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Abstract—Mobile Virtual Reality (VR) and panoramic video streaming rely on interactive panoramic scene delivery to provide desirable
user experiences. However, it is pretty challenging to support multiple users via the wireless network since a panoramic scene typically
consumes 4 ∼ 6× bandwidth compared with a regular video with the same resolution. Motivated by the fact that users only perceive the
Field-of-View (FoV), we employ the autoregressive process to predict the user’s motion and stream only part of the panoramic content.
Notably, we analytically characterize the effect of the delivered portion on the user’s successful viewing probability. Then, we formulate
an optimization problem to maximize the application-level throughput (which measures the average rate for successful viewing the
desired content instead of raw network throughput) while providing a regular service. In addition, we impose three main constraints to
our problem: minimum required service rate, maximum allowable energy consumption, and wireless interference. We then propose a
novel scheduling algorithm that incorporates users’ successful viewing probabilities and asymptotically maximizes application-level
throughput while providing service regularity guarantees. We conduct real-trace simulations to evaluate the efficiency of our algorithm.
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1 INTRODUCTION

THE development of network technology and emerg-
ing wireless Head-Mounted Displays (HMDs) (such as

Oculus Quest and HTC VIVE) make Virtual Reality (VR)
and panoramic video streaming more and more popular.
The immersive experience provided by panoramic scenes
is quite attractive in education/training, social networking,
and entertainment, to name a few. For instance, students can
visit museums or landscapes by wearing a VR headset in
the classroom as long as we have the virtual model for that
place (e.g., [1]). To provide the best immersive experience,
i.e., the users hardly differentiate between virtual scenes and
the real world, the system must provide high throughput
and seamless experience (i.e., regular service) to each user.
However, both VR and panoramic video streaming rely
on panoramic scene delivery, which typically consumes
4 ∼ 6× bandwidth compared with regular 2-dimensional
(2D) images with the same resolution (see, e.g., [2], [3]).
Besides, unlike traditional video streaming, the interactivity
requirement on panoramic scene delivery makes it impossi-
ble to prefetch and cache the panoramic content for several
seconds, further complicating the problem by adding a
harsh delivery time restriction for each panoramic image.
Moreover, under wireless interference, only a subset of
users can be allowed to transmit the content simultaneously,
which poses a significant challenge to the scheduling design.
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Fortunately, the Field of View (FoV) is sufficient for the
user’s visual perception, which only occupies about 20% of
the whole panoramic scene. For instance, when a user is
playing a collaborative VR drawing game, she will likely
focus on the view in front of herself for a short time. This
observation makes it possible to save about 80% of the con-
sumed bandwidth under the wireless network if we could
perfectly predict a user’s motion. However, the prediction
always incurs an error. As such, the central question is how
to incorporate the error-prone motion prediction into the
scheduling algorithm design.

Motion prediction-based approach has been explored by
many recent works (e.g., [2], [4], [5], [6]). They utilized var-
ious learning mechanisms to improve the prediction accu-
racy and successfully incorporated them into the algorithm
design. However, they did not consider the multi-user set-
ting with wireless interference, where only a subset of users
can be scheduled to transmit at each time. Although some
other works (e.g., [7], [8]) made some progress on the multi-
user scheduling design, they haven’t explicitly considered
the server regularity, which measures how often the user
sees the desired content. Such a metric is important since
irregular video streaming services easily cause dizziness.

In this paper, we predict each user’s motion by us-
ing the autoregressive process and incorporate it into the
scheduling design by analytically characterizing the suc-
cessful viewing probability as a function of the delivered
portion surrounding the predicted FoV of the user. In
accordance with the panoramic scene delivery setup, we
focus on whether each user can view their desired content
instead of receiving raw service rates as high as possible.
Particularly, we use network-level throughput to denote the
raw service rates and application-level throughput to denote
the average number of times a user successfully views her
desired content. Note that a higher network-level through-
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Fig. 1: Example of mismatch between delivered portion and
the user’s FoV.

put does not necessarily result in higher application-level
throughput. For example, our experimental results (using
the dataset from [2]) show that most users successfully
view the desired content when delivering a half-sphere
scene since it is sufficient to cover the actual FoV perceived
by the users. As a result, delivering the whole panoramic
scene has a nearly identical application-level throughput as
delivering half of the scene but yields twice the network-
level throughput.

Evaluating Quality of Experience (QoE) can often pose
challenges in certain scenarios. Generally, a QoE model
seeks to deduce the perceived quality a user experiences
during interactions with a specific application. Traditional
QoE modeling methods hinge on manually engineered fea-
tures, including standard quality metrics such as image
quality and events of video rebuffering. However, since
our problem formulation does not encompass these par-
ticular parameters—image quality and rebuffering—we are
necessitated to identify an alternative metric to gauge the
user’s QoE. In the context of panoramic content delivery,
it’s imperative to recognize that the area dispatched to the
user might not precisely coincide with the user’s Field of
View (FoV), as depicted in Fig. 1. This mismatch can result
in parts of the user’s FoV being rendered as a blank, black
space, undeniably diminishing the overall experience. Con-
sequently, we’ve opted to use application-level throughput
as an indicative measure for QoE. This metric gauges the
likelihood that the content delivered fully encompasses the
user’s FoV. While it might seem logical to calculate the pro-
portion of the covered area relative to the FoV—especially
when the FoV is only partially covered—we, for the sake of
modeling simplicity, have restricted our measure to a binary
assessment: determining if the user’s FoV is entirely covered
or not.

Although we focused on pursuing as high application-
level throughput as possible instead of network-level
throughput, we need to clarify that a minimal network-
level throughput is required to support our objective. For
instance, if the network-level throughput is even lower
than the required bandwidth to deliver 20% of panoramic
images, we cannot reach any application-level throughput.
Therefore, we need to set a threshold to limit the minimum
average allocated transmission rate. Moreover, the threshold
varies between users since they may experience diverse
panoramic contents and thus have various network-level
throughput requirements. Considering that each download-
ing of the panoramic content will consume a certain amount
of energy on the client-side, we also set a maximum allow-

able energy consumption to avoid overheating the client
device. Note that different devices naturally have different
energy efficiency, and thus the energy threshold is also user-
specific. Meanwhile, we will never have infinite network
resources in practical scenarios, where many factors like
wireless interference will always limit available network
resources. Considering all those constraints, we require a
well-designed wireless scheduling algorithm to maximize
application-level throughput.

In this paper, we aim to maximize application-level
throughput (i.e., rate of average successful views) while
meeting both network-level throughput and energy con-
sumption requirements as well as providing regular service
guarantees for each user. Specifically, we propose a non-
convex objective function that incorporates the successful
viewing probability. We introduce Time-Since-Last-Service
(TSLS) counter (see [9]) to track the service regularity. We
adopt the stochastic network optimization framework (see
[10]) and design a non-standard Lyapunov function to in-
corporate the TSLS counter into the scheduling design. The
main contributions of this paper are listed as follows:

• We analytically characterize the successful viewing
probability as a function of the delivered portion of the
panoramic scenes by assuming that the prediction error
follows a Gaussian distribution.

• We propose a novel concept of application-level
throughput under the panoramic scene delivery setup
and show that it is different from the traditional
network-level throughput by a motivating example.

• We formulate the multi-user scheduling for interactive
panoramic scene delivery as a stochastic network opti-
mization problem. We aim to maximize the application-
level throughput while satisfying the minimum re-
quired network-level throughput, maximum allowable
energy consumption, and wireless interference con-
straints.

• We develop a motion-prediction-based scheduling al-
gorithm that explicitly incorporates the motion predic-
tion into the scheduling decision and shows that it
asymptotically optimizes the application-level through-
put and provides regular service guarantees.

• We conduct real-trace simulations to demonstrate the
superior performance of our algorithm compared with
the heuristic baseline. We consider users’ motion traces
in different applications including the panoramic scene
gallery (see [2]) and VR touring (see [11]).

While this paper is built upon our prior work [12], which
was published in INFOCOM 2021, we have the following
new contributions: (1) we consider the energy consumption
limitation of mobile users; (2) we extend the user motion
model and accounted for both virtual reality and panoramic
videos; (3) we add a trace-based simulation for VR touring
application; (4) we propose a heuristic baseline approach
and demonstrate the superiority of our algorithm; (5) we
adopt the pick and compare method to significantly reduce
the computational complexity of the proposed algorithm.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the system model and problem formula-
tion. Section 3 provides a motivating example and illustrates
the impact of the scheduling design on both application-
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level throughput and service regularity performance. Sec-
tion 4 introduces our motion-prediction-based scheduling
algorithm and studies its performance. Section 5 presents
simulation results using the real datasets of users’ motion
traces. Section 6 shows the derivation of the successful
viewing probability. Section 7 provides the detailed proof of
our algorithm. Section 8 reviews related work, and Section
9 concludes this paper.

2 SYSTEM MODEL

We consider a system with N users, each of which down-
loads its desired panoramic content from a wireless access
point (AP). We assume the system operates in a slotted
manner. Each user requests a series of panoramic scenes,
and we need to deliver each panoramic scene within a fixed
time interval. We note that only a part of panoramic content
(around 20% − 25%) can be seen by each user, known as
Field of View (FoV). Thus, if we have a perfect prediction of
the user’s motion, we can save up to 80% of the bandwidth
by delivering only the FoV. However, the prediction is error-
prone such that we need to deliver a larger portion than the
FoV to tolerate the prediction error. To facilitate our math-
ematical modeling and algorithm developments, we unify
the panoramic scene size and wireless transmission rate
units and assume that the system operates in a time-slotted
manner. Let Sn[t] be the allocated transmission rate for user
n in time slot t, where Sn[t] ∈ R , {0, R1, R2, . . . , RM},
0 < R1 < R2 · · · < RM , 1, R1 is the minimum required
rate that delivers only the FoV, and RM refers to the re-
quired rate when delivering a whole scene. The discrete
manner lies in the fact that we can split each panoramic
scene into a finite number of tiles with the same resolution
and transmit a subset of tiles to users (e.g., [3], [13]). We
will choose a set of tiles around the predicted viewport
(center of the FoV) in each time slot based on the allocated
transmission rate.

In order to streamline the modeling process, this study
limits its examination to setups in which the schedul-
ing rate is proportionate to the percentage of transmitted
panoramic content. However, it’s important to acknowledge
that in real-world scenarios, where factors such as the tiling
scheme, the projection from panoramic content to regular
images, and video encoding are taken into account, the
problem grows in complexity. To encode a panoramic video,
an initial step involves the reprojection of panoramic content
onto a rectangular texture. Typically, the projection across
the panoramic content is non-uniform. This implies that
identical-sized areas within the panoramic view can yield
a varied number of pixels when mapped onto the rectan-
gular texture. Subsequent to this reprojection, the texture
undergoes encoding through conventional video encoding
mechanisms, such as H264. It’s pivotal to acknowledge that
the compression rates are content-dependent. An all-black
image, for instance, may exhibit a vastly superior com-
pression ratio compared to a texture teeming with intricate
objects. Consequently, forging a precise correspondence be-
tween the size of the delivered area and the scheduling rate
accounting for the video encoding becomes an endeavor
demanding profound expertise and thorough investigation.
As it extends beyond the scope of our current research,

we have identified it as a substantial avenue for future
exploration.

The wireless interference further complicates the prob-
lem by limiting the number of active users in each time
slot, i.e., the simultaneous downloading of the panoramic
content. Therefore, the AP is expected to deliver content
to a subset of users and allocate the proper transmission
rates Sn[t], ∀n = 1, 2, . . . , N . We call S[t] , (Sn[t])Nn=1 the
feasible rate vector, which depends on the specific wireless
interference constraints. We consider the case with block
channel fading, where there are a finite number of global
channel states and the global channel state is independently
and identically distributed (i.i.d.) over time. Let C be the set
of global channel states and C[t] ∈ C denotes the global
channel state in time slot t. Let φc , Pr{C[t] = c} denote
the probability that the channel state is c in time slot t. We
use S(c) to denote the set of all feasible rate vectors when
the channel state is c.

Let In(Sn[t]) = 1 denote that user n successfully views
its desired content, i.e., the delivered content completely
covers the FoV in time slot t when the transmitted rate
is Sn[t] and In(Sn[t]) = 0 otherwise. We use δn(Sn[t]) ,
Pr{In(Sn[t]) = 1} to denote the successful viewing probability
for user n in time slot t given its transmission rate Sn[t].
It is easy to see that δn(Sn[t]) is a non-decreasing function
with respect to Sn[t]. This is because a larger transmission
rate Sn[t] corresponds to delivering a larger portion of the
panoramic scene that is around the center of the predicted
FoV and thus can overcome a larger prediction error, which
in turn yields a higher successful viewing probability.

(a) Rotation coordinates. (b) VR grid world.

Fig. 2: User movement.

In order to calculate the successful viewing probability
for each user, we discuss two different scenarios: panoramic
scene gallery with three Degree of Freedoms (DoF) on head
rotation and VR touring with six DoFs on both head rotation
and translation in the virtual world. We first introduce 3-D
rotation angles to capture a user’s head motion. As shown in
Fig. 2a, a user could rotate her head in three axes: pitch, yaw,
and roll. Let Xn[t], Yn[t] and Zn[t] be the rotating angles of
the center of user n’s FoV in pitch, yaw, and roll directions in
time slot t, respectively. Since users rarely rotate head along
the roll axis while watching panoramic scenes, we focus on
pitch and yaw axes as in [3], i.e., (Xn[t], Yn[t]), ∀n, t ≥ 0.
Since the correlation between Xn[t] and Yn[t] is much
smaller than their individual autocorrelations (see [2]), we
predict them separately based on the autoregressive model
(see [14]). While there are many machine learning-based
prediction algorithms explored in existing works (e.g., [2]),
we adopt the autoregressive model here since it makes on-
line real-time predictions and can quickly adapt to changing
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Symbol Description Symbol Description
N number of users n index of user
L length of time horizon t index of time slot
R set of transmission rates S[t] feasible rate vector in time slot t
C[t] global channel state in time slot t Sn[t] allocated transmission rate for user n
C set of global channel states φc probability that the channel state is c
S(c) set of all feasible rate vectors when the

channel state is c
In(Sn[t]) indicator function of whether user n suc-

cessfully views its desired content
δn(Sn[t]) successful viewing probability for user n in

time slot t given its transmission rate Sn[t]
rn minimum required allocated transmission

rate for user n on average
1{·} indicator function wn weight of user n in the objective function
en energy constraint for user n Tn[t] TSLS counter for user n in time slot t
Q

(S)
n [t] length of the virtual queue for user n that

measures the degree of violation of the av-
erage service rate

Q
(E)
n [t] length of the virtual queue for user n that

measures the degree of violation of the av-
erage energy consumption constraint

V [t] Lyapunov function K hyperparameters for the utility function
η hyperparameters for the regular service U∗ optimal value of the optimization problem
U∗n successful viewing probability of user n un-

der optimal policy

TABLE 1: Notations for system model.

panoramic contents and wireless environment. On the other
hand, when a user is experiencing an interactive VR tour,
besides the head rotation, she is also able to move freely in
a virtual world. As shown in Fig. 2b, we assume the user
translates in a 2D grid world where each grid corresponds
to a unique panoramic scene. Similar to the head rotation,
we independently predict the movement in those two axes
using the autoregressive model.

We assume that the prediction errors of both pitch and
yaw angles of user n follow the normal distribution with
standard deviation σXn and σYn , respectively. This is mo-
tivated by the fact that under the autoregressive model,
the distribution of the prediction error converges to the
normal distribution as the number of data samples goes to
infinity (see [15, Theorem 8.2.1]). In contrast, we characterize
the successful prediction probability on the position as a
constant since it is independent of the scheduling rate Sn[t].
As we know the prediction results of previous slots for
both rotation and translation, it is convenient to estimate
the prediction probability on position by calculating the
running average during the experiments. In Section 6, we
show that the successful viewing probability of user n can
be expressed as follows:

δn(Sn[t]) = δpnerf2
(
γn(Sn[t])√

2

)
, (1)

where δpn is the probability that the prediction on the posi-
tion is successful, erf(x) , 2√

π

∫ x
0 e
−y2dy is the error func-

tion and γn(Sn[t]) is the number of standard deviations of
the prediction error, when rate Sn[t] is used. Here, γn(Sn[t])
follows from the basic geometry calculations and is available
in Section 6. Fig. 3 shows the successful viewing probability
with respect to the allocated transmission rate, where we
use the data traces of four different users watching the
same panoramic video (see [2]) and obtain their standard
deviations of prediction errors of both pitch and yaw angles
under the autoregressive model. We can observe from Fig.
3 that a larger standard deviation of the angle prediction
error requires a larger allocated transmission rate to keep

the same successful viewing probability.

Fig. 3: Successful viewing probability.

In this paper, we would like to develop a scheduling
algorithm to optimize both application-level throughput (de-
fined as the weighted average of the successful viewing
probability) and service regularity (defined as the variance of
the time between two consecutive successful views for each
user) performance. This is motivated by the fact that each
user would like to regularly and frequently view the desired
panoramic scenes. In particular, our first goal is to maximize
the application-level throughput subject to the constraint
that the average allocated transmission rate should not
be less than some minimum rate and the average energy
consumption should not exceed a specific threshold as well
as wireless interference constraints, i.e.,

max
(Sn[t])Nn=1

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

wnE [δn(Sn[t])] (2)

s.t. (Sn[t])Nn=1 ∈ S(C[t]), ∀t ≥ 0, (3)

lim
L→∞

1

L

L−1∑
t=0

E[Sn[t]] ≥ rn, ∀n, (4)

lim
L→∞

1

L

L−1∑
t=0

E[1{Sn[t]>0}] ≤ en, ∀n, (5)

where the objective function is the weighted sum of the
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application-level throughput, wn > 0 is the weight of user
n, rn > 0 is the minimum required allocated transmission
rate for user n on average, en refers to the average number
of transmission times for user n, and 1{·} is an indicator
function. We consider a simplified energy model, where
each download of the panoramic content will consume a cer-
tain amount of energy to activate the wireless transmission
modules. Therefore, the constraint on the transmission times
corresponds to the energy consumption constraint. Different
from the traditional network optimization problem, we are
interested in the average successful viewing probability or
application-level throughput in each time slot instead of the
average throughput. Even with the same average allocated
transmission rate, the application-level throughput perfor-
mance is different as shown in our motivating example in
the next section.

To capture the service regularity performance, we in-
troduce gn[m] to denote the time duration between the
(m + 1)th and mth successful views of the user n. Noting
the non-Markovian property of gn[m], similar to [9], we
introduce a Time-Since-Last-Service (TSLS) counter Tn[t] for
each user n, which increases by one if user n does not see
the desired content and reset to 0 otherwise. In particular,
the evolution of Tn [t] can be precisely described as follows:

Tn [t+ 1] ,

{
0, if In(Sn[t]) = 1;

Tn [t] + 1, otherwise.
(6)

It has been shown in [9] that minimizing the normalized
variance of gn[m] is equivalent to minimizing the expected
Tn[t]. As such, our second goal is to keep the following
quantity as small as possible:

lim
L→∞

1

L

L−1∑
t=0

E [Tn[t]] . (7)

To facilitate the readers, we list the notations used in our
system model in TABLE 1. Next, we will study a motivat-
ing example to illustrate the possibility of improving both
application-level throughput and service regularity perfor-
mance simultaneously by carefully designing a scheduling
algorithm, and then accomplish our dual objective by devel-
oping a parameterized wireless scheduling algorithm.

3 A MOTIVATING EXAMPLE

In this section, we provide numerical examples of multi-
user interactive panoramic scene delivery which motivates
our design. We observe a significantly different performance
on application-level throughput and service regularity with
different scheduling algorithms. We consider N = 4 users
and limit the total service rates by 1 in each time slot, where
all users will share the total rates and have the same weight
1. We employ two different Round-Robin (RR) scheduling
algorithms and list the allocated service rate for each user in
Table 2-(a). Notably, we use a blue font to denote the first RR
algorithm that serves each user with the rate of one in turn.
The red font refers to the second RR algorithm that provides
the first two users with the rate of 0.5 in even time slots and
the other two users in odd time slots.

Based on the given rules, we can calculate the average
service rate by limL→∞

1
L

∑L−1
t=0 Sn[t], ∀n = 1, 2, 3, 4. Un-

user

Sn[t] time
0 1 2 3 . . .

User 1 1, 0.5 0, 0 0, 0.5 0, 0 . . .
User 2 0, 0.5 1, 0 0, 0.5 0, 0 . . .
User 3 0, 0 0, 0.5 1, 0 0, 0.5 . . .
User 4 0, 0 0, 0.5 0, 0 1, 0.5 . . .

(a) Service rate of each user in each time slot.

user

result time
0 1 2 3 . . .

User 1 1, 1 0, 0 0, 1 0, 0 . . .
User 2 0, 1 1, 0 0, 1 0, 0 . . .
User 3 0, 0 0, 1 1, 0 0, 1 . . .
User 4 0, 0 0, 1 0, 0 1, 1 . . .

(b) Viewing results of each user in each time slot.

TABLE 2: Service rate and viewing results under two dif-
ferent versions of RR algorithms: the results are colored by
blue and red, respectively.

surprisingly, both RR algorithms result in the save average
rate of 0.25. However, they yield different application-level
throughput performance. As shown in Fig. 3, Sn[t] = 0.5 is
sufficient for most of users to see the desired content with
traces in [2]. As such, we let δn(0.5) = δn(1) = 1, ∀n. Then
the viewing results of each user in each time slot are shown
in Table 2-(b). The viewing result is 1 if the user successfully
sees her desired content, 0, otherwise. Hence, the second
RR algorithm yields the application-level throughput of 2,
while the first RR algorithm yields only 1.

Fig. 4: Example of TSLS dynamics of user 1

Fig. 4 shows the evolution of user 1’s TSLS counter under
two RR algorithms, while other users will have similar
patterns. We can calculate that the first and the second RR
algorithms have the average TSLS for each user of 1.5 and
0.5, respectively. To summarize, the second RR algorithm
is twice better than the first version in the application-level
throughput and three times better in average TSLS.

The above example demonstrates the significant impact
of the scheduling design on both application-level through-
put and service regularity performance. We should explore
more complex scheduling decisions once we can select the
transmission rates from a discrete space. In the next section,
we will develop an efficient scheduling algorithm that yields
good application-level throughput and service regularity
performance under various constraints mentioned before.
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4 ALGORITHM DESIGN AND ANALYSIS

In this section, we will develop a scheduling algorithm and
show that it achieves asymptotically-optimal application-
level throughput and guarantees service regularity.

We use the stochastic network optimization framework
(e.g., [10]) to introduce two virtual queues for each user that
measures the degree of violation of the average service rate
constraint and the average energy consumption constraint,
respectively. We use Q(S)

n [t] and Q(E)
n [t] to denote the length

of two virtual queues for user n in time slot t. Particularly,
the amount of traffic entering the first virtual queue n in
time slot t is rn, while the amount of service for the first
virtual queue n in time slot t is Sn[t]. Meanwhile, 1{Sn[t]>0}
is the amount of traffic entering the second virtual queue for
user n in time slot t, while en is the amount of service for
the second virtual queue. Then, the evolution of those two
virtual queues for user n can be described as follows:

Q(S)
n [t+ 1] ,

(
Q(S)
n [t] + rn − Sn[t]

)+
, ∀n, ∀t, (8)

Q(E)
n [t+ 1] ,

(
Q(E)
n [t] + 1{Sn[t]>0} − en

)+
, ∀n, ∀t. (9)

where (x)+ = max{x, 0}. We say that virtual queue n for
service rate is mean rate stable (see [10]) if limt→∞

E[Q(S)
n [t]]
t =

0. If the virtual queue n for service rate is mean rate stable,
then the average service rate of user n is at least rn (see
[10, Theorem 2.5]). Similarly, the virtual queue n for energy
consumption is mean rate stable if limt→∞

E[Q(E)
n [t]]
t = 0.

Then, the average energy consumption of user n is not
greater than en. The following algorithm is derived by
minimizing the drift of the Lyapunov function

V [t] =
1

2

N∑
n=1

Q(S)2
n [t] +

1

2

N∑
n=1

Q(E)2
n [t] + η

N∑
n=1

Tn[t] (10)

minus the application-level throughput
K
∑N
n=1 wnE[δn(Sn[t])] in time slot t, where η and K

are controlled positive real numbers, i.e.,

V [t+ 1]− V [t]−K
N∑
n=1

wnE[δn(Sn[t])]. (11)

Different from selecting a quadratic Lyapunov function in
the classical stochastic network optimization framework, we
choose the sum of quadratic virtual queue function and
the linear TSLS function as our Lyapunov function. This
is because we aim to keep both virtual queue lengths and
TSLS counters as small as possible, yielding the mean rate
stability and desired service regularity performance. Our
scheduling algorithm is described as follows:

Our algorithm has two major components: i) AR-based
motion prediction, and ii) wireless scheduling. In each time
slot t, we use the autoregressive model for the pitch and
yaw angle prediction and updates the prediction coefficients
based on the Yule-Walker equation (see [14]). Besides, we
obtain the sample variance of prediction errors of pitch
and yaw angles until time t, and then use it to calculate
the successful viewing probability, which is critical for the
wireless scheduling design. We incorporate the instanta-
neous application-level throughput, TSLS counter, and vir-
tual queues into the scheduling design with the algorithmic

Algorithm 1 Motion-Prediction-based Scheduling (MPS)
In each time slot t, given channel state C[t] = c.
Autoregressive process-based Motion Prediction: Each
user n predicts its pitch and yaw angles X̂n[t] and Ŷn[t]
based on the previous W slots’ pitch samples (Xn[t −
1], Xn[t − 2], · · · , Xn[t − W ]) and yaw samples (Yn[t −
1], Yn[t−2], · · · , Yn[t−W ]) using the autoregressive model:

X̂n[t] = −
W∑
k=1

an[k]Xn[t− k] (12)

and Ŷn[t] = −
W∑
k=1

bn[k]Yn[t− k], (13)

where an[1], an[2], · · · , an[W ] and bn[1], bn[2], · · · , bn[W ]
are the prediction coefficients that are estimated by using the
standard Yule-Walker equation (see [14]). Similar approach
is used to predict the position for VR applications.
Wireless Scheduling: Select the schedule S∗[t] satisfying

S∗[t] ∈ arg max
S∈S(c)

N∑
n=1

(
Sn[t]Q(S)

n [t]− 1{Sn[t]>0}Q
(E)
n [t]

+(ηTn[t] +Kwn)δn(Sn[t])

)
, (14)

where η and K are some positive numbers, and δn(Sn[t])
is calculated based on the estimated position prediction
probability δ̂pn, the sample variances (σ̂Xn [t])2 and (σ̂Yn [t])2

of prediction errors of pitch and yaw angles.

parameters η and K balancing their weights. When the
virtual queue length of a user is large, it means that the
user has not received a sufficient amount of service rates,
which enforces it to be scheduled. Similarly, if a user has
not been served for a long time, the TSLS counter will
linearly increase and thus the user will get a high priority
to get served. Also, the user with a larger weight on the
application-level throughput should always have a high
priority to be scheduled to achieve a large weighted sum
of application-level throughput.

Moreover, when η = 0, our algorithm coincides with the
traditional “drift-plus-penalty” method for classical utility
maximization problems (e.g., [16]). The larger the value
of η, the more emphasis on the TSLS counter and thus
keeps services more regular. When K = 0, the goal is
to keep service as regular as possible while meeting the
minimum rate requirement and the resulting algorithm is
similar to the Regular Service Guarantee Algorithm in [9].
The larger the value of K , the larger the weight put on
the instantaneous throughput and thus leads to the larger
application-level throughput. However, similar to the well-
known MaxWeight scheduling algorithms (e.g., [17]), our
proposed MPS algorithm also has a high computational
complexity (which could be exponential) in general. To
reduce the computational complexity, we adopt an evolu-
tionary randomized algorithm [18], named the pick and
compare method, which is also evaluated in Section 5.

Next, we show that our proposed MPS Algorithm
asymptotically optimizes the application-level throughput
and provides service regularity guarantees while meeting



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

the minimum service rate requirement.

Theorem 1. Under the MPS Algorithm, all virtual queues are
mean rate stable, which implies that the average service rate of each
user is at least rn. In addition, the weighted sum of mean TSLS
counters and application-level throughput can be respectively
bounded from above as follows:

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

U∗n ·E[Tn[t]] ≤ B(η) +KNwmax

η
, (15)

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

E[wnδn(Sn[t])] ≥ U∗ − B(η)

K
, (16)

where B(η) ,
∑N
n=1(r2n + R2

M )/2 + ηN , U∗n is the successful
viewing probability of user n when optimal weighted sum of
application-level throughput is achieved (i.e., U∗ ,

∑N
n=1 wnU

∗
n

is the optimal value of the optimization problem (2)-(4)).

Proof. The proof follows from the stochastic network opti-
mization framework and can be found in Section 7.

The above theorem reveals the tradeoff between the
weighted sum of application-level throughput and service
regularity performance. Indeed, as the parameter K in-
creases, the application-level throughput improves, while
the upper bound on the weighted sum of mean TSLS
counters increases (i.e., the service regularity performance
deteriorates). Besides, when η increases, the service regu-
larity performance improves but is at the cost of reduced
application-level throughput.

5 SIMULATIONS

In this section, we perform simulations to evaluate the
efficiency of our proposed MPS algorithm. We consider
N = 8 users. Each user experiences i.i.d. ON-OFF channel
fading over time with probability pn that its channel is ON
in each time slot. We assume that at most two users can be
scheduled in each time slot and the total rate of all sched-
uled users is no more than 1. Each user n has a minimum
required service rate rn and weight wn on the application-
level throughput. We also list the energy limitation en for
each user as in (5). The allocated transmission rate can
be selected from the set R = {0, 0.3, 0.4, 0.5, 0.7, 1}. We
consider two different simulation setups for the panoramic
scene gallery and VR touring. In both simulation setups, the
autoregressive model is used to predict the user’s motion.
Specifically, we predict both translation and rotation in
VR touring, while we only predict the head rotation in
panoramic scene gallery. The detailed simulation parame-
ters are available in TABLE 3. Note that we use the same
hyperparameters for two different setups to simulate the
identical environments. In addition, we use synthetic head
motion data generated from the dataset in [2] (panoramic
scene gallery) and [11] (VR touring) for each user.

To demonstrate the superiority of our proposed algo-
rithm, we introduce a heuristic algorithm as the baseline
and evaluate its performance. The baseline algorithm pro-
ceeds in three steps: first, the energy constraint is applied
to filter the available users in each time slot, whereby
those who violate the constraint are set inactive; second, if
any available users violate the rate requirement constraint,

we designate the users who do not violate the constraint
as inactive; finally, we select the available users with the
highest utility function under the capacity region. While
this algorithm ensures compliance with both constraints, it
may not achieve optimal application-level throughput and
service regularity.

user 1 user 2 user 3 user 4
Required rate rn 0.1 0.08 0.11 0.05
Energy lim. en 0.64 0.48 0.46 0.4

Weight wn 0.2 0.1 1.0 0.8
Fading prob. pn 0.8 0.9 0.7 0.9

user 5 user 6 user 7 user 8
Required rate rn 0.18 0.06 0.16 0.05
Energy lim. en 0.45 0.52 0.54 0.44

Weight wn 0.9 1.2 0.3 0.2
Fading prob. pn 0.8 0.9 0.7 0.8

TABLE 3: Simulation setup.

The simulation results for panoramic scene gallery and
VR touring are shown in Fig. 5 and Fig. 6, respectively. Fig.
5a shows the average allocated rates of four different users
with respect to parameter K when η = 1. We can observe
from Fig. 5a that our proposed MPS algorithm guarantees
the minimum service rate required by each user. Also, Fig.
5b shows the average transmission times corresponding to
Fig. 5a, while each user strictly satisfies the energy limi-
tation constraint. Fig. 5c and Fig. 5d show an impact of
the parameter K on the performance of our proposed MPS
algorithm. We can observe from Fig. 5c and Fig. 5d that
for each fixed value of η, as the parameter K increases,
both mean TSLS and application-level throughput increases.
The reason is that the larger the K , the more emphasis
on the application-level throughput and the lower priority
on the TSLS, resulting in the application-level throughput
improvement and service regularity deterioration. This also
matches our derived bounds in Theorem 1 that the upper
bound on the average TSLS linearly increases with the
parameter K and the lower bound on the application-
level throughput also increases as K increases. Besides, as
η becomes larger, both mean TSLS and application-level
throughput become smaller. The reason lies in the fact that
a large η gives a high priority on the TSLS counter and
enforces to provide more regular service, but it is at the
cost of reducing the application-level throughput. This again
matches our derived bounds in Theorem 1 that both the
upper bound on the average TSLS and the lower bound on
the application-level throughput decrease as the parameter
η increases. To evaluate the effect of motion prediction, we
also conduct the simulation with perfect prediction. In such
a case, δn(Sn[t]) = 1 when Sn[t] ≥ R1. Recall that R1

corresponds to the rate to deliver the FoV of a panoramic
scene. δn(Sn[t]) = 0, otherwise. As shown in Fig. 5d, we
have a larger average application-level throughput under
the same η compared with the results using autoregressive
model since we have a larger δn(Sn[t]) given Sn[t]. Fur-
thermore, our algorithm outperforms baseline algorithms
in terms of service regularity (measured by TSLS counter)
across all hyperparameters, with a minimum improvement
of 24%. In addition, our algorithm achieves at least 14%
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(a) Average rate for each user:
η = 1

(b) Average transmission times
for each user: η = 1

(c) Average TSLS (d) Application-level through-
put (v.s. perfect prediction)

Fig. 5: Performance of the MPS algorithm (panoramic scene gallery). Note that the numbers in the legends of Fig. 5a and
Fig. 5b correspond to the required rate rn and energy limitation en in TABLE 3, respectively.

(a) Average rate for each user:
η = 0.2

(b) Average transmission times
for each user: η = 0.2

(c) Average TSLS (d) Application-level through-
put

Fig. 6: Performance of the MPS algorithm (VR touring). Note that the numbers in the legends of Fig. 6a and Fig. 6b
correspond to the required rate rn and energy limitation en in TABLE 3, respectively.

higher application-level throughput when K is greater than
10. We can observe a similar phenomenon in the VR touring
dataset in Fig. 6. Since it is harder to predict the movement
on both translation and rotation, we will get a lower suc-
cessful viewing probability δn(Sn[t]) given Sn[t], resulting
in different performance metrics.

As previously discussed, our proposed MPS algorithm
has a high computational complexity, which can be ex-
ponential in some cases. To address this issue, we have
adopted an evolutionary randomized algorithm, called the
pick and compare algorithm. We randomly select users and
allocate rates in each time slot, calculating the weight using
our MPS algorithm. Next, we compare the weight of the
new allocation with the previous one. If the new allocation
has a greater weight, we adopt it; otherwise, we continue
to use the previous allocation. If the previous users are
not available in the current time slot, we adopt the new
allocation. This process is repeated for a specific number
of rounds in each time slot to yield the final results. It
is clear that with more repetitive rounds, the performance
of the pick and compare algorithm becomes closer to the
original exhaustive approach, but this results in higher
computational complexity. We evaluate the performance of
this approach using varying numbers of iteration rounds.
As shown in Fig. 7, the service regularity and application-
level throughput both converge to the exhaustive approach
as the number of rounds increases. Moreover, the pick
and compare method reduces the potentially exponential
computation complexity of the original MPS algorithm to
linear complexity. For example, in our simulation setup, we
need to iterate over 912 steps with the exhaustive approach
in each time slot, while the number of iterations ranges from

only 2 to 20 in the pick and compare method. We present
the results for the hyperparameters η = 1 and K = 8 under
the panoramic scene gallery setup, as the other parameters
and VR touring have produced similar results.

(a) Average TSLS. (b) Throughput.

Fig. 7: Performance of the pick and compare method.

6 PROOF OF SUCCESSFUL VIEWING PROBABILITY

In this section, we characterize the successful viewing prob-
ability δn(Sn[t]) for each user given the standard deviation
of the prediction error. We assume that the prediction on
orientation and position are independent. Therefore, the
successful viewing probability is simply the product of
the successful prediction probability on orientation and
position, i.e., δn(Sn[t]) = δon(Sn[t]) · δpn. We first calcu-
late the successful probability of the orientation prediction
δon(Sn[t];σXn , σ

Y
n ) by assuming that the prediction errors of

the pitch and yaw angles follow Gaussian distribution with
zero mean and standard deviation σXn and σYn , respectively.
To that end, we first need to know whether the nth user’s
motion prediction is successful, i.e., the delivered portion
completely covers the actual FoV.
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As shown in Fig. 8, assume that a user is at the center
denoted by the point O and the predicted center of the FoV
is O′. The delivered content could be seen as a spherical
crown centered byO′ in different sizes. Notice that�ABCD
in Fig. 9 lies on the cross section of the sphere whose
radius is O′F such that θ0/2 coincides with the beam angle
∠FOO′ of the spherical crown whose size is equal to the
FoV as shown in Fig. 8a and Fig. 8b. Recall that α0 and
β0 are horizontal and vertical angles corresponding to the
pitch and yaw axis, respectively. Then, by simple geometry
calculation, we obtain the beam angle θ0 as follows:

θ0 = diag(α0, β0), (17)

where diag(·) refers to the diagonal angle, as follows:

diag(α, β) , 2 arccos

 1√
1 + tan2(α2 ) + tan2(β2 )

 , (18)

where α ≤ π and β ≤ π. Indeed, considering the right
triangles 4OO′Q and 4OO′R in Fig. 9, we have

O′Q = OO′ tan(α0/2), O′R = OO′ tan(β0/2). (19)

In the right triangle 4AQO′, we have AO′ =√
AQ2 +O′Q2. Assume the radius of the sphere is 1, i.e.,

AO = 1. We have AO′2 +OO′2 = AO2 = 1. Combining the
above equations, we have

OO′ =
1√

1 + tan2(α0/2) + tan2(β0/2)
. (20)

This, together with cos(θ0/2) = OO′, implies (18).

(a) θ0 + 2θE ≤ π. (b) θ0 + 2θE ≥ π.

Fig. 8: The delivered content.

Since α0 and β0 are only determined by the model of the
HMD, θ0 is a constant. Let θE be the transmission margin
∠FOE outside the predicted FoV, i.e., the extra portion
delivered to overcome the prediction error. Apparently, θE
can be determined by the allocated transmission rate Sn[t]:

θ0 + 2θE = 2 arccos(1− 2Sn[t]). (21)

Indeed, the height h of a spherical crown is proportional
to its surface area, while the surface area ratio is equal to
the allocated rate Sn[t]. Thus, h/2R = Sn[t]/1. Recall that
the radius of the sphere is assumed to 1, i.e., R = 1. Then
we have h = 2Sn[t]. In Fig. 8a, h = R − OP , in Fig. 8b,
h = R + OP . Yet in both cases, h = R − cos (θE + θ0/2).
This, together with R = 1 and h = 2Sn[t], implies (21).

Fig. 9: FoV and various angles.

In this work, we use the autoregressive process to predict
the user’s orientation in pitch and yaw axes. Let γ be the
number of standard deviations. Let αn(γ) , α0 +2γσXn and
βn(γ) , β0 +2γσYn be the vertical angle (e.g., ∠KOL in Fig.
9) and horizontal angle (e.g., ∠MON in Fig. 9) of the deliv-
ered portion, respectively. Let Ang(γ) be the diagonal angle
of the delivered portion and can be calculated depending on
the values of αn(γ) and βn(γ).

• If both αn and βn are smaller than π, as shown in Fig.
8a, we have

Ang(γ) = diag(αn(γ), βn(γ)).

• If one of αn(γ) and βn(γ) is smaller than π, then in
order to guarantee the continuity of Ang(γ), we define
Ang(γ) = π.

• If both αn(γ) and βn(γ) are greater than π, as shown in
Fig. 8b, we have

Ang(γ) = 2π − diag
(
2π − αn(γ), 2π − βn(γ)

)
.

Note that Ang(γ) is equal to θ0 + 2θE and thus given
Sn[t], γ(Sn[t]) can be calculated as follows.

Ang(γ(Sn[t])) = 2 arccos(1− 2Sn[t]). (22)

Let X̂n[t] and Ŷn[t] be the predicted angles in the pitch
and yaw axis, respectively, under the autoregressive process.
Hence, given Sn[t], the FoV of the user can be covered only
when both events AX , {X̂n[t] − γ(Sn[t])σXn < Xn[t] <
X̂n[t] + γ(Sn[t])σXn } and AY , {Ŷn[t] − γ(Sn[t])σYn <
Yn[t] < Ŷn[t]+γ(Sn[t])σYn } happen and thus the orientation
prediction successful probability δn(Sn[t]) can be calculated:

δon(Sn[t]) = Pr{AX ∩ AY }
= Pr{AX}Pr{AY }

=erf2
(
γn(Sn[t])√

2

)
. (23)

Since the position prediction probability is independent
of the scheduling rate, we characterize it as a constant δpn.
Although we cannot know the exact value of the constant
in prior, it can be estimated during the experiments using
approaches like running average. As for those scenarios
with only 3DoF traces, we set δpn = 1.

In a word, we can calculate the successful viewing prob-
ability δn(Sn[t]) as follows:

δn(Sn[t]) = δon(Sn[t]) · δpn = δpnerf2
(
γn(Sn[t])√

2

)
(24)
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7 PROOF OF APPLICATION-LEVEL THROUGHPUT
OPTIMALITY

We select the Lyapunov function

V [t] =
1

2

N∑
n=1

(
Q(S)
n [t]

)2
+

1

2

N∑
n=1

(
Q(E)
n [t]

)2
+ η

N∑
n=1

Tn[t].

(25)
and consider its conditional Lyapunov drift given the cur-
rent system state H[t] , (Q

(S)
n [t], Q

(E)
n [t], Tn[t])Nn=1.

∆V [t] , E [V [t+ 1]− V [t]|H[t]]

=E

[
1

2

N∑
n=1

(
(Q(S)

n [t+ 1])2 − (Q(S)
n [t])2

)
+

1

2

N∑
n=1

((Q(E)
n [t+ 1])2 − (Q(E)

n [t])2)

+ η
N∑
n=1

(Tn[t+ 1]− Tn[t])
∣∣H[t]

]
(a)

≤ 1

2

N∑
n=1

E
[
(Q(S)

n [t] + rn − S∗n[t])2 − (Q(S)
n [t])2

∣∣∣H[t]
]

+
1

2

N∑
n=1

E
[
(Q(E)

n [t] + 1{S∗
n[t]>0} − en)2 − (Q(E)

n [t])2
∣∣∣H[t]

]
+ η

N∑
n=1

E [(Tn [t] + 1)(1− In(S∗n[t]))− Tn[t]|H[t]]

(b)

≤
N∑
n=1

E

[
Q(S)
n [t](rn − S∗n[t]) +Q(E)

n [t](1{S∗
n[t]>0} − en)

− ηTn[t]In(S∗n[t])

∣∣∣∣H[t]

]
+B(η), (26)

where step (a) follows from the dynamics of Q(S)
n [t] (cf. (8)),

Q
(E)
n [t] (cf. (9)), and Tn[t+ 1] (cf. (6)); (b) is true for

B(η) ,
N∑
n=1

(
r2n + e2n +R2

M + 1
)
/2 + ηN. (27)

Recall that RM is the maximum transmission rate, i.e.,
S∗n[t] ≤ RM .

By subtracting K
∑N
n=1 wnE[δn(S∗n[t])|H[t]] on both

sides of the above Lyapunov drift ∆V [t], we have

∆V [t]−K
N∑
n=1

wnE[δn(S∗n[t])|H[t]]

≤
N∑
n=1

Q(S)
n [t]rn −

N∑
n=1

Q(E)
n [t]en +B(η)

−
N∑
n=1

Q(S)
n [t]E [S∗n[t]|H[t]]

+
N∑
n=1

Q(E)
n [t]E

[
1{S∗

n[t]>0}
∣∣H[t]

]
−

N∑
n=1

(ηTn[t] +Kwn)E[δn(S∗n[t])|H[t]]

≤
N∑
n=1

Q(S)
n [t]rn −

N∑
n=1

Q(E)
n [t]en +B(η)

−
N∑
n=1

Q(S)
n [t]E

[
Ŝn[t]

∣∣∣H[t]
]

+
N∑
n=1

Q(E)
n [t]E

[
1{Ŝn[t]>0}

∣∣∣H[t]
]

−
N∑
n=1

(ηTn[t] +Kwn)E[δn(Ŝn[t])|H[t]], (28)

where the last step follows from the definition of our pro-
posed MPS Algorithm.

We note that there exists a randomized stationary sched-
ule (Ŝn[t])Nn=1 such that

E[Ŝn[t]] ≥ rn, ∀n, t, (29)
E[1{Ŝn[t]>0}] ≤ en, ∀n, t, (30)

U∗n = E[δn(Ŝn[t])] (31)

U∗ =
N∑
n=1

wnU
∗
n, (32)

where U∗ is the optimal value of the optimization problem
(2)-(4). Let p(c)n,m , Pr{Ŝn[t] = Rm} be the probability of
user n selecting rate Rm when the global channel state is in
c. Then our optimization problem (2)-(4) can be written as:

max
∑
c∈C

φc

N∑
n=1

wn

M∑
m=1

p(c)n,mδn(Rm) (33)

s.t.
∑
c∈C

φc

M∑
m=1

p(c)n,mRm ≥ rn, ∀n, (34)

∑
c∈C

φc

M∑
m=1

p(c)n,m1{Rm>0} ≤ en, ∀n, (35)

(
M∑
m=1

p(c)n,mRm)Nn=1 ∈ CH(S(c)), (36)

where we recall that CH(A) is the convex hull of the set
A. This is a standard linear programming problem and thus
has an optimal solution.

By using the property of the stationary randomized
schedule Ŝ[t] (cf. (29)-(32)), inequality (28) becomes

∆V [t]−K
N∑
n=1

wnE[δn(S∗n[t])|H[t]]

≤B(η)−
N∑
n=1

(ηTn[t] +Kwn)U∗n

≤− η
N∑
n=1

U∗nTn[t] +B(η)−KU∗. (37)

Taking the expectation on both sides, we have

E[V [t+ 1]]−E[V [t]]−K
N∑
n=1

wnE[δn(S∗n[t])]

≤B(η)− η
N∑
n=1

U∗nE[Tn[t]]−KU∗, (38)

holding for all t ≥ 0.
By summing both sides of (38) over t ∈ {0, 1, · · · , L−1}
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and dividing by L, we have

1

L
(E[V (L)]−E[V (0)])−K 1

L

L−1∑
t=0

N∑
n=1

wnE[δn(S∗n[t])]

≤B(η)− η 1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]]−KU∗. (39)

Hence, we have

η
1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]]

≤B(η) +K
1

L

L−1∑
t=0

N∑
n=1

E[wnδn(S∗n[t])] +
1

L
E[V (0)]. (40)

By taking the limit as L→∞, we have

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]] ≤ B(η) +KNwmax

η
. (41)

In addition, from (39) we have

K
1

L

L−1∑
t=0

N∑
n=1

E[wnδn(Sn[t])] ≥ KU∗ −B(η)− 1

L
E[V (0)].

(42)

By taking the limit as L→∞, we have

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

wnE[δn(S∗n[t])] ≥ U∗ − B(η)

K
. (43)

Finally, we will show that all virtual queues are mean
rate stable. From (39), we have

E [V [L]]−E [V [0]] ≤ L(B(η) +KNwmax), ∀t ≥ 0. (44)

Using the fact that V [L] ≥
∑N
n=1(Q

(S)
n [L])2/2 yields

1

2

N∑
n=1

E
[
(Q(S)

n [L])2
]
≤ L(B(η) +KNwmax) + E [V [0]] .

(45)

Therefore, for each n ∈ {1, . . . , N}, we have

E
[
(Q(S)

n [L])2
]
≤ 2 (L(B(η) +KNwmax) + E [V [0]]) (46)

However, because the variance of Q(S)
n [L] cannot be nega-

tive, we have E
[
(Q

(S)
n [L])2

]
≥
(
E
[
Q

(S)
n [L]

])2
. Thus, we

have

E
[
Q(S)
n [L]

]
≤
√

2 (L(B(η) +KNwmax) + E [V [0]]) (47)

By dividing by L and taking a limit as L→∞, we have

lim
L→∞

E
[
Q

(S)
n [L]

]
L

≤ 0 (48)

Since Q(S)
n [L] ≥ 0, we have limL→∞E

[
Q

(S)
n [L]

]
/L = 0,

which implies that virtual queue n for service rate is mean
rate stable. Similarly, we can get that the virtual queue n for
energy consumption is also mean rate stable.

8 RELATED WORK

In this section, we overview three main areas that are closely
related to our work: panoramic video streaming, virtual
reality, and wireless scheduling design.

(a) Panoramic video streaming: Researchers have put
a lot of effort into reducing the consumed bandwidth for
panoramic video streaming. One widely accepted approach
is to leverage motion prediction and stream part of the
panoramic content. To cope with the imperfect prediction,
researchers usually deliver a larger portion than the FoV.
Recent work (e.g., [2], [4], [5]) has explored this idea and
successfully incorporated it into the algorithm design. They
utilized various learning mechanisms to improve the pre-
diction accuracy further. Particularly, [5] proposed a novel
multi-armed bandit formulation to dynamically determine
the delivered portion of the whole panoramic scene. In
a more practical scenario, some work (e.g., [3], [19], [20])
split the whole panoramic scene into tiles, prioritized the
tiles by the possibility that they will be requested by the
users, and streamed only partial of the tiles with higher
priority. Other works (e.g., [21], [22], [23], [24]) further
improve the quality of experience for the user by proposing
innovative algorithms and integrating various system op-
timizations. Moreover, they conduct extensive evaluations
to demonstrate robust performance under heterogeneous
network conditions. However, it is worth noting that they
predominantly focus on single-user scenarios and do not
offer theoretical guarantees regarding their methods. In
contrast, our paper addresses a distinct avenue of research,
tackling multi-user scenarios with an emphasis on provid-
ing theoretical guarantees. We believe this sets our work
apart and contributes uniquely to the field.

There are also some papers (e.g., [25], [26]) leveraging ei-
ther the unique properties of the panoramic video streaming
or the client-side computation resources. [25] observed that
there are some unique quality-determining factors in 360-
degree videos, such as moving speed of a user’s viewport,
luminance variance, and the difference of depth-of-field.
Then, the authors designed a novel tiling scheme to cope
with such factors related to users’ sensitivity. [26] utilized
additional client-side computation to reduce bandwidth
requirement. Specifically, the client runs a deep learning
model to recover and enhance the quality of the video
received from the server which is significantly compressed.

(b) Virtual Reality: Unlike panoramic video streaming,
virtual reality (VR) introduces three more degrees of free-
dom for the user’s action. Besides the rotation of the head,
users are also able to move in a virtual world, which further
complicates the problem. On the other hand, rendering
high-quality VR images requires extremely high computa-
tion capability, which cannot be supported by even the latest
model of mobile devices. Recent work has developed mobile
VR systems which wirelessly communicate with a server
and proposed multiple methods to meet the extremely high
bandwidth requirement. One of the intuitive ways is to in-
crease the bandwidth by modern wireless technologies like
mmWave (e.g., [27], [28], [29]). Since the highly directional
property of mmWave contradicts the movement nature of
VR users, they either designed an adaptive antenna mirror
to reflect the signals or utilized a link adaptation algorithm
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with relatively lower frequency.
Beyond the scope of a single-user VR system, some

recent work (e.g., [11], [30], [31]) focused on providing a
simultaneous VR viewing experience among multiple users
and guaranteed good quality of experience for all of them.
They observed unique properties in a muitl-user setup like
redundant VR frames with similar contents and designed
novel systems with heuristic approaches to be implemented
on commercial devices. There are also some researchers
(e.g., [32], [33]) interested in the interaction between mul-
tiple users and came up with ideas to improve the syn-
chronization performance among users. However, most of
them designed heuristic approaches and did not provide
the theoretical analysis of the system performance.

(c) Wireless Scheduling Design: The scheduling design
is essentially an important topic under wireless networks
since only a subset of the users are available for simul-
taneous data transmission in the presence of wireless in-
terference. Existing works have concentrated on efficient
scheduling design considering various quality-of-service
(QoS) components, including throughput, delay, and service
regularity. For instance, some works aimed to design a
novel scheduling framework that provides a throughput
performance guarantee for real-time traffic (e.g. [34], [35]).
While other works put lots of effort into reducing the delay
(e.g., [36], [37], [38]) and providing service regularity guar-
antees (e.g., [9], [39]). However, none of them considered
the application-level throughput, which is essential for the
panoramic scene delivery.

9 CONCLUSION AND FUTURE WORK

In this work, we studied the wireless scheduling design
for multi-user interactive panoramic scene delivery with
the goal of maximizing application-level throughput while
guaranteeing service regularity performance. Notably, the
problem is constrained by wireless interference, minimum
service rate, and maximum allowable energy consumption.
We analytically characterized the successful viewing prob-
ability as the function of the delivered portion. We used
the Time-Since-Last-Service counter to capture the service
regularity performance and incorporated it into the stochas-
tic network optimization framework to develop a motion-
prediction-based scheduling algorithm. We proved that our
proposed algorithm asymptotically maximizes application-
level throughput and provides service regularity guaran-
tees. Finally, we conducted trace-based simulations using
panoramic scene gallery (3 DoF) and VR touring (6 DoF)
datasets to demonstrate the efficiency of our algorithm. It is
worth noting that our study only examined the influence of
different portions of panoramic content on the transmission
rate. In practice, there may be multiple available bitrates for
the same panoramic content, which would further compli-
cate this problem and is left for future research.
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