiple proprietary GPU programming languages, e.g.,

CUDA for Nvidia GPUs, HIP for AMD GPUs, and a

different programming model like OpenMP for CPUs.

Maintaining multiple versions of an application code

for different hardware platforms is highly undesirable.

Portable programming models like Kokkos [11]and

SYCL [5] seek to address this software challenge. A

number of prior efforts have performed evaluations on

the effectiveness of such portable programming models.

In this paper, we undertake a performance portability

study of Kokkos and SYCL using 48 tensor contraction

benchmarks from the TCCG benchmark suite [17].

To achieve performance portability, the programming

model must provide an abstract way of expressing

concurrency and parallelism, which can be mapped to

the parallel features of the underlying hardware by the

implementation. The range of implementation options

for both expressing parallelism and mapping to the

hardware can impact the degree to which performance

portability is achieved.

SYCL is a portable parallel programming model

that offers a range of abstraction levels for develop-

ing parallel applications, including data-parallel kernels,

hierarchical parallelism, SIMT-style NDRange kernels,

and high-level task-based concurrency. Several imple-

mentations of the SYCL specification exist, including

hipSYCL and Intel oneAPI DPC++.

Kokkos is a portable programming model that pro-

vides a range of abstraction levels for developing par-

allel applications, including data-parallel kernels, hier-

archical parallelism, and task parallelism. Kokkos is

designed to support the development of performance

portable applications that can run efficiently on different

architectures, including CPUs, GPUs, and accelerators.

It accomplishes this by providing a single-source pro-

gramming model that can be compiled and executed

on different architectures without the need for signifi-

cant modifications. Multiple backends are available for

the Kokkos programming model, including those for

CUDA, HIP, OpenMP, and SYCL.

This paper aims to evaluate the effectiveness of

Kokkos and SYCL in enabling performance portability

for high-performance tensor computations and to iden-

tify potential opportunities for improvement. While a

number of prior efforts have performed studies to eval-

uate performance-portable frameworks [9], [10], [12],

[13], they have generally focused on one or a very

small number of kernels. In contrast, this study uses

a large number of GPU kernels for tensor contractions,

featuring tensors and iteration spaces of different dimen-

sionality. Further, most prior performance portability
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studies [9], [10], [12], [13] appear to have focused

mainly on bandwidth-limited GPU kernels/applications

where observed performance differences across portable

frameworks like Kokkos/SYCL and native GPU pro-

gramming models like CUDA/HIP were not very sig-

nificant.

Our experiments with the tensor contraction bench-

marks showed much greater variability across frame-

works and target platforms than previous performance

portability studies. Some high-level observations from

our study are listed below.

• Unlike with bandwidth-limited GPU kernels stud-

ied in prior studies in the literature, optimized

GPU kernels for tensor contraction use fairly large

register tiles for data locality optimization. The

management of thread-local data (scalar intermedi-

ates and the variables associated with register-tiles)

in the generated code by different frameworks re-

sults in significant performance differences across

frameworks and hardware platforms.

• Register usage with Kokkos tends to be higher than

both CUDA and HIP, resulting in lower thread

occupancy and lower performance. On Nvidia

GPUs, the use of launch bounds directives is very

helpful in increasing Kokkos performance, raising

performance to even higher levels than CUDA for

many of the benchmarks. On AMD GPUs, launch

bounds did not improve performance of Kokkos

kernels.

• Achieved thread occupancy on Nvidia GPUs was

quite consistently higher for SYCL than Kokkos

but SYCL performance was often worse than

kokkos performance due to significantly higher

global-memory data writes due to register spilling

into the thread’s stack memory.

• SYCL performance relative to the native program-

ming model (CUDA/HIP) differed quite signifi-

cantly on the Nvidia GPU compared to the AMD

GPU, being considerably worse than CUDA on the

former and overall better than HIP on the latter.

II. PROGRAMMING MODELS AND PERFORMANCE

PORTABILITY

Performance portability is an important concern in

high-performance computing, where applications need

to be able to run efficiently on different hardware archi-

tectures. To address this challenge, various performance

portability tools have been developed in recent years. In

the following we go through some of the state of the

art performance portability frameworks/interfaces.

1) Kokkos: Kokkos[11] is a widely used program-

ming framework created at the U.S. Department of

Energy’s Sandia National Laboratories. It enables the

development of performance-portable applications that

can run efficiently on various computer architectures

such as CPUs, GPUs, and other accelerators. Kokkos

uses a parallel programming model based on C++ tem-

plates and provides a high-level programming interface

that is independent of hardware. It is widely used in sci-

entific computing, engineering, and high-performance

computing applications, and is incorporated into more

than 100 software components and applications, achiev-

ing performance portability on at least 5 of the top

10 supercomputers. Users write their applications using

Kokkos abstractions, and performance portability is au-

tomatically enabled across different hardware platforms,

including multi-core CPUs and GPUs.

The Kokkos programming model provides a range

of features for developing high-performance scientific

applications across a variety of hardware platforms. One

of the key features of recent Kokkos versions is the ca-

pability of describing multi-dimensional iteration spaces

using the MDRangePolicy, which is an execution policy

that defines the iteration space and thread mapping for

parallel constructs like parallel for and parallel reduce

[18]. The MDRange (Multi-Dimensional Range) policy

enables users to specify the iteration space by defining

the lower and upper bounds for each dimension, as well

as the degree of parallelism or the number of threads

used to execute the parallel construct. Kokkos maps

threads to the iteration space, dividing the space into

smaller tiles and assigning one thread to each element

in the tile. The number of threads used for parallel

execution can be specified by providing a third argument

to the policy constructor, called the tileSize [18]. This

approach helps improve performance by leveraging the

underlying hardware’s parallelism and memory hierar-

chy. The MDRange policy plays a vital role in managing

parallel execution in Kokkos, allowing users to exploit

the full potential of modern high-performance com-

puting architectures.This flexibility allows developers

to write efficient and portable code that can be opti-

mized for specific hardware architectures. Furthermore,

Kokkos provides a range of tools and libraries to help

developers optimize their code for performance, such

as the Kokkos Profiling Interface (KPI) and the Kokkos

Core library.

2) SYCL: SYCL[5] is a C++ abstraction layer for

developing portable heterogeneous applications that can

run on multiple hardware platforms, including CPUs,

GPUs, FPGAs, and other accelerators. It is a standard
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programming model developed by the Khronos Group,

and it provides a unified programming interface for

developers to write parallel code that can be executed

on different hardware architectures.
SYCL is based on a single-source programming

model, where a single C++ source code can be written

for both host and device. SYCL programs are written

using standard C++ and can be compiled using standard

C++ compilers. SYCL provides an interface for ex-

pressing data parallelism and task parallelism using the

concept of command groups and kernels, respectively.

SYCL is supported by various vendors, including Intel,

AMD, and Xilinx, and it is integrated with various pro-

gramming frameworks, such as TensorFlow, PyTorch,

and OpenCV. The features in SYCL for specifying

multi-level parallelism have been heavily influenced

by Kokkos and are conceptualy very similar to those

discussed in this Section for Kokkos.
SYCLomatic[8] is a code conversion tool designed

to help developers convert code written in different

programming languages to SYCL. While the tool can

assist with code migration, the final verification and

editing process is still manual and must be performed by

the developer. To make the migration process as simple

as possible, developers can use the ”c2s” command

to migrate existing CUDA codebases to SYCL. Once

code is migrated to SYCL, it can be compiled and

executed using any compiler that implements the SYCL

specification.
3) HIP: HIP (Heterogeneous-Compute Interface for

Portability)[2] is a C++-based language developed by

AMD that provides an interface for writing code that

can run on different heterogeneous compute systems,

including both CPUs and GPUs [2]. The language

is designed to be familiar to developers who have

experience with CUDA. With HIP, developers can write

code once and target different hardware architectures

without significant changes to the code.
HIP provides a set of tools for compiling, debugging,

and profiling HIP code, including the HIP runtime

library, which allows for easy runtime deployment of

HIP code, and the ROCm software stack, which is

designed to provide optimized GPU acceleration for

machine learning and scientific computing applications.
Hipify is an open-source tool provided by AMD’s

ROCm platform that allows developers to automatically

convert CUDA code to HIP code, making it easier to

port their applications to AMD GPUs. Hipify works by

parsing the input CUDA code and transforming it into

equivalent HIP code. The tool can handle most common

CUDA constructs, such as kernels, device functions, and

CUDA libraries. It also provides a set of command-

line options that allow developers to customize the

transformation process, including choosing the target ar-

chitecture, enabling/disabling specific transformations,

and specifying custom header files.

4) CUDA: The CUDA programming model, devel-

oped by NVIDIA, is a proprietary technology that has

been widely used. CUDA, short for Compute Unified

Device Architecture, is designed for massively parallel

computing on NVIDIA GPUs [1].

With CUDA, developers can take advantage of the

processing power of NVIDIA GPUs to accelerate com-

putationally intensive tasks. This is achieved by utilizing

the thousands of cores available on a GPU, which are

optimized for data-parallel operations.

III. CODE GENERATION FOR TENSOR

CONTRACTIONS

This section provides a brief background on tensor

contractions and outlines the process of generating

contraction code in various programming languages.

A. Tensor Contractions

Tensor contractions can be viewed as a generalization

of matrix multiplication to higher dimensions. Consider

the following Einstein notation for contracting two 4D

tensors A and B to produce another 4D tensor C which

represents
∑

e,f A[a, e, b, f ] ∗B[d, f, c, e]:

C[a, b, c, d] = A[a, e, b, f ] ∗B[d, f, c, e] (III.1)

The indices e and f are the contraction indices

(internal indices), while a, b, c, and d are the external

indices. In the Einstein index convention, summation

(contraction) is implied for indices not appearing in the

left-hand side tensor.

Figure 1: Illustration of Tiled-Execution of Tensor Con-

traction
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We utilize COGENT [15], a CUDA code generator

for tensor contractions based on the direct contraction-

based approach. COGENT’s contraction scheme in-

volves streaming input tensors using shared memory and

registers, while the output stays stationary in registers.

Initially, a multidimensional slice of each input tensor

is brought into shared memory. Next, the data in shared

memory is sliced, and a column slice of input tensor

A and a row slice of tensor B are loaded into registers

from shared memory. These slices are subjected to outer

product, and the partial results are stored in registers.

All remaining input slices required to form the output

are similarly streamed via shared memory and registers.

Once all outer products are completed, the final output

is written back to shared memory. Figure 1 provides a

high-level overview of COGENT’s contraction scheme.

In this work, we extend COGENT to generate HIP

code and Kokkos code. We also tried using hipify to

generate hip code from CUDA. We used SYCLomatic

to convert CUDA code to SYCL.

B. Kokkos code generation

To generate Kokkos code, we utilized a similar ap-

proach to the original COGENT, but we adapted the

code generator to utilize Kokkos constructs. Kokkos

provides two primary mechanisms for specifying par-

allel execution patterns: TeamPolicy and MDRange.

We selected TeamPolicy due to its ability to enable

control over shared memory usage. Specifically, we used

TeamPolicy to regulate the league size (i.e., grid size)

and team size (analogous to grid and thread blocks in

CUDA terminology). A team is similar to a CUDA

block and is a collection of Kokkos threads that can

synchronize and exchange data through a shared scratch

pad (akin to shared memory in CUDA terminology) [3].

To represent the tensors (which were previously repre-

sented by raw pointers in COGENT’s CUDA code), we

utilized Kokkos::View. We launched a kernel using the

‘Kokkos::parallel for’ function, and the Team rank()

function enabled us to obtain the thread identifier in

Kokkos, which corresponds to threadIdx.y in CUDA.

C. SYCL code generation

To facilitate the generation of SYCL code, we em-

ployed the SYCLomatic tool, which automatically trans-

lates CUDA code to SYCL. However, we encountered

difficulties with certain benchmarks that utilized con-

stant memory, as SYCLomatic was unable to properly

handle this code and generated runtime errors. To ad-

dress this issue, we manually modified the translated

code by converting the constant memory to regular

global memory. This modification enabled the bench-

marks to execute successfully in the SYCL program-

ming model.

D. HIP code generation

Given the syntactical similarities between HIP and

CUDA, it is relatively straightforward to migrate code

between the two platforms. For instance, code elements

such as cudaMemcpy, global , cudaStream t can

be replaced with their equivalent counterparts in HIP,

namely hipMemcpy, global host , and hip-

Stream t, respectively. Therefore, we adapted COGENT

to directly generate HIP code, while also investigating

the use of the hipify code converter to generate HIP code

from existing CUDA code. Our experimental results

show that the performance characteristics of the code

generated via both approaches are very similar.

IV. EXPERIMENTAL EVALUATION

In this section, we present an in-depth evaluation

of the performance characteristics of Kokkos, SYCL,

HIP, and CUDA on an Nvidia and AMD platform.

We benchmarked various frameworks using 48 distinct

tensor contractions from the TCCG suite [17], which

represent contractions arising in practical applications.

The corresponding contraction equations are listed in

Table I:

• 1 to 8: eight tensor contractions representing tensor

computations in machine learning domain.

• 9 to 11: three tensor contractions used to transform

a set of two-electron integrals from an atomic

orbital basis to a molecular orbital basis.

• 12 to 30: nineteen tensor contractions from the

CCSD method.

• 31 to 48: eighteen tensor contractions from the

CCSD(T) method.

Table I provides the dimensions of each tensor, the

permutation of indices, and the total number of opera-

tions involved. The ‘Tensor Contraction’ column shows

the Einstein representation of the contraction – the first

group of letters corresponds to the indices of the output

tensor, the second and third groups of letters correspond

to the indices of the two tensors being contracted. For

instance, in TCCG-2 (#2), two tensors [d, c, a] and [b, d]
are contracted to generate the output matrix [a, b, c],
where d is the contraction index.

Performance evaluation was conducted on two sys-

tems: (1) Nvidia RTX 3060 (12 GB) GPU paired with an

AMD Ryzen 7 3700x CPU, running Ubuntu 20.04 OS

with CUDA version 11.6 and ROCm 5.3, and (2) AMD

W6800 GPU (32 GB) paired with 10th Gen Intel(R)

Core i9-10980X, running Ubuntu 20.04 OS with ROCm
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Figure 2: Percentage of peak GFLOPS achieved, Achieved Occupancy, and DRAM Bytes Write Per Operations on

NVIDIA.

5.4 (for HIP and Kokkos) and ROCm 4.5.2 (SYCL). We

had to use two versions of ROCm for W6800 as Kokkos

was not compatible with ROCm 4.5.2 and SYCL was

not compatible with ROCm 5.4.

We used DPC++ CUDA plugin from CodePlay [7]

to run SYCL implementation of Intel oneAPI DPC++

(latest 2023.0.0 version) and DPC++ HIP plugin from

CodePlay (2023.0.0 Beta) [6] on AMD machine. We

used KOKKOS v3.7 [4]. Nsight was used to extract

kernel time and collect performance metrics on the

Nvidia platform, and ROC-profiler (rocprof 4.5.2) on

the AMD platform. However, we could only obtain

limited metrics on the AMD platform due to ROC-

profiler’s limited support on consumer cards W6800

with rocm-4.5.

Figure 2 presents a comparison of the achieved

GFLOPS by different frameworks, relative to the peak

GFLOPS, along with the achieved occupancy and the

dram-bytes written per arithmetic operation (inverse of

arithmetic intensity). CUDA and HIP achieves simi-

lar performance on the Nvidia platform. In general,

KOKKOS outperforms SYCL, but performs less effi-

ciently than CUDA/HIP. Our adapted COGENT code

generator produces HIP code with similar performance

characteristics to the HIP code generated by the hipfy

tool for converting CUDA code. Therefore, we will fo-
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Figure 3: Achieved Occupancy versus Total Number of Registers Used on NVIDIA RTX3060

cus our studies on the COGENT-generated HIP code.To

gain a better understanding of the performance differ-

ences, we conducted an analysis of the achieved oc-

cupancy and global memory (DRAM) data movement.

Occupancy, defined as the ratio of the maximum number

of active threads to the number of active threads, is

an important metric that reflects the degree to which

a GPU’s computational resources are being utilized.

A higher occupancy indicates that more threads are

active, which can help in hiding memory latency and

improving performance. In general, higher occupancy

correlates with higher performance, except for SYCL,

which has higher occupancy than KOKKOS but poorer

performance due to the high data movement. This higher

data movement is attributable to the use of local memory

transactions in SYCL.

The occupancy of COGENT-generated code is

mainly determined by register usage and shared

memory usage. As shown in Figure 3, occupancy

is well-correlated with register usage. We observed

that KOKKOS typically uses a much higher number

of registers than other frameworks. To better tune

resource usage based on the launch configuration,

we used launch bounds. The “ launch bounds ”

primitive in the CUDA programming language enables

us to inform the compiler of the launch configuration.

The “ launch bounds (Max Threads Per Block,

Min Blocks Per SM)” construct takes two

parameters: maximum number of threads per thread

block and minimum number of blocks per SM.

KOKKOS exposes launch bound control using the

Kokkos::LaunchBounds construct. We evaluated several

{Max Threads Per Block, Min Blocks Per SM}
configurations of the form {128, x} where x ∈ {2,

4, 6, 8, 10, 12}, {256, y} where y ∈ {2, 3, 4, 5, 6},

and {512, z} where z ∈ {2, 3, 4}. This tuning process

aims to identify the optimal values for these parameters

that result in higher occupancy, which can lead to

improved performance for each specific TCCG cases.

Figure 4 shows the impact of launch bound tuning.

The geomean speedup of KOKKOS tuned over the

base version is ∼ 1.34x and for CUDA is ∼ 1.02x. We

observed that for certain case like 32 the performance

gain was %120. As seen on Fig.4, we gain up to 2x

speed up by tuning Kokkos implementation over all

TCCG benchmark. For instance, TCCG benchmark

case 15 and case 36, which represent a problem in

CCSD and CCSD-T methods in chemistry, we get
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Table I: TCCG Benchmark Tensor Contraction

# Tensor Contraction Extents OPS

1 abc-bda-dc 312 312 24 312 1.46e+9
2 abc-dca-bd 312 24 296 312 1.38e+9
3 abcd-dbea-ec 72 72 24 72 72 1.29e+9
4 abcd-deca-be 72 24 72 72 72 1.29e+9
5 abcd-ebad-ce 72 72 24 72 72 1.29e+9
6 abcde-efbad-cf 48 32 24 32 48 32 3.62e+9
7 abcde-ecbfa-fd 48 32 32 24 48 48 5.44e+9
8 abcde-efcad-bf 48 24 32 32 48 32 3.62e+9

9 abcd-ea-ebcd 72 72 72 72 72 3.87e+9
10 abcd-eb-aecd 72 72 72 72 72 3.87e+9
11 abcd-ec-abed 72 72 72 72 72 3.87e+9

12 ab-ac-cb 5136 5120 5136 2.70e+11
13 ab-acd-dbc 312 296 296 312 1.71e+10
14 ab-cad-dcb 312 296 312 312 1.80e+10
15 abc-acd-db 312 296 296 312 1.71e+10
16 abc-ad-bdc 312 312 296 296 1.71e+10
17 abc-adc-bd 312 312 296 296 1.71e+10
18 abc-adc-db 312 296 296 312 1.71e+10
19 abc-adec-ebd 72 72 72 72 72 3.87e+9
20 abcd-aebf-dfce 72 72 72 72 72 72 2.79e+11
21 abcd-aebf-fdec 72 72 72 72 72 72 2.79e+11
22 abcd-aecf-bfde 72 72 72 72 72 72 2.79e+11
23 abcd-aecf-fbed 72 72 72 72 72 72 2.79e+11
24 abcd-aedf-bfce 72 72 72 72 72 72 2.79e+11
25 abcd-aedf-fbec 72 72 72 72 72 72 2.79e+11
26 abcd-aefb-fdce 72 72 72 72 72 72 2.79e+11
27 abcd-aefc-fbed 72 72 72 72 72 72 2.79e+11
28 abcd-eafb-fdec 72 72 72 72 72 72 2.79e+11
29 abcd-eafc-bfde 72 72 72 72 72 72 2.79e+11
30 abcd-eafd-fbec 72 72 72 72 72 72 2.79e+11

31 abcdef-dega-gfbc 24 16 16 24 16 16 24 1.81e+9
32 abcdef-degb-gfac 24 16 16 24 16 16 24 1.81e+9
33 abcdef-degc-gfab 24 16 16 24 16 16 24 1.81e+9
34 abcdef-dfga-gebc 24 16 16 24 16 16 24 1.81e+9
35 abcdef-dfgb-geac 24 16 16 24 16 16 24 1.81e+9
36 abcdef-dfgc-geab 24 16 16 24 16 16 24 1.81e+9
37 abcdef-efga-gdbc 24 16 16 16 24 16 24 1.81e+9
38 abcdef-efgb-gdac 24 16 16 16 24 16 24 1.81e+9
39 abcdef-efgc-gdab 24 16 16 16 24 16 24 1.81e+9
40 abcdef-gdab-efgc 24 16 16 16 24 16 24 1.81e+9
41 abcdef-gdac-efgb 24 16 16 16 24 16 24 1.81e+9
42 abcdef-gdbc-efga 24 16 16 16 24 16 24 1.81e+9
43 abcdef-geab-dfgc 24 16 16 24 16 16 24 1.81e+9
44 abcdef-geac-dfgb 24 16 16 24 16 16 24 1.81e+9
45 abcdef-gebc-dfga 24 16 16 24 16 16 24 1.81e+9
46 abcdef-gfab-degc 24 16 16 24 16 16 24 1.81e+9
47 abcdef-gfac-degb 24 16 16 24 16 16 24 1.81e+9
48 abcdef=gfbc-dega 24 16 16 24 16 16 24 1.81e+9

%120 and %50 improvement respectively. The original

Kokkos implementation for Case-15 used 106 registers,

resulting in an occupancy of 33% only. However, when

the maximum number of threads per block was set

to 128 and minimum number of active blocks per

streaming multiprocessor (SM) was set to 8, the register

usage decreased to 64 and the occupancy increased to

66%, significantly boosted the performance from 1316

to 2859 GFLOPS.

Despite having similar register usage compared to

several other benchmarks, all frameworks demonstrated

lower performance on case 13 and 14. The reason for

this can be attributed to a smaller grid size (number of

thread blocks) leading to low occupancy and underuti-

lization of resources.

Figure 5 shows the percentage of peak GFLOPS

achieved by SYCL, HIP, and Kokkos on AMD W6800.

In many cases, SYCL outperforms Kokkos and even

HIP on this platform. Unfortunately, we could not

reliably collect performance metrics using ROC-prof on

AMD W6800.

Figures 6 and 7 provide a comprehensive overview of

SYCL and Kokkos performance on different platforms.

It is worth noting that Figure 6 did not utilize launch

bounds tuning due to the unavailability of an interface

to tune it in SYCL, whereas Figure 7 presents results

after launch bounds tuning. Overall, the performance

of SYCL is better on the AMD W6800 platform,

and in most cases, it performs comparably or better

than HIP. However, SYCL’s performance on the Nvidia

RTX3060 platform is significantly lower than that of

CUDA. Conversely, Kokkos demonstrates the opposite

trend, where it performs relatively well on the Nvidia

RTX3060 platform compared to the AMD W6800.

V. RELATED WORK

Dufek et al. [10] conducted an extensive case study

investigating the effectiveness of Kokkos and SYCL as

performance-portable frameworks for the Milc-Dslash

benchmark, focusing on NVIDIA, AMD, and Intel

GPUs. The authors primarily developed a GPU parallel

implementation for the Milc-Dslash application and

assessed its performance portability using the widely

recognized Kokkos and SYCL frameworks. By testing

the implementations on GPUs from three major ven-

dors—NVIDIA, AMD, and Intel— Dufek et al. [10]

aimed to highlight the advantages of using performance-

portable frameworks for achieving cross-platform com-

patibility and comparable performance levels. Their

work provides valuable insights into the potential of

Kokkos and SYCL for simplifying the development pro-

cess and minimizing the need for platform-specific op-

timizations, while maintaining high-performance com-

puting capabilities across various GPU architectures.

Several studies have been conducted to evaluate

the performance of HPC-style SYCL applications in

comparison to traditional programming models like

OpenMP, CUDA, and OpenCL. McIntosh-Smith et. al.

[9] examine the performance of three SYCL appli-

cations (BabelStream, Heat and CloverLeaf) from the

high-performance computing (HPC) domain across var-

ious CPU and GPU architectures. Similarly, Milthorpe

et. al. [14] evaluates 38 different kernels on SYCL

with several SYCL implementation including DPC++,
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Figure 4: Performance impact of tuning launch bounds on Nvidia RTX 3060
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Figure 7: Correlation of Kokkos with MAX-Performing launch-bound versus CUDA, and AMD-Kokkos versus HIP

ComputeCPP, OpenSYCL(HipSYCL) and triSYCL on

several architectures.

In recent works, several researchers have explored

the migration of CUDA implementations to SYCL and

oneAPI programming models for better performance

portability on GPUs.

Jin et al. [12] discuss the conversion of a CUDA

implementation of a high-order epistasis detection al-

gorithm to SYCL and the evaluation of its performance

on an NVIDIA V100 GPU. The paper covers various

aspects of the migration process, including memory

management, intrinsic and arithmetic functions, atomic

functions, and kernel execution. The authors note that

while the pointer-based memory management interfaces

in SYCL make integration with existing CUDA pro-

grams easier, loop unrolling must be applied manually

for comparable performance in SYCL. Additionally, the

performance of the reduction operation within a group

in the SYCL library depends on the problem size and

work-group size. The study concludes that the highest

performance is achieved when parallelized with four

OpenMP threads and GPU processing concurrently.

In another work [13], Jin et al. explore the per-

formance portability of SYCL kernels on a GPU by

migrating representative kernels from CUDA to SYCL

in bioinformatics applications, evaluating their perfor-

mance on an NVIDIA GPU, and analyzing performance

gaps through profiling and analyses. The findings pro-

vide suggestions for improving performance portability,

such as optimizing address generation for shared local

memory and evaluating the performance of a SYCL li-

brary interface. While the experimental results are based

on a limited number of bioinformatics applications,

they may be representative of kernels using optimized

memory footprints and global memory accesses, shared

local memory, loop(s) for iterating over attributes and

elements, fast math library, or vendor-specific libraries

for productivity and performance.
A study by Sakiotis et al.[16] discuss porting of

optimized CUDA implementations to oneAPI, focusing

on numerical integration use cases. Challenges included

differences in registers, compiler optimizations, and

mapping of CUDA library calls to oneAPI equivalents.

After addressing the challenges, the performance of

oneAPI implementations was found to be comparable

to CUDA versions, at most 10% slower. The paper

discusses the need for performant multi-platform execu-

tion, the development of portable programming models

such as RAJA, Kokkos, and oneAPI, and the challenges

faced during the porting process. The authors conclude

that oneAPI is a viable platform for attaining perfor-

mance on Nvidia GPUs.

VI. CONCLUSION

We compared the performance of tensor contractions

implemented using various programming languages

such as SYCL, Kokkos, HIP, and CUDA on Nvidia and

AMD platforms. Our findings indicate that vendor lan-

guages (CUDA, HIP) outperformed SYCL and Kokkos.

Our detailed analysis identified occupancy and data

movement arising from the use of local memory as the

primary factors contributing to this gap. Tuning launch

bounds helped to reduce the performance gap between

Kokkos and the native implementations. Our observa-

tions hint that a domain specific code generator which

can directly emit portable code or a domain specific

code generator paired with code convertors together

with a tuning framework can strike the right balance be-

tween, programmability, productivity and performance.
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