
Layered List Labeling
MICHAEL A. BENDER, Stony Brook University and RelationalAI, USA
ALEX CONWAY, Cornell Tech, USA
MARTÍN FARACH-COLTON, New York University, USA
HANNA KOMLÓS, New York University, USA
WILLIAM KUSZMAUL, Harvard University, USA

The list-labeling problem is one of the most basic and well-studied algorithmic primitives in data structures,
with an extensive literature spanning upper bounds, lower bounds, and data management applications. The
classical algorithm for this problem, dating back to 1981, has amortized cost $ (log2 =). Subsequent work has
led to improvements in three directions: low-latency (worst-case) bounds; high-throughput (expected) bounds;
and (adaptive) bounds for important workloads.

Perhaps surprisingly, these three directions of research have remained almost entirely disjoint—this is
because, so far, the techniques that allow for progress in one direction have forced worsening bounds in
the others. Thus there would appear to be a tension between worst-case, adaptive, and expected bounds.
List labeling has been proposed for use in databases at least as early as PODS’99, but a database needs
good throughput, response time, and needs to adapt to common workloads (e.g., bulk loads), and no current
list-labeling algorithm achieve good bounds for all three.

We show that this tension is not fundamental. In fact, with the help of new data-structural techniques, one
can actually combine any three list-labeling solutions in order to cherry-pick the best worst-case, adaptive,
and expected bounds from each of them.

CCS Concepts: • Theory of computation! Design and analysis of algorithms; Online algorithms;
Data structures design and analysis; Randomness, geometry and discrete structures; Database theory; Data
structures and algorithms for data management.

Additional Key Words and Phrases: algorithms, data structures, history independence, randomized algorithms,
online algorithms

ACM Reference Format:
Michael A. Bender, Alex Conway, Martín Farach-Colton, Hanna Komlós, and William Kuszmaul. 2024. Layered
List Labeling. Proc. ACM Manag. Data 2, 2 (PODS), Article 101 (May 2024), 19 pages. https://doi.org/10.1145/
3651602

1 INTRODUCTION
The list-labeling problem is one of the most basic problems in data structures: how can one store
a set of = items in sorted order in an array of size (1 + ⇥(1))=, while supporting both insertions
and deletions? Despite the apparent simplicity of the problem, it has proven remarkably di�cult to
determine what the best possible solutions should look like. Over the past four decades, there has

Authors’ addresses: Michael A. Bender, bender@cs.stonybrook.edu, Stony Brook University and RelationalAI, Stony Brook,
NY, USA; Alex Conway, me@ajhconway.com, Cornell Tech, New York, NY, USA; Martín Farach-Colton, martin@farach-
colton.com, New York University, New York, NY, USA; Hanna Komlós, hkomlos@gmail.com, New York University, New
York, NY, USA; William Kuszmaul, william.kuszmaul@gmail.com, Harvard University, Cambridge, MA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/5-ART101
https://doi.org/10.1145/3651602

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

https://doi.org/10.1145/3651602
https://doi.org/10.1145/3651602
https://doi.org/10.1145/3651602

101:2 Michael A. Bender et al.

been a great deal of work on upper bounds [2, 3, 6, 9, 16–18, 27, 30–32, 47–49], lower bounds [20, 24–
26, 40, 50], and variations [1, 2, 4, 18, 22, 23, 27, 39].

List labelingwas proposed for use in database indexing as early as 1999 [39]. Today, in the database
context, data structures for list labeling are typically called packed-memory arrays (PMAs). PMAs
are used in relational databases [41], NoSql database [42], graph databases [33, 34, 38, 43–45],
cache-oblivious dictionaries [10–13, 17, 19], and order maintenance [5, 6, 16, 23].

Formally, the list-labeling problem can be formulated as follows [31]:

D��������� 1. A list-labeling instance of capacity = stores a dynamic set of up to = elements in
sorted order in an array of< = 2= slots, for 2 = 1 +⇥(1). Elements are inserted and deleted over time,
with each insertion specifying the new element’s rank A 2 {1, 2, . . . ,= + 1} among the other elements
in the set. (Thus, inserting at rank 1 means that the inserted element is the new smallest element.)
To keep the elements in sorted order in the array, the algorithm must sometimes move elements

around within the array—i.e., rebalance elements—e.g., in order to open up a space for a new element.
The cost of an algorithm is the number of elements moved during the insertions/deletions.1

We remark that, as a convention, if the list-labeling algorithm is randomized, then the adversary
is assumed to be oblivious, meaning that the sequence of insertions and deletions that is performed
is independent of the randomness used by the data structure.

U (log2 n)-cost list labeling and the state of the art. In 1981, Itai, Konheim, and Rodeh [31]
initiated the study of list labeling with a beautiful solution guaranteeing amortized $ (log2 =) cost
per insertion/deletion. This bound would subsequently be independently re-discovered in many
di�erent contexts [1, 27, 39, 46].

In the four decades since Itai et al’s original solution [31], there have been three major ways in
which the algorithm has been improved. These correspond to the three major performance criteria
for the use of list labeling in databases: latency, special workload optimizations, and thoughput.
(1) Deamortization. Itai et al.’s algorithm relies heavily on amortization. There has been a long

line of work showing that it is possible to achieve a worst-case bound of $ (log2 =) cost per
operation [7, 16, 47–49].

(2) Adaptive Algorithms. The second major direction has been algorithms that adapt to the
properties of the workload in order to achieve better bounds on natural workloads [14, 15, 18, 35].
This has led to improved bounds both for speci�c stochastic workloads [14, 15, 18], and for
settings where the list-labeling algorithm is augmented with predictive information [35] (i.e.,
learning with predictions).

(3) Faster Amortized Algorithms. For many years, it was conjectured that, in general, the
$ (log2 =) bound should be optimal [24–26]—and, indeed, lower bounds were established for
several classes of algorithms [20, 21, 26], including any deterministic one [20, 21]. However, it
was recently shown that randomized algorithms can actually do better, achieving an expected
cost of $ (log3/2 =) per operation [8].
Perhaps surprisingly, these three directions of research have remained almost entirely disjoint—

this is because the techniques that allow for progress in one direction tend to lead to backward
progress in the others. For example, the role of randomization in the recent $ (log3/2 =) algorithm
leads to almost pessimal tail bounds (the cost is : with probability $̃ (1/:) for any :  =), mak-
ing deamortization much more di�cult. The known adaptive algorithms also rely heavily on
1To accommodate the many ways in which list labeling is used, some works describe the problem in a more abstract (but
equivalent) way: the list-labeling algorithm must dynamically assign each element G a label ✓ (G) 2 {1, 2, . . . ,<} such that
G � ~ () ✓ (G) < ✓ (~) , and the goal is to minimize the number of elements that are relabeled per insertion/deletion—
hence the name of the problem.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:3

amortization; and the approach for achieving $ (log3/2 =) relies on a technique from the privacy
literature (known as history independence [4, 28, 29, 36, 37]), in which one explicitly commits to
being non-adaptive in one’s behavior2.
The apparent con�icts between techniques raise a natural question: Can one simultaneously

achieve strong results on the three database optimizations of deamortization, adaptivity, and low
expected cost?We answer this question in the a�rmative. In fact, our result is black box: Given three
algorithms that achieve guarantees on deamortization, adaptivity, and expected cost, respectively,
one can always construct a new algorithm that achieves the best of all three worlds.
What makes our result interesting is that, intuitively, list-labeling algorithms should not be

composable. Suppose, for example, that we attempt to interleave two algorithms - and . so that
some elements are logically in - , some are logically in . , and all of the elements appear in sorted
order in the same array. Whenever a rebalance occurs in - , it must carry around elements from .
that lie in the same interval. Even if - and . each individually o�er$ (log2 =) costs, the interleaved
algorithm could have arbitrarily poor performance.
The key contribution of this paper is a more sophisticated approach, in which by treating the

problem of composition as a data-structural problem in its own right, we are able to obtain strong
black-box results. We emphasize that, although our techniques are data structural, the �nal result is
still a list-labeling algorithm: all of the elements appear in sorted relative order in a single array of
size (1 + ⇥(1))=.
We begin by developing a technique for composing just two list-labeling algorithms, a fast

algorithm � and a reliable algorithm ', with the goal of achieving the best properties of both.
The new algorithm, denoted by � û ', is referred to as the embedding of � into '.

Theorem 2. Say that a list-labeling algorithm of capacity = guarantees lightly-amortized expected
cost $ (⇠) per operation on an input sequence G if, for any contiguous subsequence G 9 , . . . , G 9+) of
operations, the total expected cost of the operations is $ ()⇠ + =). Suppose we are given:
• A list-labeling algorithm ' that has lightly-amortized expected cost ⇢' per operation and worst-case
cost,' per operation.

• A list-labeling algorithm � that, on any given operation sequence G , has amortized expected cost
⌧� (G) per operation.

Then one can construct a list-labeling algorithm � û ' that satis�es the following cost guarantees:
• Worst-Case Cost. The worst-case cost of � û ' for any operation is $ (,').
• Good-Case Cost. On any input sequence G , � û ' has amortized expected cost $ (⌧� (G)).
• General Cost. On any input sequence, � û ' has lightly-amortized expected cost $ (⇢').
Moreover, if ⌧� (G) is the same value for all G , and if � ’s guarantee is lightly amortized (rather than
amortized), then the Good-Case Cost guarantee for � û ' is also lightly amortized.

One should think of the quantities ⇢' and,' in Theorem 2 as being functions of = that are
known in advance, and one should think of ⌧� as being a positive-valued function that depends
not just on = but also on the input sequence G .
What makes the speci�c structure of Theorem 2 powerful (including its somewhat subtle dis-

tinction between amortization vs. light amortization) is its repeated composability. Given three
data structures - , . , / , where - has an adaptive guarantee depending on the input, . has an

2A data structure is said to be history independent if, at any given moment, the state of the data structure depends only on
the elements that it contains, and not on the history of how they got there. A key insight in Bender et al.’s $ (log3/2 =)
algorithm is that history independence can be used to create a barrier between the data structure and the adversary that is
using it. However, in order to enforce this barrier, the data structure must necessarily be non-adaptive.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:4 Michael A. Bender et al.

expected cost guarantee on any input, and / has a worst-case guarantee on any input, one can
apply Theorem 2 twice to conclude that - û (. û /) has all three properties.

Theorem 3. Consider three list-labeling algorithms - , . , / , where - has at most �(G) amortized
expected cost on any input G , where . has at most ⌫ expected cost on any input, and where / has
worst-case cost at most ⇠ on any input. Then, on any input sequence of length ⌦(=), the embedding

- û (. û /)

simultaneously achieves amortized expected cost $ (�(G)) on any input G ; amortized expected cost
$ (⌫) on any input; and worst-case cost $ (⇠) on any input.

Technical overview. To give intuition for Theorem 2, let us focus on combining the ⌧� (G)
input-speci�c cost of � with the amortized expected $ (⇢') cost of ' (on any input). This allows us
to highlight some of the structural challenges that arise without tackling the problem in its entirety.
As noted earlier, a naive approach to combining � and ' would be to have two list-labeling

algorithms that are interleaved with one another. Some array slots belong to � and others belong to
'. When new elements are inserted, they are sent to whichever of � and ' can support the insertion
more cheaply. At a high level, there are three reasons why this approach ends up failing badly:
• The Deadweight Problem: In the full array, items must appear in truly sorted order. This forces
� and ' to be interleaved in potentially strange ways. For example, two elements 58 and 58+1 that
appear consecutive to � might have a long sequence A 9 , . . . , A: of elements from ' between them.
If � tries to move 58 and 58+1 (at what it thinks is a cost of 2), then it must also carry around
A 9 , . . . , A: as deadweight during the move (at an actual cost of : � 9 + 3).

• The Input-Interference Problem: Because we selectively choose which of � and ' receive
each insertion, the speci�c structure of the input G will be corrupted so that the cost ⌧� (G)
becomes ⌧� (G 0) for some G 0. Even worse, if either � or ' rely on randomization (or adapt to
randomization in the input sequence), then that randomization can end up a�ecting how the
input gets partitioned among � and ', meaning that the randomization adaptively changes the
input! This invalidates any randomized guarantees o�ered by � or '.

• The Imbalance Problem: If the total number of slots in the array is 1 + Y=, and � and ' are
each allocated (1 + Y)=/2 slots, then neither data structure can actually �t more than (1 + Y)=/2
elements. This means that we need to either (1) somehow dynamically change the number of
slots allocated to each of � and '; or (2) introduce an algorithmic mechanism for keeping � and
' load balanced.
The �rst step in resolving these problems is to embed � into ' in a hierarchical fashion, rather

than treating the two data structures symmetrically. Now the slots for � (including both empty
and occupied slots) are all elements of '’s array. That is, ' views all slots of � (either occupied or
free slots in �) as occupied slots. Additionally, ' contains some elements (called bu�er slots) that �
does not know about. If the total number of array slots is (1 + 3Y)=, then one should think of � as
occupying (1 + Y)= slots, and ' as getting to make use of the 2Y= additional slots that � does not
know about (half of these slots will be used as bu�er slots and half will be used as free slots for ').
Now, the basic idea is as follows. If an insertion can be implemented e�ciently in � , then it is

placed directly in � . Otherwise, if an insertion incurs too much cost in � (more than ⌦(,') cost),
then the insertion is bu�ered in ' until � can eventually complete the insertion. The bu�ering of
operations means that � can catch up on rebuild work slowly over time. Finally, whenever ' incurs
some cost, we also put ⇥(⇢') rebuild work into catching � up. This allows for us to maintain as an

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:5

invariant that, in expectation, we have put at least as much work into � (over time) as we have into
'.3

Critically, � will eventually perform every insertion/deletion, meaning that, from its perspective,
the original input G is preserved. Furthermore, although � ’s behavior a�ects which insertions get
bu�ered in ', the embedding is carefully designed so that the relationship is one-directional. This
prevents feedback cycles in which the randomness for ' (or �) indirectly impacts the future input
for ' (or �), and allows us to avoid the input-interference problem.
The hierarchical embedding does not help with the deadweight problem, however. When �

rearranges what it thinks is a subarray of some size, it may in actuality be carrying around many
bu�ered elements as deadweight. Moreover, the hierarchical embedding would seem to only worsen
the imbalance problem. For example, if the input sequence G is such that ⌧� (G) = l (⇢'), then �
may be arbitrarily expensive. This means that � will perpetually fall behind ', causing the number
of bu�ered elements to balloon uncontrollably.

The second algorithmic insight is that, as elements accumulate in '’s bu�er, opportunities arise
for us to consolidate work performed by � . For example, if � plans to rebuild a subarray �[8, 9]
for the insertion of some element G , and then, later on, to rebuild the same subarray again for
the insertion of some element ~, then the two rebuilds can potentially be merged together. By
carefully managing the consolidation of work (and how it interacts with the progression of the data
structures), we can eliminate both of our remaining problems at once. We resolve the deadweight
problem by ensuring that each element G that is inserted is carried around as deadweight at most
$ (1) total times before it successfully migrates to � . And we resolve the Imbalance problem by
ensuring that, as � ’s bu�ered work accumulates, the work consolidates at a fast enough rate that �
is guaranteed to make progress before the number of bu�ered elements becomes problematically
large.

Although our hierarchical embedding solves the three major problems faced by the naive solution,
it requires a great deal of technical care to avoid introducing other new problems. If we are not
careful, for example, then whenever we perform work in � , the rearrangement of � -elements and
'-elements (moved around as deadweight) will invalidate the state of '. Another issue lies in the
precise design of Theorem 2—because we need to be able to apply the theorem twice, we must
design its guarantees so that the output of the �rst application can be fed as a legal input into the
second. This leads to several subtleties such as, for example, the role of light amortization in the
theorem statement. Nonetheless, by designing the embedding in just the right way, we show that
it is possible to overcome all of these issues simultaneously, resulting in Theorem 2 and then, by
composition, Theorem 3.

2 PRELIMINARIES
In this section, we provide a formal de�nitions for the list-labeling problem, as well as some
mathematical notation we use in the remainder of the paper.
A list-labeling data structure of capacity = stores a dynamic set of at most = elements in an

array of< = 2= slots for 2 = 1 +⇥(1), maintaining the invariant that the elements appear in sorted
order. The list-labeling data structure sees the elements that it stores as black boxes—the only
information that it knows about the elements is their relative ranks.

The data structure supports operations of the form GC = (A ,f), where C denotes the timestep of
the operation, f speci�es whether the operation is an insertion or a deletion, and A is the rank of
3It is tempting to put ⇥(⇠) rebuild work into � , where⇠ is the amount of cost incurred on ' during that operation. This
type of ‘direct work matching’ would simplify the analysis of the embedding, but it would also subtly reintroduce the
input-interference problem, as the quantity⇠ (in�uenced by '’s random bits) would in�uence the rate at which � catches
up, which would in�uence which operations in the future are bu�ered/not-bu�ered, which is what decides '’s input.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:6 Michael A. Bender et al.

the inserted/deleted element. An insert operation at rank A adds an element with rank A in the
data structure, and increments the ranks of all elements whose ranks were at least A . An delete
operation at rank A deletes the element with rank A from the data structure, and decrements the
ranks of all elements whose ranks were at least A + 1. We use G = (G1, . . . , G)) to denote the input
sequence of operations for all timesteps 1, . . . ,) in the lifespan of the data structure.
In randomized list-labeling data structures, the operations are assumed to be performed by an

oblivious adversary, who may know the distribution of the random decisions made by the data
structure, but does not get to see the random decisions made in any speci�c instance.

The cost of a list-labeling algorithm on a sequence of operations is the number of element moves
performed by the algorithm on that input sequence. The list labeling algorithm is said to incur
amortized expected cost at most $ (⇠) if, on every pre�x of the input sequence the expected
average cost per operation is at most$ (⇠). In this paper, we also de�ne lightly amortized expected
cost: a list-labeling algorithm has lightly amortized expected cost $ (⇠) on input sequence G if
on any contiguous subsequence G 9 , . . . , G 9+C of G , the total expected cost on the subsequence is
$ (C⇠ + =).

3 EMBEDDED LIST-LABELING ALGORITHMS
In this section, we describe the construction of � û ' (read “� in '”), the embedding of a fast
algorithm � into a reliable algorithm '. Fix a positive constant Y > 0, and let � and ' be two
list-labeling algorithms, where � is on an array of size (1 + Y)= capable of holding up to = elements,
and ' is on an array of size (1+3Y)= capable of holding up to (1+2Y)= elements. The full embedding
� û ' will be an array A of size (1 + 3Y)= capable of holding up to = elements.4
The embedding � û ' consists of two primary components, a list-labeling algorithm called the

F-emulator, which is implemented using (a modi�ed version of) � , and a list-labeling algorithm
called the R-shell, which is implemented using '. The � -emulator runs on a subarray denoted by
A� of size =(1 + Y) (although, as we shall see, the choice of which slots comprise this subarray will
change over time), and the '-shell runs on the entire array, including the remaining 2Y= slots of
A \A� . An example of what A� looks like is given in Figure 1 (we will say more about this �gure
later).

High-level roles of the L -emulator and X-shell. The � -emulator maintains a simulated copy of
� , i.e., it keeps track internally of what the state of � would be on an array of size (1 + Y)= elements.
As we shall see, this simulated copy of � does not physically exist (i.e., it is not necessarily what the
arrayA� stores at any given moment). The simulation is just to help the � -emulator with planning.

The � -emulator works in batches to transform the state of A� into that of the simulated copy—
each batch aims to get the � -emulator to the same state that the � -simulator was in when the
batch began. We refer to the ongoing process of transforming the state of A� into the state of the
simulated copy of � as a rebuild, and at a given time step we say there is a pending rebuild if
the � -emulator is not fully caught up with the simulated � . In order that the � -emulator is not too
expensive on any given time step, rebuilds perform at most $ (⇢') work per time step.

If, when insertion occurs, there is already a pending rebuild, or if inserting that item would cause
a pending rebuild that requires more than ⌦(⇢') work, then the inserted item must be bu�ered in
the '-shell. This means that the item is stored in one of the slots A \ A� that the '-shell knows
about but that the � -emulator does not. As we shall see, the item is only moved into the � -emulator
once the � -emulator eventually catches up to a state where it knows about that item. That is,

4In order to achieve a �nal slack of Y in the overall embedding, we would need to use Y/3 here. For clarity of notation, we
use Y , and achieve a slack of 3Y in the resulting algorithm.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:7

View of: -emulatorF

View of: -shellR

View of: F � R

Fig. 1. An example array A. The first image shows the data structure from the view of the embedding � û '.
There are 17 � -emulator slots, shaded blue, of which 12 are occupied by real elements. There are 4 ('-shell)
bu�er slots, shaded green, of which 2 are occupied by real elements. Finally, there are 4 '-shell empty slots,
shaded white. The second image shows the data structure from the view of the � -emulator (i.e., the array
A�), which only sees the blue slots. The third image shows the view of the '-shell, which is aware of all slots
in the array, but sees all � -emulator slots (occupied and free) and bu�er slots (occupied and free) as occupied
by elements.

the item will be moved from a bu�er slot into A� once the � -emulator performs a rebuild that
transforms A� into a state that contains the item.
Whereas the � -emulator must maintain a simulated copy of � , the '-shell will not need to do

any such thing. Rather, the '-shell will directly use ' to implement the sequence of operations that
it receives (although, as we shall see, this sequence is not the same as the original input sequence
given to � û ').

Types of slots. Figure 1 gives an example of di�erent types of slots that can exist in � û ' at any
given moment. These include: the � -emulator slots (i.e., A�); n= ('-shell) bu�er slots; and n=
'-shell empty slots.

From the perspective of the � -emulator, the � -emulator slots are the only slots that exist, con-
sisting of both the items and free slots for the � -emulator. From the perspective of the '-shell, the
� -emulator slots are all occupied slots. Additionally, from the perspective of the '-shell, the bu�er
slots are also all occupied slots. If an � -emulator slot (resp. a bu�er slot) does not actually contain
an item, then the '-shell treats it as containing an � -emulator dummy element (resp. a bu�er
dummy element). The only free slots, from the perspective of the '-shell, are the n= '-shell empty
slots. The other slots are viewed by the '-shell as elements that it can move around.

How moves in the L -emulator are implemented in L ú X. An important issue that we will
need to be careful about is cost ampli�cation in the � -emulator: when we rearrange items in the
� -emulator, we will need to also rearrange elements in '-shell whose ranks lie between those that
we rearranged in the � -emulator.

Suppose that the � -emulator wishes to move an element G into an (� -emulator) free slot B
immediately to G ’s right (in the � -emulator). Suppose, furthermore, that there are 0 bu�er slots
between G and B , 01 of which contain actual elements and 02 > 0 of which contain dummy elements.
Let 81 < 82 < · · · < 80+2 denote the positions in which G , the 0 bu�er slots, and B appear, respectively.
We cannot move G directly into slot B , because it would jump over 02 actual elements. Instead, the
embedding � û ' must move the 0 bu�er slots from positions 82, . . . , 80+1 to positions 83, . . . , 80+2,
respectively; this creates a free slot in position 82, which the embedding moves G into; �nally, the
embedding reclassi�es position 82 as an � -emulator slot (i.e., placing it in A�) and reclassi�es

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:8 Michael A. Bender et al.

x

i1 i2 i3 i4 i5 i6 i7 i8 i10

x

i1 i2 i3 i4 i5 i6 i7 i8 i9

i9

i10

s

s

Fig. 2. An example move in the � -emulator of element G to a (� -emulator) neighboring free slot B . Here 0 = 8
bu�er slot elements sit in between G and the � -free slot in � û', with 01 = 6 containing real bu�ered elements.
The remaining 02 = 2 contain dummy elements. Solid lines represent moves of slots in � û', while the dashed
line represents the move of the element G in the � -emulator. From the view of the � -emulator, all that has
happened is that G moved into slot B ; and from the view of the '-emulator, nothing has happened.

position 80+2 as a bu�er slot (i.e., removing it from A�). An example of this process is shown in
Figure 2.
From the perspective of the � -emulator, we have moved G into slot B . From the perspective of

the '-shell, we have done nothing, as the set of occupied slots (i.e., � -emulator slots and bu�er
slots) has remained unchanged. Critically, although we have changed which slots comprise A� ,
we have not changed which slots the '-shell views as occupied. Importantly, the '-shell, being a
list-labeling algorithm, does not care about what is actually stored in a given slot: the '-shell’s
behavior is completely determined by (1) which slots it thinks are occupied and (2) what ranks it is
asked to perform insertions/deletions at.

In general, if we wish to move an � -emulator item G to an � -emulator free slot B that is 8 positions
to G ’s left/right in the � -emulator, then we can achieve this by repeatedly applying the construction
above. The total cost is $ (1 + 01), where 01 is the number of (non-dummy) items in bu�er slots
between G and B . Thus, a rearrangement that the � -emulator thought should cost $ (1) actually
costs $ (1 + 01) due to cost ampli�cation. We refer to the $ (01) extra moves that needed to be
performed as deadweight moves—bounding the cost of these moves will be a critical piece of our
analysis.

We remark that, except when speci�ed otherwise, whenever we refer to the cost incurred during
a rebuild, we will include the cost of deadweight moves. On the other hand, when referring to costs
incurred by the simulated copy of � , we do not include ampli�cation costs, since the simulated
copy of � does not incur deadweight moves.

Implementation of the L -emulator. We are now prepared to describe the implementation of
the � -emulator. As its internal state, the � -emulator keeps track of a simulated copy of � on an
array of size (1 + Y)=. The actual state of the A� may not match the state of the � -emulator at any
given moment. To distinguish between them, we will use � (C) to denote the state of the simulated
copy of � after the C-th operation, and e� (C) to denote the state of A� after the C-th operation.
At a high level, the goal of the � -emulator will be to gradually perform work on e� (C � 1) with

the goal of bringing its state closer to that of � (C). Because � (C) changes after each time step, it is
convenient to freeze the version of � that the � -emulator targets, which we call the checkpoint.
Checkpoints are useful to ensure that progress is made at each time step, because the target state is
unchanged until the transformation into the checkpoint is complete.
When a rebuild begins, at some time C0, then the state � (C0) will be the checkpoint used for

that rebuild. For all times C � C0 until the rebuild �nishes, we de�ne the target checkpoint state

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:9

State of F̃ (t0)

Target checkpoint state: C(t0) = F(t0)

a

a b c

c d

d

f g h

e g h i

i j k me

f j k m

l

I1

I2I1

I2

Fig. 3. A example of the intervals �1, �2, . . . , �: (where : = 2) used by a rebuild beginning at time C0. The states
of e� (C0) (i.e., the slots in A�) and � (C0) (i.e., the simulated copy of �) are each shown, and the intervals �1
and �2 are the constructed based on which elements need to move in order to get from one state to the other.
The elements that need to move (0,1, 2,3, 8, 9,:, ✓) form the set & , and �1 and �2 are defined to be the maximal
sub-intervals out of those that contain just elements of & and that are non-empty.

Starting state: in I1 F̃ (t0)

Left alignment step 1

Left alignment step 2

Left alignment step 3

Rightward move step 1

Rightward move step 2

Rightward move step 3

a

a

a

a a

a

a

a

b

b

c

c

c

c

c

c

c

c d

d

d

d

d

d

d

d

Target state: in I1 C(t0)

Fig. 4. An example of rebuilding the interval �1, in Figure 3, by first moving the elements in the interval to be
le�-aligned, and then to their correct positions within A� . Each step shows only the state of �1, which in
turn is a sub-interval of A� , so slots not in A� (i.e., slots colored green and white in Figure 1) are not shown
(this means that deadweight moves are also not shown). Starting at the state of the interval in e� (C0), the
rebuild first moves the elements in the interval one-by-one to be le�-aligned in the interval. The rebuild then
moves the elements one-by-one to their target positions within the array A� (i.e., their positions in � (C0),
which is also ⇠ (C) for every time C within the rebuild time window). Note that Rightward-move step 3 is an
incorporation step, moving an element that was formerly in an R-shell bu�er slot (so not formerly in A�) into
a slot within A� . Also note that the final rightward-step (which would be Rightward move step 4) is a no-op,
since 0 is already in its correct position within array A5 and does not need to be moved.

⇠ (C) = � (C0). In the same way that the simulated copy of � is stored internally by the � -emulator,
the target state ⇠ (C) is also stored internally.
When a rebuild �nishes at some time C1, the state � (C1) may be quite di�erent from � (C0). At

this point, the next checkpoint time is set to be C1, and � (C1) becomes the target of the next rebuild.
The rebuild starting at time C0 which transforms e� (C0) to⇠ (C0) = � (C0) is accomplished as follows.

Recall that each of e� (C0) and � (C0) are arrays of size (1 + n)= that contain (up to) = elements. Let &
be the set of elements that need to be moved (or inserted or deleted) in order to transform e� (C0)
into � (C0), that is, the set of elements that appear in at least one of e� (C0) and � (C0) but that do not
appear in the same array slot in both. Let �1, . . . , �: be the set of maximal non-empty contiguous
intervals of the � -emulator’s array A� that contain only elements of & (see Figure 3). For each
subinterval � 9 , the rebuild needs to rearrange/insert/delete the elements within the interval to get
from their state in e� (C0) to their state in � (C0).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:10 Michael A. Bender et al.

Now let us describe how a given rebuild rearranges the elements within a given subinterval � 9
(Figure 4). This process takes place within the array A� , so, as discussed earlier, bu�ered elements
(i.e., occupied green slots in Figure 1) may be carried around via deadweight moves. To rearrange
the elements within a given subinterval � 9 , the rebuild �rst moves all elements to be completely
left-aligned within the subinterval (again, this rearrangement occurs in A�); and the rebuild then
moves all elements (rightwards) into their correct places, one at a time, starting with the rightmost
element. Critically, this latter step also incorporates any elements from the bu�er slots that were
not present in e� (C0) but that are present in⇠ (C) = � (C0) (i.e., these elements move from bu�er slots
to A� slots). The two-phase approach of �rst moving elements to be left-aligned, and then moving
them to their correct positions, ensures that the array is always in a correct state with respect to
element ranks, and at most doubles any associated costs.
It is worth taking a moment to comment on what it means to incorporate an element from a

bu�er slot into A� . As the rebuild occurs on the � -emulator, some of the elements in bu�er slots
(speci�cally, those that are present in⇠ (C) = � (C0)) are moved from bu�er slots intoA� . Whenever
an element is incorporated, it is moved from some bu�er slot to some � -emulator slot. In this case,
the bu�er slot remains a bu�er slot, and is now said to contain a bu�er dummy element.

Insertions in L ú X. We are now prepared to describe the full implementation of � û '. Consider
an insertion G . Let 2⇢ be the cost incurred by the � -emulator’s simulated copy of � to insert G .
There are two cases:
(1) The fast path occurs if there is no pending rebuild and 2⇢  ⇢' . In this case:
(a) Insert G into A� by emulating � as in the � -emulator’s simulated copy.

(2) The slow path occurs otherwise. In this case:
(a) Insert G into the '-shell:

(i) Choose an arbitrary bu�er slot that currently contains a dummy element, and delete it
using '.

(ii) Insert a new bu�er slot at G ’s rank using '.
(iii) Put G into the new bu�er slot.

(b) Perform rebuild work in the � -emulator:
(i) Perform ⇥(⇢') rebuild work in the � -emulator.
(ii) If, additionally, the rebuild can be completed at cost less than ⇢' , do so.
(iii) If the rebuild is complete, set the new checkpoint to be the state of the � -emulator’s

simulated copy of � .
(iv) If the [new] rebuild can be completed at cost less than ⇢' , do so.
We emphasize that in part (b) of the slow path, during steps (i), (ii), and (iv), every time that we

refer to the cost of rebuild work, we are including the cost of deadweight moves.
It is also worth remarking on the role of steps (ii) and (iv) in part (b) of the slow path. This is to

ensure that, whenever there is a pending rebuild, there is ⌦(⇢') pending work to be done. This is
important for step (i) of part (b) of the slow path, which instructs the � -emulator to perform ⇥(⇢')
rebuild work.
Finally, it should be noted that, at the beginning of time, ' must be initialized to contain A� ,

along with the n= bu�er slots. This requires the simulation of ⇥(=) insertions on '. This is also why
we require ' to o�er a lightly amortized guarantee (rather than simply an amortized one), since
the lightness of the amortization allows for us to bound the e�ect of these initialization insertions
on the cost of later operations in '.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:11

Deletions in L ú X. To delete an item G , our �rst step is to simply remove the item. If the item
being deleted is in a bu�er slot, then the slot remains a bu�er slot (now containing a dummy
element). Similarly, if the item being deleted is in an � -emulator slot, then that slot also remains an
� -emulator slot. The � -emulator will treat that slot as containing the deleted element, up until the
emulator has caught up to a point where the deletion has occurred.
After removing the item, we proceed with almost the same logic as for insertions—the only

di�erence is that now we can skip part (a) of the slow path. In more detail, we let 2⇢ be the cost
incurred by the � -emulator’s simulated copy of � to delete G , and there are two cases:
(1) The fast path occurs if there is no pending rebuild and 2⇢  ⇢' . In this case:
(a) Delete G from A� by emulating � as in the � -emulator’s simulated copy.

(2) The slow path occurs otherwise. In this case, we perform part (b) of the slow path for insertion.
A nice feature of deletions is that they will not require any special handling in our analyses. This

will be because (1) the fact that an item has been removed will only reduce the costs that we are
calculating, and (2) all slow-path operations (both insertions and deletions) always perform at least
⇥(⇢') work on the current rebuild.

4 PROOF OF THEOREMS 2 AND 3
We now analyze the embedding in order to establish Theorems 2 and 3. Recall from the technical
overview that there are three major issues we must avoid: the deadweight problem, the input-
interference problem, and the imbalance problem.
We remark that the imbalance problem, in particular, is is a matter of well-de�ned-ness for our

insertion algorithm – we must show that, whenever the slow path is invoked by an insertion,
there exists at least one available bu�er slot (i.e., a bu�er slot that contains a dummy element).
We will prove this in Lemma 7. In order that, in the lemmas preceding Lemma 7, our discussion
is well-de�ned, we shall add for now a halting condition to our algorithm: if, at any point in
time, there are no bu�er slots available to handle an insertion, then the algorithm halts (no more
operations are performed), and the remaining operations are treated as having cost zero. Of course,
we will ultimately see via Lemma 7 that this halting condition can never occur.

We begin by establishing formally that the design of the embedding avoids the input-interference
problem.
Recall that � and ' are each (potentially) randomized algorithms. Let rand(�) and rand(')

be the strings of random bits used by each of the two algorithms. Additionally, let G denote the
input received by � (i.e., the simulation of � maintained by the � -emulator), and let ~ be the input
received by the ' (i.e., the '-shell). Both inputs are sequences of insertions and deletions, where
each operation speci�es a rank at which the insertion or deletion should occur. Whereas G is
the same input that the full embedding � û ' receives, ~ is determined by a more complicated
algorithmic process. We shall now establish that ~ is fully determined by G and rand(�), and is
therefore independent of rand('). That is, the random bits for ' are independent of its input.

Lemma 4. The sequence ~ of operations given to the '-shell is independent of the '-shell’s random
bits rand(').

P����. Concretely, we will show that ~ is the same, no matter how the '-shell behaves. That is,
~ is fully determined by G and rand(�).

At any given moment, de�ne the truncated state) of � û ' to be the state of the array � û '
except with the '-empty slots removed (i.e., the slots of) are the green and blue slots in Figure
1), and with each remaining slot annotated to indicate whether it is green or blue in Figure 1.
When the '-shell moves elements around, the state of) does not change (i.e., all that moves by

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:12 Michael A. Bender et al.

the '-shell change is the interleaving of the white slots in Figure 1 with the green and blue slots).
Since the � -emulator’s behavior is oblivious to where the '-shell free slots are, we can think of the
� -emulator as interacting directly with) . That is, even if we do not give the � -emulator access to
the full state of � û ', but instead only access to) , we can fully reconstruct how the � -emulator
behaves over time. Moreover, since the state of) is una�ected by '’s behavior, the evolution of
) over time (i.e., what it looks like after each operation in the original input sequence G) is fully
determined by the original input sequence G and the random bits rand(�). Thus the state of) and
the behavior of the � -emulator (including the choice of which elements are inserted/deleted via fast
vs slow paths) is fully determined by the original input sequence G and the random bits rand(�).
However, the state of) along with the indicator random variables for which elements in G are
inserted/deleted via fast vs slow paths fully determine the input sequence ~ that is given to the
'-shell. Thus the input to the '-shell is independent of rand('), as desired.

⇤

Next, we address the deadweight problem. We show that, although elements can be moved
around (as deadweight), each element is only involved in $ (1) total such moves.
Lemma 5. Each item is moved by at most 4 deadweight moves. Moreover, these deadweight moves
occur during either the rebuild in which the item was inserted, or during the next rebuild, and each
rebuild moves the item as a deadweight move at most twice.

P����. Consider an insertion G at some time C . Suppose that at time C we are performing a
rebuild on the � -emulator that brings the � -emulator to checkpoint state ⇠ (C) = � (C0) for some
C0  C . The next rebuild will bring the � -emulator to state � (C1) for some C1 � C . Critically, the
checkpoint � (C1) is after G ’s insertion time. Thus, by the time the next rebuild is complete, the
inserted item G will be incorporated into the � -emulator (or G will have been deleted). So the only
opportunities for G to be involved in a deadweight move are during the current rebuild or the next
one.
To complete the proof, it su�ces to show that, during a given rebuild, each item G (that is in a

bu�er slot) is involved in at most 2 deadweight moves. Recall that, during a rebuild, the � -emulator
decomposes A� into disjoint intervals �1, . . . , �: (for some :) and performs two passes on each � 9
(one to move all elements to be completely left aligned, and one to move them into their correct
places). The item G incurs deadweight moves from at most one � 9 , and therefore incurs at most 2
such deadweight moves during a given rebuild. ⇤

The key to avoiding the imbalance problem is to prove that each rebuild spans a relatively short
period of time.
Lemma 6. Supposing = is at least a su�ciently large positive constant, there exists a positive constant
2 such that each rebuild completes in at most 2=/log= = > (=) operations.

P����. We will prove the lemma by induction on the number of rebuilds that have occurred so
far.
Let (1 and (2 be the number of operations that occur during the prior rebuild and the current

rebuild, respectively. Since the � -emulator performs ⇥(⇢A) rebuild work during every operation
(possibly except the �nal one) in the rebuild, and since ⇢A = ⌦(log=) by the lower bound of [21],
we have that the total cost of the rebuild is at least

2LB · ((2 � 1) · log= (1)
for some positive constant 2LB. Set 2 = max (4, 16/2LB), and assume that = is large enough that both
log= � 8/2LB and = � 2. Our inductive hypothesis will be that (1  2=/log=. The base case is the
�rst rebuild, in which case (1 = 0.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:13

Now, suppose that a rebuild starts at time C0, and that the inductive hypothesis holds. We obtain
an upper bound on the cost of the rebuild as follows. Excluding deadweight moves, the cost of the
rebuild is at most 4=, since the non-deadweight moves are spent moving around elements that are
present in at least one of e� (C0) and⇠ (C0), and each such element is moved at most twice during the
rebuild. On the other hand, by Lemma 5 the total cost of deadweight moves during the rebuild is at
most 2((1 + (2). By the inductive hypothesis, we know that (1  2=/log=. So the total cost of the
current rebuild, including cost ampli�cation is at most

4= + 2(1 + 2(2  4= + 22=/log= + 2(2 . (2)
Combining (2) and (1), we have that

2LB · ((2 � 1) · log=  4= + 22=/log= + 2(2.

Rearranging terms, we have that

(2 
1

2LB log= � 2

✓
4= + 22=

log=
+ 2LB log=

◆
,

and we want to show that the right-hand side is at most 2=/log=. Rearranging terms again, this is
equivalent to showing:

2LB log= + 4=  2=

log=
(2LB log= � 2) � 22=

log=
= 2=

✓
2LB �

4
log=

◆
. (3)

By assumption, log= � 8/2LB, so 4/log=  2LB/2. Therefore,
1
2
2=

✓
2LB �

4
log=

◆
� 2 · 2LB=/4.

On the one hand, this is at least 4=, since 2 � 16/2LB by our choice of 2 . On the other hand, this
is at least 2LB log=, since 2 � 4 (again by choice) and = � log= (since = � 2). Combining the two
halves, we have shown (3), which completes the induction. ⇤

We can now show that the imbalance problem is avoided. That is, whenever the '-shell needs a
bu�er slot to place an element in, there is at least one available, so the halting condition speci�ed
at the beginning of the section never occurs.

Lemma 7. There are > (=) bu�er slots in use at any time. In particular, whenever step (i) of part (a) of
the slow path is invoked, there exists at least one bu�er slot that contains a dummy element. Thus the
halting condition never occurs.

P����. Consider any time C . If the � -emulator is not in the process of executing a rebuild at
time C , then there are no items in the '-shell, and there is nothing to prove. Any insertions that
occurred before the previous checkpoint have already been incorporated into the � -emulator by
construction. Therefore, all of the items in the '-shell must have been inserted during the current
rebuild or the previous one. By Lemma 6, there are > (=) such insertions. ⇤

This brings us to the task of actually bounding the cost incurred by the embedding. This is the
most subtle part of the analysis.
Recall that a list-labeling algorithm with capacity = is said to guarantee lightly-amortized

expected cost⇠ , if on any operation sequence GC , the expected cost incurred by any subsequence of
operations G0, . . . , G0+8�1 is at most 8 ·⇠ +$ (=). We will now prove that, if ' has lightly-amortized
expected cost$ (⇢'), and � has amortized expected cost$ (⌧�), then � û' incurs amortized expected
cost $ (⌧�).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:14 Michael A. Bender et al.

Lemma 8. Suppose that ' has lightly-amortized expected cost $ (⇢') per operation; and that � has
amortized expected cost $ (⌧�) per operation (where ⌧� may be a function of the input sequence).
Then, on any input sequence G of length ⌦(=), the embedding � û ' incurs amortized expected $ (⌧�)
cost per operation.

P����. Consider an input sequence GC of length) � ⌦(=). Let C1, C2, . . . , C 9 be the operations that
trigger the slow path in the embedding. Each C8 triggers 2 operations (an insertion and a deletion)
in the '-shell, leading to a total of 2 9 operations in the '-shell.

By Lemma 4, the operations given to the '-shell are independent of the '-shell’s random bits, so
we can apply '’s light-amortization guarantee to bound the expected cost incurred by the '-shell
on the 2 9 operations by

$ (9⇢' + =). (4)
It is worth emphasizing why we needed a light amortization guarantee from ' in order to arrive

at (4). The issue is that, when the embedding is initialized, the '-shell must be initialized to contain
⇥(=) dummy elements, meaning that the '-shell has already has ⇥(=) (virtual) operations by the
time the input sequence starts. Thus the 2 9 operations that the '-shell incurs after initialization
must be treated as an subsequence of '’s operation sequence—this is why we need '’s guarantee to
be lightly amortized.
On the other hand, each of the 9 operations that trigger the slow path perform ⇥(⇢') rebuild

work on the � -emulator. This means that the � -emulator incurs cost at least ⌦(9⇢'). It follows that,
if ⇠1 is the total expected cost incurred on the '-shell, and ⇠2 is the total expected cost incurred on
the � -emulator (including deadweight moves), then

⇠1  $ (9⇢' + =)  $ (⇠2 + =), (5)

where the �rst inequality follows from (4). Since the input sequence has length) � ⌦(=), the
amortized expected cost per operation is at most

$ ((⇠1 +⇠2)/))  $ (⇠2/) + =/)) = $ (⇠2/) + 1), (6)

where the �rst inequality follows from (5).
Finally, de�ne ⇠3 to be the cost incurred by the simulated copy of � . We have by construction

that E[⇠3]  $ () ·⌧�), and we have by Lemma 5 that the cost ⇠4 of deadweight moves is $ ()).
Since ⇠2 = $ (⇠3) + ⇠4, it follows that E[⇠2]  $ () · ⌧�). Therefore, by (6), the embedding has
amortized expected cost $ (⇠2/) + 1) = $ (⌧�) per operation. ⇤

Critically, if ' and � both o�er lightly-amortized guarantees, then we can show that � û ' also
o�ers lightly-amortized guarantees. This is what will allow for us to structure Theorem 2 in such a
way that it can be applied twice to obtain Theorem 3.

Lemma 9. Suppose ⌧� (G) is the same value for all input sequences G , and refer to this value as
⌧� . Suppose that ' has a lightly-amortized expected cost $ (⇢') per operation; and that � has a
lightly-amortized expected cost $ (⌧� (G)) per operation. Then, on any input sequence G of length
⌦(=), the embedding � û ' incurs lightly-amortized expected cost $ (⌧� (G)) per operation.

It is worth remarking on why, in Lemma 9,⌧� (G) takes the same value ⌧� for all G . This is so
that it makes sense to talk about � o�ering a lightly-amortized expected cost of ⌧� . This means
that, on any input subsequence G 0 of some length) , the total expected cost on that subsequence
should be at most $ ()⌧� + =). If we want ⌧� to depend on G , then we would need to make it also
depend on the subsequence G 0. One could extend Lemma 9 to this setting, but as we shall see later
on, it is not actually necessary for our results.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:15

P����. The proof is similar to that of Lemma 8, except that nowwe focus on an input subsequence
Ĝ = GC , . . . , GC+) for some C and) .

By the same reasoning as for (6) in Lemma 8, we have that the total expected cost incurred by
the embedding on Ĝ is

$ (⇠2 + =), (7)
where ⇠2 is the total expected cost incurred by the � -emulator on Ĝ .

De�ne⇠3 to be the cost incurred by the simulated copy of � on Ĝ . We have by light amortization
that E[⇠3]  $ () ·⌧� + =). We also have by Lemma 5 that E[⇠2 �⇠3] (i.e., the cost of deadweight
moves) is $ () + (), where (is the maximum size of any rebuild batch. This implies by Lemma 6
that E[⇠2 �⇠3]  $ () + =), implying that E[⇠2]  $ () + =) + E[⇠3]  $ () ·⌧� + =). By (7), it
follows that the total expected cost incurred by the embedding on Ĝ is $ () ·⌧� + =). ⇤

Finally, we show that � û ' also enjoys the cost guarantees o�ered by '.

Lemma 10. Suppose that ' has lightly-amortized expected cost $ (⇢') per operation and that '
has a worst-case cost $ (,') per operation, where,' � ⇢' . Then the embedding � û ' also has
lightly-amortized expected cost $ (⇢') per operation and worst-case cost $ (,') per operation.

P����. The main claim that we must establish is that, during each operation, the cost that we
incur on the � -emulator (including deadweight moves) is always at most $ (⇢'). This is immediate
for operations that trigger the slow path, as the only work that they perform on the � -emulator is
in steps (i) and (iv) of part (b) of the slow path. To analyze operations that take the fast path, recall
that the reason an operation goes to the fast path is that (1) its cost 2⇢ in the simulated copy of � is
at most ⇢' and (2) there is no pending rebuild work. The lack of pending rebuild work means that
there are no bu�ered elements, so the operation will not incur any cost ampli�cation. Thus the
operation incurs true cost 2⇢  ⇢' .

Since each operation performs at most$ (⇢') work on the � -emulator, it remains only to consider
the cost incurred on the '-shell. By Lemma 4, the cost that we incur on the '-shell is bounded by
'’s guarantees—$ (⇢') in expectation and $ (,') in the worst case. This implies the lemma. ⇤

Putting the pieces together, we are ready to prove Theorem 2.

Theorem 2. Say that a list-labeling algorithm of capacity = guarantees lightly-amortized expected
cost $ (⇠) per operation on an input sequence G if, for any contiguous subsequence G 9 , . . . , G 9+) of
operations, the total expected cost of the operations is $ ()⇠ + =). Suppose we are given:
• A list-labeling algorithm ' that has lightly-amortized expected cost ⇢' per operation and worst-case
cost,' per operation.

• A list-labeling algorithm � that, on any given operation sequence G , has amortized expected cost
⌧� (G) per operation.

Then one can construct a list-labeling algorithm � û ' that satis�es the following cost guarantees:
• Worst-Case Cost. The worst-case cost of � û ' for any operation is $ (,').
• Good-Case Cost. On any input sequence G , � û ' has amortized expected cost $ (⌧� (G)).
• General Cost. On any input sequence, � û ' has lightly-amortized expected cost $ (⇢').
Moreover, if ⌧� (G) is the same value for all G , and if � ’s guarantee is lightly amortized (rather than
amortized), then the Good-Case Cost guarantee for � û ' is also lightly amortized.

P����. We must �rst establish that � û ' is a valid list-labeling algorithm. The embedding � û '
keeps all elements in sorted order by construction. Thus the only opportunity for incorrectness is
if the algorithm is impossible to execute, that is, if in step (i) of part (a) of the slow path, there are
no more bu�er dummy elements left. But, we know by Lemma 7 that this never happens.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

101:16 Michael A. Bender et al.

The cost guarantees follow directly from Lemmas 8, 9, and 10. ⇤

Applying Theorem 2 twice, we can immediately obtain Theorem 3. Notice that, although light
amortization does not appear at all in the speci�cations of Theorem 2, the concept ends up being
critical to the proof, as it allows for the output of the �rst embedding . û / to be reused as the
input to the second - û (. û /).

Theorem 3. Consider three list-labeling algorithms - , . , / , where - has at most �(G) amortized
expected cost on any input G , where . has at most ⌫ expected cost on any input, and where / has
worst-case cost at most ⇠ on any input. Then, on any input sequence of length ⌦(=), the embedding

- û (. û /)
simultaneously achieves amortized expected cost $ (�(G)) on any input G ; amortized expected cost
$ (⌫) on any input; and worst-case cost $ (⇠) on any input.

P����. First, consider the embedding . û / , which has ⌧� = ⌫ and,' = ⇢' = ⇠ . By Theorem
2, the embedding has amortized expected cost $ (⌫) and worst-case $ (⇠). Moreover, since . ’s
guarantee is an expected-cost guarantee (not an amortized guarantee) the$ (⌫) guarantee for . û/
is actually for lightly-amortized expected cost. This �nal fact is critical, as it is what allows . û/ to
be reused as the input to another embedding, where it serves as ' with,' = ⇠ and ⇢' = ⌫.

Now consider the second embedding - û (. û /), which has ⌧� = �(G), ⇢' = ⌫,,' = ⇠ . Again
applying Theorem 2, we have that - û (. û /) simultaneously achieves amortized expected cost
$ (�(G)) on any input G ; amortized expected cost $ (⌫) on any input; and $ (⇠) worst-case cost on
any input. ⇤

Corollary 11. There exists a list-labeling algorithm that, on any input sequence of length ⌦(=),
achieves:

• Amortized expected cost$ (log=) if the input sequence is a hammer-insert workload, as de�ned
in [18];

• Amortized expected cost $ (log3/2 =);
• Worst-case cost $ (log2 =).

P����. The result follows by applying Theorem 3 to the following three list-labeling algorithms:
• As - : The algorithm from [18], which achieves amortized $ (log=) cost on hammer-insert
workloads.

• As . : The algorithm from [8], which achieves expected cost $ (log3/2 =) on all inputs.
• As / : The algorithm from [49], which achieves deamortized $ (log2 =) cost on all inputs.

⇤

Corollary 12. Let G = G1, G2, . . . , G= be a sequence of = insertions, and let c : [=] ! [=] be the
permutation such that Gc (1) < Gc (2) < · · · < Gc (=) . Let % : {G8 } ! [=] be a rank predictor, and let
[= max8 |c (8) � % (G8) | denote the maximum error that % incurs across the insertions. Then there
is an online (learning-augmented) list-labeling algorithm that, when equipped with % , supports the
insertion sequence G with:

• Amortized expected cost $ (log2 [);
• Amortized expected cost $ (log3/2 =);
• Worst-case cost $ (log2 =).

P����. The result follows by applying Theorem 3 to the following three list-labeling algorithms:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

Layered List Labeling 101:17

• As - : The learning-augmented algorithm from [35], which achieves amortized$ (log[2) cost
on G .

• As . : The algorithm from [8], which achieves expected cost $ (log3/2 =) on all inputs.
• As / : The algorithm from [49], which achieves deamortized $ (log2 =) cost on all inputs.

⇤

ACKNOWLEDGMENTS
We gratefully acknowledge the PODS reviewers, whose helpful and speci�c comments substantively
improved our paper.

This research was partially sponsored by the United States Air Force Research Laboratory and the
United States Air Force Arti�cial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the o�cial policies, either
expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.
This work was also supported by NSF grants CCF-2106999, CCF-2118620, CNS-1938180, CCF-

2118832, CCF-2106827, CNS-1938709, and CCF-2247577.
Hanna Komlós was partially funded by the Graduate Fellowships for STEM Diversity.
Finally, William Kuszmaul was partially supported by a Hertz Fellowship, an NSF GRFP Fellow-

ship and the Harvard Rabin Postdoctoral Fellowship.

REFERENCES
[1] Arne Andersson. 1989. Improving Partial Rebuilding by Using Simple Balance Criteria. In Proc. Workshop on Algorithms

and Data Structures (WADS) (Lecture Notes in Computer Science, Vol. 382). Springer, 393–402.
[2] Arne Andersson and Tony W. Lai. 1990. Fast Updating of Well-Balanced Trees. In Proc. 2nd Scandinavian Workshop on

Algorithm Theory (SWAT) (Lecture Notes in Computer Science, Vol. 447), John R. Gilbert and Rolf G. Karlsson (Eds.).
111–121. https://doi.org/10.1007/3-540-52846-6_82

[3] Martin Babka, Jan Bulánek, Vladimír Cunát, Michal Koucký, and Michael E. Saks. 2019. On Online Labeling with Large
Label Set. SIAM J. Discret. Math. 33, 3 (2019), 1175–1193.

[4] Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger, Samuel McCauley, Cynthia A. Phillips, Bertrand
Simon, Shikha Singh, and David Zage. 2016. Anti-Persistence on Persistent Storage: History-Independent Sparse
Tables and Dictionaries. In Proc. 35th ACM Symposium on Principles of Database Systems (PODS). 289–302.

[5] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton. 2002. Scanning and Traversing:
Maintaining Data for Traversals in a Memory Hierarchy. In ESA (Lecture Notes in Computer Science, Vol. 2461). Springer,
139–151.

[6] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and Jack Zito. 2002. Two simpli�ed algorithms
for maintaining order in a list. In Proc. 10th European Symposium on Algorithms (ESA). Springer, 152–164.

[7] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and J. Zito. 2002. Two Simpli�ed Algorithms
for Maintaining Order in a List. In Proc. 10th European Symposium on Algorithms (ESA). 152–164.

[8] Michael A. Bender, Alex Conway, Martín Farach-Colton, Hanna Komlós, William Kuszmaul, and Nicole Wein. 2022.
Online List Labeling: Breaking the log2 = Barrier. In Proc. 63rd IEEE Annual Symposium on Foundations of Computer
Science (FOCS).

[9] M. A. Bender, E. Demaine, and M. Farach-Colton. 2005. Cache-Oblivious B-Trees. sicomp 35, 2 (2005), 341–358.
[10] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. 2000. Cache-oblivious B-trees. In Proc. of the 41st

Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society, 399–409.
[11] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. 2002. A Locality-Preserving Cache-Oblivious Dynamic

Dictionary. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 29–38.
[12] Michael A. Bender, Roozbeh Ebrahimi, Haodong Hu, and Bradley C. Kuszmaul. 2016. B-trees and Cache-Oblivious

B-trees with Di�erent-Sized Atomic Keys. Transactions on Database Systems 41, 3 (July 2016), 19:1–19:33.
[13] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. 2006. Cache-oblivious string B-trees. In Proc. 25th

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). ACM, 233–242.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

https://doi.org/10.1007/3-540-52846-6_82

101:18 Michael A. Bender et al.

[14] Michael A. Bender, Martin Farach-Colton, and Miguel Mosteiro. 2004. Insertion Sort is $ (=;>6=) . In Fun with
Algorithms. 16–23.

[15] Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro. 2006. Insertion Sort is $ (= log=) . Theory of
Computing Systems 39, 3 (2006), 391–397. Special Issue on FUN ’04.

[16] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and Pablo Montes. 2017. File Maintenance: When
in Doubt, Change the Layout!. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1503–1522.

[17] Michael A Bender, Jeremy T Fineman, Seth Gilbert, and Bradley C Kuszmaul. 2005. Concurrent cache-oblivious B-trees.
In Proc. of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 228–237.

[18] Michael A Bender and Haodong Hu. 2007. An adaptive packed-memory array. ACM Transactions on Database Systems
32, 4 (Nov. 2007), 26.

[19] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. 2002. Cache oblivious search trees via binary trees of small
height. In Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 39–48.

[20] Jan Bulánek, Michal Kouckỳ, and Michael Saks. 2012. Tight lower bounds for the online labeling problem. In Proc. of
the 44th Annual ACM Symposium on Theory of Computing (STOC). 1185–1198.

[21] Jan Bulánek, Michal Koucký, and Michael E. Saks. 2013. On Randomized Online Labeling with Polynomially Many
Labels. In Proc. International Colloquium on Automata, Languages, and Programming (ICALP) (Lecture Notes in Computer
Science, Vol. 7965). Springer, 291–302.

[22] William E Devanny, Jeremy T Fineman, Michael T Goodrich, and Tsvi Kopelowitz. 2017. The online house numbering
problem: Min-max online list labeling. In Proc. 25th European Symposium on Algorithms (ESA). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[23] Paul F Dietz. 1982. Maintaining order in a linked list. In Proc. of the 14th Annual ACM Symposium on Theory of
Computing (San Francisco, California, USA). New York, NY, USA, 122–127. https://doi.org/10.1145/800070.802184

[24] Paul F Dietz, Joel I Seiferas, and Ju Zhang. 1994. A tight lower bound for on-line monotonic list labeling. In Scandinavian
Workshop on Algorithm Theory. Springer, 131–142.

[25] Paul F Dietz, Joel I Seiferas, and Ju Zhang. 2004. A tight lower bound for online monotonic list labeling. SIAM Journal
on Discrete Mathematics 18, 3 (2004), 626–637.

[26] Paul F Dietz and Ju Zhang. 1990. Lower bounds for monotonic list labeling. In Scandinavian Workshop on Algorithm
Theory. Springer, 173–180.

[27] Igal Galperin and Ronald L. Rivest. 1993. Scapegoat Trees. In Proc. 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). ACM/SIAM, 165–174.

[28] Jason D. Hartline, Edwin S. Hong, Alexander E. Mohr, William R. Pentney, and Emily Rocke. 2002. Characterizing
History Independent Data Structures. In Proceedings of the Algorithms and Computation, 13th International Symposium
(ISAAC). 229–240. https://doi.org/10.1007/3-540-36136-7_21

[29] Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and Emily C Rocke. 2005. Characterizing
history independent data structures. Algorithmica 42, 1 (2005), 57–74.

[30] Alon Itai and Irit Katriel. 2007. Canonical density control. Inf. Process. Lett. 104, 6 (2007), 200–204.
[31] Alon Itai, Alan Konheim, and Michael Rodeh. 1981. A sparse table implementation of priority queues. Proc. of the 8th

Annual International Colloquium on Automata, Languages, and Programming (ICALP) 115 (1981), 417–431.
[32] Irit Katriel. 2002. Implicit Data Structures Based on Local Reorganizations. Master’s thesis. Technion – Israel Inst. of

Tech., Haifa.
[33] Dean De Leo and Peter A. Boncz. 2019. Fast Concurrent Reads and Updates with PMAs. In Proceedings of the 2nd

Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics
(NDA). ACM, 8:1–8:8.

[34] Dean De Leo and Peter A. Boncz. 2021. Teseo and the Analysis of Structural Dynamic Graphs. Proc. VLDB Endowment
14 14, 6 (2021), 1053–1066.

[35] Samuel McCauley, Benjamin Moseley, Aidin Niaparast, and Shikha Singh. 2023. Online List Labeling with Predictions.
CoRR abs/2305.10536 (2023). https://doi.org/10.48550/arXiv.2305.10536 arXiv:2305.10536

[36] Daniele Micciancio. 1997. Oblivious data structures: applications to cryptography. In Proc. of the 29th Annual ACM
Symposium on Theory of Computing (STOC). 456–464.

[37] Moni Naor and Vanessa Teague. 2001. Anti-persistence: history independent data structures. In Proc. of the 33rd Annual
ACM Symposium on Theory of Computing (STOC). 492–501.

[38] Prashant Pandey, Brian Wheatman, Helen Xu, and Buluç Buluc. 2021. Terrace: A Hierarchical Graph Container for
Skewed Dynamic Graphs. In Proc. 2021 ACM SIGMOD International Conference on Management of Data (SIGMOD).
1372–1385.

[39] Vijayshankar Raman. 1999. Locality Preserving Dictionaries: Theory and Application to Clustering in Databases.
In Proc. 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS) (Philadelphia,
Pennsylvania, USA). 337–345. https://doi.org/10.1145/303976.304009

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

https://doi.org/10.1145/800070.802184
https://doi.org/10.1007/3-540-36136-7_21
https://doi.org/10.48550/arXiv.2305.10536
https://arxiv.org/abs/2305.10536
https://doi.org/10.1145/303976.304009

Layered List Labeling 101:19

[40] Michael Saks. 2018. Online Labeling: Algorithms, Lower Bounds and Open Questions. In International Computer
Science Symposium in Russia (CSR), Vol. 10846. Springer, 23–28.

[41] Tokutek, Inc. 2015. TokuDB: MySQL Performance, MariaDB Performance . http://www.tokutek.com/products/tokudb-
for-mysql/.

[42] Tokutek, Inc. 2015. TokuMX—MongoDB Performance Engine. http://www.tokutek.com/products/tokumx-for-
mongodb/.

[43] Brian Wheatman and Randal Burns. 2021. Streaming Sparse Graphs using E�cient Dynamic Sets. In IEEE BigData.
IEEE, 284–294.

[44] Brian Wheatman and Helen Xu. 2018. Packed Compressed Sparse Row: A Dynamic Graph Representation. In HPEC.
IEEE, 1–7.

[45] Brian Wheatman and Helen Xu. 2021. A Parallel Packed Memory Array to Store Dynamic Graphs. In Proc. Symposium
on Algorithm Engineering and Experiments (ALENEX). SIAM, 31–45.

[46] Dan E. Willard. 1981. Inserting and Deleting Records in Blocked Sequential Files. Technical Report TM81-45193-5. Bell
Labs Tech Reports.

[47] Dan E. Willard. 1982. Maintaining Dense Sequential Files in a Dynamic Environment (Extended Abstract). In Proc.
14th Annual Symposium on Theory of Computing (STOC). 114–121.

[48] Dan E. Willard. 1986. Good Worst-Case Algorithms for Inserting and Deleting Records in Dense Sequential Files. In
Proc. 1986 ACM SIGMOD International Conference on Management of Data (SIGMOD). 251–260.

[49] Dan E. Willard. 1992. A Density Control Algorithm for Doing Insertions and Deletions in a Sequentially Ordered File
in Good Worst-Case Time. Information and Computation 97, 2 (April 1992), 150–204.

[50] Ju Zhang. 1993. Density control and on-line labeling problems. Ph. D. Dissertation. University of Rochester.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 101. Publication date: May 2024.

http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokumx-for-mongodb/
http://www.tokutek.com/products/tokumx-for-mongodb/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Embedded List-Labeling Algorithms
	4 Proof of Theorems 2 and 3
	Acknowledgments
	References

