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optimal results for almost periodicity for Potapov—de Branges
gauge, and Dirac operators.
© 2024 Elsevier Inc. All rights reserved.
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1. Introduction

For one-dimensional Schrédinger operators with spectrum E, and for other well-
studied classes of self-adjoint and unitary operators including Dirac, Jacobi, and CMV
operators, the reflectionless property is a certain pseudocontinuation relation between



R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636 3

two Weyl functions which encode the two half-line restrictions of the operator. This
was originally observed as a property of periodic operators and finite gap quasiperiodic
operators, and has since become ubiquitous in spectral theory; by Kotani theory [41],
the reflectionless property is a general feature of ergodic operators with zero Lyapunov
exponent on the spectrum. By Remling [61], it is a general property of right limits of
operators with absolutely continuous spectrum. Ergodic operators with zero Lyapunov
exponent on the spectrum have been widely studied, especially in the context of almost
periodic Schrodinger operators [24,10,38,47,9,67]. In the current paper we develop an
inverse theory of reflectionless systems with unbounded spectrum; we show that the nat-
ural general setting for this theory is given by canonical systems in a gauge described
below, and we show how that general theory specializes to special classes of operators.

The inverse spectral theory of reflectionless operators was originally considered for
finite gap spectra, in the algebraic language associated with compact Riemann surfaces
(double covers of C \ E) [27,6,34]. This theory was applied by finite gap approximation
to the periodic case [51,52,49,50] and some almost periodic cases [17,56,57,19,29,35,39,
44,46].

The finite gap construction was generalized by Sodin—Yuditskii [65] to the more gen-
eral setting of bounded Dirichlet-regular Widom sets E with the DCT property (DCT is
an abbreviation for “Direct Cauchy Theorem”; however, it is actually a property discov-
ered by Hayashi and Hasumi [37], which holds for some Widom sets and fails for others).
The definitions of these properties will be given below. The approach is based on using
intrinsic Fourier series representations of the character-automorphic Hardy spaces on the
domain C \ E. The corresponding basis is formed using the Complex Green function and
the reproducing kernels with respect to infinity, which is an internal point of the do-
main. The corresponding Fourier representations transform the multiplication operator
by independent variable into Jacobi matrices. The triumph of the theory is the almost
periodicity of coefficients of Jacobi matrices, which follows from continuity of explicit
representations involving trace formulas and a representation of translation as a linear
flow with respect to character. The theory was also applied to Schrédinger operators
with semibounded spectra of finite gap length, by the standard finite gap approxima-
tion approach [66]. This technique was developed in a connection with asymptotics for
orthogonal [20] and Chebyshev polynomials [21,22].

In this paper, we construct almost periodic parameters for spectral data on arbitrary
Dirichlet-regular Widom set E C R with DCT, without any gap moment conditions
or semiboundedness. In contrast to the construction in [65], we have to build Fourier
integrals instead of Fourier series representations. Infinity still plays the role of the dis-
tinguished point, but E is an unbounded set, so co is a boundary point of the domain
Q = C \ E. In particular, the Complex Martin function must substitute the Complex
Green function in this new construction. A passage from discrete systems to continuous
ones always presents essential obstacles related to differentiability, but in the current set-
ting it was not originally clear what is this “almost periodic object” which corresponds
to the chosen spectral data, and especially in which sense it is “almost periodic”.
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We will show that the correct setting is provided by canonical systems in Arov gauge,
which uses normalizations at a point zp in the upper half plane (we fix zo = 4 in our
presentation), which is always an interior point of the domain 2 = C \ E. We also
apply this theory to other well known gauges, namely, canonical systems in Potapov—
de Branges gauge (see [25] and recent works [62,13,63]), and Dirac operators [45]: we
will explain that these other gauges don’t always give almost periodic data, and give
sufficient conditions for almost periodicity which are generically optimal. Note also that
our approach doesn’t use finite gap approximation: everything is constructed directly for
the domain €.

Our results can further be motivated through Paley—Wiener theory, the multiplicative
theory of j-contractive matrix functions [60,28,36], and through a general perspective
on nesting Weyl disks for one-dimensional operators. The first motivation doesn’t even
require spectral theory. Recall that the standard Hardy space H?(Cy) can be viewed
as a closed subspace of L?(R) by passing to boundary values, and recall the following
Paley-Wiener theorem: H?(C) is the image of L?((0,00)) in the Fourier transform.
According to de Branges, this theorem was the origin of his theory, see [25, Preface].
We generalize the Paley—Wiener theorem to a character-automorphic setting with the
domain 2 = C \ E. This requires several constructions.

Let E be an unbounded proper closed subset of R such that € is Dirichlet regular.
The symmetric Martin function at oo is a positive harmonic function M on  with the
symmetry M (z) = M (z) which vanishes continuously on E; it is determined uniquely up
to normalization [3,11]. The limit lim,_,o, M (iy)/y exists, and it can be zero or strictly
positive. This gives an important dichotomy: € is said to be of Akhiezer-Levin (A-L)
type [1] if

M
lim —(2y>
Yy—00 y

> 0. (1.1)

In the A-L case, M(z) is also called the Phragmén-Lindelof function by Koosis [42].
Among finite gap sets E (an algebraic setting is possible), it holds precisely for those
which are unbounded both above and below, i.e., those where co corresponds to two
different accessible boundary points/prime ends [33, Section VIL.3], [59, Section 2.4]. In
the general case, the A-L condition measures that distinction for the minimal Martin
boundary of the domain: oo corresponds to two minimal Martin boundary points if (1.1)
holds and a single point if (1.1) fails, see Section 4.4.

The symmetric Martin function M extends to a subharmonic function on C, so its
distributional Laplacian is a positive measure, called the Martin measure, 9 = %AM .
If E is a Widom set, ¢ is mutually absolutely continuous with Lebesgue measure on E.

Locally on 2, M = Im O for some analytic function ©. Since €2 is multiply connected,
O is multi-valued: its analytic continuation © o along a closed loop v € 71(2) obeys

Oovy=0+r1(y), Yy € m1(0) (1.2)
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where 1 : 71 () — R is an additive character, i.e., n(y172) = n(71) + n(72). Note that
O(z) is defined up to an affine transform O(z) — a©(z) +b, a > 0,b € R. Since different
normalizations can be natural in different settings, we prefer to not fix a normalization
and write ©(i) = 0, + i6;. Of course, an affine change of O also affects M and 7.

We also work with multi-valued meromorphic functions f on © = C\E such that |f] is
single-valued. Such functions f are character-automorphic, i.e., there exists a character
(additive map) « : 7 (2) = R/Z such that

foy=eeMf vy e (Q). (1.3)

All statements about multi-valued functions on 2 can also be expressed in terms of lifts
to the universal cover D via the uniformization Q ~ D/T', T' & 71 (2); in particular, we
say that f has bounded characteristic if its lift F' to D has bounded characteristic, i.e.,
F = Fy/F;, for some Fy, F, € H*(D). If, in addition, F5 is outer, we say that f is of
Smirnov class.

Since E C R, functions on € accept an antilinear involution (... )s defined by

fi(2) = f(2). (1.4)

This involution doesn’t change the character. We will also use another involution, related
to the notion of pseudocontinuation: if f has bounded characteristic, we denote by f,
a function of bounded characteristic such that the nontangential boundary values from
above and below obey

fo(€£i0) = f(EFi0),  ae £€E (1.5)

The pseudocontinuation is very far from being a general property of functions of bounded

characteristic, and we will discuss this later.

* *

We denote the character group by m1(Q)* and equip m(Q2)* with the topology of
pointwise convergence (o, — « if and only if a,(v) — a(y) for all v € m1(€2)). Note
that this is equivalent to convergence on each generator of 71(2), and 1 (2)* is a torus
equipped with product topology, of dimension equal to the number of gaps (connected
components of R \ E) minus one. For any character a € m1(2)*, we define a character-
automorphic Hardy space with respect to Martin measure, denoted H3(a) or simply
H?(), as the set of Smirnov class functions f with character o with the norm

11300 = [ 7€+ 00 +17(6 - 10)P)ao ) < o (1.6)

E

Passing from f to its boundary values gives an isometric embedding H2 (o) C L?(E, dv)?.
If E is a Widom set, H?(«) is a nontrivial reproducing kernel Hilbert space for any o
(see Section 2), i.e., for each zy € Q there exists k2 € H?(a) such that for all f € H?(a),
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f(z0) = (£ R5,)- (1.7)

In particular, (k2 ,k2) = kg (20) > 0. We also write k%(z,20) = kg, (2). Note that it
would be more precise to refer to the reproducing kernel corresponding to a point in
the cover D, but we follow common usage in referring to some zy € ) and interpreting
equations such as (1.7) so that they correspond always to the same lift of 2. In particular,
we will use the L?-normalized reproducing kernel at i, denoted K = k% //k&(i). Note
that it obeys
ay _ (0
(, K?) = % Vf € (o). (1.8)
With two sampling functions v(a) := —log K(i) and s(a) := K{'(i)/K“(i), for a
fixed a € 71 (Q)* we associate two measures on R

p (b1, o]) = (b — £1)Im O(4) + v(a — nla) — v(a — nly), (1.9)
1S (£, £2)) = s =) ;S(Q —nfa) | / s(a — nl)duc (1). (1.10)
(1,£2]

These are the almost periodic parameters solving our inverse spectral problem:

Theorem 1.1. For any unbounded closed proper subset E C R which is Dirichlet-regular,
obeys the Widom condition and DCT, for any o € m1(2)*:

(a) u® is a positive measure on R;
(b) The complex measure u$ is absolutely continuous with respect to p and its Radon—
Nikodym derivative a®, defined by

dps = a®du”, (1.11)

obeys [a®(£)| <1 for u®-a.e. £ € R;

(c) the measures pu*, u§ are almost periodic in the sense that for every piecewise con-
tinuous compactly supported test function h, the functions g(¢) = [ h(l + €)du(l),
g1(€) = [h(l + O)dus(l) are almost periodic with frequency vector n (for any se-
quence £, — oo such that nl, — 0 in 71 (), g(- + 4n) = g and g1(- + ) — o1
uniformly on R).

Most of the earlier results establish uniform almost periodicity of Schrédinger and
Dirac operator data, with L> bounds for associated potentials. On the other hand the
theory of one-dimensional Schrédinger periodic operators with L? potentials [49,50] looks
very similar, as a certain branch of the same general inverse spectral theory. Moreover
the mentioned recent growth of interest in a unified approach to all such operators via
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Potapov—de Branges canonical systems motivates an extension of the concept of almost
periodicity to this general setting. One approach could possibly be in terms of resolvent
almost periodicity, in which one would use a concept of compactness of shifts of resolvents
in the operator norm. But as we will see, say when A-L fails, the measures of two canonical
systems of the same isospectral class are possibly mutually singular. This looks like a very
strong obstacle on the way to developing this approach: the corresponding isospectral
operators can not be treated as operators acting in the same space. Our approach, which
seems to be a certain breakthrough in the area, is based on the concept of almost periodic
measures.

Almost periodicity of measures is commonly described by convolution with some class
of test functions [4,26]; in particular, strong almost periodicity of measures uses h €
C.(R). Note that our conclusion is strictly stronger than strong almost periodicity and
also includes, e.g., characteristic functions of intervals, h = x(g ¢, for any £ > 0.

Since |a®(¢)] < 1, we can define the nonnegative matrices

0= ~T")

and introduce the Hilbert space v A*L2(R,C2,du®), with closure taken in L?(R,C?2,
dup®). We also use a Complex Green function ® with a zero at ¢ and denote by B its

character, and 7 given in (1.2). This is the promised generalization of the Paley—Wiener
theorem:

Theorem 1.2. For any unbounded closed proper subset E C R which is Dirichlet-regular,
obeys the Widom condition and DCT, for any o € w1 (Q)*, the map F* defined by

aAZZ z+i el (2) a—ZZ a—nl(, o N a
FNE = a0V (K7 Kk ) VDR OO (112)

for compactly supported f extends by continuity to a unitary operator

Fo:VAL2(R,C2,du~) — L2(E, d9)>.

For any £ € R, F* maps VA*L2([{,00),C2,du>) bijectively to e*OHE (v — Bo — nl).

The case £ = 0 pertains directly to the space H2(a— Bs), but the /-dependence shows
that F conjugates translation to a linear flow in £. The spaces H?(a— fs) ©e*OH3 (a—
Be — nt) will play an important role in the proofs.

Note that |a®| = 1 if and only if rankA® = 1. Although vVA*L2(R,C2, du®) is,
by construction, a subset of L*(R,C?,du®) and consists of vector-valued functions, if

rankA® = 1, this effectively flattens the vector values to scalars. Thus, the rank deter-
mines whether our almost periodic Hilbert space model contains vector-valued functions
(like it does for Dirac operators) or scalar-valued functions (like it does for Schrédinger
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operators). We study this dichotomy and prove that the rank 1 case happens uniformly
exactly for sets E which do not obey the A-L condition (1.1). In particular, the rank 2
case does not occur for semibounded sets.

The most common sufficient criterion for the A-L condition is the finite logarithmic
gap length condition,

|x|dx
/ g < (1.13)

R\E

When (1.13) holds, the Fourier transform can be redefined with the domain L?(R,C?)
by using the Complex Martin function and renormalized boundary limits of reproducing
kernels.

Lemma 1.3. If (1.13) holds, then the following limits exist for all ¢,

O P i C)

1.14
y—too  ko—n(+i, +iy) (1.14)

These functions have pseudocontinuations, i.e., the functions LY (z,{) exist. For the
matrixc

L(z,0) = (Ld(z,@ Lsib(z,z) > (1.15)

the following limit exists,

0%(¢) = lim det L%(iy, ).

y——+oo

Moreover, all the limits are almost periodic in £.

In this special case, our Fourier integral reduces to a much more familiar form, which
could be interpreted as a limit case from a discrete or a finite gap version.

Theorem 1.4. If (1.13) holds, the map

iO9(2)L

02(f)

€

(Fo9)(z) = / (L2(20) L8(20)g(0)dl,  § e L3(0,00), C2),
0

;

defines a unitary Fourier transform acting from L?([0,00),C?) to H?*(a — Bs).

The operator F¢ is precisely an “eigenfunction expansion” for a reflectionless canon-
ical system in Arov gauge. To explain this, we use j-contractive matrix functions.
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Definition 1.5. Let j be a 2 x 2 matrix such that j = j* = j~!. An entire 2 x 2 matrix
valued function A(z) is called j-inner if it obeys j — A(z)jA(z)* > 0 for z € C; and
j—A(2)jA(z)* =0 for z € R.

Definition 1.6. A family of matrix functions A(z, £) parametrized by a real parameter ¢
is called j-monotonic if A(z, £1) "1 A(2, ) is j-inner whenever £; < /5.

To a spectral theorist, these notions are of interest because they describe common
properties of transfer matrices; in particular, j-monotonicity describes the nesting prop-
erty of Weyl disks

D(z,0) ={w | (w 1)A(z,0)jA(z,0)* (w 1)" >0}, (1.16)

namely, D(z,02) C D(z,{1) if £1 < ¢3 and z € C. This was first observed in the setting
of Schrédinger operators by Weyl [68], with j = (S o )- Note that by conjugating by a
Cayley transform we can make the switch to

i=(0 1)

We will always use this choice of j; note in particular that for A(z,0) = I, (1.16) gives
D(z,0) =D, so our Weyl disks will be subsets of D.

We will always work with matrix functions which are continuous in ¢ and obey
det A(z,¢) = 1 for all z,¢. In particular, the values A(z,£) for z € R will belong to
the group of 2 x 2 matrices

SU(1,1) ={U |UjU* = j and detU = 1}.

It follows directly from the definition (1.16) that Weyl disks are not affected by right
multiplication of the transfer matrix by U(¢) € SU(1,1). In particular, any j-monotonic
family can be uniquely brought into the following form:

Definition 1.7. A j-monotonic family A(z, ¢) is in Arov gauge (A-gauge) if A(i, £) is lower
triangular with positive diagonal entries.

The Arov gauge arose naturally in the description of the set of the unitary extensions
of isometric operators [7] and was used by the author regularly, see e.g. [8, Theorem
7.57].

For a j-monotonic family of transfer matrices in Arov gauge we use a special notation
A(z,¢). If it obeys the initial condition A(z,0) = I for all z, it is the solution of a
canonical system in Arov gauge,

4
A(z,0)j = j + /Ql(z,l) (zz (_;(l) —@) - (_f(l) ?)) du(l), (1.17)
0
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where p is a positive continuous measure and a € L (du) with ||aljc < 1. The equation
(1.17) is an initial value problem written in integral form: the solution 2((z,¢) is entire
in z for each ¢ and absolutely continuous with respect to p as a function of £. We find
the integral form more natural because p is allowed to contain a singular continuous
component.

The pair (u,a) is the set of parameters of the canonical system in Arov gauge. In
particular, a can be viewed as a kind of “continuous Verblunsky coefficients” in the sense
that they” have some similar properties; for instance, they can be used to represent
the boundary value of the spectral Schur function at infinity, and Verblunsky formula
has a direct counterpart in the theory of canonical systems involving a (the quantity
tr A(t) — 24/det A(¢) in [23, Theorem 2.1] is precisely 2 — 24/1 — |a(t)]?). We will also
review key properties of canonical systems in Arov gauge in Remark 4.11; in a companion
paper [14], we give a thorough presentation.

Due to the nesting property of Weyl disks, as £ — oo they shrink to a disk or a point;
this is the famous limit circle/limit point dichotomy. Moreover, if the intersection is a
point for one z € C,, it is a point for all z € C,.. In the limit point case, the intersection
of Weyl disks generates the spectral function s; (z) of the canonical system by

{s+()}= [ D=0,

£e(0,00)

which is a Schur function in the sense that it is an analytic map sy : C; — D.

As an analog of de Branges’ uniqueness theorem [25], any Schur function s; : C; — D
is the spectral function of a canonical system in Arov gauge, which is unique up to a
monotone reparametrization of the parameter [.

In the formulation for Schur functions, the reflectionless property with spectrum E is:

Definition 1.8. The pair of Schur functions (s4, s_) is a reflectionless pair with spectrum
E if s+ extend to meromorphic single-valued functions on 2 with the properties:

(i) the symmetry property s+ (z) = 1/s4(z) for z € Q;
(ii) the reflectionless property

$4(E+10) =s_(£+1i0) ae {€E
(iii) 1 — s4(2)s—(z) does not vanish in R\ E.

We denote by S(E) the set of functions s; which are part of such a pair, with the
topology of locally uniform convergence of C-valued maps on (2.

The set S(E) is not compact; when reflectionless theory is applied to some family of
operators, there is at least one normalization condition natural to that family, which also
compactifies the set. In Arov gauge, the natural normalization condition is:
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Definition 1.9. We denote by Sa(E) the set of s € S(E) for which the corresponding s_
obeys s_ (i) = 0.

In [14], we prove a version of Remling’s theorem in A-gauge and use it to conclude:

Theorem 1.10 ([1/]). Assume that for all L > 0, the functions u((¢,(+L]), HL a(l)du(l)
are uniformly almost periodic functions of £. Then the canonical system in A -gauge (1.17)
is reflectionless on its a.c. spectrum {€ | |s+ (€ +i0)| < 1} U{& | |s—(§ +140)| < 1}, i.e.,
it obeys sy (€ +10) = s_(§ +140) a.e. on this set.

In the current paper, we are working in the inverse direction. We prove that our
construction provides all reflectionless canonical systems in Arov gauge, with a natural
parametrization of the line corresponding to M-type (exponential type with respect to
the Martin function):

Theorem 1.11. Let E C R be a Dirichlet-reqular Widom set with DCT. Parametrized
by (o, 7) € m(Q)* x T, the parameters p = p® and a = 7a® describe all reflectionless
canonical systems in Arov gauge with spectrum E, with the parametrization of the line
such that for all £ >0,

lim log||2(iy, {)||

Jim = = (1.18)

In particular, 7 € T is an integral of motion (it is constant along the translation flow),
and the class S4(E) is parametrized by the compact torus w1 (€2)* x T.

A lot of research on canonical systems has been written in what we call Potapov—de
Branges gauge (PdB-gauge) [60,25,62], which is normalized at z = 0 by the condition
that B(0,¢) = I for all £. Since A(0,¢) € SU(1,1), any j-monotonic family A(z,¢) can
be transformed into PdB gauge by defining B(z,¢) = A(z,£).A(0,£)~*, and canonical
systems in PdB gauge can be written in the form of integral equations as

¢
B(z,0)j =7 +ZZ/EB du(l), H(l) >0, tr (Hj) =0. (1.19)
0

We show that this doesn’t always give almost periodic data, and give sufficient conditions
for almost periodicity:

Theorem 1.12. Let E = R\ U;cz(a;,b;) be a Dirichlet-reqular Widom set with DCT,
such that 0 € E and

/ LA (1.20)

]
[-1,1]\E
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Without loss of generality, we fiz a gap (ag,bo) such that by < 0 and denote E, =
EN[bo,0]. Let w(z,E,) be the harmonic measure of E, at z € Q and let (¢i); € (a;,b;),
j > 1 be its critical points. Assume that

Z|w((c*)j,E*) —w(a;, Ey)| < o0, (1.21)

Jj=1

Then the matriz measure H(£)du(f) corresponding to the canonical system (1.19) with
spectral function sy € S(E) is almost periodic.

Remark 1.13. The simplest way to violate (1.20) and (1.21) is to consider a set generated
by geometric progressions: choose p > 1 and pby < ay < b, <0< al < bl < pag. Let

E=R\Uez((Pag, pbp) U (W ad, /b)),

At least in the generic case (non algebraic numbers in a certain sense), the measure
H(£)du(¢) is not almost periodic. Of course, in this case, by shifting the spectral param-
eter z +—+ z — x., a PdB-type gauge with respect to some z. € E\ ({0} U; {pad, p/bE}),
would give an almost periodic representation by Theorem 1.12. In the generic case the
conditions (1.20), (1.21) are necessary and sufficient for almost periodicity.

We also consider Dirac operators. Transfer matrices for Dirac operators obey the Dirac
equation

8t©(z,t)j = 9(2715)(7;21 - Q(t))7 Q(t)* = —Q(t), tr (Q]) =0 (1‘22)

with the initial data ©(z,0) = I. Note that one of canonical forms is fixed by an extra
condition tr Q(¢t) = 0 [45]. The solution D(z,t) is once again a j-monotonic family, and
the corresponding Schur function obeys limy . 54 (2y) = 0 [18], which we view as a
normalization at infinity.

Theorem 1.14. Let E C R be a Dirichlet-regular Widom set with DCT such that

/ dr = Z(bj —a;) < 0. (1.23)

R\E J

Then for any sy € S(E), the limit lim,_, o, sy (iy) exists in D; moreover, if lim,_, o s+ (iy)
=0, then sy is the spectral function of a classical Dirac differential equation (1.22) with
a uniformly almost periodic potential Q(£).

Remark 1.15. Like in the case of PdB gauge, the condition (1.23) is exact for generic
sets.
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Our work relies extensively on the function theory on Riemann surfaces. H. Widom,
starting from [69], found a natural bound [70,71] for domains which allow complete family
of multivalued Hardy spaces. Such domains are now called Widom domains. Hayashi and
Hasumi [37] found the DCT condition which makes true the counterpart of the Beurling
theorem on invariant subspaces in the Hardy spaces on Widom domains (for the most
recent developments see [2]) and, equivalently, continuity of reproducing kernels with
respect to the characters. In Section 2, we will give a systematic presentation of this
theory, from the perspective needed in this paper.

In Section 3, we consider bijections between reflectionless pairs of Schur functions,
their corresponding divisors, and elements of the enlarged character group m1(Q)* x T
related to them by a generalized Abel map.

In Section 4, we use the notion of unitary node to construct the j-contractive families
A(z,¢) starting from the Hardy space with a given character.

In Section 5, we construct the Fourier integrals and prove their unitarity.

In Section 6, we consider almost periodicity of the constructed parameters in different
gauges.

Acknowledgment. We would like to thank Misha Sodin and Benjamin Eichinger for
useful discussions. The work of R.B. in Sections 2.3, 3.1, 4.1, 5.3, 6.3 is supported by
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M.L. was supported in part by NSF grant DMS-1700179 and P.Y. was supported by the
Austrian Science Fund FWF, project no: P32885-N.

2. Preliminary: Hardy spaces and reproducing kernels
2.1. Elements of potential theory in Widom Denjoy domains

Let E C R be a closed, unbounded set. Let 2 = C\ E denote the corresponding Denjoy
domain, and note that co € 9. Let us denote by (a;, b;) the maximal intervals in R \ E.
If E has a finite number of gaps, the subject we are going to discuss is related to the
famous finite gap almost periodic differential operators of the second order. So, our main
interest is in the case when E has infinitely many gaps which we index by j € Z and
write the set E in the form

E=R\ | J (b))

JEZL

However, with merely notational changes to the gap labeling, everything discussed in
this paper applies also to finite gap sets; such sets always satisfy Dirichlet regularity, the
Widom condition and DCT. We will fix a gap (ag, bg) and a point &, € (ag, bp). This will
be used to fix some normalizations.

The Mobius transformations corresponding to U € SU(1, 1) are precisely the auto-
morphisms of the unit disk D. We denote by A : D — Q a uniformization of €2, where T'
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is a discrete subgroup of SU(1,1) acting on D in the sense of Mdbius transformations.
In particular A is surjective and A((;) = A({2) if and only if (s = v({1) for some v € T
Note that the homotopy group of Q is m1(Q) = T.

We assume that E has positive capacity and that Q is a Dirichlet regular domain,
i.e., every boundary point is a regular endpoint in the sense of potential theory. For any
zo € Q, we denote by G(z, z0) = Gq(z, z9) the Green function in the domain  with the
logarithmic pole at zg, and Dirichlet regularity means that G(z, zp) is continuous in
and vanishes on the boundary (including infinity). The complex Green function @, is
defined by

|2 (2)] = eigﬂ(z’zo)a P, (&) > 0.

The function ®,, is character automorphic; it can also be characterized by the fact that
its lift is a Blaschke product on D with zeros at the points ¢ € A= ({20}).

We will deviate from the above phase normalization in one important special case: we
will consider the complex Green function ® = ®; with the normalization

B(—i) >0 (2.1)

and the function ®; defined by (1.4), which is a complex Green function with zero at
—i. The functions ® and ®; have the same character S5. We will also consider the ratio
o, 2= 1

o) . ()

v(z) = Dy(2) z+i

Let ¢; be the collection of critical points of the Green function, VG(¢&;, &) = 0. We
assume throughout this text that Q is of Widom type, that is,

D G(E,¢) < 0. (2.3)

JEZ

Statements about multi-valued functions f on 2 such that |f| is single-valued can be
written as statements about their single-valued lifts F' = f o A. In particular, (1.3) can
be restated as

Fory=e¥me0F, Vv el,

where F' o~ simply denotes composition of functions.
By symmetry, we can fix the uniformization A so that the diameter (—1,1) C D
is mapped to the gap (ap,bg) and 0 is mapped to &.. This normalization obeys the

symmetry A(¢) = A(¢). This choice affects the involution (...)# defined in (1.4): it is
more precise to define this involution by saying that the lifts of f, f; are related by

Fy(¢)=F(), V(eD.
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Recall that a character-automorphic function f is said to have bounded characteristic
if its lift F' has bounded characteristic on D; moreover, if f is single-valued on 2, note
that its lift is simply f o A. We will often use an important criterion of Sodin—Yuditskii
[65]:

Theorem 2.1 ([65, Theorem DJ). Let E be a Dirichlet reqular Widom set, and let f be a

meromorphic Herglotz function on Q with f(z) = f(2). If poles of f satisfy the condition

> GG <o, (2.4)
Af(A)=00
AFEEx
then f is of bounded characteristic with no singular inner factor (i.e. its lift f o A is
of bounded characteristic on D and the inner factor of f o A is a quotient of Blaschke
products on D ).

Note that (2.4) holds automatically if f has at most one pole in each gap of E.
The Martin function M has one critical point in each gap, which we denote by ¢; €
(aj,b;). For Widom domains, the Widom function

W(z) = H ., (2)

is well defined and nontrivial. Denote its character by £y,. Note that with our normal-
ization, Wy = W, and ©’ is a function of bounded characteristic with inner part W, see
Theorem 2.1.

It is natural to consider the Dirichlet problem on §2 with respect to the Martin bound-
ary 02 — its solutions are harmonic functions on 2 with prescribed boundary values on
E, allowing different boundary values from above and below (if considered with respect
to the Euclidean boundary E, the Dirichlet problem only gives solutions symmetric with
respect to R). The Dirichlet problem on 2 can be solved by using the uniformization and
pushing harmonic measure on T to the harmonic measure w on the Martin boundary
082, which consists (up to a zero measure set) of two copies of E. For this discussion, let
us denote those copies by E.4; they correspond to boundary values of the solution from
above and below. For a Widom set E, harmonic measure is mutually a.c. with Lebesgue
measure on Ey. Similarly, Martin measure is naturally defined on this double cover of
E: the boundary values ©(¢ +40) obey 5-dO(£ + i0) = —5-dO(£ — i0) = dY(€) [31]. By
combining these measures we obtain the Martin measure on 0f2, denoted id@.

With respect to these measures, we have the standard Lebesgue spaces LY, (dw) and

1
b, = L5, (2d®) = LP(E,dv)?,
m

depending on whether we write the space as a space of functions on the Martin bound-
ary 9 or on two copies of E; compare (1.6). Functions f € N (Q) have nontangential
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boundary values from above and below, denoted f(£ +i0) for £ € E, and we will use L?
conditions on the boundary to f.

2.2. Hardy spaces with respect to harmonic measure and Martin measure and
reproducing kernels

Character-automorphic Hardy spaces H? () = HE () can be defined in several equiv-
alent ways [37]; one of the definitions uses the universal covering and the standard Hardy
spaces HP(D):

Definition 2.2. HP(«) is the set of character-automorphic functions f with character «
whose lift F' = f o A is an element of H?(D), with the inherited norm.

By passing to a universal covering and using the Smirnov maximum principle [55], an
equivalent (alternative) definition is:

Definition 2.3. H?(«) is the space of character automorphic functions on € with character
o which are in Smirnov class N, (Q2) and whose boundary values are in L}, (dw).

Definition 2.3 makes clear that these character-automorphic Hardy spaces are with
respect to harmonic measure for the internal point &, of the domain. In our setting, it
is more natural to work with respect to Martin measure, since that measure plays a
crucial role in the spectral theory of ergodic and almost periodic differential equations,
as the so-called integrated density of states. In particular, Definition 2.3 motivates the
definition of Hardy spaces with respect to Martin measure, made in the introduction;
we will now show their relations to the spaces H?(«) defined with respect to harmonic
measure.

If H is a Hilbert space of functions and v a function, we denote by H the Hilbert
space {tu | v € H} with inner product (Yus, Yus)yn = (U1, u2)x.

Lemma 2.4. There is a character automorphic outer function v with character By such
that L3,,(dO) = ¢y L3, (dw) and H?*(a+ By) = vH?(«) for any character o, in the sense
of equality of Hilbert spaces.

Proof. On C,, the Green function G(-,&,) (or the Martin function M) is the imaginary
part of a conformal map h to a comb domain, which can be viewed as a generalization of
Schwarz—Christoffel mappings; the boundary values of arg h on R are piecewise constant,
so the exponential Herglotz representation of A gives rise to a product formula for h; for
details see [31], [30, Section 6]. This gives formulas for the Green function and harmonic
measure used in this proof.

To simplify notation, without loss of generality, in this proof we assume that £, = 0.
In particular, in a Widom domain, dw(z) is absolutely continuous w.r.t. the Lebesgue
measure dz [31], and if we denote by ¢; € (a;,b;) the critical points of G(-, &), then
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1-2z/¢
2midw(x) = fo(x)dz, fu(z) = J .

w @ \/(l—z/ao V(1 — z/by) ]1;[() —z/a;)(1 - z/bj)
Due to Theorem 2.1 the product f, is of bounded characteristic with no singular inner
part. Its inner part is the convergent Blaschke product determined by reading off its

zeros, so we obtain its outer part as

2 Po(2) 1—2/¢
U, (z)* =
& = =i Lo v

and on E we have dw(z) = 5= |, (z)|*dz. Likewise, assuming that cy # 0, we have

. ) 1—2/¢;
21idO(z) = fo(x)dr = i|Ve(x)|*dz, =C €
° ° 1} (V= 2/a;) (1= 2/b;)

Thus, dw = |1|2d® with the outer function ¢ = ¥, /W¥g. The equality dw = [|?dO
implies that L2, (d©) = ¢ L3, (dw) as Hilbert spaces. Since 9 is outer, N (2) = N (),
so by Definitions 2.2, 2.3, H?(a + By) = vH?*(a). O

In a Widom domain, H?(«) is nontrivial for any o, and it has a reproducing kernel
inherited from the universal covering and H?(D). By Lemma 2.4, H?(«) inherits these
properties:

Proposition 2.5. For a Widom Denjoy domain ) the Hardy space H?(c) is nontrivial for
every a € m1(2)*. This is a reproducing kernel Hilbert space, i.e., for each zy € § there
exists k2, € H?(a) such that for all f € H?(a),

fz0) = (f,KS,)-

In particular, (kg , k%) = kg (20) > 0. We also write k*(z,20) = kg, (2).
Remark 2.6. It seems natural to give an alternative definition for H?(a) in the spirit
of Definition 2.2, by considering subspaces of H?(C, ) which are character automorphic
w.r.t. a discrete subgroup of the group of SL(2, R). However, this is possible only in A-L
domains [40].

2.3. Pseudocontinuation and DCT. Extensions of symmetric operators and their
Cayley transforms

From the point of view of function theory, the reflectionless property is closely related
to the notion of pseudocontinuation. For a function F' of bounded characteristic in D,
we say that a function of bounded characteristic G in C \ D is the pseudocontinuation
of F if
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E%?F(TO = lriirllG(r(), ae. CeT.

By the substitution G(¢) = F.(1/(), existence of a pseudocontinuation can be expressed
entirely in terms of functions on D: F' € A(D) has a pseudocontinuation if and only if
there exists F,. € N(D) such that

l:%rllF(r() = lrl%IllF*(TC), ae. CeT.

Applying these notions to lifts of character-automorphic functions on 2 leads to a notion
of pseudocontinuation on 2 and an important involution:

Definition 2.7. We say that f € N(f2) has a pseudocontinuation if there exists f. € N (Q)
such that

f«(z) = f(z) for a.e. z € 09.
We point out that if o is the character of f then the character of f. is ay, = —ay.

For Denjoy domains, combining this involution with the involution (...)s, we obtain
the linear involution f +— f, from the introduction,

fo(2) = (fo)i(2) = fu(2), zeq

This is well defined for an arbitrary f which has a pseudocontinuation, and ay, = —ay.
Note that on the boundary of the domain we have (1.5).

Example 2.8. If A € A/(Q) is an inner function, A, = 1/A so

In particular, (®), = ‘}%n’ (®y)y = %, and v, = v.

Let f € H&(Bw). Then JV((ZZ)) dO(z) is a single-valued differential in €2, moreover
S e Np(Q).

Definition 2.9. A Widom domain Q obeys DCT if for all f € H(Bw),

£ o f 12O,
/ w<z>d@(z)‘f w0
oN oN

In this paper, we will work with sets for which DCT holds. A statement equivalent to
DCT was found by [65, Section 13] with respect to oo for bounded E C R. It is elementary
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to use a conformal criterion to rewrite that criterion with respect to an internal point
&« = 0 of the domain, for E C R with 0 ¢ E; using the notation of Lemma 2.4, and the
notation

W =[] @,
J
this gives:

Theorem 2.10. [65] For a regular Widom domain Q, the DCT property holds if and only
if

W,
L3q(dw) = HE(a) & ?Ongz(—a + Bw., — B, )-

The counterpart of that statement, for Hardy spaces with respect to Martin measures,
is:

Theorem 2.11. For a reqular Widom domain 2, the DCT property holds if and only if
L3g = H*(a) @ WH2(Bw — ) (2.5)

for every a € m(2)*, where H2(Pyw — «) denotes the set of functions conjugated to
H?(Bw — ).

Proof. We first prove that DCT implies (2.5). We point out that for a.e. z € 9Q

(I)O(Z) z) = z
Ww(z)lpw( )7\110-)( )
and
1 v =V
W(z) o(z) = Vo (2).

By Theorem 2.10, for g € L3, (dw) © H?*(a) we have

W _

?g € Hg%(fa + Bw, — Ba,)- (2.6)
0

Combining all these, we obtain
W? IS 7_[2(704 — By + Bwe )

for f =g € L, (d9) © H*(a + By). Indeed, see (2.6),
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v W, 1
Wiﬁgf%/fwwg*i/fwff g=1 g) € H(—a— By + Bwe)-

It remains to show that the decomposition (2.5) implies DCT. Let f € H! (S ). Consider
its inner-outer factorization f = f;f, and define g1 = /f,, g2 = fiv/fo- If « is the
character of g, then g, € H?(a), respectively, go € H?(Bw — «). Therefore, Wgs €
WH2(Bw — a) = Lig(dY) & H? (o). We get

de
}{f y{glmw (91, Wg2) =0. O

Remark 2.12. There are two more important characteristic properties for DCT [37].

(a) DCT holds if and only if k*(z, z) is continuous on mq (2)*.
(b) Let M C H?(a) and wM C M for an arbitrary w € HZ. DCT holds if and only if
for an arbitrary such M there exists an inner function A such that

M=AH*(a—Ba), Aory=e2™PaMA,

The following property is closely related to (2.5), and, in fact, is also characteristic
for DCT.

Corollary 2.13. Denote

o'(i) i ) |

= o = —
e arg(wu)w)

noting that this phase is independent of . Denote

A = By + Bo — o (2.7)

Under the assumptions of Theorem 2.11, K% and Kﬁa‘ admit pseudocontinuations given
by the formulae

- o - K
(K5), = T*q{{—w, (K§). = %*q)ﬂf/v. (2.8)
Moreover, for any a,
K (@)K (i) = ’Wg25;<’) (2.9)

Proof. Since for any f € HZ(a — Ba),

K~ o
<f7?>:<q)f7K >_0a
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it follows that If; 1 HZ (o — Ba), so by Theorem 2.11, for some g € H3(a), % =Wy
in the sense of equality in L2,. For any f € HZ(a),

(f,g) = /f 10 = - /fKa

Since ¢ has a simple zero at i and no other zeros, by the direct Cauchy theorem,

S0 K20 o
= 6 .
This implies that g = CK (i) K% (i) K® where C = ‘1>"(1) Note that C' is independent
of character. Thus, in the sense of equality in L2 50>
K~ N d .
By the normalization ||[K%|| = || K| = 1, comparing L?,-norms of both sides of (2.10)
implies |C|K*(i)K%(i) = 1. This implies (2.9), and since argC = —¢,, allows to

rewrite (2.10) as the first relation in (2.8). The second relation follows by the involution

()ﬁ O

Corollary 2.14. By Corollary 2.15,

K¢ K&
# a

Ky = T . 2.11
o, K=" (211)

(K )b = Tx W

Consider the multiplication operator by the independent variable z in H?(«), as an
unbounded operator with the domain

@Z_{CI).f: fe%2(a—ﬁq>)}.
zZ—1

Since the Direct Cauchy Theorem holds in Q, see Remark 2.12(b), ©. is dense in H?(«),
since % is an outer function.

By (2.2), we can consider multiplication by v( ) its Cayley transform. Let

Dy =clos{(z—i)f: feD,} =dH*(a— Bs)
Ay =clos{(z+i)f: f€D,} = PH*(a— Bs)

(note that ®H?(a — Bs) is closed as the set of functions in H?(a) with a zero at i;
likewise ®yH?( — fBp) is characterized by a zero at —i). Since v(z) is unimodular for
z € 0f), multiplication by @ acts isometrically from Dz to Aj. The defect spaces are
one dimensional,
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H(a) ={K*} & Dy = {K{'} ® As. (2.12)

Thus, this isometry has a one-parameter family of unitary extensions U, : M2 () —
H?(), which are of the form

Upr=7K{(-,K*) +v-Pp,, 7€T. (2.13)

The following matrix element of the resolvent of the unitary U,
I U,
m(z) =i <—+ LOUSSS K“>

is viewed as its Titchmarsh—Weyl function.

Proposition 2.15. The Titchmarsh—Weyl function of the unitary extension U, : H2(a) —
H?(«) is of the form

14+ 7v(2)s%(2)
m(z) = T TU(Z)S%(ZY z € Cy, (2.14)
where
K (=
s9(2) = K”a Ez; (2.15)

Proof. For any zy € C,, the definition of m(zg) implies

—im(zo) +1

R A Y )

so by (2.12) there exists f € ®H?*(a — B4) such that

(I —v(20)U0,) 1K = f + WKO‘.
Applying I — v(zo)UT and using (2.13) gives
K*=f—wvv(z0)f + W(KQ —v(20)TKF).
Multiplying by v gives
vKY = (v—v(20))f + UW(KO‘ —v(20)TK{).

Both sides of the equality are functions in %HQ (o + Ba), so we can evaluate them at

z = zp and obtain
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2K%(z9) = (—im(z9) + 1)(K*(20) — v(zo)TKﬁ“(zo)).
Now solving for m(zg) gives (2.14), since zg € C4 is arbitrary. O

2.4. Resolvent representation for the reproducing kernel. Wronskian identity and
reproducing kernels

In the context of the multiplication operator by z in H?(a), we obtain a kind of
resolvent representation for the reproducing kernel.

Lemma 2.16. Reproducing kernels obey the identity

(z +1i)(20 + ) K*(2) K*(20) — (2 — i) (20 — 1) K (2) K (20)

2(z — Zo)
_ KY(2)K*(z) — v(z)v(zo)K?(z)Ké"(zo) (2.16)
1 —v(2)v(z0)

k¥(z,20) =1

Proof. Let us use the classical von Neumann formula (see Theorem 1 in Section IV.4 in

[15])
D(A*) =Ker(A* — i) + Ker(A* +1i) + D(A),
for the domain D(A*) of an operator adjoint to a symmetric operator A. Taking A to

be the multiplication operator by the independent variable z in H?(«), we see that the
functional

g+ (Ag, k2) = 209(20),

is continuous on the dense subset D(A) = D, of H?(a), hence k2, € D(A*). It follows
that

P
k?@ = ClKéX + CQKa + :,ﬂ

for some constants ¢y, ¢ and a function f € H?*(a — fp). Since (Ag, k2 ) = zog(zo) for
every g € D(A), we see that kg € Ker(A* — Z). It follows that for every w € C we have

(A" —w)k3 = (20 —w)ky, .

On the other hand, from (2.12) we get
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d . . z—w
(A" —w)(e1 K + 2 K + P Zf) =c1(i —w)K{ + ca(—i —w)K* + @ po f.

Comparing these two formulas at z = w, we obtain

(z = 20)k3, = c1(z — i) K + ca(z +4) K™,
By setting z = +i, we compute the constants

K(i) = 0k iz, K (=) = Uk (i, 7).
Since K*(+i) = \/k(%i, i), with a trivial algebraic manipulation
T %(s — 2
1—v(z)v(z) =1— e U S Z(ZL» (2.17)

z24+iz0—1 (z+i)(z0 +1)
we get (2.16). O

Remark 2.17. As is well known, the Titchmarsh-Weyl function m(z) has positive imagi-
nary part on C, so by (2.14), 7s%(z) is a Schur function (analytic map from Cy to D).
This is also evident from (2.16) and positivity of reproducing kernels.

We now define the matrix function

.oy K® 7,0K%
7-a = ( I(ﬁél [(c»zji > (218)

which will play an essential role in what follows. First, using the involutions and the
resolvent representation for the reproducing kernels, we derive the following “Wronskian
identity”.

Lemma 2.18. det 7, is an outer function independent of o and given by

v W W o @y
det Ty, =—i——0Py =2— .
et7e ZU@/ # O z—iz+1

(2.19)

Proof. Using Lemma 2.16, for any f € H?(a),

1 _
o) = 57 [ 175, d0
o9
& _ K¢
1 UT*%KQ(ZO) — v(zO)T*W—éan(zo) ,
—— by o' dz.
27 v —v(z0)

o0
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Since this has a simple pole at zy and no other singularities, computing the residue at
zp and using DCT gives

Z0) K{ (20)
0 (0) T syt B (20) = (0) oy K5 (20)

v'(20)

In this formula, zo was arbitrary, so we can regard this as equality of functions,

f(z0) = if(20) ©'(20)-

and (2.19) follows by elementary manipulations. By the second equality in (2.19), det 7,
is an outer function. 0O

We add a few related matrix identities. For ¢ € D define

V(a) = E ( ! —1a) e SU(L,1), p:=+/1-|al?

p —Q

The following lemma is essentially one step in the classical Schur algorithm (if written
for the unit disk D instead of the upper half-plane C, it would take the shape in [58]).
Recall the Schur function s¢ introduced in (2.15); its value at i determines the transfer
between kernels at character o and o — B

Lemma 2.19. For any «,
(kg K*)V(s2(i)) = (@Kf—ﬁ‘b cbﬁKa*/%) . (2.20)

Consequently the Schur functions are related by

v(2)s% 5@2—M. 2.21
e = 050 221

Proof. The 2-dimensional space H?(a) © ®®yH?*(ov — 2¢) has an orthonormal basis
K<, <I>Kﬁa ~P* and contains the normalized vector Ké)‘ , so that vector can be expressed
in the form

K§ = aK® + pdK; 7. (2.22)
By normalization, |a|? + |p|? = 1, and by taking the inner product with @K?iﬂq’,

(i) Ky (i)
= (K} K = ! 0
P < f s By > Kﬁx(—l) >
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so p = /1 —a|?. Evaluating (2.22) at i gives a = K2(i)/K“ (i), so

(k¢ ko)1) L —pxose,

f —a) /1—aa #

Applying the antilinear involution (... )y gives

(ke Koy (70) L gt

L) V1—aa

Combining the two equalities in matrix form gives (2.20), whereas taking their ratio
gives (2.21). O

The following corollary is a matrix form of the relation (2.20).

Corollary 2.20. For any «,

(T*KZB(I’JFBW_CE %*KEB(I)J’_BW_O[

e . = TaV(s§ (1)
R Oy [P ) +

Proof. The second row of this statement is precisely (2.20). The first row follows from
(2.20) after applying the involution (...), and multiplying by W®®,;. O

Also, using (2.20), we get a representation complementary to (2.16) for the reproduc-
ing kernel.

Lemma 2.21.

K(2)K(20) — K7 (2) K7 (20) (2.23)
1 —v(z)v(z0) . |

Dy (2) @y (20)k* P (2, 20) =

Proof. By writing
(Kf(2) K@) V(s5) = 04(2) (0(2) K7 (2) Ko P (2)),
using this for z and 2o implies, since V(s (7)) is j-unitary, that
(Kg() Ko(2)) (Kg(z0) KO (0))"
= 04(2)®;(0) (v()KG T (2) Koo (2) ) g (w(z0) K (20) KoPe(0) )
Applying (2.16) with o« — B4 instead of « concludes the proof. O

The previous lemma is closely related to one entry of the matrix product
Ta(2)7(Ta(20))*; in fact, we can compute all entries of this product.



R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636 27

Lemma 2.22.

Ta(2)iTa(z0)" _ Q‘I’ﬁ(z) Py (20) < —k%(z, 20) W(z)(k‘;o—ﬂq’)b(z))
z—Z z4i 2o +i \-WE)KES ) (2) k2 P(z, 20)

i (2.24)
Proof. We prove the equality of matrices entry by entry. Equality of the (2,2)-entry
in (2.24) follows from (2.23) and the algebraic manipulations (2.17). Equality of the
(1,2)-entry in (2.24) follows from the equality of the (2, 2)-entry by applying the involu-
tion (...), and multiplying by W®®y, since (1 0) T, = Wod; ((0 1)7,),. Similarly,
equality of the (1,1)-entry follows from (2.17) and (2.16) with & instead of «, and
equality of the (2,1)-entry follows by applying the involution (...), and multiplying
by W@‘bn. O

3. Reflectionless pairs of Schur functions: classes S(E) and S4(E) and their
parametrization

The reflectionless property is defined in terms of half-line Schur functions, but is a
property of a whole line system/operator, and many consequences of the reflectionless
property are best seen from the perspective of whole line resolvents. We define the
function

s (@) -5 ()
R = s o ()

which often has the interpretation of a particular matrix element of the resolvent of

(3.1)

a whole-line operator whose half-lines are encoded by si. For instance, the spectral
interpretation of Definition 1.8.(iii) is that a corresponding whole-line operator does not
have spectrum outside of E.

Lemma 3.1. If s, € S(E), then R is a Herglotz function, analytic in C \ E, with the
symmetry Ry = R. Moreover, limjo arg R(§ +i€) = § for Lebesgue-a.e. § € E.

Proof. By Cayley transforms we obtain the Herglotz functions

1+s4(2)
— 2% 3.2
ma(2) =i (32)
which obey (m+ )y = m+. A direct calculation gives R = —2/(m+m_), so R is Herglotz,
meromorphic on C \ E, and Ry = R. Since 1 — s s_ is nonzero on R \ E, R has no poles
there. Since s_ = (s4 ), a calculation gives lim, o R(§ +1i€) € iR for Lebesgue-a.e. £ € E.
Since that limit is a.e. nonzero and R is Herglotz, the normal limit of the argument is
©/2. O

Corollary 3.2. If sy, s_ are a reflectionless pair of Schur functions with a Widom spec-
trum E, then sy € N(Q).
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Proof. Since R has no poles on R\ E, my have at most one pole in each gap. Since
G(cj, &) = maxyeq,p,) G(w, &), by the Widom condition, poles of my satisfy the
summability condition in Theorem 2.1, so it follows that my € N(Q) and therefore

sy €eN(Q). O

Remark 3.3. The reflectionless property often appears in the literature in the form for
Titchmarsh—Weyl m-functions; Definition 1.8 converts to that form with the substitu-
tions (3.2). In particular, by calculations like those above, the fact that 1—s4 (2)s_(2) # 0
implies analyticity in §2 of both the symmetric combinations

1 my(z)m—(2)
mi(2) +m-(2)" my(2) + m_(2)

which appear in whole-line Titchmarsh—Weyl M-matrix functions.
3.1. Schur spectral functions and unitary nodes. The map 71 (2)* x T — Sa(E)

In the sense of spectral theory, the Schur class of functions, and its generalization
to matrix (operator)-valued functions, is associated to the concept of unitary nodes.
Let E1, Es be complex Euclidean spaces. We say that £(z) belongs to the Schur class
S(E1, E2) if it is a linear operator-valued function, £(z) : B3 — Es for a fixed z € C,
analytic in z, and [|E(2)]| <1 for all z € C5.

By passing to a matrix representation with respect to orthonormal bases of E1, Fo, the
operator-valued function £ gives a matrix-valued function. Of course, a change of basis
would correspond to a change of matrix-valued function, as we will see in examples below.
Respectively, this or that way of basis fixing leads to this or that gauge normalization
condition for transfer matrices.

Definition 3.4. Let H be a Hilbert space. By a unitary node we mean a unitary operator
U acting from E; & H to Es & H. H is called the state space and E7, Fs are called
coefficient spaces. The operator function

S(z,U) =Pg,(Ingp, — v(2)UPu) 'Ulg,
=Pg,U(Igep, —v(z)PaU) "5,

is called the characteristic function of the unitary node. Here Px and Pg, are the
orthogonal projections onto the corresponding subspaces.

Theorem 3.5. The characteristic function S(z,U) of a unitary nodeU : HBE1 — H®E,
belongs to the class S(E1, Es). Vice versa, if S € S(E1, Es), then there exists a unitary
node such that S(z) = S(z,U).
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Essentially, this theorem is a certain point of view on the Nagy-Foias theory [53]; for
a “bird’s eye view” on the subject see [54], and more precisely, we follow [7,8].
Recall that the function v(z) was defined in (2.2).

Proposition 3.6. Multiplication by v in the decomposition

a:{g}@wa—ﬁ@w{ff;}em?(a—ﬁ@) (33)

forms a unitary node with the state space H = H?(a— Bg). Its characteristic function is

K (z
59(2) = Kigz;

Proof of Proposition 3.6. Multiplication by ¥ = 1/v is a unitary operator from
K a
a1 (@) = {5} o HA (0 — Ba) to $H2(0) = {57} © HE(a — Bo).
Fix zp € C,. To compute the value of the characteristic function S(z), we write

iy KE K
PEZ(I—’U(ZQ)UPH) U‘El P = ) S(Zo)
#

so for some g € HE (o — Ba),
«

K K
(I —(20)UPx) " 'Ulg, 5~ = g+ —-S(z0)
#

and therefore

K K
U?ﬁ =g—v(20)Ug + ?S(ZO)
Multiplying by v gives
K¢ K«
T, = 0= v(e))g +vf 5 (z0).
Evaluating at z = zy gives
KX (20) K%(20)
f 0
=v(z S(z0)-
‘I)u(zo) ( 0) (I)(Z()) ( 0)

Since zg € C was arbitrary, solving for S completes the proof. O

a

Remark 3.7. In Proposition 3.6, we implicitly took the basis vector % for the coeflicient
space F7 and % for Fs. If we had multiplied those basis vectors by some unimodular

constants, we would have obtained characteristic functions of the form
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oy o K3 (2) .
55 (z):Tsst(z):TKoé—(Z)7 (o, 7) € m ()" x T.

The functions obtained here are closely related to Proposition 2.15. However, the
reader should notice the difference between the Cayley transforms, which are operators
on a single Hilbert space, and unitary nodes, which have the same state space. The
unitary operator U, and the unitary node (3.3) are related by the following commutative
diagram

{5} oo ps) —— {5} oMo~ Ba)
lcﬁr l@
H(a) = {K°} & Dy —— Ha) = {Kf} @A

where

@

A . Kﬁ )
q>7'|’H2(a—ﬂq>) =& and Q)T : 7-? — K9

#
Using (2.8), let us denote
s (2) = 7% (2 s (2 —T*QW
=), ) =iy S

Corollary 3.8. For any (o, 7) € m(Q)* x T, the pair (s§7,s%7) is a reflectionless pair
of Schur functions and 9" € Sa(E).

Proof. The property (s}7); = 1/s77 follows from the definition and (s§7). = s*7 from
o, T o, T

(2.8). Moreover, 1—s7"s>" has no zeros in R\ E by the Wronskian identity, Lemma 2.18.
Finally, ®(:) = 0 implies s*7 (i) =0. O

3.2. Divisors D(E). The map Sa(E) — D(E)
We begin with the resolvent function R(z) defined as in (3.1) from s; € Sa(E).
Lemma 3.9. For each gap (aj,b;), there exist x; € [aj,b;] such that
R(2) = i1 — 5, (i)|e/= (e~ )Jx©¢. (3.4)
where

1/2, x € (aj,x;)
x(§) =10, r€E (3.5)
—1/2, xTr € (ij,bj)
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Proof. From the Herglotz representation of R, it follows that it is strictly increasing
on each gap (a;,b;), so there exist z; € [a;,b;] such that R is negative on (a;,z;) and
positive on (z;, b;). It follows that the boundary values < arg R({+10) for £ € R are given
by % + x(€). Since s; € Sa(E), (3.1) implies that [R(i)| = |1 — 54 (i)|, the exponential
Herglotz representation of R gives (3.4). O

Assume that z; € (a;,b;) for some j. Then x; is a zero of R, so by (3.1), at least one
of the functions sy is equal to 1 at x;. They cannot both be equal to 1, since s;ys_ # 1
on Q. Define the sign ¢; € {£} so that s.,(z;) = 1. Of course, if z; = a; or x; = b,
it does not correspond to a zero on €, nevertheless by continuity of si(z) at the ends
of the gap we have 1 = s;(x;) = s_(z;) in the sense of nontangential limit at the gap
endpoint z; € {a;,b;}. In what follows, we regard the symbol ¢; both as a sign £+ and
as a number +1, as convenient.

Definition 3.10. We define D(E) as the product, with the product topology,

pE) =[] 1 (3.6)

JEZL

where each I; is a double cover of the corresponding gap with edges identified and
endowed with a topology of a circle,

I ={(zj,€;) | zj € [a, b;] x {+1, =1} }/(a;. 1)~ (ay.—)-
(bj,+)~(bj,—)

The above construction describes the map Sa(E) — D(E) given by
s+ = D ={(zj,€¢;)}jez- (3.7)

For a better understanding of our further steps assume that indeed s = s§". Using
the Wronskian identity (2.19), we obtain

Koo, K% — 1 2KoD K& oW & oy
1— 89 (2)s% (2) = —— i M NP G Y =T 2
- Kod, Ko © Ked,Ko

and then from

oy (=78 (2))(1 —Ts%(2))
R (z) =i 1 jso‘ (2)s%(2)

we conclude

where
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x7(2) = KY(2)(1 — s77(2) = K%(2) — TK{(2), (a,7) €m()* x T, (3.9)
and respectively
PPWV(2) 227 (2) = Py K — T DK (3.10)

Thus, the resulting factorization (3.8) of R*7 leads to the symmetric combinations of
reproducing kernels »*7. The following theorem shows that this symmetric reproducing
kernel »®7 can be expressed in terms of the divisor D assigned to s3'".

Theorem 3.11. The symmetric reproducing kernel »®7 in terms of the divisor D € D(E)
possesses the following multiplicative representation

5 3

T () = (O ®(z) P4(2) Z X \/1+Cj@0j(z) (I> L 311

<=y P [[2., ()= 311)
j 1—1—33]-(1)%(,2) J ;

Respectively, the ratio

T Oy K* — %ﬁ@Kf
Ko — TKna

AO&,T —
is a Blaschke product, given explicitly in terms of the divisor (3.7) by

AYT = H D, (). (3.12)

Proof. We rewrite (3.8) as

D(2) 4(2) W(2)
z—iz+10'(2)

%07 (2) (B(2) Py (2)WV(2) 27 (2)) = %RQ’T(Z) (3.13)
The function R*" is Herglotz and analytic in §2, so it satisfies the conditions of The-
orem 2.1 and doesn’t have a singular inner factor. Therefore the right-hand side of
(3.13) has no singular inner factor. By (3.9), (3.10), the linear combinations 5“7 (z) and
O(2)Py(2)W(2)5"" (z) are Smirnov class; thus, they don’t have singular inner factors,
because their product (3.13) doesn’t.

Since »“™ has simple zeros at those 2; with €; = + and no other zeros on {2, its inner
factor is the Blaschke product

Analogously, the inner part of ®PyW(z)s" " (z) is the Blaschke factor
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1-¢;
H<I>m]. ()=
J

Note now that both functions »*7 and ®®4Ws"" have the same absolute value on 99,
so they have the same outer factor, which we denote by f. Their product has outer factor
f?, and dividing (3.13) by the Blaschke factors gives for some constant C

s g BT B() B(2) W)

f [[; @o;(2) 2 —i 2+ ©'(2)

The exponential representation in Lemma 3.9 turns into a product indexed by j giving

(1+ a?)l/‘l(l + b?)l/4

:i|175+(i)|1;[ (z—b;)(i—aj) (1_1_1,?)1/2

R7(2)

and together with the same kind of product representation of ©' /W (see Lemma 2.4), this
gives f and implies (3.11). Since the outer parts of PV (2)s"" () and ™7 coincide,
their ratio is exactly the ratio of their Blaschke products, which gives (3.12). O

3.3. The Abel map D(E) = m (Q)* x T

We now generalize the above correspondence, i.e., starting from an arbitrary divisor
D = {(zj,€;)}jez € D(E), we consider the product

1

1 CZ(I)CV z : 14e;
D(z) Py(2) [[——=—4 VTGP () =5 (3.14)

z—12+1 . /l—l—x?@:vj(z) z—cj .

Note that if z; € {a;,b;} then ®,, =1 and the value of ¢; is irrelevant. We denote the
character of the product » = »p by a = «(D).

#p(z) =

Lemma 3.12. 5 is a linear combination of K* and Kg*. With the right choice of C in
(3.14), 5 is of the form » = K* — 7K with T € T.

Proof. We will show that s is a linear combination of K* and Kj' by establishing that
it is orthogonal to all f € H?(«) with f(44) = 0. For such a function f, decompose
= ®®4g where g € H?(a—2834). Denote by 3¢ = C¢,; the inner-outer decomposition
(3.14). By comparing > and 3z on 052, we obtain

C 1 C 1 1o
%= DG = 23— [, 2 e Q0. 1
7 C%dxbﬂWl;[ - C%O(P(I)ﬁWH J a.e. on 0 (3.15)
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In addition to relating the boundary values, since the character of 7z is —q, this im-
1=¢;

plies that the character of s, [[; ®z;* is 28e + B — a. Thus, g € H2(a — 2Pp) and

1—e;

%, Hj (I>ijJ € H?(2Bs + By — a), so by DCT, we compute

l1—e

(f,%):/fﬁd(a:%g%n@x}j%:o
Ele) J

Thus, s is orthogonal to ®®yH?*(a — 28s), so » = C1K* + Cy Ky for some Cy, Cs.
Moreover, the representation (3.14) for s implies that s is a multiple of s, so |C1| = |Ca.
Thus, 5 can be normalized so that > = K* — 7K withT7 e T. O

This procedure gives us an Abel map © : D — (a,7), m : D(E) — 71 (2)* x T. To
provide explicit formulas for this map, we denote by 4 for & # 0 the generators of
m1(€2) so that v intersects R \ E “upward” through &, and “downward” through the gap
(ak,br). In other words, the contour +; has winding number 1 if b, < a¢ and winding
number —1 if a; < bg. Denote by Ej the part of E between the 0-th and k-th gaps.
Finally, we denote

€

Ay (D) =3 5 (@), Bx) —w(ay Br)) mod Z (3.16)
J

Lemma 3.13. The Abel map 7 : D(E) — m(Q)* x T is continuous and given by the

following explicit formulas:

a(n) = Ba(vk) + Ay, (D) = Ay (De),  with De = {(¢;, —1)} (3.17)

for any k, and

— 72 »p, (i)
T= T 4%[)*(_1,). (3.18)

Proof. For fixed k, fix domains Hf in C bounded by simple Jordan curves ’yff in Q\ {&}
such that II, NE = Eg, IIf NE = E\ E, and &, ¢ Hf. Note that w(z, Ej) is zero on
I, NE and 1 —w(z, Ey) is zero on I} NE. By comparing the harmonic functions w(z, Ey)
and 1 — w(z, Ex) with G(z,&,) on the compact images *y,:f and applying the maximum
principle on the domains Hki \ E, we conclude the existence of C}, such that

w(z, Ex) < CrG(2,&) Vzelly, 1—w(zEx) <CrG(2,&) Vzellf.
Combined with the Widom condition (2.3) this implies that the series (3.16) is absolutely

summable uniformly in D, so A, (D) is a continuous function of D.
zZ—2Zz0
3

For fixed zy € 2, consider the outer function ; its boundary values have absolute
20

value |z — zp| a.e., so we obtain the representation
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|z — 20| _

1 = Ut
%12, (2)

/log|x — 20|l w(dz, 2).

Using G(z,z9) = G(z0,2) we can switch the roles of z,zy and then pass to harmonic
conjugates to obtain

T /arg(x — z)w(dx, 29) + C (3.19)

arg
(I)Zo (Z)

as an equality of multi-valued harmonic functions up to an additive constant C' inde-
pendent of z. In particular, they have the same additive characters, and their additive
jumps along the closed loop 7 are equal to 27ww(zp, Ex). It follows that the character of
a product J]; fb%(z)TJ is Ay, (D).

The product (3.14) can be regrouped as

[N

z—12+1

5 - (z—xj),/l—i-c? : o )
%D(z)zC{wq)ﬁ—()} _— H@mj(z)2 H@cj(z)5 (3.20)

1;[ (z —¢j)\ /1 + a7

Note that the second bracket is a meromorphic, single-valued function on €2 and we can

J

assume without loss of generality that 5 does not contain any points in the intervals
[¢j, z;]. Thus, combining the characters of all the factors in (3.20) gives (3.17).
To compute 7, we use . Since (2.8) gives

PP Wie, = 7.9 K* — TTOKY,
by (2.1), we see that 75(PPyWie, ) (i) = ®4(i) K%(i) > 0 and similarly 7,7(®PyWie, ) (—i)

< 0. By (3.15), ®®yWse, = Cy5p,, where D, = {(zj, —¢;)}. Thus, 7275¢p, (—i)/5p, (i)
< 0. Since |»p,

is symmetric, this implies (3.18). O
In particular, all other components of the Abel map correspond to closed curves, but
7 corresponds to a jump in argument from —i to ¢ through the gap (ag, bp). Changing the

normalization to a different gap would correspond to a change of 7 by another component
of the Abel map.

3.4. Parametrization of the class SA(E): proof of the uniqueness theorem
We have described the construction of three maps
11(Q)* x T — Sa(E) = D(E) 5 m (Q)* x T. (3.21)

Theorem 3.14. For a Dirichlet reqular Widom set which obeys DCT, the three maps in
(3.21) are homeomorphisms.
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Proof. We already know that the maps are continuous and that their composition in the

order (3.21) is the identity map, so the first map is automatically injective and the third

map is surjective. Then, it remains to prove that the first map is surjective and the third

is injective: it then follows that these two maps are in fact homeomorphisms by using

compactness. Clearly, then the map from S4(E) to D(E) is a homeomorphism as well.
Let us prove surjectivity of the first map. For sy € S4(E), let

sy = D (a,7), —s4+— Dy (ar,7m).
Then, combining definitions of all these maps we get

1 + 54 14 s_ . (1 +S+)(1 —1—8_) 1—5s45- B %04177'1%3177'1 (3 22)
1—S+1—S_ - 1—S+S_ (1—3+)(1—5_) - %oz,‘r%fv”' . .

Since i(1 + s4)/(1 — s4) is a Herglotz function, we can use once again Theorem 2.1.
Thus, by (3.22), having in mind that s_ (i) = 0, we obtain

1 1, T1
1Hsy 27 (3.23)

1-— S+ T

Since the LHS in (3.23) is single-valued in 2, ay = «. Using Lemma 3.12, for 75 = 71 /7
we get

I4+sp 1-msy" 1471 1-7l+sy7

l—spy 1—s%7 2 2 1-s77

Since sy (z) € T for z in an arbitrary gap (a;, b;), we get that the LHS is pure imaginary
valued. We have that in the RHS the real part vanishes, i.e.,

1+Rems Immy14577(2)
_ —0, z€(ab)
2 T2 1-577(2) @ € (a5,b)

Since s{7 is not a constant, we get Im7, = 0 and Re7y = —1. Finally, we obtain
s(2) =527 (2).

Finally, the Abel map is injective: if 7(D;) = m(D2) = (o, 7), then Dy, D2 give the
same product » = »*7. However, s, s, determine R by (3.8) which uniquely determines
the x; as zeros of R and the €; according to whether x; is a zero of s or »,.. O

In particular, the Abel map is a homeomorphism. This allows us in what follows
to repeatedly use the same trick: having a continuous X (D) function on D(E) by a
superposition with the inverse 7=! we get a continuous function Y (o, 7) = X (77! (a, 7))

* x T. In this way we obtain a so called sampling

2i0t7.)

on a compact abelian group ()

function, so that y(¢t) =Y (o — nt, e , proving almost periodicity of y(¢).
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For any s; € S(E), we can reduce to the case s_(i) = 0 by acting on sy with some
automorphism of D, uniquely up to the stabilizer subgroup of 0. This observation implies
that:

Corollary 3.15. The class S(E) is parametrized by the noncompact space w1 (Q)* X
PSU(1,1).

4. Reflectionless canonical systems via the chain of invariant subspaces
ei(i@HZ(a _ ne)

4.1. Unitary nodes with the co-invariant Ka(«) as the state space

Just as Proposition 3.6 reflects the spectral theory of a differential operator on a half
axis, the next construction is related to a restriction of a differential operator on an
interval. We will start from a quite general construction. Let A be an inner character
automorphic function and denote its character by Ga. Later we will specialize to the
case A = e"® (> 0.

A general description of the functions in H?(a) which have a pseudocontinuation is
given by the following lemma.

Lemma 4.1. Let A be an inner character automorphic function with the character Ba.
Denote

Ka(a) = H%(a) © AH?(a — Ba).

Then [ € Ka(a) implies that f has a pseudocontinuation, and moreover

for some g € Ka(Ba + By — ).

Proof. Since Af is orthogonal to H?(a — fa), it follows by Theorem 2.11 that g :=
WAF € H?*(—a + Ba + Bw). Moreover, f € H?(a) implies Wf L H2(By — ), so
g=WAF L AH?*(Byy — a). We finally conclude that g € Ka(Ba + By — ). O

Lemma 4.2. Multiplication by v is a unitary node with the state space Ka(a — Bo) and
two dimensional coefficient spaces:

[}

U, : {ﬁ} ®Ka(a—PBo) @ {AK>Pr=Ba) {%} ®Kalo—fa) ®{AK] 2778,

Py
(4.1)
Moreover, if we denote
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Ka
€1 = —, €y = AKQ_B¢_BA,
Py
KO(
_ a—PBe—p _
fi=AK 7 o=

the characteristic function S for the unitary node (4.1), written in the basis (e1,ez2) for
the coefficient space By and the basis (f1, f2) for the coefficient space Ea, obeys

<(61)b (62)b) _ ((fl)bv (fz)w> g (4.2)

€1 €9 fl’U fQU

Proof. On the space L3, multiplication by v(z) = 1/v(z) is unitary. Since

/ € l3’-[2(&)

1 2
feaﬁﬂ(a)@ s

and

f € ADH? (o — Ba — 2Bp) = % € A®yH?*(a — Ba — 2fa),
multiplication by ¥ is a unitary map from +H?(a) © A®yH?(a— Ba —2Bs) to %ﬁ?—[z(a) o
APH? (o — Ba — 2Bs). Decomposing these spaces, we get a unitary node with the state

space Ka(a — B3) and two dimensional coefficient spaces (4.1).
To compute S(zp), we use the fact that for any ¢;,co € C,

Pp, (I = v(20)UaPrc s (a-ps)) " Ualr, (€1 €2) (2) = 12)5(z0) (2)

so for some g € Ka(a — Bs),

(1= o)l Pstamn) Uil (o1 e0) (8] =g+ (5 ) SCao) (1)

C2

Applying I — v(20)Ua Px 5 (a—8,) and then multiplying by v gives

(e ea) (82) == vtalg+olh 125G (£1)- (43)

2

Since all functions in (4.3) have pseudocontinuations, applying the linear involution (.. .),
and using v, = v gives

(e, (@) () = = vteadan +0 () (B)SGo) ((2). (a0

Evaluating (4.3) and (4.4) at z = zp, the unknown functions g, g, vanish from the
equations and we obtain
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(ex(20) 62(20))<2>U(ZO)(f1<z0> f2(20)) S(20) <cl>

((estan) eahten)) (£2) = oCen) (o) (sten)) SCan) (1)

Since c1,cq are arbitrary, (4.2) holds at zg € C,. Since zg € C, is arbitrary, this
concludes the proof. O

At this point let us compute

T K Pwthe—a f*AbKéBA +2B2+Bw—a
(el)b - T, (eg)b = W(I)u

T*AbKBA +2Ba+pw —a 7 KﬂBWJ’_B‘I’_a
(fl)b o Wo ) (f2)b - T

4.2. Potapov—Ginzburg transform and transfer matrices corresponding to A

We will now study the transfer matrix 2Aa defined by

Tofs = (Aob g) T pa (4.5)

with the matrix 7, defined in (2.18). We will see that 24 is closely related to the unitary
node (4.1).

Lemma 4.3. A is a well-defined meromorphic function on Q and can only have poles
at zeros of Ay. If A = Ay, then det™Aa = 1. Moreover, if A(i) > 0, Aa(i) is lower
triangular with strictly positive diagonal entries.

Proof. Since det 7, is outer and independent of a, Ax is well-defined meromorphic by
(4.5), poles can only come from A, = 1/Ay, and det A = A, A. In particular, if A = Ay,
then detAa = 1. From (2.18), the matrix 7,(¢) is lower triangular and (7,(i))22 > 0.
If A(i) > 0, a calculation shows that A (¢) is lower triangular and (2a(i))22 > 0. By
det A =1, (Q[A(i))ll >0. O

Straightforward calculations show that

<<e611>b v(v%)b)_(@ ; )7;
(v ozz?)b):(@ 3><A0 §) Te s 650

(the last step uses Corollary 2.20) so the matrix Aa defined by
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An = Aa V(53 P2 (@)1 (4.6)
obeys
<(€€11)b UE}J;Zz)b) An(z) = (Ugfll)b (6622%) . (4.7)

Comparing (4.7) with (4.2), we see that Aa and S are related precisely by the Potapov-
Ginzburg transform. In general, the Potapov-Ginzburg transform compactifies the class
of j-contractive matrix functions by relating a j-contractive matrix function A to a
contractive matrix function S so that

P+AQ = (Q+AP)S, P:(é 8),@:(8 ?),j——PJrQ (4.8)

In our case, applying the Potapov—Ginzburg transform to (4.2) separates the terms
containing A from those that don’t contain A.
Explicitly,

so= (0w = (0 O (0 =) e
Lemma 4.4. A is j-contractive for z € C..
Proof. On C., away from the discrete set of poles of functions in (4.7), by (4.8),
j— AjAT = Q + APA* — P — AQA* = (Q + AP)(I — SS*)(Q + AP)* >0 (4.10)

so A is j-contractive. Since V(s'_)f_*ﬁA (1)) is j-unitary, by (4.6), 2 is also j-contractive

onCy. O
Lemma 4.5. The boundary values on E from above and below coincide,
AA (€ +10) = A (€ — i0), a.e. £ € E. (4.11)

Proof. Aa(z) has nontangential boundary values a.e., moreover

((el)b U(fz)b) (€ 4 10) An (€ + i0) = (U(fl)b (62)b> (€ +0).

€1 V]2 Ufl €2

By the definition of the b-involution we have

((:f)b vfﬁb)(sﬂo)&(f—io):(vz’ff)b (;2%)(5“0).

Multiplying both parts by ((1) (1)> and using (4.6) gives (4.11). O
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4.3. From transfer matrices to reflectionless canonical systems in Arov gauge
We now specialize to the case A(z) = €**©*) | with ¢ as a parameter. Let
O3i)=0,+10;, 6.€R, 6;>0.
We generalize the definition (2.18) and define for (o, 7) € m1(Q2)* x T,

T - <T*<I>ﬁKd T TPK]

TKY K~ ) = U Tolkr (4.12)

This reduces to (2.18) by conjugation with a diagonal unitary and j-unitary matrix U,

1/2
7;4,7' = U;lTauw U = <TO 7_—(1)/2.) . (413)

Sometimes it is convenient to pass to the SL(2, C) normalization of this matrix, i.e. to
Mo (2) = (det To.r(2))"Y/2To - (2). Due to (2.19), det T, - (2) does not depend of («, 7).

Since
_ (T®K® 0 1 7s
Tor = ( 0 Ka> (Tss; 1 ) ; (4.14)

I1, ; can also be written in the form

(270 19)

@ 0
M- (2) = ( (2) o 1) :
0 (Ve (2)) \/1 —577(2)s27(2)
where
o TEOK®
2 = Kﬁa . (4.15)
We point out that |[K%(z)| = |K*(z)| on 9Q. Therefore * is a meromorphic inner
function.

With these notations we define the following family of matrices.

Definition 4.6. Let (o, 7) € m1(2)* x T. We define the transfer matrix A% 7(z, £) by the
identity

AN (2,0) =Tar (2) ™ Mo ()0, (O) Tamne.r (2) (4.16)

=Io,7(2) " Ao )—0, (O a—ne,r (2), (4.17)
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where

4 0
Ag(0) = <e 0 ewo) .

Note that the additive correction of ©(z) by 6, is required to obey e~ #(©)=0r) >
and therefore for A*7(z,£) to obey the Arov gauge condition.
Immediately from the definition we obtain the chain rule

ANT (2,41 4 Lo) = ANT (2, £1)A"17T (2, 45), (4.18)
so Lemmas 4.3, 4.4, 4.5 imply:
Theorem 4.7.

(a) A*7(z,£) is holomorphic in Q.
(b) For £ >0, A7 is j-contractive in Cy and detA*7(z,£) = 1.
(¢) The boundary values on E coincide,

AT (€ 440,0) = A“T (£ —i0,0), a.e. £ €E. (4.19)

(d) A>T (z,L) is jointly continuous with respect to «, 7,¥, for an arbitrary z € Q.
(e) The family is j-monotonic with respect to ¢, i.e.,

J =AY (2, 62) AN (2, 42)" = § = AN (2, 01)JAYT (2,41)" = 0

fO?” by < ls.

Now, we prove one of the most important properties. We show that all possible sin-
gularities of A% 7(z,¢) on E are removable.

Lemma 4.8. For fized (o, 7) € m1(Q)* X T and £ € R, the matriz A7 (z,L) is entire.

Proof. Let E, be a subset of E, E, = EN [b,_,a,_.], by_ < a,,. Consider an arbi-
trary rectangle ) whose vertical edges pass throw the gaps (a,_,b,_) and (an, ,b,.)
respectively, E,, C Q.

It is easy to see that Qg = QN Q is of Widom type and DCT holds in it. Indeed, if &
is a character on m (§2q) we can find a character a € 71(2)*, so that o/, (q,) = &. Since
HE (a) contains a non-trivial function, this function in its restriction on Qg provides a
non-trivial function in HS%OQ (). That is, Qg is of Widom type. Let &, be a sequence
of characters which converge to the trivial character in m1(Qq)*. Again, we can find a
sequence «;, such that

Unlri(Qg) = Gn  and  ay, — Or (o)«
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Fix 2y € Qg. By the DCT in Q we have

nlgr;o sup{|w(zo)| : w € HY (ap)} = 1.
Moreover

nh—{%o sup{|w(z0)| : w € Hg, (én)} =1,

and this is one of characteristic properties of DCT [37, Theorem, p. 206].
We can explicitly write

AT (2, 0) =

1 K~ f%*%rbKﬁd
~ det T,

ke Take ) e O G20

Since ¢ € HE (£n¢) and 23, %ﬁi € U, (—Pa), (4.20) implies AT = 9B where

entries of the matrix B are in the set ’H%lQ (Bw). By DCT in Qq, for any z € Qq,

1 @, T
AT (29, £) j{ A7(z6 dz

271 Z— 29
200

Due to (4.19),

L 75 2700 4. g

211 zZ— 2
E. m@QQ

so for all zp € Qg,

Q[a77'(20’€) — L f Mdz

21 2 — 20
2Q

with A7 (z,¢) integrable on 0Q. The right-hand side defines an analytic function in
Q. Thus, all possible singularities of 2A*7(z,{), given by (4.20), on the subset E,, are
removable. Since E,, is an arbitrary piece of E in the finite part of the plane C, A7 (z, )

is entire. O

Remark 4.9. Let 1 < p < oo and zg € Q. Let hfj be the extremal function of the problem:
find

hy (20) = sup{lg(20)| : g € H" (), |lg] <1}.

In fact, the theorem on page 206 in [37] claims an equivalence of DCT and the condition
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hy (20) is continuous on 71(2)* for every p with 1 < p < co. (4.21)

But (4.21) is an easy consequence of continuity of h% (zg) in the vicinity of the origin

*

O, ()=~ Indeed, for an arbitrary o, 8 € 71(€2)* we have

hy(20)h% 7 (20) < hg(20) and  he (20)h5 * (20) < By (20)-
Passing to the limits as &« — 8 we have

By (20) < Hininf b3 (z0) < Tim sup bl (20) < A (20),

a—f3

that is, (4.21) holds.

Theorem 4.10. The function s is the Schur function corresponding to the family of
transfer matrices {A%7 (2, £) }ocr., -

Proof. For z € C,

(537(2) 1)AST(2,0) = (0 1) Ao, (OTarye(2)
~ (0 1)Ta—ner(2) ~ (sl—x;n&T(’z) 1) '

Since s?f_*"e’T(z) € D, it follows that s} (2) is in the Weyl disk for every ¢ > 0.
Simultaneously, we can observe that 7 is an “integral of motion” for the translation

o, T

flow in Arov gauge generated by this family, i.e., the flow s7(2) — si_"e’T(z). O

Now that we have constructed the j-monotonic family A7, we have to invoke general
facts about canonical systems in A-gauge (general proofs in A-gauge are available in [14]).
We will need the following:

Remark 4.11 ([1/]). Let (z,¢) be a j-monotonic family in A-gauge with 2((z,0) = I for
all z. Then:

(1) 2 is the solution of a canonical system in A-gauge (1.17), which we also write in the
form

Ql(z,f)jj+jm(z,l)(izA(l)B(l)) du(l), A(la ‘f‘), B_(Oa 8)
0

(2) Aa2(3,£) is a decreasing function of ¢ and the positive measure p is determined by
w(l) = —logAaa(i, ). The family is in the Weyl limit point case if and only if
u(€) = oo as £ — oo. The parameters a are determined by
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A0) + B(0) = (2i(£) ?) — (UG, 0) 0G0, peae. L.

Here, like elsewhere, 0,, denotes Radon-Nikodym derivative: in particular, (i, ¢) is
a.c. with respect to u and |a(¢)| < 1 for p-a.e. £.

(3) (Ricatti equation) The translation flow on canonical systems can be obtained by
a familiar coefficient stripping process or, at the level of the transfer matrices, by
considering for £ > 0 the family {2(z, £) '2(z,[+¢) };>0. Denoting the corresponding
Schur functions by sy (z,£), their behavior is described by the Ricatti equation

Ouss(2,0) = (5+(2.0) 1) (—izA(0) + B(0)) (S+(1M)) . (4.22)

(4) (continuous Verblunsky parameters as boundary values of Schur functions) For p-a.e.
>0,

a(f)

argzze[é,ﬂ—é] 1+ V - |Cl(€)|2 .

(5) Denoting by ¢(¢) € D the right-hand side of (4.23), we have the mutually inverse
formulas

lim  s4(%,0) = (4.23)

a(l) = 2¢(¢)

=TT 0F and c¢({) =

(4.24)

In particular,

A - L L =0
AlD = 1+ ]c(0)[2 <C(€) 1 )

(6) (Krein—de Branges formula [25,43,14]) The exponential type of the transfer matrix

1S

¢ ¢
limsupM = /\/detA(l) du(l) = /\/1 — la(D)|2 du(l). (4.25)
0 0

y—>00 Yy

(7) (de Branges uniqueness theorem) For any Schur function s, : C; — D, there is
a half-line canonical system in A-gauge (1.17) with Schur function s, determined
uniquely up to reparametrizations fi(¢) = p(g(¢)), a(¢) = a(g(¢)) with an increasing
bijection ¢ : [0, 00) — [0, c0).

(8) A reflection of the ¢-axis gives the j-monotonic family

~ . . . 0 1
80 =G0 = (] )
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which is not in A-gauge; it is upper triangular at z = i instead of lower triangular. Its

spectral function s_ necessarily obeys s_ (i) = 0. In fact, that is the only restriction:

?+ is the Schur function corresponding to the canonical

system in A-gauge with reflected parameters 1 (¢) = —pu(—0), ‘a (¢) = a(=0).

s—(z) = i—;z<§+(z) where

Theorem 4.12. A*7(z,£) solves the canonical system equation (1.17) with u = p® given
by (1.9) and a = a®™ = 7a® where a® is the Radon—Nikodym derivative given by (1.11).

Proof. We already established that 2“7 is a j-monotonic family in A-gauge. By a direct
calculation,

QT (- Kainé (7’) 2 i) —
Q’[QQ’ (’L,é) = We £(e@) er). (426)
The reproducing kernel depends continuously on the character due to DCT, so 255 (i, £)

is continuous in ¢. Thus, A*” is the solution of a canonical system in A-gauge. The
measure has the distribution function

Ka—'q@(i)
0) = —log A5y (i,£) = £0; — log ————
/1’( ) 0g oo (7’7 ) ? og Ko‘(l)
which gives precisely the measure p = u® independent of 7 and given by (1.9).

By construction, coefficient stripping corresponds to a linear shift in character, so
s (z,0) = s?‘f"g’T(z). Thus, applying the Ricatti equation at z = i and integrating
gives

4 4
ST = 5370 =2 [ 2@ () 2 [ albdun ()
0 0

Algebraic manipulations bring this to the form f(fa(l)du“(l) = 7p5((0,£]) with p$ de-
fined by (1.10). Therefore u$ is absolutely continuous w.r.t. u%, a = 7a® with a® given
by (1.11), and |a®| <1 a.e. O

In particular, this proves Theorem 1.1(a),(b).

Remark 4.13. We have already seen that u®”™ = p® is 7-independent, and by (1.9), we
have that in average

¢
/dua(l)da = 0,;4. (4.27)
ﬂ'l(Q)* 0
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The additional parameter 7 € T is needed to describe all reflectionless systems, but
in many formulas its influence is simple and can be factored out. We will denote the
canonical system parameters by

?
AT (2, 0] = j + / AT (2,1) (1247 (1) — BT (1)) dp (1),
0

Since the coefficient a®” depends of 7 in a trivial way a®” = 7a%, we write

AT =UPAU,, BYT = U BU,,
with A% = A% B* = B! with the diagonal unitary and j-unitary U, from (4.13).
4.4. M-type: growth of transfer matrices with respect to the Martin function

4.4.1. Growth at oo of positive harmonic functions on §2
Borichev and Sodin [16] proved the following lemma:

Lemma 4.14 (Borichev—-Sodin). Let h be a positive harmonic function on C\ E such that
h(Z) = h(z). The function can be decomposed as h(z) = CM(z) + h(z) where C >0, h
is a positive harmonic function on C \ E, and

hiiy) _
S M) 0. (4.28)

It has the following corollary:
Corollary 4.15. If f is an outer function on Q, |f| > 1 and |f(2)| = |f(2)|, then

lim log| f (iy)|

= 0.
y—oe  M(iy)

Proof. By Lemma 4.14, there exists C' > 0 such that

. loglf(iy)|
¢= M (iy)

and log|f| > C M. This implies that

1 iCO(z)
el < €9, (4.29)

If C >0, e“®(3) is a singular inner function and 1/f an outer function, so (4.29) would
give a contradiction. O



48 R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636

We will apply this corollary in order to compute the M-exponential type of the transfer
matrix A*(z, x) of a reflectionless canonical system, see Lemma 4.21. In this section we
provide a systematic approach to the Borichev-Sodin kind propositions, see Theorem 4.19
below.

We recall briefly the construction of the Martin boundary [48]. Consider for w € Q
the Green function with a pole at w normalized at some z, € ,

G(z,w)

M(z,w) = Gl

(4.30)
The Martin boundary 9 () is the collection of limits of sequences M (z, w,, ) for sequences
of w,, € Q which eventually leave every compact subset of 2. The limits are considered in
the sense of uniform convergence on compact subsets of €2; in particular, they are positive
harmonic functions on 2. The construction of the Martin compactification extends the
definition of M(z,w) to w € 2 = QU OMQ.

Let M denote the subset of the Martin boundary consisting of minimal harmonic
functions. Since 2 is a Denjoy domain, 974§ contains 1 or 2 points for each point of
EU {oc} [11]. We denote that correspondence by P : 9MQ — E U {co}. Every positive
harmonic function on €2 has a unique representation

h(z) = / M(2, w) don(w) (4.31)

oM
with a unique finite measure o, on 9MQ.

Lemma 4.16. For any 6 > 0,

M(z,w)
sup sup ————— < o0. (4.32)
221 weada M(2)
arg z€[6,m—4]

Proof. Recall that all Martin functions are normalized at the same internal point z, € €;
however, by the Harnack principle, the desired conclusion (4.32) is independent of the
choice of z,. For the proof, let us fix z, = 107, so that
G(z,w)
M ’ = 717 €.
(z,w) G(104, w) v
The key is the use of the boundary Harnack principle for Denjoy domains [3,32]. Let us
use the notation f < g if f < Cg for some universal constant C and f ~ g if f < g and

g < f. For instance, for any § > 0, by a Harnack chain with constant complex modulus
of size depending only on ¢,

M(z,w)  M(ilmz, w)
M(z) = M(ilmz2)
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so to prove the nontangential bound (4.32), it suffices to prove the normal bound for
z =1y, y > 1. It will also be more convenient to apply an inversion and prove

M
sup  sup 7(2%10)

12 < o, (4.33)
y€(0,1] weoMQ M(’Ly, 0)

where 0 € OMQ.
By [32, Thm. 3], Denjoy domains obey the following boundary Harnack principle: if
r >0, for all z,y € C such that |z| <r, |y| <r, and ¢t > 10r,

G(z,it)  G(y,it)
G(z,2ri) — G(y,2ri)’

We apply this to r € (0,1] and ¢ = 10 to conclude

G(10i,z) _ G(10i,y)
G(2ri,x) — G(2ri,y)’

Ve,y € Cy ozl <yl <.

Letting  — r¢ and letting y — 0 gives
M(2ri,ri) ~ M(2ri,0), r € (0,1]. (4.34)
For = € 0M(, by the Harnack principle applied in the domain 2\ {ri},

M(z,ri) _ M(2ri,ri) 2 — ri] = r
M(z,z) — M(2ri,z)’ 2

By the maximum principle,

M (2ri,ri)

M(z,ri) §M(z’1‘)m,

|z —ri| >

since on the domain {z € Q | |z —ri| > r/2}, the left-hand side achieves its maximum on
the circle |z—7i| > r/2 and the right-hand side achieves its minimum there. In particular,
using z = 10i, we conclude M (2ri,z) < M(2ri,ri) for r € (0,1]. Combining this with
(4.34) gives M (2ri, x) < M(2ri,0) for r € (0,1], z € OMQ, which implies (4.33). O

Lemma 4.17. For any w € M Q with ©(w) # 0o and any & > 0,

M
arg z€[0,m—4] (Z)

Proof. Since w(w) # oo, the Martin function M (z,w) is subharmonic in some neighbor-
hood of oo and therefore bounded there. Meanwhile, the symmetric Martin function has
a Riesz representation
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xr—z

r — &,

M(z) = M) + [ log a9(x)

with & € R\ E and supp? = E. From this representation, by monotone convergence,
M(iy) — oo as y — oo. By the Harnack principle applied with Harnack chains of
fixed size along an arc with fixed |z|, this implies that M(z) — oo as z — oo with
argz € [0,m—4]. O

It is a general fact about Denjoy domains that all elements of P~!({oo}) can be
obtained as limits of M(z,w,) for sequences w,, = iy, — £ico. Thus, let us denote the
corresponding elements of the Martin boundary as +ioco. In this notation, the Akhiezer—
Levin case is precisely the case +ico # —ioco.

From now on, let us assume that the normalization point z, from (4.30) is in R \ E.
Then the symmetric Martin function is

M (z,+ic0) + M(z, —ico)

M(z) = 5

Moreover, in the Akhiezer-Levin case, M(z, —ico) = o(M(z,+ic0)) as |z| — oo with
argz € [0, — 4], so Lemma 4.17 implies that (in both cases):

Lemma 4.18. For any w € OMQ with w # +icc and any § > 0,

M
arg z€[6,m—4] M(Z’ +ZOO)

Theorem 4.19. For any positive harmonic function h on Q0 and any 6 > 0,

: h(z)
lim —_—
2] =00 M(z, +ic0)
arg(+z)€[d,7—4d]

 on(fioe)) = gy

Proof. The second equality is general Martin theory [5, Chapter 9]. For the first, use
(4.31) to write

) h(z) ) M(z,w)
1 = | ——=d .
\z\linoo M(Z) \z\linoo / M(z) Uh(w)
arg(+z)€[d,7—0] arg(+z)€[s,m—dlaM

By (4.32) and since oy, is a finite measure, the dominated convergence theorem can be
applied with a constant majorant. Thus, by Lemma 4.18, this gives

h(z .
|Zl|ii>nOO J\/[((z)) = / X{+ioo} (W)dop(w) = op({£iocc}). O

arg(+z)€[d,m—4] aMQ
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This has a corollary for symmetric functions h and the symmetric Martin function.
The proof is immediate, by considering separately the A-L case and the non-A-L case:

Corollary 4.20. For any positive harmonic function h on Q which obeys h(z) = h(z),

: hz) _ .o h(z)
1 = inf 0 .
|z|1£>noo M(z) foers M(z)’ vo=0

arg(+z)€[d,m7—4]

4.4.2. Growth at co of the transfer matrices
Theorem 4.21. For all (o, 7), all £ >0, and all 6 > 0,

log|[2A%7 (2, )|

lim M Q)

2=500
arg z€[0,m—4]

=0 (4.35)

Proof. We use the representation (4.17). Since detIl, , = 1 for all (a,7), it follows
that |[II, .|| > 1. Each entry (Il ;);; can be majorized by an outer function a;; with
laij| > 1: it suffices to define a;; by its boundary values on 05, log|a;;| = log, [(Il4 7 )4j]-
Then consider the outer function f defined by its boundary values log| f| = max{log|a;| |
1,7 € {1,2}} on 99 (well defined because the pointwise maximum of integrable functions
is integrable). Then |a;;(2)| < |f(2)| for all z € Q so

2
0 < log||T.|| < log > as;| < log(4]£])
i,j=1

and since f is outer and |f(2)| = |f(2)],

L loglf(2)

=0.
g Selom—s) M)
Thus
log||[ILq -
P CTI
arg z€[0,m—4] (Z)

for all (o, 7) € m(Q)* x T.
Since I1,, - is a 2x 2 matrix and det I, - = 1, [[TI; % || = ||, ||. By submultiplicativity
of operator norm,

Hma,T

| < IS Ao -6, (DN Ma—per |

and
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[Aez)—0, (Ol < a2 ITLL, , |

a—nl,T

so (4.35) follows from

log||Ae(z)—o, (0|l

lim M)

Z=300
arg z€[0,m—4]

=/( O

Proof of Theorem 1.11. By Theorem 3.14, all reflectionless canonical systems with spec-
trum E correspond to Schur functions s'", and by Theorem 4.10 and de Branges’ unique-
ness theorem, they all correspond to j-monotonic families of the form A*7(z,£), up to
reparametrization. By (1.18) our construction obeys (4.35), so 4 = pu® and a = 7a®. O

5. Fourier transform

In this section, we construct unitary Fourier transforms. The basic strategy is stan-
dard: we construct norm-preserving maps on dense sets and show that their continuous
extensions are unitary (compare [53,54]). We start by working on the spaces Ko ()
and compute inner products in order to obtain the norm-preserving properties. Eventu-
ally, the space K,ico () will correspond to the interval [0, £] on the target Hilbert space,
so working on this space is related to working on compactly supported functions.

5.1. Reproducing kernels on K ico (o) and involutions

Lemma 5.1. If A is inner, AA(zo)k:go_BA is the reproducing kernel for AH?(a — Ba).
Proof. For any f € AH?(a — Ba),

(188G ) = (£ BGke ) = ) (£) () = 1) @

Lemma 5.2. If A is inner, the function kg, — AA(zo)kg‘ofﬁA is the reproducing kernel for

Kal(a).

Proof. The function k2, — AA(zo)kS; P4 is obviously in H?(a). Moreover, for any g €
AHQ (Oé - ﬂA),

(9,k%, — AB a0 ks #2) = g(z0) = (3, Bleoks ) = glz0) = Alz0) () (20) = 0,

s0 k2 — AA(20)k2 P2 € Ka(a). Finally, for any f € Ka(w),
(f kS, — AA(20)kS 7o) = (£, kS,) — (f, AA(20)kS, 72) = f(20) = 0. O

Note, in particular, that evaluating this reproducing kernel at zg gives:
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Corollary 5.3. If A is inner then k2, (z0) > |A(20)[?k2 P2 (20).

Lemma 5.4. If f € Ka(«), then

for some h € Ka,(Ba + B — ).

Proof. By Lemma 4.1, f, = £33 for some g € Ka(Ba+Bw—a). Applying the involution
(...)s and using Wy = W gives f, = A - Note that g € Ka(Ba + S — a) implies
h=gs€Ka,(Ba+Pw—a) O

In particular, we will apply this to A = €“®. By Lemma 5.2, the function

ZO,Z = k2 — ei@(@*@(%))kgo*nf

is the reproducing kernel in KC.ico (). We also define

f/zf; — el£(®+@(Zo))W( n€+ﬁw ),
=W ( ®+®(zo))(kné+ﬂw @), — (kfow—a)b) ) (5.1)
This is a kind of dual reproducing kernel in KC,ice (a):
Lemma 5.5. The vector Vzao,e is an element of Kico (o) and
W(20) f5(20) = (£, V. sb)s Vf € Keieo (). (5.2)

Proof. By Lemma 5.4 with A = Ay = ¢¥®| ‘7zao,£ € K.ieo(a). Moreover, for any f €
/Ceuze (a),

1 ¢ ;

<f7 M@W(sz,JrﬂW a)b> _ < zé@Wf Vn +ﬁw a> _ ezﬁ@(zo)w(zo)fb(zo)

by the reproducing kernel property of VZZZ;BV"*O‘. Dividing by e*©0) gives (5.2). O
We now compute inner products of reproducing kernels and dual reproducing kernels.

Lemma 5.6. For any z1,22 € Q and {1,053 > 0 and with £ := min(¢y, {s),

<Vzolé,£1’vtzfz,ég> _ ka(ZQ, Zl) o eif(@(zz)—@(m))ka—né(z27 Zl) (53)

<Va Ve > _ W(ZQ) (ew(@(z2)+@(21))(kgf"‘ﬁw_o‘)b(zQ) — (kflw_a)b(ZQ)) (54)

21,01 V22,02

<Vo¢ f/oz > — e—i[((—)(ZQ)—@(Zl))k-gf-Fﬁw—Ot(ZQ) _ kflw—a(z2) (55)

21,017 V22,02
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Proof. To prove (5.3), assume without loss of generality that ¢; < £5; the other case re-
duces to this by complex conjugation. If £; < ¢5, both functions are elements of K ic,0 (a)
and V7 , is a reproducing kernel so
<Vzof,zla Vzi,zﬁ = Vz(f,zl (22)-
Evaluating this by definition gives (5.3).
To prove (5.4) if £1 <y, use V2 , € Kiryo(a) C Keitze () to compute

(Vi Vi) = Vi o (22).

Evaluating this by (5.1) gives (5.4) for the case ¢1 < ¢5. If {1 > £5, by a direct calculation
using (5.1),

« (o _ _ila(04+0(z1)) yra—nlz 002
VZl’el T Vs e ! ‘/zl,llffg €e H (Oé - T/KQ)?

so this vector is orthogonal to V¥ , . Thus,
2,42

<V201[,£17Vza > = <‘7z01£,227 Vza >’

2,02 2,02

so the calculation for ¢; > ¢5 reduces to the case ¢; = ¢5 computed above.
To prove (5.5), assume without loss of generality that ¢; < ¢5; the other case reduces
to this by complex conjugation. Using Lemma 5.5,

(V0 Vi o) = WI(22) (VS )b (22)

and evaluating by (5.1) completes the proof. O
5.2. Fourier transform (general case)

Our goal is to prove Theorem 1.2. We will begin constructing the Fourier transform
F* by assigning how it maps certain functions and extending by linearity and continuity.
We assume that 6, = 0 (this is only for notational convenience, see Remark 5.11).

We denote vector functions

fa(2)
9a(2)

(0 D)Ta(z) = (K(z) K2(2))
(1 0)7a(z) = (n®:K% 7.OKJ)

Let us point out that

Fa(2)U(2,0) = farne(2)e'®),
9a(2)A%(2,0) = ga—ne()e O,
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SO fa—ne(2)e™®) and go—e(2)e " *) are Weyl solutions at +o0o and —oo for the canon-
ical system.
We begin constructing the Fourier transform F< by prescribing that it maps, for

zo € Qand £ >0,

e} * —10(zo Py (= a—pPa
P iAW fai(z0))" e~ g0 1) 5 VEZE s (5.6)
* _19(z Dy (= (7a—Bao
F /A (1) (go—mi(20)) "€ x (0,0 (1) ﬁ%vmf (5.7)

The next lemma ensures that this preserves inner products:

Lemma 5.7. For all z,zg € Q and £ > 0,

Aoy (D Ta—n(2) A% (1) Ta—ni(20) Ao (z) (1) du® (1)

o —

o ®a(2) (Rele0) | (Vi S VI (Ve VT
zi\zo+i ) \ (Vo fe v Pey (ve fe v o

z0,¢ z0,¢

Proof. By the canonical system equation,
0 A%(z,0)j = AY(2, ) (izA” — B?).
Since A% is self-adjoint and B® anti-self-adjoint, this implies
JORA (20, )" = (120 A® 4+ B*)A%(20, )"
Computing 0, (A% (z, £)jA*(20,£)*) by the product rule and integrating gives

L

/ A (2, 1) A (DA (20, 1) dpi® (1)

2052 0 )

2720

Multiplying by 7, (z) on the left and 7, (20)* on the right and using (4.16) gives

V4
/A@(z)(l)%—nz(Z)A“(l)%_nz(zO)*A@(ZO)(l)* (1)
0

Ta(2)3Ta(20)" = Aeo(z) () Ta—ne(2)5 Ta—ne(20)" Ao(z) ()

=1

Z—E()

Using Lemma 2.22 twice for the right-hand side, and comparing entries with the inner
products computed in Lemma 5.6 completes the proof. O
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Lemma 5.8. For any L > 0, F“ extends by linearity and continuity to a unitary operator

VAL2([0, L], C2,dpu®) — Kyize (o — Bs). (5.9)

Proof. We begin by proving that the left sides of (5.6), (5.7) with £ € [0, L] have a dense
span in VA®L2([0, L], C2,du). Namely, let f be in the orthogonal complement of the
span. Then for all z € Q and ¢ € [0, L],

¥4
/ O f () A F(1) dp® (1) = 0,

4
[ e g () VAT du 1) =
0

Combining these equations in matrix form gives

l
/ Mooy ()T (2)/AT D F (1) dpu® (1) = 0.

Since £ € [0, L] is arbitrary, this implies that for u®-a.e. I € [0, L],

Ao(z)(2) 2)V/A> (1) f(1)

and therefore vA® f* = 0 pu®-a.e. Multiplying by arbitrary § € L2(R, C2, du®),

/ﬁ\/ﬁf*duzo

so f corresponds to the trivial functional on the Hilbert space VAXL2([0, L], C2, du).
Therefore, f = 0 in VA*L2([0, L], C2, du®).

Right sides of (5.6), (5.7) are elements of K.z (a — ). Moreover, since V- Lﬁq’ are
reproducing kernels of K.ize (« — B¢ ), orthogonality to all reproducing kernels implies
that the function is trivial. Thus, the right sides of (5.6), (5.7) have a dense span in
]CeiL@ (a - ﬂcp)

By Lemma 5.7, the map F® preserves inner products between vectors in (5.6), (5.7).

By linearity and continuity, it extends uniquely to a unitary operator (5.9). O

Lemma 5.9. 7 extends by linearity and continuity to a unitary operator

FoNVAL2([0,00), C2, du®) — H (o — Bo). (5.10)

This operator can be represented in the form (1.12) with £ = 0.
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Proof. The union UpsoK,ico ( — ) is a dense subset of H2(a — fBs), since

() (H2(a = Ba) © Koo (o — Ba)) = [ €OH* (o — B — £n) = {0}. (5.11)

£>0 £>0

Thus, F* extends by continuity to a unitary operator (5.10). O

Remark 5.10. By continuity, taking ¢ — oo on both sides of (5.6), (5.7) shows that

7o s AT fa(z0))e O g (1) > VIR i

20+ 1
Denote for zo € Q the functions
~ 2o+ 1 .
kS () = | —=———¢i©(=0)¢ A2(0)(fa 4> 0. 5.12
2,0) = (ot e ) VD facel0) (5.1

Since F' 0‘]2130 = k‘;ofﬁ‘i’ and the reproducing kernels are dense in H?(a — g), the span of

the set of vectors {I%Zao | zo € Q} is dense in vV A*L2(]0, 0), C2,du®). Therefore, (1.12)
reflects the identity

f(z2) = (f,k27"), VfeH (a—Bo)

Proof of Theorem 1.2. Passing from zero in Lemma 5.9 to an arbitrary L in Theorem 1.2
is a matter of change of the variable £ — ¢ + L. It remains to show that

clos{Urer_e¢"®H?(a — B — L)} = L3g,.
By Theorem 2.11 we pass to orthogonal complements and use (5.11). O

Remark 5.11. Let us show that the assumption Re©(i) = 0 is not essential. Define
©1 = © +ib,, 0, € R. Define now (k1)2, € VA*L2([0,00),C2,du*) by (5.12) with
respect to ©1. We get

1(R2)2 117 = IR I1° = 7% (20, 20)
and therefore a Fourier transform with respect to a new ;.
5.8. Specialization: A-L condition fails

By definition

I .
lim 12O0) _
y—00 Y
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By Theorem 4.21 and the Krein-de Branges formula (4.25),

L
[ VImTaORae @ <o,
0
that is, |a(¢)| = 1 p*-a.e. Therefore f € VA®L?(R,C2, du®) can be represented as
70 = 55 (o) 300 9 € PR C )
\/5 _a<£) g ) g 9 , A .

This is an isometry; since L?(R,C?,du®) is closed, so is vV A*L?(R,C2,du®), and (1.12)
is reduced to

FiE) = g [ TR G0 )

where, recall, for a fixed a the following limit is well defined for u“-a.e. £

¢*(¢) = lim sf_*ng(iy).

Y—o

We point out that in the case under consideration two measures u® and u? for the same
spectrum E are possibly mutually singular for certain «, 5 € 71 (2)* (see Theorem 6.23),
even though in the average all isospectral measures form d¢, see (4.27).

5.4. Specialization: A-L condition holds

When A-L holds, it is common to normalize the complex Martin function so that

lim Im O (iy)

Y—>00 y

=1

By Theorem 4.21 and the Krein—de Branges formula (4.25), for all L,

L L
1= [0, . o
[ a0 = [ Vi @Pae ) = L.
L+ [e(0)]
0 0
It immediately follows that:

Lemma 5.12. If A-L holds, Lebesgue measure is absolutely continuous with respect to u®;
in particular, [¢*(€)| < 1 for Lebesgue-a.e. (.

However, we conjecture that the converse is not automatic:



R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636 59

Conjecture 5.13. There exists a Dirichlet-reqular Widom set E with DCT such that A-L
holds and p® has a nontrivial singular component with respect to Lebesque measure for
some a.

We begin by working in the general A-L case, with results that hold regardless of
whether p® has a nontrivial singular part. The results in this section imply, in particular,

Lemma 1.3 and Theorem 1.4.

Lemma 5.14. For u®-a.e. £ the limits (1.14) exist. Moreover

[o% «a _ 1+ |ca(é)|2 zZ41 . i 0
(L (2,0) LY(z,0) =Y RG) By fs(2)/A (z)(o tz), (5.13)

where t1 = ®(ioo) € T and ta = v(ico)P(ic0) € T.
Proof. Recall that

Ko
¢*(f) = lim (W)

_ a e
y—+oo Ka—ni(iy) fa - (Kﬁ K ) '

b

Also
ko (2 iy) = z+i il +y) K(2)K*(iy) — K{f(2)K§ (iy)
T V38,(2) VR, (iy) 2ty
Thus for 8 = o — nf we have
Y (= = lim —kﬁ_ﬁq’(sz) = zt3 B z) — ¢¥ B z
R N T T T O B s R

For k*~P2 (2, —iy) we have

po i oy — 2T 0=y K@K (i) — Ky ()K" i)
YT VR9,() Vs, (—iy) -

Therefore, since Kf(é) = KP(z) and ®4(2) = ®(2), we get

_ z+1
= K (i) K (—iy) KO 2(2)0(i00)

(=K (2)e"(0) + K (2))

Combining these computations we obtain

. . Zti 1 —c(0)) (B(ix) 0
(L (z,0) L+(Za€))_mfﬁ(z)<_ca(£) cl()>( (() ) <I>u(z'oo)>
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that is, (5.13). O

Lemma 5.15. For the matriz (1.15), the following limit exists

N o _ 1] (P

Proof. As before § = a —nf. By (5.13) and (2.11) we have

T+ [ea(OP z4i (= 0 oy 0
@ = (Z) (&4 .

Using (2.19), we get

L L[ (O (24 2 @ By
det L% (2, () = 4kﬁ<i,i) (@n(z)) "Nz)z—iz+1i (300)
I R R A —— T 1
=01 2—i" NG T weaae )

In the normalization lim,_,, ©'(iy) = 1 we have (5.14). O

}H‘ETZ”CM generates a closed subspace L%(R,C?, (du®)ac) of

L?(R,C2,du®). The Fourier transform restricted to this subspace can be rewritten as:

The measure (dpu®)ac =

Theorem 5.16. The a.c. part of the Fourier transform is unitarily equivalent to the norm-
preserving map FZ, : L*([0,00), C?) — L2, given by

L i O(z)¢
/e (L%(2,0) L%(26))§(0)de, § € L*(]0,00),C?).
0

Proof. According to (5.13) and (5.14)

1 o 14 [ (O 24 B ” ty 0
0 neen = R VED (1)

with constants ¢; € T. On the other hand due to (1.12)

oo

a  p 2) = z+1 ei@(z)f . o R 1d|>|c (£)|
Fe DD =Fa s / ot I AUt

T i0()t
:/ [0 1]£%(z 0)3(0)de
0

<o

Q
—
(S
~—
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o [T OF (50
a0 =i (0 1) fo.

||§||2L2([o,oo),<c2) = ||J?H%2([o,oo),62,dw) = ||‘7:af|‘?2%2(a—/3@)' =

with

Note that

The best known sufficient A-L condition is the finite logarithmic gap length condition
(1.13). In the end of this section we show that (1.13) implies that pu® is absolutely
continuous for an arbitrary «, moreover with a uniformly bounded derivative. Before
that, we would like to comment on its relation to the concept of Ahlfors’ analytic capacity,
see e.g. [64].

Recall that for an arbitrary domain € we say that the boundary of this domain has
positive analytic capacity if there exists nontrivial single-valued w(z) € H& such that
w(zg) = 0 for a fixed zp € 2. The analytic capacity w.r.t. zo is given by

C’;?)(Q) = sup{|w’(z0)| : |lwllge <1, w(zo) = 0}. (5.15)

Strict positivity of the analytic capacity, C’;‘é (Q) > 0, implies strict positivity of
(potential-theoretic) capacity, but not vice versa. It is evident that a non trivial w € HZ
such that w(zg) = 0 allows a factorization

w(z) = @z (2)wn(2)

where ®,,(z) is the complex Green function in the domain. Respectively w; €
H&(—Ps.,) and the extremal problem (5.15) can be reduced to the extremal problem
for bounded functions with a given character: find

sup{|w1(20)] : w1 € HY (—Ps.,), (w1l <1} (5.16)

We restrict the further discussion again only to the case of Denjoy domains. Note that
the analytic capacity in this case is closely related to the Lebesgue length of its boundary
E, see e.g. [64, §8.8]. It is natural to raise the question: how to restate the problem (5.15)
for a boundary point of the domain, say co € E? Having in mind (5.16), this problem
has the following setting.

Problem 5.17. Let 2 be a Denjoy domain, @ = C \ E, and co € E. Let O(z) be the
symmetric complex Martin function w.r.t. co and 7 be its additive character. Does there
exist a non trivial additive character automorphic function Ny(z), N1(v(2)) = N1(z) —
n(), with a positive imaginary part Im N1(z) > 0 in the domain? In other words, does
there exist a single valued function N(z) such that Im N(z) > 0, z € Q, and
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lim Im N (iy)

. 1
y—oo Im O (iy) >0 (5.17)

Proposition 5.18. If the condition (1.13) holds, there exists a single valued function N (z)
with positive imaginary part in the domain such that (5.17) is satisfied.

Proof. We define N(z) in the upper half plane by its argument on the real axis

0, z€E, >0
xn(r) =191/2, z e R\E
1, x€E <0

The function (up to a positive constant multiplier) is of the form
1 __= d 1 (;— z )s nxdz
N(z) = ef]R(z—z H—mz)XN(x) T _ o7 Jrelsms e senade

By definition Im N(x 4 i0) = 0 for a.e. € E. Assuming logarithmic finite gap length
condition we obtain a finite limit
Im N (iy) |o|do

oy = lim 22V _ —dhe B S, (5.18)
y—+00 Yy

Since N(z) assumes pure imaginary values in gaps we get an extension of this function
in © due to the symmetry principle N(zZ) = —N(z). Thus Im N(z) > 0 for all z € Q.

In other words we get an affirmative answer to the question, which was posed in Prob-
lem 5.17. Due to (5.18) we get a function Ny(z) = iN(z)f@(z) such that Im Ny (z) > 0
for z € Q2 whose additive character is —n. O

Corollary 5.19. If the log-finite-length condition (1.13) holds then u® is absolutely con-
tinuous with uniformly bounded (in £ and o) derivative.

Proof. Now in addition to the fact that e~ ™ ©@fKe=1¢(5) is monotonically decreasing
we have that the function e~ 1™ N1 ()¢ ¢ a+nf(4) is also decreasing, by Corollary 5.3 applied
to A(z) = M) Thus the directional derivative 0, log K(i) = 4 log K*F(i)|—g
obeys

—ImO(i) < 0, log K(i) < Im Ny (%).

In other words

0 < dp(0) < Im N (3) _ e%ﬁk\s% o8 1 / sgnz dx
- ae  — ON 2 1+ 22

R\E
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6. Almost periodicity of coefficients
6.1. Almost periodic measures
A complex measure v on R is said to be translation bounded if for any compact S C R,

l”|ls := suplv|(z + S) < 0.
zeR

In this notation, the measure |v| is said to be uniformly continuous if limr,jol|v||j,z] = 0.
Almost periodicity of translation bounded measures is usually defined by convolution
with some family of test functions.

Definition 6.1. Let v be a translation bounded measure on R and X a set of test functions
on R. We say v is an X-almost periodic measure if for all h € X, the convolution

(h# ) (0) = /h(ﬁ ~ 1) dw(l)
is a (uniformly) almost periodic function.

In particular, C.(R)-almost periodicity is commonly called strong almost periodicity
[4,26], and we will consider the stronger notion of PC.(R)-almost periodicity, where
PC.(R) denotes the set of piecewise continuous compactly supported functions. With
uniform continuity, these properties are equivalent.

Lemma 6.2. If v is a complex measure on R such that |v| is uniformly continuous, the
following are equivalent:

(i) v is strongly almost periodic;
(ii) for every L >0, v((¢,£+ L)) is an almost periodic function of £.

Proof. (i) = (ii): Fix L > 0 and define the sequence of functions h,(z) = max(0,1 —
ndist(z, [0, L])). Then

|(hn # v)(2) = (xqo,27 * ¥) ()| < [|([z, 2+ 1/n]) + [v|(fe — L = 1/n, 2 — L])

Thus, by uniform continuity of [v|, h, * v converges uniformly to x[o,z] * v as n — oo.
Since the functions h, * v are almost periodic, their uniform limit x[o,z) * v is almost
periodic.

Conversely, assume that (ii) holds and fix h € C.(R). Take a sequence h,, of piecewise
constant functions with supph,, C supph which uniformly approximate h. Then h,, * v
are almost periodic, as linear combinations of almost periodic functions. Moreover, for
all z,
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[(hn 5 v)(2) = (B v) ()] < [[hin = h|oo|v|(supph),

S0 h, *x v converges to h * v uniformly as n — oo. It follows that A * v is almost periodic,
as a uniform limit of almost periodic functions. Thus, v is strongly almost periodic. O

Our proofs will require another perspective on almost periodicity in terms of linear
sampling along a compact torus. We will use the following terminology:

Definition 6.3. For a set of test functions X, the measure v is an X-almost periodic
measure with frequency vector n € R* if it is a member of a collection {v®}, e of
complex measures on R indexed by a € T°°, a torus of countable dimension with the
product topology, with the following properties:

(i) (uniform local boundedness) For every compact S C R, sup,cpe|v*](S) < cc.
(ii) (translation is a linear action on the torus) The vector 1 encodes translation in the
sense that

v*((0,L]) = v "((, ¢+ L)),  VaeTVLeRVYL>0. (6.1)
(iii) For any h € X, [ hdv® is a continuous function of a.

Clearly, Definition 6.3 implies Definition 6.1. The properties in Definition 6.3 can also
be reconstructed by integrating measures on intervals:

Lemma 6.4. Let {v®},cT~ be a collection of complex measures which is uniformly locally
bounded, obeys (6.1), has no point masses, and for any L > 0, v*((0, L]) is a continu-
ous function of a. Then {v*} is a collection of PC.(R)-almost periodic measures with
frequency vector n.

Proof. We prove that a + [ hdv® is continuous for successively larger classes of test
functions h. By assumption, this holds for h = x(g,z)- By translation, it holds for h =
X(L1,L,) for any Ly < L. Since v are continuous measures, it holds for the characteristic
function of any bounded interval. By using linear combinations, it holds for piecewise
constant compactly supported functions.

If h is a piecewise continuous compactly supported function, it is uniformly approx-
imated by piecewise constant compactly supported h, with supph, C supph. Then
J hy dv™ are continuous in . Moreover, for all «,

‘/hndyo‘ —/hdufl

s0 [ hpdv® converges to [ hdv® uniformly as n — oo. It follows that [ hdv® is continuous
ina. O

< [1hn = hlloo|v®[(supph),
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We will also need an abstract lemma:

Lemma 6.5. Let {v*} be a collection of PC.(R)-almost periodic measures with frequency
vector n. For any L > 0, if g: T>° — C is continuous, then the function

L

/gafnl Ydr (1)

0

18 continuous in o.

Proof. Assume that «,, — «. Since g(a,, — nf) = g(a — n¢) uniformly in ¢ € [0, L] and
by uniform local boundedness, it follows that

L

L
/g —nl)dv (¢ /ga—nfdy "(0) =0, n — oo.
0 0

Meanwhile, by applying Lemma 6.4 to the function h(£) = x(0,](¢)g(a—n¢), we conclude
that

L

L
/ga—néduo‘" /ga—nﬁdu (¢) =0, n — 00.
0 0

Together, these conclusions imply V(o) — V(o) asn — co. O
6.2. Almost periodicity in A-gauge

Our next goal is to show that the coefficients of the constructed canonical systems in
A-gauge are almost periodic.

Lemma 6.6. The family {1u®}acx )+ i a family of PC.(R)-almost periodic positive
measures with frequency vector 7.

Proof. It has already been proved that the measures u® are positive, continuous measures
and (1.9) can be written as

u®((0, L)) = u* (6,0 + L]) = Xy (@)

where

0

Xp(a) = LO; — logKa—()
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By DCT, K*(i) is continuous and positive in «, so X, is a continuous function of a.
After translation, we can assume that the compact S is in (0, L] for some L. Since u®
are positive measures, by continuity and compactness,

sup p%(S) < sup (o) < oo.
aem (Q)* aem (Q)*

Thus, by Lemma 6.4, the claim follows. O

Remark 6.7. Similarly to almost periodic functions, almost periodic measures have an
average E(u) with the property that E(h * pu) = E(u) [ h(1)dl for suitable test functions
h. In our case, (6.2) implies that the measures u® have average 6;; compare (4.27).

Lemma 6.8. The family {a®du®}acx, () is a family of PC.(R)-almost periodic complex
measures with frequency vector n.

Proof. The measures du® are uniformly locally bounded and continuous, and since |a®| <
1, so are the measures a® du®. The representation of translation follows from (1.11). From
(1.11), we obtain

[arwaw = [ @0 - 5 (570 - 50)) (6.3

Since s (i) depends continuously on the character, so does (6.3), by Lemma 6.5. O
In particular, this proves Theorem 1.1(c).
6.3. Passing to the Dirac gauge

6.3.1. The gauge transform

Not every canonical system can be transformed to Dirac gauge (1.22). We will de-
scribe a transformation and note the requirements along the way. Applying the Krein—de
Branges formula (4.25) to Dirac gauge shows that the variable ¢ for a canonical system
in the Dirac gauge is equal to the exponential type of the transfer matrix D(z,t). That
is t = ¢ in our notation.

Thus, to pass from A-gauge to Dirac gauge, we first pass to derivative w.r.t. £, which
we denote by (...), and obtain the system in the form

A(z,0)] = 0A(z, )] = A(z, £)(izA(¢) — B(£))ju(€).
Note that now det(i(€)A(€)) = 1. We use a transformation

D(z,0) =UO) " A(z, OU(L), U(L) € SU(1,1).
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Right-multiplication is a gauge transformation; left-multiplication ensures ©(z,0) = I
and affects the Schur function. We have

D(z,0)j = U0)2A(z, OUL)F + U0)1A(z, OU() ]
=U(0)""A(2,£)(izA(€) — B(0))n(€)jUL)j + D (2, OOU) ' U(L)j
=D (2, OU) " (izA(l) — B)aO)U0)*) " +D(z, OUL) ' U(L)5.

By choosing

we get a canonical system in a Dirac (D) gauge

D(2,6)j = D(2,0)(i=] = Q(0), QL) = AOUL) BOUO)*) ™ —UE) " UL)j.

We point out that ¢(¢) should be differentiable to this end. We automatically have the
normalization tr Q(¢)j = 0. In addition one of standard normalizations [45] requires
tr Q(£) = 0. To this end, generally speaking, we need an extra diagonal gauge transform

e~ (0) 0
D1(z,0) = D(2,0Uy(0), Uypl) = ( 0 ew(g)) . ¥(0)=0.

We get a canonical system

D1(2,0)j = D(=,0):1(izI = Q1(0), Qu(6) = Uy (6) QU Uy(0)") ™" — b (O)1.

Thus 1(¢) should be chosen as the integral

DO | =

l
() = / tr Q(0)dl.
0

Note that almost periodicity of ¢(¢) and ¢(¢) does not necessarily imply almost periodicity
of the quantity %) related to the integral [12].
We arrive to the following proposition.

Theorem 6.9. Let 2(z,¢) be the transfer matriz of a canonical system in A-gauge with
parameters { (L), a(f)}, where £ is its exponential type. If u is absolutely continuous and
a(l) is differentiable, then it can be transformed to a D-gauge,

D(z,0)j = D(z,0)(iz] = Q(0)),

where
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B 1 0 2e(0) + ¢(¢ Im (¢(4)e(£))
A0 = TP <—<2c<e>+e<e>> O )> T e L O

With an extra (canonical form) normalization condition

@1(2,6)] = @1(2,6)(22[ — Ql(g)))7 tI‘Ql(f) = 0,

the matriz coefficient Q1(€) is given by

1 0 e*(0(2c(0) + ¢(0))

with

l _
[ Im (c(0)e(0))de
o ‘/ - [cOF

Proof. It remains to compute Q(¢), Q1(¢) and 1 (¢). Recall

. Lt 1 0 2(0)
HOPO = T op T+ TP (—246) 0 ) |
We have
eyt = (5) (% §) (¢ §) =0 (S 5).
That is,
eyt ] 0 (0
fld IB(u) ! 1—[c(O) <2c(£) CO )
Further,
1 (0 —%), Re(w)
i (e )T

and we obtain

L 1 1 e\/0 -t Re (cc) . 1 ilm (¢c) —c
1 _ = -
Ut = (c 1) (a o)+1_|c|2~7 -2\ & —ilm(c)

Finally,

1 0 2c+¢) ,  Im(cc)
= . I.
o= (Ledvy BT ) G
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6.3.2. Logarithmic gap length condition and the first term in the asymptotics
We consider the logarithmic gap length condition (1.13).

Theorem 6.10. The limit values
lim R (iy)

Y—00

exist for all (a,7) € m(Q)* X T if and only if (1.13) holds. Moreover, in this case
R, ) i= =i lim R (iy) = [1 = 7 (i)™ o 7O (6.6)
represents a continuous strictly positive function on w (2)* x T.
Proof. We have
R (iy) = i|1 — Tsi(i)|efR(*@%f>“?i—yf)X”<@d5 . (6.7)

We choose (ag, 7o) such that % = a; for b; < 0 and z} = b; for a; > 0. In this choice
we get

y2— . n
RO (i) = i[1 — s (i) e (@ imin fen — 5% ) d¢

Due to the Beppo Levi Theorem

y y2 1€ldg [€]d€

un = .

yooo ) 2?4 y? &2 +1 &2 +1
R\E R\E

Thus existence of the limit implies (1.13).
On the other hand if (1.13) holds we get an integrable majorant for both summands
in the integral (6.7). In particular, for the second one we use

2 1, | <1
y <{ @] for y > 2.

24y T, fe > 1

Therefore we can pass to the limit and we get (6.6). Since the resulting value is continuous
in D € D(E), R(a,7) is continuous. O

Corollary 6.11. Let

R(a,1) — R(a,—1) +i(—R (e, 7)) + R, —1))
2+ R(a,1) + R, —1) '

[1]

(o) =
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If (1.13) holds, then the following limits exist and represent continuous functions in «
. afiN_ o

yhﬁrgo 59 (iy) = E(w),

Moreover

ylgr;o s% (iy) = Z(a). (6.9)

1
sup

acm (2)*

Proof. We have

< .
- Ep =

(6.10)
14 s (iy)s (iy)
R(a,1) + R(a, ~1) =2 1 .
(o, 1)+ Rle, =1) = 2 i 3o iy)s2 (iy)
Thus the limit
2 1 -1
lim 2_____ Rl F R 1) (6.11)
exists. Also
R(a,1) — R(a, —1) -1
5 =
Therefore

53 (iy) + 2 (iy)

y—oo 1 — 5% (iy)s (iy)

Jim. (s% (iy) + s* (iy))

2(R(a, 1) — R(er,—1))
= .12
3+ R(a,1) + Rla, 1) (6.12)
Similarly,
R(a, i) — R(cv, —1) s lim 59 (iy) - s (zy)
2 y=oo 1 — 5% (iy)s? (iy)
Therefore
, , , 2i(—R(a, i) + R(c, —1))
1 ¢ — s = . 6.13
Note that by definition (6.6) R(«, 7) is positive. From (6.12) and (6.13) we get (6.9) with
(6.8). By (6.11) we have (6.10). O

exists lim,_, o sy (iy) = 0.

In connection with Dirac operators the following normalization condition is natural.
Definition 6.12. We denote by Sp(E) the set of s, € S(E) for which the following limit
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Proposition 6.13. If (1.13) holds, then Sp(E) is a compact, which allows the following
parametric description

Sp(E) = {(SD)i’T =7T———=, (a,7) €m ()" x T} (6.14)

Proof. By Corollary 3.15, any sy € S(E) is of the form (s 1)~ (5§ 1)U for some
U € SU(1,1). If s € Sp(E), by Corollary 6.11, we have

(0 1)~ (E(a) 1)U.
Therefore U = V(E(a))U, for some 7 € T. The inverse statement is evident. 0O
6.3.3. Finite gap length condition and the second term in the asymptotics

The finite sum length gap condition with respect to infinity is (1.23). When (1.23)
holds, we can define

Tien) =3 (- 25%). (@) ==(D), DeDE)

Since the RHS is continuous in D(E), YT («, 7) is continuous on 71 (Q)* x T.

Lemma 6.14. If (1.23) holds, then

R*7(iy) = iR(«, T) (1 + éT(a, T)+o0 <§>> ) (6.15)
uniformly in m (Q)* x T.

Proof. (1.23) evidently implies (1.13), therefore the integral related to the second term

1
[[Em———

converges. For the first one we have

/ (5 i P %) X*T(E)dE — % /x‘”(f)df.

E4iy o,
SENTR

m

Since

(§>d§‘ <L [ €4y,

=2 2+ 92
R\E
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and the last integrand has an integrable majorant it tends to zero as y — co. We get

]' o, T 73 o, T 1
(@ = - [ <§>d5+o<y>

uniformly in (e, 7). Respectively, we obtain

RO (i) = iR(a, r)ei X7 O4(5)
which gives (6.15). O

Together with Corollary 6.11 we have the main conclusion on two term asymptotics
for s%(z) at infinity.

Proposition 6.15. If (1.23) holds, then

oy = Ei(a) o1 0
59 (1y) = E(a) + " + (y)’ y— (6.16)

uniformly in a. Moreover, Z(«) and Z1 () are continuous and can be given explicitly in
terms of R(a,7) and Y (o, 7). Respectively the Schur functions (sp)$" defined by (6.14)
obey

6.3.4. Almost periodicity in D-gauge
We now prove a more precise version of Theorem 1.14:

Theorem 6.16. Let QQ = C\ E be of Widom type and DCT hold. If E obeys the gap length
condition (1.23), then for an arbitrary (o, 7), (sp)y" € Sp(E) is the Schur spectral func-
tion of a canonical system (6.4) with almost periodic Q™7 (£). Moreover, the coefficients
are of the form

T =71E(a—nl), T =27E1(a—nl) —E(a—nl)). (6.17)

Proof. According to Proposition 6.15, the limit exists lim, o s (iy) = Z(«). Therefore,
the first relation (6.17) holds. By (6.10) and

¢
/5
0

we get that u®7 is absolutely continuous w.r.t. £, moreover

(o= nl;:rzduo"T(D

ﬁﬁ
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, 1+ |E(a —no)?
YT = — ——————. 6.18
Using the Ricatti equation (4.22) in the integral form we have
s371(2) = 5%(0) =
2
/ (ot ™)
B a—nl —H(a—mn 1
o/ (0 1= ()
e (el o)
a—nl —e=la—n 1
+o/(s+ I P R IE (si"”( >)dl
/ [ G )
_ -5 2)2(a—n
:7222/50‘ "(z) — (e —nl t dl
0(+ () ( )) 1—|:(Oé—’l71)|2
) [ S-S
2
1—|E(a = nl)]|
According to (6.16) we can pass to the limit as z = iy, y — oco. We obtain
¢ ¢
Ela—nl) —E(a) = Q/El(a —nl)dl — Q/E(oz —nl)dl.
0 0
That is, ¢*(¢) = E(a—n¢) is differentiable and moreover the derivative is almost periodic,

since we get the representation (6.17). O

Remark 6.17. As it was already mentioned almost periodicity of Q*7(¢) does not guaran-
tee almost periodicity of the phase function e?*() in the representation (6.5) for Q7 (¢)
in the Dirac gauge. It requires additional restrictions on the set E. A similar phenomenon
we will discuss precisely in the next section, where we will see that the logarithmic gap
length condition w.r.t. the origin (1.20) has to be accompanied by a potential theory
constraint (1.21). Note also that the translations

((SD)i(Z)’T(e)(Z) 1) ~ ((SD)i’T(Z) 1) D(z,¢) and
((SD)iI(Z)’Tl(Z)<Z) 1) ~ ((sD)i’T(z) 1)@1(2,5)

are respectively of the form

(a(0),7(0)) = (a —nt,7) and (ai(€),7(0)) = (o — nt, re~2¥(1)),
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That is, our choice of Q%" provides a conservation law 7 = const.

Remark 6.18. From another point of view absolute continuity of u® was discussed and
proved in the end of Section 5.4, cf. (6.18).

6.4. Passing to the Potapov-de Branges gauge

6.4.1. Criterion for almost periodicity
To pass from A-gauge to PdB-gauge we make the substitution

B (2, 0) = A% (2, O)A*(0, )L,

As a result we get the canonical system in PdB gauge,

4
B2, 0)j = j + iz / B (2, 1) HO (1) dp® (). (6.19)
0

This canonical system is determined by the positive matrix measure H*du®. We denote
by (...)" the derivative in z; in particular, (6.19) implies

L

B0, ) = i / H(1)dp (1), (6.20)

We will use Lemma 6.2 to study almost periodicity of the matrix measure H*du®.
Thus, we need a relation for its integrals over intervals.

Lemma 6.19. The Hamiltonian H*(£) obeys the following identity

L+4 L
/ () dpe (1) = A°(0, 0) / HO(0)dpe= (1) S 240, 0. (6.21)
4 0

Proof. As a consequence of the chain rule (4.18) for 2A%*(z, £), the transfer matrix B(z, £)
obeys
B (2,0 + L) = B (2, )A*(0,£)B" (2, L)A*(0,0) " . (6.22)
Differentiating (6.22) in z and evaluating at z = 0 gives
(B2) (0,0 + L) = (B2)(0, ) +2A%(0, 0)(B>~") (0, L)A~(0,£) 1.

Multiplying from the right by j, using (6.20) for each term, and using A*(0,¢)"tj =
JAX(0, £)* (since A*(0,¢) € SU(1,1)) gives (6.21). O
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Since

/ H()dp (1) = —i%B°(0, L)' = —i(A°(0, L))'2A°(0, L)~

is a continuous function of a on the compact abelian group 71(Q2)*, the internal term
in (6.21) is almost periodic in £. Thus the almost periodicity of the whole expression is
guaranteed by almost periodicity of A% (0, ¢) with respect to the variable £.

The main result of this section is the following proposition.

Theorem 6.20. Under the assumptions of Theorem 1.12, A*(0,¢) is almost periodic in £.
For a generic n, conditions (1.21), (1.20) are also necessary.

Remark 6.21. Note that if 0 ¢ E, then 2A*(0,¢) is even unbounded. Moreover, (1.20)
means that 0 is not an end of a gap a; # 0, b; # 0 for all j. Respectively, in this case
each gap contains a critical point, (¢.); € (a;,b;) for all j.

Proof of Theorem 6.20. We start with the following remark. Condition (1.21) means
exactly that the function

Z(D) = Z(w(asj, E.) —w(a;,Ey))e; mod 1

on the set D(E) is continuous. Therefore 3(a, 7) := Z(D) for («, 7) = w(D) is continuous
on m ()" x T.

We will use the representation (4.17) for 2A%(z, ¢). Without loss of generality, we can
assume that ©(0) = 0, see remark above, that is, Ag()(¢) = I. Condition (1.20) implies
that R*7(0) is continuous in «, respectively s4 (0) are well defined, s (0) = s(0), s%(0)
continuous and

sup [s§(0)]* < 1.
«

On the other hand we do not have any control on the inner function ¢*, see (4.15)
(actually, we do not know whether it is a Blaschke product or not). To overcome this
problem we use the identity

eW*CI)ﬁK& B elv- q)ﬁK& — 7_'6_1""*(I>K§i 1—7s%
Ko Ko — 7Kg 1—7s

La(z) = — Aa,r(va,‘r)2’

where
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Recall that A®7 here is the Blaschke product (3.12).
Thus, I, (2) is now a product I1,(z) = 114 (2)II% (), in which

- (700 ) et )

0 v*z)"" 1—5%(2)s5(z)

and II? (0) is well defined and represents continuous matrix function with values in
SU(1,1). The first factor

Ary Ac(z) 0
Ma(2) = < 0 Aa(z)1>

is given it terms of the Blaschke product A%(z) with well localized zeros and poles (one
zero or pole in one gap depending on the divisor D defined by the inverse Abel map
D =7"Ya,1)).
Since 2A*(z, ¢) is entire, by (4.17) we have that
(T3 (2)) IS0 (2) =TI (2)2A% (2, ) (T3, _ 0 (2)) 7

has limit value at z = 0, and moreover |A,_,¢(2)/As(2)| = 1. The limit of the argument
of Ap—pni(2)/Ans(z) can be represented in terms of harmonic measures, see Section 3.3,
particularly (3.19),

Z ((w(m;*"f, E.) — w(ay, E)ed ™™ — (w(a, E.) — wiay, E*))e?> mod 1

what is 3(a — n¢,1) — 3(c, 1). Thus finally

o s _ eﬂi(é(a7n£71)73(aa1)) 0 s
a0 (0,6) = o)~ (7 ittt oy ) T e(0)

is almost periodic in /.

Conversely, from the representation (4.17) in the generic position we can conclude
that almost periodicity of (0, /) should imply continuity of s (0) and of the limit
argument of the ratio Aq_,¢(2)/Aq(z) as z — 0. These both functions, being expressed
in terms of D(E) are continuous if and only if (1.21) and (1.20) hold. O

Proof of Theorem 1.12. Theorem 6.20 proves the case s, = s, a € 711(€2)*. By Corol-
lary 3.15, any sy € S(E) is of the form (s4 1) ~ (8¢ 1)U for some U € SU(L,1).
The corresponding transfer matrices in PdB-gauge are obtained by the conjugation
B(z,0) = UIBY(z,0)U which preserves PdB-gauge, acts on the Hamiltonian by
H(0) =UTH*()(U~1)*, and preserves almost periodicity. O
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6.4.2. Symmelric canonical system in PdB gauge and counterexample (geometric
progression)

In this section we demonstrate an example of a canonical system associated to a
homogeneous spectrum E such that the corresponding Hamiltonian in PdB gauge is not
almost periodic. The easiest way to violate conditions (1.20) and simultaneously (1.21)
is to consider a set, so that the ends of gaps form geometric progressions. Such set is
homogeneous. We will show that at least generically the associated Hamiltonian is not
almost periodic.

Let Es; be symmetric, i.e., z € E; = (—z) € E; and 0 € E,. Using the substitution
A = 2% we can pass to a semi-bounded set F = R \ U;(a;,b;). We say that a character
o is symmetric in C \ E; if it is generated by a character o € w1 (C \ F)*. First we
describe certain specific properties of Hamiltonians with a symmetric spectral set [72].
They are diagonal in the standard form for de Branges canonical systems, see (6.23).

As soon as the domain Q = C \ E; is of Widom type and DCT holds the coefficients
of a canonical system in PdB gauge corresponding to a symmetric character o, are of
the form

A 0T =J - Z/A(z,l) {d”(l)(” dyg(l)} . T= [_01 (ﬂ . (623)

Moreover, the measures dv; can be given explicitly in terms of special functions (repro-
ducing kernels and their limits), see Theorem 6.23 below.

Note that the normalization point z, = ¢ corresponds to A, = —1. In this subsection
we assume that the complex Martin function in € is normalized by ©(\.) = 4 and its
additive character is denoted by 7.

Lemma 6.22. [72] Let k%(\, \g) denote the reproducing kernel in H%(o, C \ F). Then the
limit

. E*(X, Xo)
va(A) = )\OIEEOO k(M) No)

exists and represents a continuous function in a. Moreover, the limit
vo(a—nf) := lim

exists for £ € Ry and represent a continuous function in €.

Theorem 6.23. [72] Let j be the character generated by v/A in C\F. Then the coefficients
of the canonical system (6.23) are of the form

dvi(0) = dv*T(0),  dve(f) = dv™({)



78 R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636

and

_ _ 2
Me%de—%ka—vf(,\*, A, (6.24)

dv®(0) = ()

where k(a) = k%A, M) + kT (A, ML), Moreover, if A-L condition is violated in the
symmetric domain Q = C \ Eg, then the measures v* and v are mutually singular.

Based on this we get the following proposition:

Proposition 6.24. Let

l/g(ﬁ):/dua(l) and vi(a) =v7(0).

~

Then

Vo (f) = “(‘;(70[)”@%(@ — 6)2v (o — 0. (6.25)

Proof. By definition

i ) (Y

vala=n(l+1)) = A——0 ’Ua—ne()\) v(a*?ﬂ)*’ll(}\)

=0a(8)vs(8 —nl)

with 8 = a — nf. Therefore the same change of variable (£ is fixed) in (6.24) provides

dya(g N l) _ —Ua(Oé —nl — nl)2€21d6*2lk04*77137771(/\*, /\*) _ /Q(B) Ua(ﬁ)2dyﬁ(1).

k() k(o

Respectively, we have

that is, (6.25) with 8 =a —nf. O

Remark 6.25. The functions k(a) and vy (a) are continuous in 71 (C \ F)*. The almost
periodicity for the diagonal entries of the Hamiltonian in (6.23) are reduced to the
question: is it possible to extend v, () by continuity on the hull clos{ = a—nf: £ € R}?

Now we will demonstrate that for a geometric progressions set, at least generically
(non algebraic numbers) the answer is no. Let F = Ry \ Upez(an,b,) be formed by a
geometric progression, i.e.
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an = plag, by =p"by, 0<ag<by < pag.

We have an automorphism in C\ F: A — pA. We identify a character o with the sequence
{ak }rez of its values on the standard generators ay, = a(yg). If f(A) has a character a,
then f(pA) has the character Sa ~ {Sa}yecz, where

(Sa)k = agy1.
For the Martin function we have

O(pA) =rO(N), where r = i

Mo

Lemma 6.26. For a set F' forming by a geometric progression
rE“(pA, pro) = K54\, M), 0% (pA) = v (pA)v3Y(N). (6.26)
Respectively, if v, (08) is well defined, then
Ae/p -1
T S . 6.27
vs-ia(S70) (627)

Proof. For f € H?(a) we have

foro) = [T PRI fOVdO0) = [ TR o) F(pN)d0 (o)
zr/k:"‘(pk,p/\o) (pA)dO(A / (A, X)) f(pA)dO(N).

Hence we get (6.26). In its turn

Ua(ﬁ) = lim Ua()\/p) — va()‘*/P) lim rusfloz()\)

A==0vg(A/p)  v(Ai/p) A=—0vg-15(N)

and we have (6.27). O

Proposition 6.27. Let r be a non-algebraic number and Sa = a.. Then the function v, (a—
nl) is not almost periodic, i.e., the associated canonical system in the PdB gauge is not
almost periodic.

Proof. Since frequencies {r*} are rationally independent clos {a — ¢ : ¢ € R} =
T (C\ F)*. If Sa = o, SB. = B and v (Ai/p) > vg, (As/p), assuming continuity v, (5),
we get a contradiction

lim  vo(a—nl) =

a—nl— B

In particular, we can choose S, = a+j. O
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