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Spectral properties of Schrodinger operators
with locally H ! potentials

Milivoje Luki¢, Selim Sukhtaiev, and Xingya Wang

Abstract. We study half-line Schrédinger operators with locally H~! potentials. In the first
part, we focus on a general spectral theoretic framework for such operators, including a Last—
Simon-type description of the absolutely continuous spectrum and sufficient conditions for
different spectral types. In the second part, we focus on potentials which are decaying in a
local H ™! sense; we establish a spectral transition between short-range and long-range poten-
tials and an £2 spectral transition for sparse singular potentials. The regularization procedure
used to handle distributional potentials is also well suited for controlling rapid oscillations in
the potential; thus, even within the class of smooth potentials, our results apply in situations
which would not classically be considered decaying or even bounded.
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1. Introduction

Schrodinger operators in one dimension Hy = _dd_x22 + V are often considered in
the setting of locally L? or locally L' potentials; however, there are several reasons to
investigate more general potentials. One is the ubiquity of non-integrable singularities
such as Coulomb- or §-type potentials in models from mathematical physics; another
is the Lax pair representation of the KdV equation, where H~!(R) and H~!(T)
is the optimal regularity for well-posedness [33,36]. Non-integrable singularities are
often studied by specialized methods such as those for the Kronig—Penney model, and
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inverse scattering arguments in the distributional setting are considered in ways that
circumvent the underlying Schrodinger operators. One of the goals of this paper is to
extend some robust techniques in spectral theory to the greater generality of locally
H ™! potentials, defined precisely below.

Schrédinger and Sturm—Liouville operators with distributional coefficients are
often treated via the regularization method introduced in the pioneering work of
Savchuk and Shkalikov [56]. This approach has materialized into the main tool in
the spectral theory of ordinary differential operators with measure and distributional
coefficients. Indeed, it was employed, for example, by Eckhardt and Teschl [21] in
the setting of measure coefficients; by Eckhardt, Gesztesy, Roger, and Teschl [18, 19]
for L}
Malamud, and Teschl [20] for §” potentials supported on Cantor sets; by Hryniv and
Mykytyuk [29,30] for periodic singular potentials H,.! (R) = H~'(T); and by many
other authors, see [19] for an extensive reference list. Most of the papers in this direc-
tion address foundational questions such as self-adjointness, Weyl-Titchmarsh theory,

((a, b)) four coefficient Sturm—Liouville operators; by Eckhardt, Kostenko,

spectral decomposition, as well as some inverse spectral problems. We emphasize that
the study of spectral types such as in the current paper, and of the associated dynam-
ics for operators with singular coefficients, have received much less attention. The
review of such results for deterministic Kronig—Penney-type models can be found in
[39, Section 2.5] and [2, I11.2.3]; some ergodic Hamiltonians modeling point interac-
tions are discussed in [10-12, 15].

In particular, Hryniv and Mykytyuk [29, 30] introduced a class of uniformly loc-
ally H~! potentials on R by the condition

sup||Von |l g-1®) < 00,
n

with the help of compactly supported H! multipliers

1 —2|x —n|?, lx —n| <1/2,
pn(xX) =4 2(]x —n| =12, 1/2<|x—-n| <1,
0, 1 <|x—n|,
and showed that real distributions in this class are precisely those with a representation

V=0 +r1,

where o, T are real-valued functions on R such that

x+1 x+1
sup / o(t)?dt < oo, sup/|t(t)|dl<oo. (1.1)

X



Schrédinger operators with locally H ! potentials 61

Note that this class includes the potentials V € H~!(R) and V € H~!(T) (when
viewed as periodic distributions on R). In particular, the study of Schrodinger operat-
ors with locally H~! potentials helps to bridge spectral theory with scattering argu-
ments. This decomposition is related to the Miura transformation and the Riccati
representation [32,38] for periodic V, in which every V € H~!(T) with zero average
is represented uniquely in the form V = o’ + 02 — Jt o2(t) dt. In the non-periodic
case, in the construction of [29], t takes the role of a local average, so the decompos-
ition really requires two functions.

Several classes of singular potentials are modeled by a suitable choice of o, .
For example, a Coulomb-type term |x — xo| ™!, xo € (0, 00) is realized by setting
o(x) = log|x — x¢|, T(x) = 0, and the point interaction §(x — x¢) is realized by the
characteristic function 0 (X) = ¥[x,,00) and 7(x) = 0.

Remark 1.1. Of course, the decomposition V' = ¢’ + t is not unique; the procedure
in [29] provides o, T such that

C ' sup(lloxiex+nll2 + 1T X x+n 1)
x
=< ”V”Hl;ilf(]R) = C Sup(||UX[x,x+l)||2 + “TX[x,x-}-l)”l)
x

with some universal constant C (the second inequality is general; the first is a con-

sequence of the choice of o, t starting from V). Accordingly, the quantity
||0X[x,x+1) ”2 + “T)([x,x-i-l) ”1

is interpreted as the local size of the potential.

By Dirichlet decoupling and Weyl matrix arguments, many spectral properties of
Schrodinger operators on R are reduced to spectral properties of half-line Schrodinger
operators. For this reason, spectral properties are often naturally considered in the
half-line setting. In this paper, we consider half-line Schrodinger operators with real-
valued distributional potentials V' = ¢’ + 7. The formal rewriting

—u" +Vu=—-0—ou) —ou +tu=—-u'—ou) —o@ —ou)+ (t —o?)u
produces Schrodinger operators as follows.

Hypothesis 1.2. Denote R = (0, 00) and assume that o,t : Ry — R obey (1.1).
Let
ull .=’ —ou

denote the quasi-derivative of u € ACj,.(R ) and introduce

D = {u € ACinc(R) : ul' € ACie(R4)},
fu = —(u[l])’ —oull & (t—0Hu, ued.
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This leads to self-adjoint operators on the Hilbert space L?(R,) with a regular
endpoint at 0, limit point at co, given by

dom(H%*) :={u e L>(Ry):ue®D, tucL*R,),
u(0) cos(a) + u[l](O) sin(a) = 0},
H%u = Lu,

where o parametrizes the boundary condition at 0. We will discuss their self-adjoint-
ness and corresponding quadratic forms in Section 2. Note that this is consistent with
standard ways of defining the operator if the potential is locally integrable (corres-
ponding to o = 0) or with §-singularities (corresponding to jumps in u’), see [29].

Using the quasi-derivative, the eigenfunction equation can be written as a first-
order system for ("5]). This is encoded by a family of transfer matrices 7'(z, x) which
is locally absolutely continuous in x and solves the initial value problem

—o(x) t(x)—0(x)?—z

0xT(z,x) = ( ) o (x)

)T(z,x), T(z,0)=1.
There is a corresponding Weyl function m, and a canonical spectral measure u®.
We will provide all definitions in Section 2; for the purpose of this introduction, it
suffices to know that u® is a maximal spectral measure for H%, and we are using it
to make precise statements about the spectral type of H%. We will use the Lebesgue
decomposition

/’La = /’Lgc + /’L‘sxc + /’Lgp-

One of the goals of this paper is to establish sufficient conditions for different
spectral types, including a criterion for a.c. spectrum which extends the results of
Last and Simon [42] for locally integrable V. One is a description of an essential
support for the a.c. spectrum in terms of Cesard-boundedness of the transfer matrices.

Theorem 1.3. Assume Hypothesis 1.2. Then, for arbitrary o € [0, ), the set

e = {E eR

1
1
liminf—/ |T(E; x)||?dx < oo} (1.2)
l—oo [
0

is an essential support for the a.c. spectrum of H® in the sense that 3. is mutually
absolutely continuous with the measure yx  (E)dE. In particular,

Spec, (H*) = X,.°.
Above we denoted the essential support of a Borel set S by
S :={EeR:|SN(E—¢ E+¢)|>0foralle > 0}.

A closely related result gives a sufficient criterion for absence of a.c. spectrum.
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Theorem 1.4. Assume Hypothesis 1.2 and fix arbitrary o € [0, 7). Let ¥ C R be
a measurable set and suppose there exist sequences {x; }f‘;l C Ry {y; };‘;1 C R4
such that for Lebesgue almost every E € ¥,

Lim [|T(E;x;, yj)|| = oo.
j—o0

Then, u3.(¥) = 0.
In the other direction one has the following result.

Theorem 1.5. Assume Hypothesis 1.2 and fix a € [0, 7r). Suppose that for some p > 2,

E>
liminf/ IT(E;x)|PdE < oco.
X—>00

E;
Then, H* has purely absolutely continuous spectrum on (E1, E»).

Theorems 1.3, 1.4, and 1.5 generalize results of Last and Simon [42]. The proofs
are given in Section 2, which also includes a Carmona-type formula, subordinacy, and
a Simon-Stolz criterion for absence of eigenvalues.

An important ingredient are new pointwise eigenfunction estimates which are
stated and derived in Section 2. These relate the pointwise behavior of a formal

eigenfunction and its derivative to its local L? behavior. For V € L2  they follow

loc
2

from Sobolev embedding theorems, but, for V ¢ L;. ., the local domain becomes
V -dependent and different arguments are needed; estimates of this form were previ-
ously considered for locally L' potentials [45,60]. The pointwise estimates are given

in Lemma 2.7; here we point out one corollary of these estimates.

Theorem 1.6. Assume Hypothesis 1.2 and let w: (0, 00) — (0, 00) obey

w(y)
sup

< 00. (1.3)
xoyilx—yl<1} W(X)

For any E € R, there exists a positive constant C such that for any | > 1 and any
solutionu € O, Lu = Eu, one has

! I+1
/w(x)llﬁ(x)llzdx =C / w(x)|u(x)Pdx, (1.4)
1 0

where

(1]
i = () @R = WP P )
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In particular, if
o0

/w(x)lu(x)|2 dx < o0,
0
then -~
/w(x)|u[1](x)|2dx < 00
0
and
Jim V)] = lim Vo] =o. (1.6)

In this paper, we will only use the case w = 1; however, polynomial weights
w(x) = (x + 1)¢ and exponential weights w(x) = e* for ¢ € R are also relevant for
various criteria about the spectrum, spectral type, and dynamical properties which we
expect to have a generalization to the current setting.

Remark 1.1 indicates that decay at oo should be quantified by the local L?-norm
on o and local L!'-norm on 7. Thus, the following result generalizes the Blumenthal—
Weyl criterion for preservation of essential spectrum under decaying perturbations.

Lemma 1.7. Assume Hypothesis 1.2 and suppose that

x+1

xli)ngof(az(t)+|r(t)|)dt=0. (1.7)

Then, for arbitrary a € [0, 1), Spec. (H%) = [0, 00).

We note in particular that Lemma 1.7 gives a more robust criterion even for locally
L!-potentials. Any locally uniformly L! potential V' can be decomposed as o = 0,
T =V, but choosing a different decomposition can give better results. For instance,
Lemma 1.7 implies the following result.

Corollary 1.8. IfV € L ([0, 0)) is real-valued and the limit

loc
X

lim | V(t)dt

xX—00
0

is convergent, then the operator —% + V is limit point at oo and its arbitrary self-
adjoint realization Hy in L?(R 1) satisfies Spec..(Hy) = [0, 00).

This corollary applies to oscillatory potentials such as

V(x) = ()Pl v eln—1,n),neN
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which was considered in [23] by a more specialized argument, and to potentials
V(x) :=x%sin(x?), «>0,8>a+1 (1.8)

which are not even locally uniformly integrable if o > 0. Similar growing oscillatory
potentials were considered in [13, 64]. To prove Lemma 1.7, we employ classical
perturbation theory for quadratic forms [6,22,49].

The description of the essential spectrum is the starting point in the theory of
Schrodinger operators with decaying potentials, which are a classical subject and have
been extensively studied over the past 30 years [1,4, 14-17,35,37,40,51,53,62-64].
Their spectral properties show a subtle competition between the rate of decay (with
faster decay leading to absolutely continuous spectrum) and the disorder and oscil-
lation in the potential (which promote more singular spectrum). Spectral transitions
dependent on the rate of the decay have been studied by many authors, in particu-
lar: Pearson [51] in deterministic setting; Kiselev, Last, and Simon [37], central to
this paper; Delyon, Simon, and Souillard [15] for discrete Schrodinger operators and
Kronig-Penney models with decaying random potentials; and Kotani, Ushiroya [40]
for continuous Schrodinger operators with decaying random potentials. This collec-
tion of papers gave rise to a number of subsequent investigations many of which are
referenced in the review paper by Denisov and Kiselev [16].

We first prove that short-range perturbations preserve pure a.c. spectrum. In situ-
ations where different exponents are used to control local integrability and decay, the
spaces of functions

L) = {f:Re > C | N apnsllf < o0
n=0

are useful, cf. [8, 54, 55]. The classical result about short-range perturbations is that
V e L'(R) implies purely a.c. spectrum on (0, 00). The distributional analog of this
criterion, informally speaking, is V' € EI(H _1); following Remark 1.1, we find the
correct formulation.

Theorem 1.9. Assume Hypothesis 1.2. If o € £'(L?) and © € £} (L") = L'(Ry),
then H® has purely a.c. spectrum on (0, 00) for every a € [0, ).

In fact, we prove a more general result than Theorem 1.9.
Theorem 1.10. Assume Hypothesis 1.2 and
oeL'(Ry), (62—1)eL'(Ry). (1.9)
Then, for arbitrary a € [0, i), the spectral measure on (0, 00) is of the form

10,00 (E)Ap* (E) = wo(E) dE
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with wy continuous on (0, 00) and strictly positive there. In particular, the spectrum
of H® is purely absolutely continuous on (0, 00).

To see that Theorem 1.10 implies Theorem 1.9, note that £1(L?) C ¢2(L?) =
L?(Ry)and £1(L?) c £} (L') = L' (Ry); thus, 0 € £'(L?) and T € L' (R ) implies
(1.9). These results apply, for instance, to potentials (1.8) with 8 > « + 2.

We note that neither condition in these theorems can be relaxed. For o = 0, it is
well known that decay of 7 weaker than L! can introduce singular spectrum in (0, 00);
e.g., Wigner-von Neumann-type potentials [46,50,57,58,62] can exhibit eigenvalues
embedded into ac spectrum with 7(x) = O(1/x) as x — oo. Similarly, we note the
following.

Example 1.11. There exists 0 € ACj,c([0, 00)) with o (x) = O(1/x) as x — oo such
that for t = 0 and some « € [0, &), the spectrum of H% is not purely absolutely
continuous on (0, 00).

Since such an example obeys o € L?(R ), it shows that the condition o € £1(L?)
cannot be relaxed in Theorem 1.9 and that the condition 6> — t € L1 (R ) cannot be
relaxed in Theorem 1.10.

In the second part of the paper, we specialize to decaying sparse potentials and
prove the following theorem.

Theorem 1.12. Let W, € H™'(R) be real distributions with supp W, C [—A, Al.
Assume that Wy — W in H™Y(R), with W # 0. Let dy — 0, let {x,}>°., C Ry bea

Xn_ 5 0, and let
Xn+41

monotonically increasing sequence such that x; > A and

V(xX) =) dyW(x = xp).

n=1

For any a € [0, ), Spec.,(H*) = [0, 0c0) and, moreover, we have the following.

€8s
@) If Y02 |dn|?* < oo, then the spectrum of H* is purely absolutely continu-
ous on (0, 00), in the sense that Y(o,00) diu* is mutually absolutely con-
tinuous with Lebesgue measure on (0, 00). In particular, Spec (H*) = 0,
H%) C (—00,0], Spec,.(H*) = [0, 00).

(d) If Y02 |dn|* = oo, then the spectrum of H® is purely singular continuous

Spec,, (

on (0, 00). In particular,
Spec, (H®) = [0,00), Spec,,(H®¥) C (=00,0], Spec, (H%) = 0.

The special choice W,, = W € L*°((—A, A)) yields Pearson-type classical poten-
tials; that case of Theorem 1.12 was proved by Kiselev, Last, and Simon [37]. Our
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extension allows more singular potentials; for instance, as an illustration of The-
orem 1.12, we claim a Kiselev—Last—Simon-type spectral transition for the Kronig—
Penney model. Concretely, let H be the Schrodinger operator acting on L2(R ) given

by
d? e

_W + ZdnS(X —xn),

n=1

H =

where {x,}52, C (0, 00) is a sparse sequence satisfying x,/x,4+1 — 0 as n — oo,
subject to any self-adjoint condition at 0. Then for any decaying sequence (d,);2;,
Spec

s (H) = [0, 00); moreover, the spectrum is purely a.c. on (0, 00) if (d,)52, is

square-summable and purely s.c. on (0, 00) otherwise. Related to this example is the
paper [44], cf. also [3, 39], where the spectral types of Kronig—Penney-type models
are discussed. In contrast to [44], however, the above example indicates spectral trans-
ition within the class of decaying coupling constants dj,, while [44] studies different
spectral types (without transition between them) for growing d,,.

Another new feature of our result is that the profile W, may vary with n. Note that
this allows examples such as the locally integrable potential

o0
V = Z dnnX[Xn,x11+l/"]’

n=1

where x denote characteristic functions. Since ny[o,1/,] — o in H ' (R), by The-
orem 1.12, the spectrum is purely a.c. on (0, oo) if the decaying sequence (d,)5>; is
square-summable and purely s.c. on (0, oo) otherwise.

Although stated in terms of H ~1(IR), the starting point in our analysis is a decom-
position W, = S, + T, and the proof must treat these contributions to ¢ and t
separately. As in the classical case [37], our proof is based on the analysis of Priifer
variables. However, in the present case this analysis is more intricate due to the
appearance of new terms in the differential equations obeyed by Priifer variables.
Namely, in the setting of H~! potential V = ¢’ + t, as shown in Proposition 2.13,
one has

2 2

sin?(0) + o sin(26), (logR) = ¢ ;kg

T—0

0 =k — sin(20) — o cos(20),

whereas in the classical case V € LIIOC(R+), as discussed in [37],
Vv Vv
0 =k — T sin?(d), (logR) = T sin(26).
An important ingredient in the proof of Theorem 1.12 is given by the fact that

|7 (k?, x)|| is comparable to R(x), see Proposition 2.13. Hence, in order to establish
growth or boundedness of eigensolutions and, respectively, the absence or existence
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of purely absolutely continuous spectrum on [E1, E5], it suffices to study the asymp-
totics for R(x). In Sections 3.3 and 3.4, we describe the asymptotic behavior of R(x)
depending on whether or not {d,,}>> , € £*(N).

2. Spectral analysis of Schrodinger operators with distributional
potentials

In this section, we consider Schrodinger operators in the setting of Hypothesis 1.2. We
start with the general properties of the self-adjoint operators and quadratic forms for
locally square-integrable o and locally integrable t, and then establish general ways
to study the spectral type.

2.1. Self-adjointness and form bounds

For an interval / C R and o € L2 (1), T € L} (1), differential expressions of the

form

/

u=—' —ou) —o' —ou)+ (t —o*)u

are within the very general setting of four-coefficient Sturm-Liouville operators

with locally integrable coefficients considered by Eckhardt, Gesztesy, Nicols, and

Teschl [19]; in the notation of [19], this is obtained by setting p = 1,9 = v — o2,

r = 1,5 = —o. Thus, the following general properties are known.
We denote for u € ACj,. (/) the quasiderivative

ull =o' — ou.
Associated with the differential expression £ is the local domain
D = {u € ACic(!) s ul!! € ACie(1)}

and three linear, densely defined, unbounded operators Hy, Hpyin, Hmax acting on
L2(1) defined as follows:

Hpaxt = Lu,

u € dom(Hma) :={u € L2(I) :u € ®, Lu € L>(1)},

Hou = Lu,

u € dom(Hy) := {u € dom(Hnax) : u has compact support},

and H, 1= Ho, the closure of Hy in L?(I). By [19, Section 3],

I—Imin:I_I_OZI_I(;k*:I—I)k HminCH*

max’ min

= Hmax'
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Moreover, there is a limit point/limit circle dichotomy at each endpoint, i.e., the space
of solutions of fu = zu which are square-integrable in a neighborhood of the endpoint
is two-dimensional for all z € C \ R (the limit circle case) or one-dimensional for all
z € C \ R (the limit point case). In this setting, the Wronskian is defined for u,v € ®
by

W(u, v)(x) = u(x)oM(x) — ul(x)v(x).

For any u, v € dom(H .y ), the Wronskian has a limit as x approaches an endpoint.
The endpoint sup / (respectively, inf I') is limit point if and only if
lim W(u,v)(x) =0, u,vedom(Hpy).
x—>sup I
(respectively, as x — inf I'), cf. [19, Lemma 4.4].
In the setting of Hypothesis 1.2, the endpoint O is regular because

1

1
/az(t) dt < oo, /|r(z)| dt < oo 2.1
0

0

(informally, a regular endpoint is a point with the same local integrability properties
of the coefficients as an internal point; formally, (2.1) matches the general definition
of regular endpoint used in [19]). Thus, by [19, Section 3], £ is limit circle at 0, for
every u € dom(Hpayx) the limits

u(0) = lim u(x), u[l](O) = lim u[l](x) 2.2)
x—>0 x—>0
exist and are finite, and self-adjoint boundary conditions at O are of the form
u(0) cosa + u[I](O) sina =0

for some « € [0, 7).

Full-line Schrodinger operators with H,;! potentials were studied in detail by
Hryniv and Mykytyuk, for example, in [29,30]; in particular, full-line operators obey-
ing the local uniform bounds (1.1) are limit point at =00. Since the limit point/limit
circle dichotomy is a local property of the endpoint by [19, Section 3], in the setting of
Hypothesis 1.2, £ is limit point at co. The following lemma summarizes these known
facts.

Lemma 2.1. Under the assumptions of Hypothesis 1.2, for every u € dom(H.x), the
limits (2.2) exist and are finite, all self-adjoint extensions of H,;, are parametrized by
a € [0, ) as follows:

H% = —uMy —oul + (t —6®u, u € dom(H?®),

dom(H®) = {u € dom(Hua) : u(0) cos(e) + ul(0) sin(a) = 0}.
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Moreover, Hryniv and Mykytyuk [29, Section 3] described semiboundedness and
quadratic forms associated with the full-line Schrodinger operators; we adapt this
proof to the half-line setting, in order to describe the quadratic forms associated
with H*.

Theorem 2.2. Under the assumptions of Hypothesis 1.2, for every a € [0, i), the
operator H® is bounded from below and there exist C = C(o,7) > 1,A =A(0,7) >0
such that for E < min{inf Spec(H%), 0},

(H*—E)' <C(-Ax —E+X1)7", 2.3)

where —Ay is the Dirichlet Laplacian on Ry if « = 0 and Neumann Laplacian if
a € (0, ).
The quadratic form H* of H% is given by

fooo(ﬁ’v’ —il'ov — oV’ + Titv)(x) dx — cot()u(0)v(0), « € (0, ),

JoS @ —i'ov —iov + tiv)(x) dx, a =0,
2.4

for u,v € dom(§%), where

dom(f)“) - Hl(R+)’ o€ (Ov 7[)’ (2 5)
| HJRy) :={f €e H'(Ry): f(0) =0}, a=0. '

Proof. Recall from [29, Lemma 3.1] that for arbitrary interval / C R4 of length 1,
e€(0,1),and v € H'(I),
||W||124c>o(1) = 8”1;0/”%2(1) + 88_1”1#”%2(1), (26)
WY 2y < el 1220, + 46721 122 - @7

In particular, as in the proof of [29, Theorem 3.4], for any u € H'(R),

00 n+1

o0
[1out =3 [ louf* < o1
0 n=0

n

oo
2 2 2
2,unian:(:) ||”||L°°(n,n+1) (;ﬁ) C””||H1(R+) < o0

That is, ou € L?>(R4). Due to this and H'(R;) C L®(R), the form h* defined
by (2.4), (2.5) is well defined.

Let us now prove that H¢ is relatively bounded with respect to the quadratic form
of the Dirichlet or Neumann free Laplacian on R 4, depending on the value of «. Note
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that for arbitrary ¢ > 0, employing (2.6), (2.7) as in the proof of [29, Lemma 3.2],

o0
o0
‘ [owu| =3 [ lowul = Io ol e, )+ 471l qe, )
) ) Q7
oo 0o N1
‘/rftu < Z / |'C| ||u||ioo(n,n+1) < ”T l,unif('g“u,”iz(RJ’_)'i' 85_1”””22(]1%_,_))’
J ) 2.6)
(2.8)
for arbitrary u € H'(R); moreover, by (2.6),
@) < el F2 @,y + 46Ul 72, - (2.9)

Let h¥, X € {D, N} denote the quadratic form corresponding to Dirichlet or Neu-
mann free Laplacian on R ; i.e.,

b¥uu) = |u'l}>g, ). u € dom(h”),

where
dom(p?) := HJ(R;) and dom(pV):= HI(R,).

We will proceed with assuming o € (0, ), the second case @ = 0 can be handled
similarly. For any a € (0, 1), the inequalities (2.8), (2.9) yield b € R such that

5% u] =5[]l < alu'|Fo g, + blullog, ) v € H' R).

That is, the lower order terms and the boundary term in the definition of §*, considered
as quadratic form on H!(R), are relatively bounded with respect to Neumann form
I)N , with relative bound less than one, see [34, Section VI.3.3] or [52, Chapter X].
Thus, by [52, Theorem X.17], §* is closed bounded from below quadratic form and
there is a unique self-adjoint operator 7% acting in L?(R 1) which satisfies

(T, v) 2w,y = 5%, v), u € dom(T%), v € dom(h®). (2.10)

We claim that H* C T“. Assume this claim, we note that both operators are self-
adjoint and therefore must coincide. This implies that h* is the quadratic form of the
operator H* which is consequently bounded from below. Let us now proof H* C
T* for a # 0 (the case @ = 0 can be handled analogously). It suffices to estab-
lish (2.10) for all u € dom(H%) and all v € H'(R4+) N C*®(R,) with bounded'
support supp(v). Indeed, both sides of (2.10) are continuous with respect to v in

'In case & = 0, take v with compact support, i.e., v € CsP(Ry)
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H'(R) norm and the setof v € H'(R) N C% (R ) with bounded support is dense
in H'(R ), see, for example, [22, Corollary 3.3 in Chapter V, Section 3]. Then using
ul1(0) = —cot(a)u(0), v(x) = 0 for sufficiently large x > 0, and integration by parts,

o0

H*(u,v) = /(mv/ —oullly + (1 — o?)iv)(x) dx + ulll(0)v(0)

—@Myy —gullly + (z — o?)iv)(x) dx

0\8

(H“u, v)LZ(R+)

In order to prove (2.3) (again we focus on the case o € (0, 7)), we invoke (2.8),
(2.9) to obtain some C = C(o, t) > 1 such that

0% u) < C o,y + Mo, ). € H'(Ry).

Noting that the left-hand side above is the quadratic form of H* and the right-hand
side is the quadratic form of C(—Ay + A), assertion (2.3) follows from [34, The-
orem VI 2.21], where it is shown that the ordering of quadratic forms implies the
ordering of resolvents. =

Remark 2.3. (i) The representation ¥V = ¢’ + t is not unique; given two pairs
(0i,7) € L. (Ry) x LL (Ry),i = 1,2witho] + 11 = V = 0} + 15 one has

loc loc

9:=O’1—O'2, 9/=‘L’2—‘L’1,

so that 6 € Wlécl(]RﬁL)
(ii) Fix 0 € Wi (R+) and (0,7) € L (R4) x L} (R4). We say that the pair
(0 + 0,7 — 0') is a gauge change of (o, 7). The domain dom(H,,«) is gauge change

invariant since for u € ACj,.(R4) one has

loc

(”/ —ou) € ACc(R4) (u/ — (0 + 6)”) € ACjc(R4)

and a direct calculation shows that the action of the maximal operator H,, is also

gauge change invariant. The gauge change affects the definition of the quasi-derivative
W= (11 _ [l

u; —0jU SO that uj " =uy  — Ou. Therefore, the self-adjoint boundary condi-
tions u(O) cosaj + u (O) sina; = 0 are relabeled by the formula
cotay = cotay — 0(0).

Remark 2.4. In the setting of Theorem 2.2, two distinct self-adjoint extensions of
H.,,;, are rank-one perturbations of each other. Concretely, one has

dimrank((H* — i)' = (Hf —i)™) < 1.
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This is due to the fact that the deficiency indices of Hy;, are (1, 1) and the abstract
Krein’s resolvent formula [9, Theorem A.1].

We can now prove our version of the Blumenthal-Weyl criterion.

Proof of Lemma 1.7. By Remark 2.4 and [22, Theorem 2.4], it suffices to prove the
statement for « = 0. Let Hp and hp denote respectively the Dirichlet Laplacian
and its quadratic form on R ; i.e., using the notation of Theorem 2.2 with o = 0,
o =1 =0,write Hp := H°, hp = §°. Our goal is to show that for o, 7 as in (1.7),
the quadratic form §° is a relative compact perturbation of hp (see e.g., [49, Defini-
tion 2.12], [22, Section IV.4]). This assertion together with [49, Theorem 2.13] yields
Spec,(H°) = Spec,( Hp) and, when combined with Spec,(Hp) = [0, 00), proves
the statement.
Consider the quadratic form

€ss

s[u,v] := /(—701} —iov + tiv)(x)dx, u,v € dom(s) = Hy(Ry).
0

In order to show that §° is a relative compact perturbation of §p, it suffices to verify
that

(i)  one has
Is[u, u]| < COH°[u, u] + ||u||22(R+)) for any u € H(}(R+); (2.11)

(i) if sup; |lujllg1®,) = 1. then there exists a subsequence {uj,, };"_; such
that for ¢ > 0 there exists K > 1 such that

Is[uj,, —uj, uj,, —u;,]l <e forallm,n > K, (2.12)

cf. [49, Theorem 2.14].

The first inequality (2.11) follows from (2.8), so it suffices to prove (2.12). First, let
Xla,b] denote the characteristic function of [a, b] and note that

EE 2‘ / (o ou)(x)dx| + ‘ [ o lul?)(x)dx
0 0

,  u € dom(s).

4 2‘ f (tt.coyiow) (x)dx| + ‘ / (o)t P) (¥)dx
0 0

(2.13)
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Fix arbitrary ¢ > 0, then for a sequence {u;}72 | C dom(s) with sup; [lu; | z1@,) =<1
and sufficiently large, j-independent, t = (g, 0,7) > 0,

2' /(X[z,oo)(uj —up) o(u; —ug))(x)dx| + ‘ /(X[z,oo)f|uj —ug)?)(x)dx
0 0

(2%) Clx1t,000 ll2,unit + 1 X1t,000 Tl umit) 14 — ul iy < €/2,  (2.14)
for all j € N, where, in the last inequality, we used (1.7) and sup; [[u;[|g1®,) =< 1.
Next, for 7 defined above, note that sup; || xjo,.juj | z1®,) < 1 and, due to compact-
ness of the embedding H'((0,7)) <> L2((0,1)), there exists a subsequence {u;, e
which is Cauchy in L?(R ). For such a subsequence and arbitrary & > 0, there exists
K > 1 such that

o0
2‘ /(X[Oaf](ujm - ujn)/o(ujm - an))(x)dx
0

<ege/2, form,n> K, (2.15)

o0
+ ‘ / o1y, — 1, 1) (x)dx
0

where we used the Cauchy-Schwarz inequality and sup; || x[o,q%jllg1 ) = 1. It
follows from (2.13) with u := u;,, —uj,, (2.14) and (2.15) that

Is[uj, —uj, uj, —uj,]l <e, form,n>K,
which yields (2.12) as required. ]

Proof of Corollary 1.8. Leto(x) := [y V(t)dt — [y V(t)dt, v =0. Theno(x) — 0,
x — 00, hence (1.1) holds; hence, by Lemma 2.1 Hy is limit point at infinity. In
addition one has (1.7), thus, by Lemma 1.7, Spec.(H*) = [0, co) which combined
with ¢’ + © = V yield Spec . (Hy) = [0, 00) as asserted. ]

At this point, let us prove the assertion made in Example 1.11.

Proof of Example 1.11. The Wigner—von Neumann potential V', explicitly defined in
[57, Section 3, Part B], admits a real-valued non-trivial eigenfuction u € L?(R)
corresponding to eigenvalue 1. In particular, for the choice of boundary condition at 0
. g d2 . .
corresponding to u, the Schrodinger operator ——= + V" has an eigenvalue in (0, 00).
We seto(x) := —fxoo V(t)dt and T = 0. Then V = ¢’ + 7 so this is a gauge change
of the Wigner—von Neumann potential; in particular, spectral type is unchanged. To

prove o(x) = (1/x), we recall the asymptotic formula
X—>00

0%, t— .

V() = _8 sir;(2t) n
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Hence, for some C, ¢ > 0 and sufficiently large x we have

'/ V(t)ydt| <

851n(2t) ‘ N ‘c ‘

o0
4 cos(2 4 cos(2t C
< —COS( *) +U—COSZ( )dz‘+£§— .
t X X

Remark 2.5. (i) The invariance of the essential spectrum under small at infinity
perturbations of the coefficients has been investigated by many authors in various
settings, see e.g., [3, 25,28, 65] and especially [43], which contains many relevant
references. The central fact in the classical treatment of this problem via Weyl-type
sequences, see [28, Section 10], is that H* has a locally compact resolvent; i.e.,
X (H*—1)7!,n > 0is compact in L?(R.). This still holds in our case, as readily
seen from the explicit form of Green’s function. However, there is a major obstacle in
using the classical approach since dom(H %), as a subset of L?(R ), depends on o, T.
Notably, one does not even have the inclusion C§°(R ) C dom(H %) in general; e.g.,
such an inclusion does not hold when V is not locally L2. The key feature of our proof
of Lemma 1.7 is that the form domain §H* does not depend on o, 7. Interestingly, the
latter does depend on «, though the invariance of essential spectrum under perturb-
ation of the boundary condition is handled by Krein’s formula for the difference of
resolvents of two self-adjoint extensions of the minimal operator H.;,, as discussed
in Remark 2.4.

(i1) Relevant to this discussion are [26, Theorem 3.2] (see also [47,48]), where the
full-line version of (1.7) is shown to be equivalent to compactness of the multiplier
given by an H~!(R) potential, and [3], where Birman’s perturbation theory is used
to prove invariance of the essential spectrum for Kronig—Penney-type models with
decaying coupling constants.

2.2. Weyl-Titchmarsh theory

Forz € C, g € L} (R.), the differential equation

loc
_(u[ll)’ —oull 4+ (r —02)u —zu=g, ued®

is rewritten as the first order system

d Tully] W0 [e) [0 (—oh-:
_x|: u(x) j|—A(z,x)|: u(x) j|_|: 0 :|’ Az, %) ‘_|: 1 o :|

Assuming Hypothesis 1.2, since the matrix coefficients in A(z, x) lie in Lloc (R;C2*2),
the corresponding initial value problem has a unique locally absolutely continuous
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solution. In particular, for g = 0, o € [0, ), we consider the initial value problem
fu — zu = 0 and denote by ¢y, ;. 0,7 its solutions satisfying the initial conditions

¢¢Etl,]z(0) 00[,{;(0) e __[cos(e) —sin(w)
[%,Z(O) 0&,2(0)} Ry', Re:= [Sin(a) Cos(a)]. (2.16)

The solutions are entire with respect to z. In the special case @ = 0, we denote 6, :=
Ou,z, $z := ¢q.z. Note that any u € D solving £u = zu satisfies

ulxy] ul1(0) o (oM oM
[u(x)]‘m’x’o)[um) ] T(Z”"O)"[qsz(x) ez<x)]'

Since W(¢;, 6,)(x) is constant (due to Lagrange identity [19, Lemma 2.3]),

det7T'(z;x,0) = 1.
Thus, the transfer matrix can be defined as

W) 9£”(x)][ Uiy ez“](y)}‘l
¢z (x) 0, (x) @z (y) 0, (y) ’

where for any u € ®© solving fu = zu, and any x,y > 0,

)] T
T(“’y)[ u(y) ] = [ u(x) ]

T(ix,y) = [

We will often denote 7'(z; x) := T(z; x,0).

Next, we recall the Weyl-Titchmarsh theory for £. Assuming Hypothesis 1.2,
since £ is limit point at infinity, for any z € C \ R, there is a 1-dim set of solutions in
L?(R4) to fu = zu, where any such non-trivial solution is called a Weyl solution at
infinity and denoted by V. Fix any ¥, ; the Weyl-Titchmarsh m-function is given by

W, 602) _ cos@yl(0) —sin(e)y (0)
Wz bo2)  sin(@)yL(0) + cos(e)y,(0)

my(z) =

The boundary condition affects the Weyl function by a rotation matrix: denoting by
~ the projective relation on C2 \ {0},

me(z) ~ mo(z)
] g 1] o

The Weyl disks are defined as

DE(z) ={Ua |u#0€ D, bu—zu =0, iW(i,u)(x) <0},
_ cos(e)ul(0) — sin(a)u(0)
~ sin(a)ul1(0) + cos(a)u(0)’
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Proposition 2.6. Assume Hypothesis 1.2 and fix z € C4, a € [0, 7).
(1) Forx > 0, the set D%(z) is a disk in C.

(i1)  The disks from (i) are strictly nested; i.e.,
Dg(z) C D5(z), x<y.

(iii) The intersection of these disks is a single element set consisting of the Weyl—
Titchmarsh coefficient my(2), i.e.,

() DE(2) = {ma(2)}.

x>0

Moreover, 0y ; + My (2)$q,z is a Weyl-Titchmarsh solution.

(iv) The mapping z & my(z) is a Herglotz function;, i.e., analytic function
(C+ — C+.

Proof. In this setting, the Lagrange identity for u € © with fu = zu,z € C4, is

2Imz/ lu(t)|?dt = iW(ii,u)(x) — iW(i, u)(0).
0

In particular, if u # 0, then u has only isolated zeros so the function
iw@,u)(x) = —2Im@u)ull(x))

is real-valued and strictly increasing in x. The strict increasing property above cor-
responds to the fact that the operator obeys the Atkinson condition, or equivalently,
the corresponding canonical system has no singular intervals. The other conclusions
are general consequences of the fact that the operator is limit point at co (see, e.g.,
[41D. ]

To conclude Section 2.2, we recall from [19, Section 9] the spectral decomposition
for the operator H*. The Herglotz function m,, discussed in Proposition 2.6 (iv) gives
rise to a Borel measure u* via the Stieltjes—Livsic inversion formula

E>+6
1
— /Imma(a +ig)dA,

0
E{+6

“((Eq, E3]) :=limli
u*((E1, E3]) 81?0181

for real numbers £ < E,. The operator H* is unitarily equivalent to the operator of
multiplication by the independent variable in the space L?(R, 1%) and the classical
spectral description via boundary values of my(z) holds, see [19, Section 9]. For
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instance, as in the classical setting, if @ — 8 ¢ 7Z, then a.c. parts of u®, uf are
mutually a.c., and their singular parts are mutually singular.

We will return to a detailed analysis of the absolutely continuous part of spec-
tral measure 1% in Section 2.4, where we will rely on estimates for eigensolutions
discussed next.

2.3. Eigensolution estimates

In this section, we derive auxiliary estimates for solutions of u = Eu, E e R,u € ©.
To describe the main assertions, let us fix A > 0 and recall (1.5). In the estimates
that follow, we give bounds with explicit dependence on the parameter E; we do not
optimize these estimates, but we will use explicit estimates in some of the proofs that
follow.

Lemma 2.7. Assume Hypothesis 1.2. There exist constants Cy,C,,C3,Cy4,Cs5€(0,00)
2.uif> || Tl such that, for every E € R and every real-valued

which depend only on ||o
solutionu € © of lu = Eu,

(i) oneveryinterval | C Ry with|I| = A <1,
i) < Cre*FNux)ll,  forall x,y € I;
(i1) on every closed interval I C Ry with |I| = A <1,

CME|

max|u(x)| < C, max|u(x)|;
xel x€el

(iii) for§ = C3(1 + |E|)™Y, at least one of the infimums

inf u(x)|, inf |u(x)
[y—8,y]ﬂR+| | [y,y+8]| |

is larger or equal to |u(y)|/2;

(iv) foreverye > § andeveryy > ¢,

y+e
WP = Cat+ (B [ P ax
y—¢
(v) foreverye > % and every y > &,
y+e

W2 < CseEI(1 + )2 / ()] dx

y—e
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Proof. (i) From #t' = Au for x < y, we obtain by Gronwall’s inequality [5, Lemma 1.3]
()] < e EET i) ).
The operator norm bound
1A, E)l < 14 2[0(0)] + [c@)] + [0>@)] + |E|

implies that || A(¢, E)| is uniformly locally integrable: on every interval I of length
[I| =1 <1,

/ 1A, E)ldt < 1+ 2/|0 | 2,ui + 1] + 10113 it + A E]-
1

The case y < x follows analogously.
(i) We fix

1
S = Ae MEI 2.18
CrG3 + 02 (.18)

and assume that for some yg € I,

R 1
i (o)l = [ul(yo)| > glu(x)| forall x € 1.

Combining, we conclude that for all x, y € I,

. 1 . 1
lu(y)Il > m””()’o)” > m|u(x)|~

Since CleME'S < 1, this implies

1

1/2
m—l> lu(x)|, forallx,yel.

)] > (

In particular, uM] has no zeros on the interval 1 , so it has constant sign there. Thus,

‘/u[l](t) dt
1

On the other hand, denoting the end points of / by j~ < j ¥, one has

‘/u[”(t)dt' =
1

< 2max|u(x)| + vA||0 ||2,unit max|u(x)|. (2.20)
x€el x€el

= | @) de > 2 1 )" 2.19
—/|M (1) dt > (m— ) 1)1612;(|u(x)|. (2.19)
T

u(it) —u(7) - / o (o) di|
1
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Since u is not identically zero on I, combining (2.19) and (2.20), we obtain

1 1/2
A(C12321|E|Sz B 1) <2+ ||O||2,unif‘/x <2+ |loll2,uif

which implies

1 2+ o uni 2 3+ o uni 2
1o’ | G Lol
Cle?rEIS? A A

and contradicts (2.18).

(iii) Impose C3 < 1 to ensure § < 1. Assume that the claim is false: then u(y) # 0
and by continuity there exist x; € [y —§, y] N [0, 00) and x5 € [y, y + §] such that
|u(x1)| = [u(x2)| = |u(y)|/2. In particular, x; < y < x5. Pick s € [x1, x2] so that

[u(s)| = max [|u(x)|.
x€[xy,x2]

By considering £u, without loss of generality we can assume u(s) > 0.

Moreover, let us assume ul!!(s) > 0 and work on the interval [s, x,]; the other
case is analogous by working on [xy, s].

The first step is an upper bound for the quasiderivative. For x € [s, x5], denote

h(x) = els 9O a1, M (x),
Then the equation for (u['1)" implies
B (x) = els 9Ot (1 (x) — 5(x)? — E)u(x).

Since x —s < x5 —5 <28 <1, we use

on(z) dt

X

/ I2() — (1) — Eld1 < 0] ue + 7] + |E|

N

<|x- S|1/2||<7||2,unif,

to conclude that for x € [s, x;], for some constant C,

h(x) = h(s)| < / Sl () — 0 (1)? — Elu(r)|di

N

< €12y (5) / l7(t) — 0(1)* — E|dt

< (C + |EDeCP ="y (s).
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Since A (s) = ul'l(s) > 0, we turn this into a one-sided bound
—h(x) = —h(s) + (C + |EDe =1 u(s) = (€ + [EDe 1 u(s)
and from this we finally obtain
—ullx) < (C + |E|)e2c|x_s|1/2u(s), for all x € [s, x2]. (2.21)

Then we expand for x € [s, x2],
X X X

u(x) = u(s) +/u’(t)dt = u(s)+/u[1](t)dt +/a(t)u(t)dt

s N N

and by using (2.21) we get
u(x) > u(s) — |x — ]2 (C 4 |EDuls) — |x — s o l|z,miu(s).

Plugging in x = x,, recalling that u(x,) < u(s)/2 and |x, — s| < 2§, and dividing by

u(s) we obtain

L ogetcs'”?

> (C +|E|) = §lloll2,unit

Equivalently,

1/2 ]
28e4C8V 2 (C + |E|) + Slo || 2,unie > 5

which gives a contradiction if § is small enough.
(iv) It follows from (iii) that
y+e 5
/ lu(x)|? dx > Mmin{s,S}.
y—e !
(v) Without loss of generality, assume ¢ < 1. Starting with (ii) and then (iv), with
a=c¢/2,

e4a\E\

2
max u(x
2a)? xe[y—a,y+a]| 0l

uM(y))? < 2

x+a

— (1 +|E? / 0|* dt
(2a)2( +[E]) xe[yfggf;M] u ()]
xX—a

4a|E|

which implies
x+e
m“kynzscsésE(1+|E02/Wuonzda "

X—&
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Proof of Theorem 1.6. By considering Re u, Im u, it suffices to consider real-valued
eigensolutions. Denote by C the supremum in (1.3). By Lemma 2.7, there exists M
such that

x+1 x+1
w) i (x)]> < wx)M / u(y)?’dy <CM / w(y)u(y)*dy. (2.22)

x—1 x—1
Integrating and using Tonelli’s theorem gives
] I x+1 I4+1

w(x)[[d(x)[*dx < CM w(y)u(y)?dydx <2CM [ w(y)u(y)*dy.
/ /) [

1
(2.23)
From now on, assume fooo w(x)|u(x)|?> dx < oo. Letting I — oo in (2.23) shows

X

o0

fw(x)||ﬁ(x)||2dx < 00.

1

By (1.3), w is bounded on (0, 1), so fol w(x)ull(x)2dx < oo. Using decaying tails
of an integrable function, (2.22) implies the pointwise decay (1.6). ]

As a first application, we prove a Simon—Stolz-type criterion for absence of pure
point spectrum, cf. [59].

Lemma 2.8. Assume Hypothesis 1.2. If for some E € R,

r dx
0/ ITEDE (2249

then H® has no nontrivial solutions in L*((0, o0)); in particular, H* doesn’t have
an eigenvalue at E for any a € [0, ).

Proof. Fix nontrivial u € ®, u = Eu. By Theorem 1.6 with w = 1, it suffices to
show that
@2 w2 ¢ L2(R ). (2.25)

Since T(E; x) € SL(2,R) implies | T(E; x)|| = |T(E;x)~1|,

(0|

u — (111 T
TE] )= )

()] = €

which together with (2.24) yields (2.25) as required. [ ]
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2.4. The absolutely continuous spectrum via Last—-Simon approach

The main goal of this section is to develop the Last—Simon approach, cf. [42], to abso-
lutely continuous spectrum via growth of transfer matrices. To do this, we first discuss
the relation between the subordinacy theory and the growth of transfer matrices.
We say that u € © is a subordinate solution of fu — zu = 0 if for some solution
Lv—zv=0,veD\{0},

2] x

x=00 [|v]|x

—0. IfI?:= / LFOI dy. (2.26)
0

Note that if (2.26) holds for some eigensolution v, it holds for every eigensolution
linearly independent with u. Moreover, taking v = u, we see that if a subordinate
solution exists, it must be linearly dependent with its complex conjugate, so it must
be a multiple of ¢, for some «.

For pi-a.e. A € R, the normal boundary value lim, o m()A + ig) exists in Cy.
Subordinacy theory relates this value to the existence of subordinate solutions [27,31];
this was recently understood to be a special case of bulk universality in a general
Hamiltonian system setting [24]. To explain this, incorporate the boundary condition
into the transfer matrix by defining

R £ A X () I ()
Tulz; x) = R (¢a,z(0) ea,z(O))‘

This transfer matrix T (z; x) obeys the initial value problem
0xTa(z:x) = RyA(z, X)R, ' To(z:x), Tu(z:0) = 1.

This is a special case of a so-called Hamiltonian system, and can be written as

, L I o(x) 17 (e = (0 !
]axT“(Z’x)_Ra(o(x) o(x)z—r(X)-FZ)RalTa(Z’X)’ j_(l 0).

The transfer matrices generate a matrix kernel

1

sz(z,w)=/Ta(w;X)*Ra(0 0

-1 )
0 1)Ra To(z;x)dx

0
1 -
_ / (¢a,z(x)¢a,w(x) O,z (X) Pt (x)) dx
; ¢ot,z (x)ea,w (x) Goc,z (x)ea,w(x) '
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By the Cauchy—Schwarz inequality, the solution ¢, ; is subordinate if and only if

K,(E,E) = (O O).

1
m ——
1500 Tr K (E, E) 01

Scaling limits of K are related to the normal limits of m-function: by [24, The-
orem 1.8],

1 00
limma(E +i€) = oo A ek, & ) EE) (0 1)

Using (2.17) to restate in terms of mq, we conclude as follows.
Lemma 2.9. Assume Hypothesis 1.2. For any E € R,

lifn mo(E +ie) = —cota < ¢y g is subordinate.
&l0

We also denote
N() :={E € R : no solution of fu — Fu = 0 is subordinate}.

Taking the union over « in Lemma 2.9 and taking negations, for every E for which
the normal limit exists, £ € N({) if and only if

limmo(E +ie) € Cy.

&0
Recall that we denote by uZ. the absolutely continuous part of the spectral meas-
ure u“.

Lemma 2.10. Assume Hypothesis 1.2. For arbitrary o € [0, ), N(£) is an essential
support for the absolutely continuous spectrum of H® in the sense that 1%, is mutually
absolutely continuous with y n)(E) dE. In particular,

Spec,.(H*) = N(€)"".
Proof. Recall from [19, Corollary 9.4] that an essential support for uJ. is the set

My :={E € R|0 <limsupImmy (A + ie) < oo}.
el0

Since my has a normal boundary value in C for Lebesgue-a.e. E (see e.g., [6],
Theorem 3.27, Corollary 3.29]), the set

{E €R | liinma(E +ie) e Cy}
&0
is also an essential support for the a.c. spectrum. This set is independent of « by (2.17).

By the observation proceeding the lemma, the set N () is another essential support
for the a.c. spectrum of H?. ]
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Proof of Theorem 1.3. Since the spectral type of the a.c. part is independent of «
(Lemma 2.10), it suffices to prove the claim for o« = 0. Assuming this value, we
drop symbol o from subsequent notation.

Due to preservation of the Wronskian, we have ||$a,E )|l ||§a,E(x)|| > 1; thus,

(=12 =< 1o 12200 100 B [F 2y 1> 1 2.27)
Then, one has
905 IZ2 0011 _ qu?a,Eniz«O,,H)) _ el a0
100V o orsny ™ Nl @ (=12
3 C<fo’“ IT(E:2lPdx)

where in the last step, we used ||$aE(x)|| < |IT(E, x)||. If the solution 6, £ is sub-
ordinate, taking the limit / — oo shows

1
1
lim —/ IT(E; x)||?dx = oo.
I—>o0 [
0

In other words, for the set X, defined by (1.2), we conclude X,. C N(¥).
Therefore, to complete the proof, it is enough to show that

I
1
liminf—/ IT(E;x)|?dx < oo, for pg.-ae. E.
I—>oc0 [
0

To that end, let us fix y > 1 and introduce the measure

. min{u, %)
P o2VIE|

Since dp is equivalent to ., in order to prove that 3, is an essential support for (i,
it is enough to show

I
1
/ (lilm inf 7 / IT(E:; x)||2dx) dp(E) < oo. (2.28)
R * 0
To that end, we will prove the following auxiliary inequalities: there exists Y > 0 such
that for all x € (2, 00),

[l ee@2dr | [ 08 (1)1
/ oVIE] du’(E) <, / oVIE]
R R

dp?(E) <Y, (2.29)
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x+1) 1]y 2 x+1 401\ 12
1 |9E (D)|7d1 S0 (O)Pde | &
/f lezﬁm du’(E) < 7, /f lezf\E\ duz(E) < Y. (2.30)
R R

We will prove the first parts of (2.29), (2.30), the second parts can be proved analog-
ously. Since supp j1° is bounded from below, for some A < min supp u°,
[P (), o lpE (x0)|?
R e
R R

du’(E).

Then, using spectral representation of Green’s function [19, Lemma 9.6] and the last
part of Theorem 2.2, we obtain

|pE (x)|? |pE (x)|?
g () = € | S0
R R

=G(A;x,x) < CG™(\(0o,7) — Asx,x) <a(l—e B*h, (231
(2.3)

dp’(E)

where A (o, 7) is as in (2.3), G and G'™® denote respectively the Green’s functions for

HPO and the free Dirichlet Laplacian on R, i.e., for 0 = v = 0, and the constants

a, B depend only on A, g, 7. Integrating (2.31) yields the first inequality in (2.29).
Next, we switch to the first inequality in (2.30). By Lemma 2.7,

t+1/2
B2 < C(B) / 65 () Pdy.
t—1/2

with C(E) = O(e?'El), E — co. Then, one has

/ S 90 2 FE5)3 \ee )Pt
R

e 4w (E) < [C(E) E A (E) <,
R

where in the last step we used (2.31). Next, (2.29) and (2.30) together yield a constant
C > 0 such that for all x € (2, 00),

x+1

/ / IT(E;1)|?dt dp(E) < C. (2.32)

R x—1

Splitting the interval (0, /) into disjoint intervals of length 2, averaging over /, and
applying Fatou’s lemma gives

l
1
/ 1ilminf7 / |T(E:;t)||>dt dp(E) < C
—00
R 0

which implies (2.28). [ ]
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Proof of Theorem 1.4. Using estimate (2.32) together with
ITCE: 2, )| < ITE:)ITE )|

and the Cauchy—Schwarz inequality in L2(R, dp) gives

x+1y+1
sup / / / IT(E;t,s)|?dt ds dp(E) < oo,
x,y€(2,00)
R x—1y-1

which implies by Fatou’s lemma that for p-a.e. E,
xj+1y;+1
lim inf / / IT(E;t,s)|?dt ds < oo.
j—oo
x;j—1ly;—1
By Lemma 2.7, for any E there exists C > 0 such that
x;j+1 y;+1
et [ [ irE ) Pdy < I TE P
xj—1 y;—1
xj+1 y;+1
sc [ [ irEraa,
x;j—1 y;—1

so for p-a.e. E,
liminf||T(E; x;, y;)| < oo. ]
J—>0o0

Theorem 1.4 will be our principal tool for showing the absence of absolutely con-
tinuous spectrum for a class of slowly decaying potentials, see Theorem 1.12 (b).

2.5. Carmona formula and pure a.c. spectrum on intervals

In this section, we discuss a Carmona-type, cf. [7], approximation result for the spec-
tral measure of H“ and use it to derive a criterion for pure a.c. spectrum on an interval.
This is our main tool for showing purely absolutely continuous spectrum for a class
of slowly decaying potentials, see Theorem 1.12 (a).

Theorem 2.11. Assume Hypothesis 1.2. For any o € [0, 1), the measures
1

dp®(E) = dE
g 7 Gar (02 + 91 (0)2)

x>0, (2.33)
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converge vaguely to the spectral measure u* of H* as x — o< in the sense that

xli)n;o/h(E) dp’(E) = /h(E) dp®(E), forall h € Co(R). (2.34)
R R

Proof. Recall R, from (2.16). For z € C4 and x > 0, let us define my 4 (z) € C via

|:mx,oz(z)

1

] ~ RaT(z;x)—lm. (2.35)

In other words, one has that my o(z) is the image of i under the Mdbius transform
M[RyT(z;x,0)"!]. By Proposition 2.6, i € C implies my 4(z) € D¥(z) C C4, and
thus the function z — my o(z) is Herglotz; moreover, since the disks D¢(z) shrink
to a single point, for every z € C4, one has my o(z) = mg(z) as x — oco. Our next
objective is to compute boundary value of Immy o (E + i€) as ¢ | 0. Put

P(z,x) := cos(a) (i6a,z (x) — 651 (x)) + sin(@) (i e,z (x) — g5 (x)),
O(z.x) = sin(e) (i6a,z (x) — 051 (x)) + cos(@)(—iga,z (x) + pLL (X)),
and rewrite (2.35) as
P(z,x) _ P(z,x)0(z,x)
0z.x) [0z

Note that both the denominator and the numerator are entire functions of z. Moreover,
we claim that |Q(z, x)|? does not vanish for all z € C4 U R and x > 0. Since m o €
C4 whenever z € C4, it suffices to check the claim for z € R. Suppose for some
x>0,

My (z2) =

0=10(z.x)* = |(—sin(@)0'] (x) + cos(a)p'L (x))
+ i(Sin(a)ga,z (x) — COS(O[)(]SO[,Z (x))|2

Since Pa.z, Oz, ¢£,”Z 90[[11 € R for z € R, |Q(z, x)|?> = 0 implies Re O(z, x) =
Im Q(z, x) = 0. Writing this in matrix form gives the system

[qs&{]z(x) Oa) (x)][ cos & } _ [0]
Gaz(x) Oy (x)]|—sina 0
which is a contradiction since the matrix is invertible. Thus, Q(z, x) # 0 for z € R
and my ¢ (z) has a continuous extension to R. To summarize,

. . Im[P(E,x)Q(E,x)]
lslﬁ,llmmx’“(E +i¢g) = 0(E.x)1 ,

(2.36)
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where

m[P(E, x)Q(E. x)] = cos® a($L s (1)0a, £ (x) — 0% (x)¢ba, £ (1))
+ sin? o (=, £ (V)0 | (¥) + BL T (¥)a, £ (1))
= (sin®(a) + cos?(@)W(Ou.E. pu.E) = 1, (2.37)

and

10(E. x)2 = (cos(@)pl!L (x) — sin(e)611] (x))*
COS(Ot)¢a 2(x) = sin(@) 0y, (x))*

e e - e
¢E(x)  Op(x) |[—sin(a) G (x)

It follows from (2.36), (2.37), and (2.38) that the measure corresponding to the Her-
glotz function my 4(z) is given by (2.33). Moreover, since my o(z) — mq(z) as

(2.38)

x — 00, by their Herglotz representations, the corresponding measures converge in
the sense as asserted. ]

Having established (2.34), the proof of Theorem 1.5 is identical to that of [42,
Theorem 3.7].

Proof of Theorem 1.5. Choose a sequence x;, — 0o such that

E>
lim /||T(E;xn)||pdE < 0.
n—oo

E;

Since det T(E;x) = 1 and |vy| = 1,
1T (E; xn)vell = IT7HE; x) |7 lve |l = 1T (E; xa) 117,

and thus for ¢ = p/2,

E,

E>
1
w f( )b <o [ B <o
Ey

|| T(E; xn)vaHz

1

Hence, by [42, Lemma 3.8], the weak limit du® of measures duy is purely abso-
lutely continuous on (E1, E5). [

In the study of decaying potentials, a variant of Carmona’s formula is useful.
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Theorem 2.12. Assume Assume Hypothesis 1.2 For any o € [0, 1), the measures

X(0,00) (E) \/E
7 (Ea,g (x)% + ¢1 % (x)?)

dvi(E) = x>0 (2.39)

converge vaguely on (0, 00) to u% as x — oo in the sense that

im / h(E)dv¥(E) = / h(E)du®(E), forallh € C.((0,00)).
0 0

Proof. We use the branch of /—z on C such that Re ./—z > 0, Im/—z < 0. With
this choice of branch, —/—z is a Herglotz function which continuously extends to
C 4 with values )((o,oo)(E)\/f on R. Forz € C4, x > 0, define my o(z) via

[ 7

) }:RaT(z;x)_l[ ]

Since —/—z is Herglotz, my 4 (z) € Dy 4(z) C C4 and is Herglotz as well. Moreover,
since D¢ (z) shrinks to a point as x — 00, My ¢(z) = me(z) as x — co. By argu-
ments analogous to the proof of Theorem 2.11, Imm 4(2) has a continuous extension
to (0, co) with

JVE
E¢a.p(x)2 + ¢L ()2

limImmy o (E +i¢) =
&0

It follows from above that the measure corresponding to my 4 (z) has the restriction
to (0, oo) given by (2.39), which concludes the proof. ]

2.6. Priifer variables

We now introduce Priifer variables associated with real eigensolutions of £ and relate
their growth to that of the transfer matrices. In the locally integrable setting, Priifer
variables are a well-established tool for spectral analysis for decaying potentials; we
will use them in the proof of Theorem 1.12.

For k > 0, consider the eigenvalue equation fu = k?u,u € . For a non-trivial
real-valued solution u, introduce 0: R — R, R: R — (0, 0co) via the relations

u(x) = R(x)sin((x)), ul(x) = kR(x) cos(8(x)). (2.40)

Since a composition of a Lipschitz function with an absolutely continuous function is
absolutely continuous, this can be done so that R, 8 € ACjo([0, 00)). The remaining
non-uniqueness in the choice of 8 is usually fixed by setting 8(0) € [0, 27).
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Proposition 2.13. Assume Hypothesis 1.2. For k > 0, in terms of Priifer variables,
the eigenfunction equation Lu = k*u is equivalent to the system

2
7 sin?(0) + o sin(20), (2.41)

9 =k— T

'C—Uz

(log R) = sin(20) — o cos(20). (2.42)

Moreover, for any o, B € (0, 00), 01,0, € [0, 27), there is a constant

C = C(a,ﬂ,@l,Gz) > 1
such that for all k € (J/«, \/E),
émaX(R(x, 01), R(x,0,)) < || T(k*;x)|| < C max(R(x, 01), R(x,0,)). (2.43)

Proof. First, we rewrite fu — k?u = 0 as

ul" -0 (r—0?) —k2][ult) ,._ d
u | |1 o u |© T dx’

Then, substituting (2.40) into the above equation, we obtain

kR’ cos(9) — RO'sin(9)] _ [—okRcos(8) + R(t — 0?) sin(d) — k* R sin(6)
[ R’sin(6) + RO’ cos(H) :| N |: kR cos(8) + oR sin(0) ]
(2.44)
To derive (2.41), we take the scalar product of both sides of (2.44) and (— sin(f),
k cos(6)); and to derive (2.42), we take the scalar product of sides of (2.44) and
(cos(), k sin(6)).
Let u;, up be solutions corresponding to the initial conditions 6(0) = 61,
0(0) = 6, respectively. Then,

U) = TR U0, U) = [u[l”(x) uE](x)]
, ’ M](X) Mz(x)

Using the representation (2.40), one obtains

Cymax(R(x, 01), R(x,05)) < ||[U(x)|| < Comax(R(x,0,), R(x,60)), x>0
(2.45)
for some constants Cy, C, > 0 depending only on «, 8. Finally, since T (k?; x) €
SL(2, R), there exists constants C3, C4 > 0 depending only on 61, 8, such that

CslUM)| = IT*’?:x)] < Call U@l x = 0. (2.46)

Combining (2.45), (2.46) yields (2.43). ]
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Proof of Theorem 1.10. Consider Priifer variables R(x, E) associated to the solution
¢o,E for E € (0,00). By (2.42), log R(x, E) converges uniformly as x — oo on every
compact interval [E1, E3] C (0, 00). Recall dv¥ (E) from Theorem 2.12, then for any
h € C.((0, 00)), by uniform convergence,

lim [h(E)dvg(E) = lim h(E)ﬁ[l]
X—>00 xX—>00 7T(E¢a,E(x)2 +¢a,E(x)2)
_ h(E)
) VEr(limeo R(x. E))?
Thus,
Yoo (EYdpe(E) = ——— X0 yp .

\/En(limx—wo R(x, E))Z

3. Distributional sparse potentials. Investigation of spectral types

In this section we prove Theorem 1.12.

3.1. Decomposition of sparse potentials

The first step in the proof of Theorem 1.12 is to reformulate it in terms of the Hryniv—
Mykytyuk decomposition in a way that is consistent with the sparse structure of
the potential. If we applied their decomposition directly to V', the dependence on
integers in [29] would complicate matters; instead, note that [29, Lemma 2.2] gives
a decomposition of W, € H~1(R) with supp W, C [-A, A] as W, = S), + T, with
S, € L2(R), T, € L'(R) supported in the same interval (the authors use A = 1 but
this is merely a matter of rescaling). Moreover, this decomposition is continuous in
H~'(R)-norm. Thus, we obtain

Wo=S8,+Ty, W=S8+T,
with

supp(Sy) U supp(S) U supp(7,) Usupp(T) C [-A,A], S'+ T #0,
S.Sp € L*(R), T, T, € L'(R), [Sn = Sllz2@) = 0. 1T = Ty = 0. 3.1

In addition, without loss of generality, we can assume that S # 0 and T 5 0: this is
because if one of S, T is identically equal to zero, we can pick arbitrary 7 € W11(R),
supp(h) C [-A,A], S +h #£0,T — I #£ 0. Notice that W,, = (S,, + h) + T, — I/,
W= +h+T-h.
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In summary, we will use the following setup throughout this section.

Hypothesis 3.1. Let {x,}5>, C Ry be a monotonically increasing sequence such
that x; > A and .
lim —"— = 0. (3.2)

=00 Xpy1
Let B > 1 be so that x,, > CB" for a fixed constant C > 0. Let T, S, Ty, Sy be as in (3.1)

and suppose, in addition, T # 0, S # 0. Furthermore, fix a sequence {d, },~, C R
with

lim d, = 0. (3.3)

n—>oo

Let sparse coefficients t, 0 be given by
[e.e]
7(x) = Y dpTu(x — Xp).
n=1

o(x) =Y dnSn(x — xp).

n=1

Fix arbitrary o € [0, ), and let H* be the corresponding Schridinger operator as
defined in Theorem 2.2.

The rest of this paper is dedicated to the proof of Theorem 1.12.

3.2. Auxiliary estimates for Priifer variables

We begin with a series of auxiliary results. The first one concerns estimates for Priifer
variables and their k-derivatives near x, for large n.

To streamline the exposition, in the remaining part of the paper, we will use C for
positive constants that vary from one inequality to the other but always remain n-inde-
pendent. Also, whenever an inequality involving n is mentioned without a specified
range of admissible values of n, it is assumed that the range is n > n¢ for some ny.

Lemma 3.2. Assume Hypothesis 3.1 and fix any compact interval [E1, E5] C (0, 00).
Then, there exists a constant C > 0 such that for all k € [/ E1, v/ E»2] and sufficiently
large n,

20
ﬁ(xn + A)) < Cxp, (3.41)
820 n
s G+ A)) <C min{x,%, 1+ Y dmx,%,}, (3.4i)
m=1
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and
[log R(xp + A)| < C Y dm, (3.4iii)
m=1
log R
9 Og (i + A)) <C Z X (3.4iv)

Proof. Proof of (3.41). Fix any compact interval [a,b] C R, f.g € L'([a, b]), and
suppose h € ACo([a, b]) satisfying 7' (x) = f(x) + g(x)h(x). Then, for any x €
[a. b,

b
b b
h(x)| < |h(a)|ela 18147 4 f | fleda 1819 qy = (1h(@)] + || f |11 fapp)e 81101,

(3.5)
Let h(x) := 57 (x) Differentiating (2.41) with respect to k, we have =f+gh
with
o2 — o2
flx,k):=1 + sin?(0), g(x,k) := o cos(20) — sin(26), (3.6)

which, for [a, b] := [x, — A, x, + A] and sufficiently large n, satisfy
IfC L @p) <28+ Cdn,  NgC 0 L1@p) < Cdan. 3.7
Our objective is to prove that there exists C > 0 such that for sufficiently large #,
|h(xn + y)| = Cxn, y €[-A, AL (3.8)
Note that #'(x) = 1 for x € (x,—1 + A, x, — A); thus,
|h(xn — A)| < |h(xn—1 + D) + X — Xp—1 — 2A. (3.9
Then, using (3.5) with f, g asin (3.6), [a,b] =[x, — A, x, + ¥], and employing (3.7),
|h(xn + )| < (1h(xn — A)| + 2A + Cdyy)eCn

< (|h(xp—1+ D) + xp — Xp—1 + Cdn)eCdn~ (3.10)
(3.9)

for sufficiently large n. Since § > 1, d, — 0, and x, — o0, there exists n; € N such
that foralln > nq,

,B_leCd" < —1 + 'B_l

and (1+C—d”)e0dn§1+(l_ﬁ_l). 3.11)

Xn 2
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For such n1, let D > 2 be such that
|h(xn,—1 + A)| < Dxpy—1.
We claim that for all n > nq,
|h(xn + )| < Dxn, y €[-A, Al (3.12)
Indeed, using (3.2) together with (3.10) and (3.11), forn > ny,y € [-A, A], we have

|h(xn + Y)| < (|h(xn—1 + A)l + (xn - xn—l) + Cdn)eCdn
< ((D = Dxp_1 + xn + Cdy)e®
Ccd
< xn((D -+ 1+ —”)eCd"
Xn
1-p71
2

fxn(D_(D_z) )fDxn,
which yields (3.41).

Proof of (3.4i1). Let w := g_h = gi—g and differentiate (2.42) twice with respect
to k, then

w _ F(x) + G(x)w(x), (3.13)
ox
where
F(x) := Fi(x) + F2(x)h(x) + F3(x)[h(x)]?
and
Fi(x)i=—2-" ;302 sin®(6(x)),

F(x):=2- T;—fz sin(20(x)),

‘l,'—()'2

F3(x):=-2- cos(26(x)) — 20 sin(26(x))

T—o0? |
G(x):=— A sin(26(x)) + o cos(20(x)).

Note that for [a, b] := [x, — A, x, + A] and sufficiently large n,
IFllz1@p < Cdnxy. 1GlL1@p) < Cdn. (3.14)

where we used (3.12) in the first inequality. Then, using (3.5) with [a, b] = [x, — A,
xn+ ¥, f=F,g =G, wxy,—A) = w(xy,—1 + A), and (3.14),

lw(xn + ¥)| < (wa—1 + A)| + Cdpx2)eC. (3.15)
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Since B > 1 and d, — 0, for any C > 0, there is large enough 7, such that for all

n = nj,
1 —1 1— -1
B2eCn < i, CdyeCin < =5 (3.16)
2 2
For such n,, let D > 2 be such that
w1+ A)| < Dx7, ;.
We claim that for all n > n,,
lw(x, + y)| < Dx2, ye[-A, Al (3.17)

Proceed with induction in n: suppose (3.17) holds for n — 1; then, employing (3.15),
forall y € [-A, A],

[w(xn + ¥)| < ((WEn—1 + A)| + Cdypx2)eC

< (Dx2_, 4 Cdpx2)eC < x2(DB™2 + Cdy)eCr
~1 -1
< x,% (D + 5
(3.16) 2

+ l_f_l) §x§<5+(1—5)1_2ﬂ_1) < Dx2.

(3.18)

To complete the proof of (3.4i1), integrate (3.13) over [x, — A, x, + A] and use (3.17);
then,

lw(xn + A) —w(xy — A)| < Cdnx,%, n=nj.

Hence,

W + A)| < [wny—1 + D)+ D [wltm + A) = w(xm — A)]

m=ny
n n
< Dxﬁz_1 +C dexi < C(l + Z dmxrzn).
m=ny m=1

Combining this with (3.18) concludes the proof for (3.4ii).
Proof of (3.4iii) and (3.4iv). Note that

R(xp—1 + A) = R(xp — A)

S alg)gcR = 0 on [x,—1 + A, x, — A]. Integrating (2.42) over [x, — A, x, + A] and

noting that d, — 0,

[log R(x, + A) —log R(x, — A)| < Cd,,
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which implies (3.4iii). To prove (3.4iv), differentiate (2.42) with respect to k to get

d dlog R T—02 7 — g2
ok 2k Sm@O+—p

a0 a0
cos(29)8—k +o sin(29)a—k;
then, integrate both sides over [x, — A, x, + A] while noting (3.8) and d,, — O,

0 0
ﬁlog R(x, + A) — % log R(x, — A)| < Cdyxy.

The latter, in turn, yields (3.4iv). [

Remark 3.3. Lemma 3.2 and its proof are similar to [37, Propositions 5.1 and 5.2],
where the case of S, =0and T, = T € L*°(R) was considered. We extend that proof
to the case S, # 0, and T, € L'(R) by using (3.5), which is an L! version of the key
inequality [37, eq. (5.7)], and verifying new inequalities (3.7) and (3.14).

To streamline the exposition, we introduce the following notation:

dnT(y) —dgS*(y)

% . on(y) == dnS(y). (3.19)

qn(y, k) ==

Note that, due to (3.1), for a fixed interval [, 8] C (0, 00), we have

A
[ kol #1000y = 0. (3.20)
-A
uniformly for k € [e, B].
In the following lemma, we provide the second order expansion of variable 6 with
respect to d, as n — oo. This result will be used in Lemma 3.10 and the proof of
Theorem 1.12 (a).

Lemma 3.4. Assume Hypothesis 3.1 and fix any compact interval [E1, E5] C (0, c0).
Then, the asymptotic expansion

00 +7) = 670 + a8V () + 0(d7) (3.21)

—>00

holds uniformly for y € [—A, A, k € [V E1, ~/ E2], where, recalling (3.19),

0O (y) i= 0(xp_1 + A) + k(xy + y — Xp1 — A), (3.22)

y
9,&1)(y) = di / 0, (8) sin(29,§0) () — 2¢x(s) sinz(e,go) (s)) ds. (3.23)

n
—-A
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Proof. By (2.41),

10Cxn + ) — 60 ()]
Xn+y

< / 16/ (s) — k| ds
Xn—A

—>00

y
= / |0 () sin(26, (x, + 5)) — 2¢,(5) sin2(9(xn + 5))|ds = O(d,),
“A

(3.24)

where in the last step we used (3.20). The argument for the second-order asymptotic
formula is similar. Note that

10 + ) — 02 (y) — duV ()

Xn+y

- "/‘(9%5)—-k>ds-—az9£“<yﬂ
Xn—A
y

= | [ ou(o)sin@8® ) - sin(26 (5, + )
—A
— 24 (5)[sin%(89 (5)) — sin?(A (xp, + 5))]ds|,

1 500 )

where we used (3.20) and (3.24) in the last step. ]

Remark 3.5. A version of Lemma 3.4 with S, =0and 7,, =T € L®(—A,A) is
discussed in [37, Sections 5,6]. In our case, notice that when S,, # 0, the integral on
the right-hand side of (3.23) contains an additional term o, (s) sin(29,§0) (s)). This will
become relevant in the proof of Theorem 1.12 (b).

Corollary 3.6. Assume the setting of Lemma 3.4. Then,

(0)
") _ Xn

) 3.25
ok 2 (323)

holds for sufficiently large n and all k € [ E1, vV E2], y € [-A, Al
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Proof. Differentiating (3.22) with respect to k and using (3.41) and (3.4ii), we get

96, (y) _ 90(xa_1 + A)
ok T ok

X
an+y_(c+1)xn—l+y>?n7

+ X+ Yy —Xp—1—A

where we used (3.2) in the last step. ]
To conclude this section, we show that (3.3) rules out point spectrum for H¢.

Proposition 3.7. Assume Hypothesis 3.1. Then, Specpp(H “) N (0,00) = 0 for all
a €0, 7).

Proof. Consider the Priifer variables corresponding to a non-trivial real eigensolution
u at E > 0, normalized so that R(0) = 1. By (3.4iii),

R(x, + A)? > exp(—ZC 2”: dm>.

m=1
This means at most exponential decay of the sequence R(x, + A)?2, since the sequence
dy, is bounded. Due to the superexponential growth (3.2), this implies

(Xng1 — Xn —2A)R(xp + A)? — 00, n — 00.

Since R(x) is constant on [x, + A, X541 — A], this implies

o0

/R(x)zdx = 00

0

and, by Theorem 1.6, this implies u ¢ L*(R). ]

3.3. Purely absolutely continuous spectrum
In this section, we provide the proof of Theorem 1.12 (a).

Proof of Theorem 1.12 (a). By Lemma 1.7, one has that Spec.,(H*) = [0, 00). Then,
by Theorem 2.11, it suffices to show that for every finite interval [E1, E>] C (0, 00),

E,
liminf/ IT(E; xn + A)||*dE < o0. (3.26)
n—>o0

E;
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In fact, we will show that for any 6 € [0, 27) and any non-negative g € C5°(0, 00)
(after possibly passing to a subsequence),
00

sup B, < oo, B, := /g(k)|R(x,, + A, 0)*dk < oco. (3.27)

! 0
The latter together with Proposition 2.13 yields (3.26). Explicitly, we will derive a
recursive inequality

By = (14 pn)Bn—1, (3.28)

for a sequence {p,} € £!(N), p, > 0, which is sufficient for (3.27). To that end,
we integrate (2.42) over the interval [x, — A, x, + A] and use R(k; x, — A) =
R(k; xp—1 + A) to obtain

R(k;xn + A)* = R(k; xp—1 — A)* exp(Qh). (3.29)
where
5 A
0n =7 [ (Tl = 552 sn @00 + ) dy
—A
A
—4 / dnSn(y) cos(20(x, + y)) dy.
—A
Then,
10 — On| < Cd? (3.30)
where

A
Oni= ¢ [ @Ta03) - 428200 sinQ0 0 dy
“A

A

—4 [ dS,0) cos28P ) . (3:31)
“A

and Q,EO) is as in (3.22). Indeed, (3.30) follows readily from
|5in(26, () = sin67 ()] = Cl6a(y) = 6.7 (0)] < Cdyy. y € [-A, Al
Returning back to (3.29), notice that (3.30) together with |Q,| < Cd, yields

R(k:xn + A)* < R(k: xy—1 — A)*(1 + 04| + CO2)
< R(k:xp_1 — A)*(1 + | 0n| + Cd2).
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To obtain (3.28), multiply the above inequalities by g (k) and integrate over (0, 00);
then,

By < By_i(1+Cd}) + E,, E,:= /g(k)R(k;xn_l + A0, dk. (3.32)

Recalling (3.31) and exchanging the order of integration, we obtain

A
En= [ 201,00 [ EE R w0 + 21 sinEO )k dy
A
; k
— [ 2425300 [ B8 Rk + ) sinoP 00k dy
“A
A
— [ 45,00 [ g0R® 51+ ) cos20® 0 dkdy, (33
A

where note that all terms above are of the form
A
6= [ mun() [(WOR® v + D uQED G dkedy. (334
—A
with

VYn € {dn.d2}, W € C°(Ry), u € {sin(x), cos(x)},
Wn € {Tn. Su, Sg} CL'R),  sup |lwall1g) < oo (3.35)

n>1

Claim. For B, and &,, defined in (3.27) and (3.34) respectively, and > 1 as in
Hypothesis 3.1, there is a sequence {sy }n>1 € L' (N) such that

&n < C(B™? + Bu_15n). (3.36)

Proof of the claim. Let v be either sin or cos so that one has ¥ = v’, and rewrite &,
as

A

&, = / Yt () / WO R Xpy + AP

v
o5 20 ) dk dy.
255 ()

—-A

Next, we integrate by parts with respect to k to obtain three integrals, each corres-
ponding to applying d; to one of the three functions in

W(k) - R(k;xp—1 + A)* - (3.37)




M. Luki¢, S. Sukhtaiev, and X. Wang 102

Case 1. 0y lands on the first term in (3.37). Then,

(0)
‘ / Yt () / W) s xpy + )20 dkdy'

90

25F »

) _ nlogp _
m — n - A — 2’
( E dmBigr) < CB™d exp( 2g )<C,B n/
m=1

_xn

where 8 > 1 is such that x, > CB" (Hypothesis 3.1) and in the first inequality, we
used

n—1
log(R(k: Xp—1 4+ A) < C Y dp (by (3.4iii)),
m=1
1 c
o Sy, VG

()
w26 (y)| < L.

and

A
/ / wn(VW(k)dy dk < C (by (3.35); (3.38)

in the second inequality, we used d, = o(1).

Case 2. 0y lands on the middle term in (3.37). We employ d; R* = R*d; log R*
and (3.41v) to estimate the R-term, and (3.25) to estimate the 9(0)-term as

(0)
‘ / pon() [ IR 301+ 800 0g(R (ks -1 + ) )dedy

2% (»)

=< Cdn(z dmxm)xiBn—l =< Cnan—l’
m=1 n

where in the first inequality, we used (3.38) and

n—1
R(k;Xpo1 + A)* < C Y dpxm.  (by BAV)); (3.39)

m=1

in the second inequality, we used d,,, = o(1), (3.2), and

= ; Z dmXm, Wwith Z Ny < 00, (3.40)

m=1

with (3.40) proved in Remark 3.8.
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Case 3. 0y, lands on the last term in (3.37). In this case, we have

a (0)
4 1 82 ) (0)
Yawn(y) [ WK)R(Kk; xp—1 + A)" —; v(26,(y))dk dy
0, 2 0%k
—A ( 9k (y))
n—1
1
< Cd,l(1 dmx B, 1 <Ck,B,_1,
( +m2:1 )xn 1 1

where in the first inequality, we used (3.4ii) and (3.38); in the second inequality, we
set

dy e
n 1= xz(l + Z dp3,), with 3 Ky < 00, (3.41)
m=1 n=1
with (3.41) proved in Remark 3.8.
Combining Cases 1-3, we obtain (3.36). ]

Since all three terms on the right-hand side of (3.33) are of the type &,
En < C(B™? 4 Buisn),  with {sy = 1ln + Kn}nen € '(N)
Combining this with (3.32), for sufficiently large n,
B, < By,_1(1+ Cd? + Cs,) + CB/2.

Therefore, max(1, By) < (1 + Cd2 + s, + B7/?)) max(1, B,—;) and thus (3.27)
holds. [

Remark 3.8. In the setting of Theorem 1.12 (a), the numerical series introduced in
(3.40) and (3.41) are convergent due to [37, Lemma 5.3]; we expand the concise proof
provided therein. For a numerical sequence d = {d, },eN, consider the convolution
operator
o0
(Tyd)n := Z y g, fory > 1.

m=1

By Young’s inequality, 7}, is a bounded linear operator on ¢?(N). Let y > 1 be such
that fc—”;‘ < C)/_'m_”|, m < n. Then, (3.40) follows from

> dy Z yml = (d Ty d) e
=1 m—i

=1 =

<7y, ||£(€2(N))||d||@2(N) < 00, (3.42)

n—1

> dy d,,,x—

n=1

IA

3
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and (3.41) follows from

00 n—1 2 o0 n—1
Yoda(1+ 2 dn(2)) = Do(CB7" +dn Y duy )
n=1 m=1 n

n=1 m=1

= C+IT2llgemyldllem) < oo,

where f is as in Hypothesis 3.1 in the second inequality.

3.4. Purely singular continuous spectrum

In this section, we provide the proof of Theorem 1.12 (b). Since Proposition 3.7 rules
out the presence of positive eigenvalues, to demonstrate the absence of absolutely
continuous spectrum, the strategy is to verify the conditions of Theorem 1.4 via (2.43)
and

lim R(xp; + A, k) = oo.

J—>00

We begin with a set of auxiliary results concerning the Fourier transform of the
potential. We will use the notation
(o)
= [ sy, Ax(fe) = {

—00

arg(f(2)), f(z) #0,

A 3.43
0, f(z) =0, G4

Lemma 3.9. Assume Hypothesis 3.1.
(i) Forj =0,1,2one has
d’ ~ d’ ~
EAr(Tn(z)) — T Ar(T (z)), n — oo,

uniformly for z in compact intervals I C (0, 00) that contain no roots of T .
In particular, for such I one has

d’ N
lim sup sup WAr(Tn(Z)) <oo, j=0,12.

n—oo ZGI h
Identical assertions hold with T replaced by S.

(i) Let®(z):= (2z)7! f(z) — i§(z) and suppose that a compact interval J C
(0, 00) contains no roots of ®. Then one has
T .2
fiminf inf| 23 8. > o. (3.44)
n—>oo zeJl 2z

Proof. (i) Denote for simplicity f,(z) := T, (2), f(z2) = f(z). Clearly, f is entire
function which is not identically zero and f,, converges to f uniformly on compacts.
We claim that there exists ng € N such that
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(1) foralln > ngandz € I, f,(z) #0;
(2) for j =0,1,2, arg fn(j ) arg f) uniformly on I and, in particular,

sup sup|arg fn(j)(z)l < 00.

nzngzeJ
To prove these two basics facts from complex analysis, first, recall that if f, — f
uniformly on some compact K, then for any compact K’ C int K, f,, — f” uniformly
on K'; this holds by Cauchy’s differentiation formula

/ _ 1 Sn(w)
fn(Z) - % ¢ mdw

lw—z|=¢

applied with ¢ = dist(K’, C \ K). Next, denote D = {z € C | f(z) =0}, d =
dist(D,I) > 0,and I, :={z € C | dist(z, I) < ¢&}.

On the set I/, f» converge uniformly to f, so there exists n¢ such that for all
n>ngandz € Ig/5, fn(z) # 0. By the above argument, f, — f’ uniformly on I4/3.
Thus, (log f») = f,/fn — f'/f = (log f)" uniformly on I;/3. Thus, (log f,)" —
(log /)" uniformly on I /4. Taking imaginary parts, we conclude arg f, — arg f’
and arg f,” — arg f” uniformly on I. Choosing branches so that log f,(min I) —
log f(min I) and taking limits of

r fa )
Jn(¥)

log fu(x) = log fy(min I) + dy
min I
and taking imaginary parts shows uniform convergence of arg f, to arg f on 1.
(i) The proof follows directly from complex analytic facts (1), (2) stated above

with f(2) := T(2) = 2zi8(2), fu(z) := Tp(z) — 2ziS,(2). .

Assuming Hypothesis 3.1, we say that a compact interval J C R4 := (0, 00) is
(S, T)-admissible if J avoids zeros of S(z), T(z), and (2z) "' T (z) — iS(z), that is,

JN{ze(0,00):T(z)=00rS(z) =00r (2z)"'T(z) —iS(z) =0} = .

In the following lemma, we derive a third order expansion for the increment of
log R(x, + A, k) with respect to d,,. For {z,}»>0 C C we denote 8z, := z, — z,—1.

Lemma 3.10. Assume Hypothesis 3.1, fix a finite interval [Eq, E>] C (0, 00) such
that [ E1, v E3] is (S, T)-admissible, and define Y, (k) := log R(x, + A, k). Then
the following asymptotic expansion holds uniformly for k € [/ E1, / E3]

§Ya(k) = Xa(k) + Xn () + Xa (k) + O(@)),
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where the oscillatory terms X, X, and are given by

y
X, (k) := d, / [ Tnly )]sm(20(0)( ) — [d”jgiy ) Tn(s)ds] c0s(209(y)) dy
—A —A

(3.45)

A
— d, / [d b / T (s) dS} sin(260,” () + Sn(y) cos 20,7 () dy
—A
(3.46)

A
—d,%/[ (y)]sm(ZQ(O)(y))dy (3.47)

—A
and

24y 2
% 0s (46(9(0) + 46, (k))

_dIS0P
2

2
SIS O] Sn(600) + 20alk) + 260K, (348)

X, (k) :=

0s (469 (0) + 4y, (k))

where

Ar(T, (k)
—
Ar(Sy, (k))
—

$nlk) =

Y (k) =

of (3.43), and the non-oscillatory term X, is given by
X, (k) := dn) Ta (k)

21 2k
Proof. Integrating both sides of (2.42) over the interval [x, — A, x, + A], we get

~ 2
—iS,()| , n>1. (3.49)

A
8Y, (k) = / gn(s)sin(26(x, + 5)) — 0n(s) cos(260(x, + s)) ds. (3.50)
A

Combining (3.21) and Taylor expansions for sin, cos near 2950) (s),
sin(20(xs +5)) = sin(26(9 (5)) 4 2d, 0V (s) cos(20? (y)) + O(d?), (3.51a)
cos(20(xy +5)) = c0s(20%9(s)) — 2d, 0V (s) sin(26? (5)) + O(d?), (3.51b)
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uniformly for s € [-A, A]. Replacing the trigonometric terms in (3.50) by their
second-order approximations (3.51), one infers

A
8Yu(k) = / 4n () sin(26,% () — 0n(y) cos(26,” (v)) dy

—>00

“A
A
+2 / 6D (7)gn () c0s 269 (7))
“A

+ du0V (7)o (») sin209 (y))dy + 0@}),  (3.52)

where the last cubic term was obtained by combining the linear (3.20) and the quad-
ratic (3.51) asymptotic formulas. In order to facilitate integration by parts in the
subsequent argument, let us rewrite the terms in (3.52) containing 9,51). First, use
the double angle formula to replace sin? term in (3.23),

y
o0) = o / [0 (5) $in260;2(5)) + g (5) c0sO,” ()] = gn(s)ds. (3.53)
-A

Then, substitute this identity into the first term under the integral in (3.52) to get

A
/ dn0 () () 03260 (7)) dy
“A
A y
- [ / %(s)ds}qn(y)cos<29,$°><y>>dy
A=A

A y
+ / [ [ 0u(5) sin(26,”(5)) + gu (5) cos(26, (s)) ds}qn () cos 26,7 (y))dy
-A —A
(3.54)
and similarly, substitute (3.53) into the second term under the same integral to get
A
[ 4600 sine0 0oy

—A
y

A
- [ [ ds}anw) sin(26 (y))dy

A y
+ / [ / 0 (5) sin(26L9 (5)) + gn(s) cos(29,£°)(s))ds:|an(y) sin(260( (y))dy.
—-A —A

(3.55)
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Returning to §Y;, (k), we plug (3.54), (3.55) in (3.52), use (3.57) with

f = 0u(y)sin(267(y))
and

g = qn(s) cos(2607 (s));

then, we obtain

A y
51,0, = [ (a1~ [ ant6) s, ) sin28@ oy

A y
-/ ( [ anras qn<y>+on(y>) c0s209) (7)) dy
—A —A
A A 2
‘ ( [ ansine@ oy + [ 409 cos(ze,ﬁ")(y))dy)
—A —-A
Lo, (3.56)

Next, denote the quadratic term above by L and note that 9,50) (y)= 0,50) 0) + ky;
then,

L

. ~ d . ~ 2
(daIme? 57 ©8, () + T2 Re 27O, (k)

. . ~ d, . . ~ 2
<dn1m6219;(10)(0)+21wn (k) 1S, (k)| + " Re 2t 057 (0)+2i ¢ (k) | T, (k)|)

. a d ~ 2
= (dn sin @6(0) + 29 (£) 1S4 (k))* + (5 05O 0+ 26 (k)| T (K) )

+ d{ |8 (k) T (k) sin (265 (0) + 26 (k) cos(26,7(0) + 2¢, (k)

A28 (k)2 d2|S, (k)[? cos (4950)(0) + 4Yn (k))
- 2 B 2
2\ Tu(k)? d2|Ta(k)|? cos (4950)(0) + 4 (k))
8k2 8k2

+ %2 |Sn (k) T (k) sin (20, (0) + 29 (k) cos (20, (0) + 2 (k).

To conclude the derivation, we plug the above expression for L in (3.56), expand
qn,0yn in terms of dy,, Sy, T,, and combine the third order terms (with respect to d,, as
n — oo) with O(d?). n
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Remark 3.11. Suppose that f, g € L1(—A, A), then

! A A 5
5(/ f(y)dy+/g(y)dy)
—A

A y A y
- / £) [ g(s)dsdy + f ¢(») f F(s)ds dy
“A A “A “A
A y A y
T / £0) / F(s)ds dy + [ () [ g@)dsdy.  (357)
A “A “A “A
This identity follows from
A A A y A y
/ F(5)ds / ¢()dy = / £0) f g(s)dsdy + f ¢(») f F(s)dsdy. (3.58)
—A —A —A —A —A —A

which is derived by changing the order of integration in the first integral on the right-
hand side of (3.58).

Lemma 3.12. Recall Yy, X n from Lemma 3.10 and define
n o
Ou(k) := Yy (k) = Y X (k). (3.59)
m=1

Then for arbitrary non-negative g € C5°(0,00) with supp(g) C J fora (S, T)-admiss-
ible interval J we have

 fo g0 Qn(k)ldk
Jm SN e =

m=1%"m

0.

Proof. Setting Qg = Xo = )?0 = )?0 = 0, we note that

n

0n(k) = 3 804(K) = 3 (Xn(k) + Tnlk) + O).  (3.60)

m=1 m=1

Define

o0

n 2 - T noo_ 2
B, .:/g(k)‘mX::le(k)‘ dk, B, := Ofg(k))mXZ:IXm(k)) dk;

0
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then, by Cauchy—Schwarz inequality in L2(R, dk),

[ ewlouwiak < I1Velie VB + B+ 0@, oD
0

Following the proof of [37, Theorem 1.6], we notice that by Stolz lemma (the discrete
version of L'Hospital’s rule), Y ., d>/ > " _, d2 — 0asn — oo; hence, in order
to show (3.60), it suffices to prove

\/B_,,/and,ieo, \/BT,,/Xn:d,ieo, n = oo, (3.62)
m=1 m=1

To derive the first limit, recall X}, from Lemma 3.10 and denote the integral terms
in (3.45), (3.46), (3.47) by Uy, Vy,, Z,, respectively; thus, X, =d,U, —d,V,, — d,%Zn.
Put M, (k) := fn_=11 X, (k); then,

By < Bui + f ()| X (k) Pdk (3.63)
+ 2‘/g(k)Mn_1(k)dnUn(k) dk‘—l—Z‘/g(k)Mn_l(k)ngn(k) dk| (3.64)

+ 2‘/g(k)Mn_1(k)d,%Zn(k)dk’ (3.65)

Note that U,, V,, Z, contain sin(29,$0) ), cos(20,§0) (y)) terms which we split in
(3.64), (3.65) using the triangle inequality. The resulting terms are of the form

A
/ / Yt ()W (k) M1 () (269 (1))dy dk,
“A

with y,, wy,, W, u as in (3.35). As in the proof of Theorem 1.12 (a), rewrite this quantity

as
A

1 v
[ ron) [ WM st T 8P ) ke dy
255 )
—A ok

where v is either sin or cos so that u = v’. Next, integrate by parts with respect to
k and obtain three integrals, each corresponding to applying d; to one of the three
functions in

W(k) - My (k) - (3.66)
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Case 1. 0y lands on the first term in (3.66). In this case,

oV (k Cd,(n—1
‘ / pmn() [ S 1(k>(0—,v(29,§°>(y))dk dy‘ < S 2]
T()’) "
(3.67)
where we used (3.38) and M,,_;(k) < C(n —1).
Case 2. 0y, lands on the second term in (3.66). Then,
¢ oM, (k) 1
[ moatn [0 PO 260 diay | <
- 25 W)
(3.68)

where and we used (3.38) and

M1 (k) _ o
ok = mg:lxmdm

Case 3. 0y lands on the third term in (3.66). We first replace ¥ by % g and then
estimate

A
W(k 1 026
‘ f Ynwn(y) / g (k) My—1 (k) g((k)) A k(y ) v(209 (y)dk dy
_ ok

n—1
C;Cd (1 + Z dmx )
Cd, = 12
= (1 + dex )(/g(k)|M,,_1(k)|2dk) — ap/Boo1,  (3.69)

g(k)Mn_l(k)dk‘

where in the second to last inequality, we used (3.38) and

829(0) (y)

< (1+mewm) (by (3.41) and (3.4i);

in the last inequality, we used the Cauchy—Schwarz inequality in L?(R4, dk) and

denoted .
Ccd —
an = =5t (14 ) dnxy,). (3.70)
n m=1
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We are now ready to derive the first limit in (3.62): combine (3.64), (3.65), (3.67),
(3.68), (3.69), and estimate the last term in (3.63) from above by Cdnz, we have

B, < By_1 + 205y Bp—1 + Bn, (3.71)

where o, is as in (3.70) and

ﬂn.—C(d nn med +d?).

Then, (3.71) together with [37, Lemma 6.2] yields
n n 1/2
VBi < VBo+ Y am + ( > ﬁm) . (3.72)
m=1 m=1

Consequently, the first limit in (3.62) holds as asserted due to

Z:lam/;d,ieo, (;ﬂm)l/z/édieo, n—oo, (373

these two limits are discussed in Remark 3.13 below.
Let us now derive the second limit in (3.62). First, we write

X, =d?*U, +d*V, +d*Z,

where (7,,, 17,,, Z n denote k-dependent functions in (3.48). Then, denoting

n—1
M1 (k) := ) Xm(k),

m=1

we obtain

By = Bua + [ e0Xa (0P dk
+2' / g(k)M,,_1 (k)d?U, (k) dk‘+2‘ / g(k)M,,_y (k)d?V,, (k) dk| (3.74)
+ 2‘ / g(k)M,,_l(k)d,fz,,(k)dk‘. (3.75)
Note that all three terms in (3.74), (3.75) are of the form
/ Y Wk Myy—1 (k) (1 (1)) dke dy, (3.76)

with U € C$°(0, 00), y» := d? and
[in (k) € {405(0) + 29 (k) + 2 (k). 405(0) + 4y (k). 40L7(0) + 4 (k)}.
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Using (3.25), (3.4ii), and Lemma 3.9 (i), we get

dpen (k)
25> Ca, (3.77)
0% un (k) ~
‘ = C(l n mZ=1 dmxm). (3.78)

As in the first part of the proof, we proceed by rewriting (3.76) in the form
~ 1 dv
Yn W (k) My (k)m@(,un (k) dk,
ok

and integrating by parts with respect to k. This approach, as before, leads to three
integrals, each corresponding to applying % to one of the three functions in

W(k) - My_y(k) - T (3.79)

ok

Case 1. 0y lands on the first term of (3.79). In this case,
Cdy(n—1)

n

v (k
[ it O g (k)v(un(k))dk

where we used M,_1 (k) < C(n — 1) and

1

dun (k)
ok

< Q by (3.77), W e CP(0,00), [v(20P(y))| < 1. (3.80)

Case 2. 0y, lands on the second term of (3.79). In this case,

BMn_l(k) Cdn nl

(k) dk| <

Bg ey ¥ (Hn
ok

where we used (3.80) and

Case 3. 0y lands on the third term of (3.79). We first replace W by %g and then
estimate

W) 1 Puuk)
g(h) (D) 0k

Ccni,, (1 + :1231 d,,pc,i)

Vs / g () ¥y (k) 0 (i (k))dk dy‘

g(k)ﬂn—l(k)dk‘
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cd n-l 1/2
n iy ~
= (1+mX=:1dmx§,) (/ g(k)|M,,_1(k)|2dk) —a, B, ..

where in the second to last inequality, we used (3.78) and (3.80); in the last inequality,

we used the Cauchy—Schwarz inequality in L?(R 1, dk) and the notation (3.70).
Combining Cases 1-3, we get a version of (3.72) with B replaced by B. Asbefore,

using [37, Lemma 6.2] and Proposition 3.8, we infer the second limit in (3.62). [

Remark 3.13. Assuming the setting of Theorem 1.12 (b). To prove the first limit
in (3.73), recall y from Remark 3.8 and write

k n—1 X 2 k
dn Y dn(Z2) =€ Y da(
Y Y dn(2) <€ Y
n=2 m=1 n

=2

n—1
Xn—1)2 Xm \2
o) 2 (s
n m=1 n—1
k

2 e

€L (S0 X
X\ 12 o \1/2

(32 (5

where in the last inequality, we used boundedness of the convolution operator, as in
Remark 3.8. Note that

IA
S
)

Xn—1

— 0, n— o0;

k
Z dn2 — 00, k —o00; and
n=2 Xn

thus, first limit in (3.73) holds. To prove the second limit in (3.73), use (3.42) to get

k k
VBn = C 1+Zd,%,=o(2dnz), k — oo.
m=1 n=2

Lemma 3.14. Assume Hypothesis 3.1, fix a finite interval [E1, E;] C (0, 00) such that
[WEL, VE>) is (S, T)-admissible. Then there exists a subsequence {nj};>1 such that
for Lebesgue almost every k € [/ E1, / E2] one has

lim R(xp; + A, k) = oo. (3.81)
j—o0

Proof. Let g € C5°(0, 00) be a strictly positive function with

[VE1. VE2] C supp(g) C J,



Schrédinger operators with locally H ! potentials 115

for an (S, T')-admissible J, and fR+ g(k)dk = 1. Consider two sequences
§n = On (cf. (3.59)),
Cn

3 X, (cf. (3.49)),
m=1

of random variables in the probability space (2, P) := ((0, o), g(k)d k), and denote
ay =Y n_,d2. Lemma 3.12 and (3.44) yield

nli)n;oa,leén =0 and ¢, > Ca,.

Then, by [37, Lemma 6.1 (i), (ii’)], there exists a subsequence {r;};>1 such that for
almost every k € I,

lim (§,; (k) + &n; (k)) = o0;
j—o00
thatis, lim Yy, (k) = oo and therefore (3.81) holds as claimed. [
j—ooo

Proof of Theorem 1.12 (b). By Lemma 1.7, Spec,,(H*) = [0, c0). Moreover, by Pro-
position 3.7, H® has no positive eigenvalues.
For every (S, T')-admissible interval [/ E7, / E>], by Lemma 3.14 for some sub-

sequence {n;}32

lim R(xp; +A,k) =00, a.e. kel[VE, VE]
J—>00 X

we have

Next, by Theorem 1.4, Spec,.(H%) N [E;, E2] = @ and, since the union of all
(S, T)-admissible intervals gives Ry up ot a discrete set, we conclude that
Spec,.(H%) = @. Therefore, the spectrum of H? is purely singular continuous on
(0, 00). ]
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