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optimal results for almost periodicity for Potapov–de Branges 
gauge, and Dirac operators.

© 2024 Elsevier Inc. All rights reserved.
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1. Introduction

For one-dimensional Schrödinger operators with spectrum E, and for other well-
studied classes of self-adjoint and unitary operators including Dirac, Jacobi, and CMV 
operators, the reflectionless property is a certain pseudocontinuation relation between 
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two Weyl functions which encode the two half-line restrictions of the operator. This 
was originally observed as a property of periodic operators and finite gap quasiperiodic 
operators, and has since become ubiquitous in spectral theory; by Kotani theory [41], 
the reflectionless property is a general feature of ergodic operators with zero Lyapunov 
exponent on the spectrum. By Remling [61], it is a general property of right limits of 
operators with absolutely continuous spectrum. Ergodic operators with zero Lyapunov 
exponent on the spectrum have been widely studied, especially in the context of almost 
periodic Schrödinger operators [24,10,38,47,9,67]. In the current paper we develop an 
inverse theory of reflectionless systems with unbounded spectrum; we show that the nat-
ural general setting for this theory is given by canonical systems in a gauge described 
below, and we show how that general theory specializes to special classes of operators.

The inverse spectral theory of reflectionless operators was originally considered for 
finite gap spectra, in the algebraic language associated with compact Riemann surfaces 
(double covers of C \ E) [27,6,34]. This theory was applied by finite gap approximation 
to the periodic case [51,52,49,50] and some almost periodic cases [17,56,57,19,29,35,39,
44,46].

The finite gap construction was generalized by Sodin–Yuditskii [65] to the more gen-
eral setting of bounded Dirichlet-regular Widom sets E with the DCT property (DCT is 
an abbreviation for “Direct Cauchy Theorem”; however, it is actually a property discov-
ered by Hayashi and Hasumi [37], which holds for some Widom sets and fails for others). 
The definitions of these properties will be given below. The approach is based on using 
intrinsic Fourier series representations of the character-automorphic Hardy spaces on the 
domain Ĉ \ E. The corresponding basis is formed using the Complex Green function and 
the reproducing kernels with respect to infinity, which is an internal point of the do-
main. The corresponding Fourier representations transform the multiplication operator 
by independent variable into Jacobi matrices. The triumph of the theory is the almost 
periodicity of coefficients of Jacobi matrices, which follows from continuity of explicit 
representations involving trace formulas and a representation of translation as a linear 
flow with respect to character. The theory was also applied to Schrödinger operators 
with semibounded spectra of finite gap length, by the standard finite gap approxima-
tion approach [66]. This technique was developed in a connection with asymptotics for 
orthogonal [20] and Chebyshev polynomials [21,22].

In this paper, we construct almost periodic parameters for spectral data on arbitrary 
Dirichlet-regular Widom set E ⊂ R with DCT, without any gap moment conditions 
or semiboundedness. In contrast to the construction in [65], we have to build Fourier 
integrals instead of Fourier series representations. Infinity still plays the role of the dis-
tinguished point, but E is an unbounded set, so ∞ is a boundary point of the domain 
Ω = C \ E. In particular, the Complex Martin function must substitute the Complex 
Green function in this new construction. A passage from discrete systems to continuous 
ones always presents essential obstacles related to differentiability, but in the current set-
ting it was not originally clear what is this “almost periodic object” which corresponds 
to the chosen spectral data, and especially in which sense it is “almost periodic”.
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We will show that the correct setting is provided by canonical systems in Arov gauge, 
which uses normalizations at a point z0 in the upper half plane (we fix z0 = i in our 
presentation), which is always an interior point of the domain Ω = C \ E. We also 
apply this theory to other well known gauges, namely, canonical systems in Potapov–
de Branges gauge (see [25] and recent works [62,13,63]), and Dirac operators [45]: we 
will explain that these other gauges don’t always give almost periodic data, and give 
sufficient conditions for almost periodicity which are generically optimal. Note also that 
our approach doesn’t use finite gap approximation: everything is constructed directly for 
the domain Ω.

Our results can further be motivated through Paley–Wiener theory, the multiplicative 
theory of j-contractive matrix functions [60,28,36], and through a general perspective 
on nesting Weyl disks for one-dimensional operators. The first motivation doesn’t even 
require spectral theory. Recall that the standard Hardy space H2(C+) can be viewed 
as a closed subspace of L2(R) by passing to boundary values, and recall the following 
Paley–Wiener theorem: H2(C+) is the image of L2((0, ∞)) in the Fourier transform. 
According to de Branges, this theorem was the origin of his theory, see [25, Preface]. 
We generalize the Paley–Wiener theorem to a character-automorphic setting with the 
domain Ω = C \ E. This requires several constructions.

Let E be an unbounded proper closed subset of R such that Ω is Dirichlet regular. 
The symmetric Martin function at ∞ is a positive harmonic function M on Ω with the 
symmetry M(z̄) = M(z) which vanishes continuously on E; it is determined uniquely up 
to normalization [3,11]. The limit limy→∞ M(iy)/y exists, and it can be zero or strictly 
positive. This gives an important dichotomy: Ω is said to be of Akhiezer-Levin (A-L) 
type [1] if

lim
y→∞

M(iy)
y

> 0. (1.1)

In the A-L case, M(z) is also called the Phragmén–Lindelöf function by Koosis [42]. 
Among finite gap sets E (an algebraic setting is possible), it holds precisely for those 
which are unbounded both above and below, i.e., those where ∞ corresponds to two 
different accessible boundary points/prime ends [33, Section VI.3], [59, Section 2.4]. In 
the general case, the A-L condition measures that distinction for the minimal Martin 
boundary of the domain: ∞ corresponds to two minimal Martin boundary points if (1.1)
holds and a single point if (1.1) fails, see Section 4.4.

The symmetric Martin function M extends to a subharmonic function on C, so its 
distributional Laplacian is a positive measure, called the Martin measure, ϑ = 1

2π ΔM . 
If E is a Widom set, ϑ is mutually absolutely continuous with Lebesgue measure on E.

Locally on Ω, M = Im Θ for some analytic function Θ. Since Ω is multiply connected, 
Θ is multi-valued: its analytic continuation Θ ◦ γ along a closed loop γ ∈ π1(Ω) obeys

Θ ◦ γ = Θ + η(γ), ∀γ ∈ π1(Ω) (1.2)
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where η : π1(Ω) → R is an additive character, i.e., η(γ1γ2) = η(γ1) + η(γ2). Note that 
Θ(z) is defined up to an affine transform Θ(z) �→ aΘ(z) + b, a > 0, b ∈ R. Since different 
normalizations can be natural in different settings, we prefer to not fix a normalization 
and write Θ(i) = θr + iθi. Of course, an affine change of Θ also affects M and η.

We also work with multi-valued meromorphic functions f on Ω = C\E such that |f | is 
single-valued. Such functions f are character-automorphic, i.e., there exists a character 
(additive map) α : π1(Ω) → R/Z such that

f ◦ γ = e2πiα(γ)f, ∀γ ∈ π1(Ω). (1.3)

All statements about multi-valued functions on Ω can also be expressed in terms of lifts 
to the universal cover D via the uniformization Ω 	 D/Γ, Γ ∼= π1(Ω); in particular, we 
say that f has bounded characteristic if its lift F to D has bounded characteristic, i.e., 
F = F1/F2 for some F1, F2 ∈ H∞(D). If, in addition, F2 is outer, we say that f is of 
Smirnov class.

Since E ⊂ R, functions on Ω accept an antilinear involution (. . . )� defined by

f�(z) = f(z̄). (1.4)

This involution doesn’t change the character. We will also use another involution, related 
to the notion of pseudocontinuation: if f has bounded characteristic, we denote by f�

a function of bounded characteristic such that the nontangential boundary values from 
above and below obey

f�(ξ ± i0) = f(ξ ∓ i0), a.e. ξ ∈ E. (1.5)

The pseudocontinuation is very far from being a general property of functions of bounded 
characteristic, and we will discuss this later.

We denote the character group by π1(Ω)∗ and equip π1(Ω)∗ with the topology of 
pointwise convergence (αn → α if and only if αn(γ) → α(γ) for all γ ∈ π1(Ω)). Note 
that this is equivalent to convergence on each generator of π1(Ω), and π1(Ω)∗ is a torus 
equipped with product topology, of dimension equal to the number of gaps (connected 
components of R \ E) minus one. For any character α ∈ π1(Ω)∗, we define a character-
automorphic Hardy space with respect to Martin measure, denoted H2

Ω(α) or simply 
H2(α), as the set of Smirnov class functions f with character α with the norm

‖f‖2
H2

Ω(α) =
∫
E

(|f(ξ + i0)|2 + |f(ξ − i0)|2)dϑ(ξ) < ∞. (1.6)

Passing from f to its boundary values gives an isometric embedding H2
Ω(α) ⊂ L2(E, dϑ)2.

If E is a Widom set, H2(α) is a nontrivial reproducing kernel Hilbert space for any α
(see Section 2), i.e., for each z0 ∈ Ω there exists kα

z ∈ H2(α) such that for all f ∈ H2(α),

0
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f(z0) = 〈f, kα
z0

〉. (1.7)

In particular, 〈kα
z0

, kα
z0

〉 = kα
z0

(z0) > 0. We also write kα(z, z0) = kα
z0

(z). Note that it 
would be more precise to refer to the reproducing kernel corresponding to a point in 
the cover D, but we follow common usage in referring to some z0 ∈ Ω and interpreting 
equations such as (1.7) so that they correspond always to the same lift of z0. In particular, 
we will use the L2-normalized reproducing kernel at i, denoted Kα = kα

i /
√

kα
i (i). Note 

that it obeys

〈f, Kα〉 = f(i)
Kα(i) , ∀f ∈ H2

Ω(α). (1.8)

With two sampling functions r(α) := − log Kα(i) and s(α) := Kα
� (i)/Kα(i), for a 

fixed α ∈ π1(Ω)∗ we associate two measures on R

μα((	1, 	2]) = (	2 − 	1)Im Θ(i) + r(α − η	2) − r(α − η	1), (1.9)

μα
1 ((	1, 	2]) = s(α − η	1) − s(α − η	2)

2 +
∫

(�1,�2]

s(α − ηl)dμα(l). (1.10)

These are the almost periodic parameters solving our inverse spectral problem:

Theorem 1.1. For any unbounded closed proper subset E ⊂ R which is Dirichlet-regular, 
obeys the Widom condition and DCT, for any α ∈ π1(Ω)∗:

(a) μα is a positive measure on R;
(b) The complex measure μα

1 is absolutely continuous with respect to μα and its Radon–
Nikodym derivative aα, defined by

dμα
1 = aα dμα, (1.11)

obeys |aα(	)| ≤ 1 for μα-a.e. 	 ∈ R;
(c) the measures μα, μα

1 are almost periodic in the sense that for every piecewise con-
tinuous compactly supported test function h, the functions g(	) =

∫
h(l + 	)dμ(l), 

g1(	) =
∫

h(l + 	)dμ1(l) are almost periodic with frequency vector η (for any se-
quence 	n → ∞ such that η	n → 0 in π1(Ω)∗, g(· + 	n) → g and g1(· + 	n) → g1
uniformly on R).

Most of the earlier results establish uniform almost periodicity of Schrödinger and 
Dirac operator data, with L∞ bounds for associated potentials. On the other hand the 
theory of one-dimensional Schrödinger periodic operators with L2 potentials [49,50] looks 
very similar, as a certain branch of the same general inverse spectral theory. Moreover 
the mentioned recent growth of interest in a unified approach to all such operators via 
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Potapov–de Branges canonical systems motivates an extension of the concept of almost 
periodicity to this general setting. One approach could possibly be in terms of resolvent 
almost periodicity, in which one would use a concept of compactness of shifts of resolvents 
in the operator norm. But as we will see, say when A-L fails, the measures of two canonical 
systems of the same isospectral class are possibly mutually singular. This looks like a very 
strong obstacle on the way to developing this approach: the corresponding isospectral 
operators can not be treated as operators acting in the same space. Our approach, which 
seems to be a certain breakthrough in the area, is based on the concept of almost periodic 
measures.

Almost periodicity of measures is commonly described by convolution with some class 
of test functions [4,26]; in particular, strong almost periodicity of measures uses h ∈
Cc(R). Note that our conclusion is strictly stronger than strong almost periodicity and 
also includes, e.g., characteristic functions of intervals, h = χ(0,�], for any 	 > 0.

Since |aα(	)| ≤ 1, we can define the nonnegative matrices

Aα(	) =
(

1 −aα(	)
−aα(	) 1

)

and introduce the Hilbert space 
√

AαL2(R,C2, dμα), with closure taken in L2(R, C2,

dμα). We also use a Complex Green function Φ with a zero at i and denote by βΦ its 
character, and η given in (1.2). This is the promised generalization of the Paley–Wiener 
theorem:

Theorem 1.2. For any unbounded closed proper subset E ⊂ R which is Dirichlet-regular, 
obeys the Widom condition and DCT, for any α ∈ π1(Ω)∗, the map Fα defined by

(Fαf̂)(z) = z + i√
2Φ�(z)

∫
eiΘ(z)�

(
Kα−η�

� (z) Kα−η�(z)
)√

Aα(	)f̂(	)dμα(	) (1.12)

for compactly supported f̂ extends by continuity to a unitary operator

Fα :
√

AαL2(R,C2, dμα) → L2(E, dϑ)2.

For any 	 ∈ R, Fα maps 
√

AαL2([	, ∞),C2, dμα) bijectively to ei�ΘH2
Ω(α − βΦ − η	).

The case 	 = 0 pertains directly to the space H2(α−βΦ), but the 	-dependence shows 
that Fα conjugates translation to a linear flow in 	. The spaces H2(α−βΦ) �ei�ΘH2

Ω(α−
βΦ − η	) will play an important role in the proofs.

Note that |aα| = 1 if and only if rankAα = 1. Although 
√

AαL2(R,C2, dμα) is, 
by construction, a subset of L2(R, C2, dμα) and consists of vector-valued functions, if 
rankAα = 1, this effectively flattens the vector values to scalars. Thus, the rank deter-
mines whether our almost periodic Hilbert space model contains vector-valued functions 
(like it does for Dirac operators) or scalar-valued functions (like it does for Schrödinger 



8 R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636
operators). We study this dichotomy and prove that the rank 1 case happens uniformly 
exactly for sets E which do not obey the A–L condition (1.1). In particular, the rank 2
case does not occur for semibounded sets.

The most common sufficient criterion for the A-L condition is the finite logarithmic 
gap length condition,

∫
R\E

|x|dx

1 + x2 < ∞. (1.13)

When (1.13) holds, the Fourier transform can be redefined with the domain L2(R, C2)
by using the Complex Martin function and renormalized boundary limits of reproducing 
kernels.

Lemma 1.3. If (1.13) holds, then the following limits exist for all 	,

Lα
±(z, 	) = lim

y→+∞
∓kα−βΦ−η�(z, ±iy)

kα−η�(±i, ±iy) . (1.14)

These functions have pseudocontinuations, i.e., the functions Lα
±,�(z, 	) exist. For the 

matrix

Lα(z, 	) =
(

Lα
−,�(z, 	) Lα

+,�(z, 	)
Lα

−(z, 	) Lα
+(z, 	)

)
, (1.15)

the following limit exists,

dα(	) = lim
y→+∞

det Lα(iy, 	).

Moreover, all the limits are almost periodic in 	.

In this special case, our Fourier integral reduces to a much more familiar form, which 
could be interpreted as a limit case from a discrete or a finite gap version.

Theorem 1.4. If (1.13) holds, the map

(F̃αĝ)(z) =
∞∫

0

eiΘ(z)�√
dα(	)

(Lα
−(z, 	) Lα

+(z, 	)) ĝ(	)d	, ĝ ∈ L2([0, ∞),C2),

defines a unitary Fourier transform acting from L2([0, ∞), C2) to H2(α − βΦ).

The operator Fα is precisely an “eigenfunction expansion” for a reflectionless canon-
ical system in Arov gauge. To explain this, we use j-contractive matrix functions.
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Definition 1.5. Let j be a 2 × 2 matrix such that j = j∗ = j−1. An entire 2 × 2 matrix 
valued function A(z) is called j-inner if it obeys j − A(z)jA(z)∗ ≥ 0 for z ∈ C+ and 
j − A(z)jA(z)∗ = 0 for z ∈ R.

Definition 1.6. A family of matrix functions A(z, 	) parametrized by a real parameter 	
is called j-monotonic if A(z, 	1)−1A(z, 	2) is j-inner whenever 	1 < 	2.

To a spectral theorist, these notions are of interest because they describe common 
properties of transfer matrices; in particular, j-monotonicity describes the nesting prop-
erty of Weyl disks

D(z, 	) = {w | (w 1) A(z, 	)jA(z, 	)∗ (w 1)∗ ≥ 0}, (1.16)

namely, D(z, 	2) ⊂ D(z, 	1) if 	1 < 	2 and z ∈ C+. This was first observed in the setting 
of Schrödinger operators by Weyl [68], with j = ( 0 −i

i 0 ). Note that by conjugating by a 
Cayley transform we can make the switch to

j =
(

−1 0
0 1

)
.

We will always use this choice of j; note in particular that for A(z, 0) = I, (1.16) gives 
D(z, 0) = D, so our Weyl disks will be subsets of D.

We will always work with matrix functions which are continuous in 	 and obey 
det A(z, 	) = 1 for all z, 	. In particular, the values A(z, 	) for z ∈ R will belong to 
the group of 2 × 2 matrices

SU(1, 1) = {U | UjU∗ = j and det U = 1}.

It follows directly from the definition (1.16) that Weyl disks are not affected by right 
multiplication of the transfer matrix by U(	) ∈ SU(1, 1). In particular, any j-monotonic 
family can be uniquely brought into the following form:

Definition 1.7. A j-monotonic family A(z, 	) is in Arov gauge (A-gauge) if A(i, 	) is lower 
triangular with positive diagonal entries.

The Arov gauge arose naturally in the description of the set of the unitary extensions 
of isometric operators [7] and was used by the author regularly, see e.g. [8, Theorem 
7.57].

For a j-monotonic family of transfer matrices in Arov gauge we use a special notation 
A(z, 	). If it obeys the initial condition A(z, 0) = I for all z, it is the solution of a 
canonical system in Arov gauge,

A(z, 	)j = j +
�∫
A(z, l)

(
iz
(

1 −a(l)
−a(l) 1

)
−
(

0 a(l)
−a(l) 0

))
dμ(l), (1.17)
0
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where μ is a positive continuous measure and a ∈ L∞(dμ) with ‖a‖∞ ≤ 1. The equation 
(1.17) is an initial value problem written in integral form: the solution A(z, 	) is entire 
in z for each 	 and absolutely continuous with respect to μ as a function of 	. We find 
the integral form more natural because μ is allowed to contain a singular continuous 
component.

The pair (μ, a) is the set of parameters of the canonical system in Arov gauge. In 
particular, a can be viewed as a kind of “continuous Verblunsky coefficients” in the sense 
that they” have some similar properties; for instance, they can be used to represent 
the boundary value of the spectral Schur function at infinity, and Verblunsky formula 
has a direct counterpart in the theory of canonical systems involving a (the quantity 
tr A(t) − 2

√
det A(t) in [23, Theorem 2.1] is precisely 2 − 2

√
1 − |a(t)|2). We will also 

review key properties of canonical systems in Arov gauge in Remark 4.11; in a companion 
paper [14], we give a thorough presentation.

Due to the nesting property of Weyl disks, as 	 → ∞ they shrink to a disk or a point; 
this is the famous limit circle/limit point dichotomy. Moreover, if the intersection is a 
point for one z ∈ C+, it is a point for all z ∈ C+. In the limit point case, the intersection 
of Weyl disks generates the spectral function s+(z) of the canonical system by

{s+(z)} =
⋂

�∈(0,∞)

D(z, 	),

which is a Schur function in the sense that it is an analytic map s+ : C+ → D.
As an analog of de Branges’ uniqueness theorem [25], any Schur function s+ : C+ → D

is the spectral function of a canonical system in Arov gauge, which is unique up to a 
monotone reparametrization of the parameter l.

In the formulation for Schur functions, the reflectionless property with spectrum E is:

Definition 1.8. The pair of Schur functions (s+, s−) is a reflectionless pair with spectrum 
E if s± extend to meromorphic single-valued functions on Ω with the properties:

(i) the symmetry property s±(z̄) = 1/s±(z) for z ∈ Ω;
(ii) the reflectionless property

s+(ξ + i0) = s−(ξ + i0) a.e. ξ ∈ E;

(iii) 1 − s+(z)s−(z) does not vanish in R \ E.

We denote by S(E) the set of functions s+ which are part of such a pair, with the 
topology of locally uniform convergence of Ĉ-valued maps on Ω.

The set S(E) is not compact; when reflectionless theory is applied to some family of 
operators, there is at least one normalization condition natural to that family, which also 
compactifies the set. In Arov gauge, the natural normalization condition is:
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Definition 1.9. We denote by SA(E) the set of s+ ∈ S(E) for which the corresponding s−
obeys s−(i) = 0.

In [14], we prove a version of Remling’s theorem in A-gauge and use it to conclude:

Theorem 1.10 ([14]). Assume that for all L > 0, the functions μ((	, 	 +L]), 
∫ �+L

�
a(l)dμ(l)

are uniformly almost periodic functions of 	. Then the canonical system in A-gauge (1.17)
is reflectionless on its a.c. spectrum {ξ | |s+(ξ + i0)| < 1} ∪ {ξ | |s−(ξ + i0)| < 1}, i.e., 
it obeys s+(ξ + i0) = s−(ξ + i0) a.e. on this set.

In the current paper, we are working in the inverse direction. We prove that our 
construction provides all reflectionless canonical systems in Arov gauge, with a natural 
parametrization of the line corresponding to M -type (exponential type with respect to 
the Martin function):

Theorem 1.11. Let E ⊂ R be a Dirichlet-regular Widom set with DCT. Parametrized 
by (α, τ) ∈ π1(Ω)∗ × T , the parameters μ = μα and a = τaα describe all reflectionless 
canonical systems in Arov gauge with spectrum E, with the parametrization of the line 
such that for all 	 > 0,

lim
y→∞

log‖A(iy, 	)‖
M(iy) = 	. (1.18)

In particular, τ ∈ T is an integral of motion (it is constant along the translation flow), 
and the class SA(E) is parametrized by the compact torus π1(Ω)∗ × T .

A lot of research on canonical systems has been written in what we call Potapov–de 
Branges gauge (PdB-gauge) [60,25,62], which is normalized at z = 0 by the condition 
that B(0, 	) = I for all 	. Since A(0, 	) ∈ SU(1, 1), any j-monotonic family A(z, 	) can 
be transformed into PdB gauge by defining B(z, 	) = A(z, 	)A(0, 	)−1, and canonical 
systems in PdB gauge can be written in the form of integral equations as

B(z, 	)j = j + iz

�∫
0

B(z, l)H(l)dμ(l), H(l) ≥ 0, tr (Hj) = 0. (1.19)

We show that this doesn’t always give almost periodic data, and give sufficient conditions 
for almost periodicity:

Theorem 1.12. Let E = R \
⋃

j∈Z(aj , bj) be a Dirichlet-regular Widom set with DCT, 
such that 0 ∈ E and

∫
dx

|x| < ∞. (1.20)

[−1,1]\E
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Without loss of generality, we fix a gap (a0, b0) such that b0 < 0 and denote E∗ =
E ∩ [b0, 0]. Let ω(z, E∗) be the harmonic measure of E∗ at z ∈ Ω and let (c∗)j ∈ (aj , bj), 
j ≥ 1 be its critical points. Assume that

∑
j≥1

|ω((c∗)j , E∗) − ω(aj , E∗)| < ∞. (1.21)

Then the matrix measure H(	)dμ(	) corresponding to the canonical system (1.19) with 
spectral function s+ ∈ S(E) is almost periodic.

Remark 1.13. The simplest way to violate (1.20) and (1.21) is to consider a set generated 
by geometric progressions: choose ρ > 1 and ρb−

0 < a−
0 < b−

0 < 0 < a+
0 < b+

0 < ρa+
0 . Let

E = R \ ∪j∈Z((ρja−
0 , ρjb−

0 ) ∪ (ρja+
0 , ρjb+

0 )).

At least in the generic case (non algebraic numbers in a certain sense), the measure 
H(	)dμ(	) is not almost periodic. Of course, in this case, by shifting the spectral param-
eter z �→ z − x∗, a PdB-type gauge with respect to some x∗ ∈ E \ ({0} ∪j {ρja±

0 , ρjb±
0 }), 

would give an almost periodic representation by Theorem 1.12. In the generic case the 
conditions (1.20), (1.21) are necessary and sufficient for almost periodicity.

We also consider Dirac operators. Transfer matrices for Dirac operators obey the Dirac 
equation

∂tD(z, t)j = D(z, t)(izI − Q(t)), Q(t)∗ = −Q(t), tr (Qj) = 0 (1.22)

with the initial data D(z, 0) = I. Note that one of canonical forms is fixed by an extra 
condition tr Q(t) = 0 [45]. The solution D(z, t) is once again a j-monotonic family, and 
the corresponding Schur function obeys limy→∞ s+(iy) = 0 [18], which we view as a 
normalization at infinity.

Theorem 1.14. Let E ⊂ R be a Dirichlet-regular Widom set with DCT such that

∫
R\E

dx =
∑

j

(bj − aj) < ∞. (1.23)

Then for any s+ ∈ S(E), the limit limy→∞ s+(iy) exists in D; moreover, if limy→∞ s+(iy)
= 0, then s+ is the spectral function of a classical Dirac differential equation (1.22) with 
a uniformly almost periodic potential Q(	).

Remark 1.15. Like in the case of PdB gauge, the condition (1.23) is exact for generic 
sets.
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Our work relies extensively on the function theory on Riemann surfaces. H. Widom, 
starting from [69], found a natural bound [70,71] for domains which allow complete family 
of multivalued Hardy spaces. Such domains are now called Widom domains. Hayashi and 
Hasumi [37] found the DCT condition which makes true the counterpart of the Beurling 
theorem on invariant subspaces in the Hardy spaces on Widom domains (for the most 
recent developments see [2]) and, equivalently, continuity of reproducing kernels with 
respect to the characters. In Section 2, we will give a systematic presentation of this 
theory, from the perspective needed in this paper.

In Section 3, we consider bijections between reflectionless pairs of Schur functions, 
their corresponding divisors, and elements of the enlarged character group π1(Ω)∗ × T

related to them by a generalized Abel map.
In Section 4, we use the notion of unitary node to construct the j-contractive families 

A(z, 	) starting from the Hardy space with a given character.
In Section 5, we construct the Fourier integrals and prove their unitarity.
In Section 6, we consider almost periodicity of the constructed parameters in different 

gauges.
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2. Preliminary: Hardy spaces and reproducing kernels

2.1. Elements of potential theory in Widom Denjoy domains

Let E � R be a closed, unbounded set. Let Ω = C\E denote the corresponding Denjoy 
domain, and note that ∞ ∈ ∂Ω. Let us denote by (aj , bj) the maximal intervals in R \ E. 
If E has a finite number of gaps, the subject we are going to discuss is related to the 
famous finite gap almost periodic differential operators of the second order. So, our main 
interest is in the case when E has infinitely many gaps which we index by j ∈ Z and 
write the set E in the form

E = R \
⋃
j∈Z

(aj , bj).

However, with merely notational changes to the gap labeling, everything discussed in 
this paper applies also to finite gap sets; such sets always satisfy Dirichlet regularity, the 
Widom condition and DCT. We will fix a gap (a0, b0) and a point ξ∗ ∈ (a0, b0). This will 
be used to fix some normalizations.

The Möbius transformations corresponding to U ∈ SU(1, 1) are precisely the auto-
morphisms of the unit disk D. We denote by Λ : D → Ω a uniformization of Ω, where Γ
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is a discrete subgroup of SU(1, 1) acting on D in the sense of Möbius transformations. 
In particular Λ is surjective and Λ(ζ1) = Λ(ζ2) if and only if ζ2 = γ(ζ1) for some γ ∈ Γ. 
Note that the homotopy group of Ω is π1(Ω) ∼= Γ.

We assume that E has positive capacity and that Ω is a Dirichlet regular domain, 
i.e., every boundary point is a regular endpoint in the sense of potential theory. For any 
z0 ∈ Ω, we denote by G(z, z0) = GΩ(z, z0) the Green function in the domain Ω with the 
logarithmic pole at z0, and Dirichlet regularity means that G(z, z0) is continuous in Ω
and vanishes on the boundary (including infinity). The complex Green function Φz0 is 
defined by

|Φz0(z)| = e−GΩ(z,z0), Φz0(ξ∗) > 0.

The function Φz0 is character automorphic; it can also be characterized by the fact that 
its lift is a Blaschke product on D with zeros at the points ζ ∈ Λ−1({z0}).

We will deviate from the above phase normalization in one important special case: we 
will consider the complex Green function Φ = Φi with the normalization

Φ(−i) > 0 (2.1)

and the function Φ� defined by (1.4), which is a complex Green function with zero at 
−i. The functions Φ and Φ� have the same character βΦ. We will also consider the ratio

v(z) = Φ(z)
Φ�(z) = eic∗ z − i

z + i
. (2.2)

Let c̃j be the collection of critical points of the Green function, ∇G(c̃j, ξ∗) = 0. We 
assume throughout this text that Ω is of Widom type, that is,

∑
j∈Z

G(c̃j , ξ∗) < ∞. (2.3)

Statements about multi-valued functions f on Ω such that |f | is single-valued can be 
written as statements about their single-valued lifts F = f ◦ Λ. In particular, (1.3) can 
be restated as

F ◦ γ = e2πiα(γ)F, ∀γ ∈ Γ,

where F ◦ γ simply denotes composition of functions.
By symmetry, we can fix the uniformization Λ so that the diameter (−1, 1) ⊂ D

is mapped to the gap (a0, b0) and 0 is mapped to ξ∗. This normalization obeys the 
symmetry Λ(ζ) = Λ(ζ̄). This choice affects the involution (. . . )� defined in (1.4): it is 
more precise to define this involution by saying that the lifts of f , f� are related by

F�(ζ) = F (ζ̄), ∀ζ ∈ D.
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Recall that a character-automorphic function f is said to have bounded characteristic 
if its lift F has bounded characteristic on D; moreover, if f is single-valued on Ω, note 
that its lift is simply f ◦ Λ. We will often use an important criterion of Sodin–Yuditskii 
[65]:

Theorem 2.1 ([65, Theorem D]). Let E be a Dirichlet regular Widom set, and let f be a 
meromorphic Herglotz function on Ω with f(z̄) = f(z). If poles of f satisfy the condition∑

λ:f(λ)=∞
λ �=ξ∗

G(λ, ξ∗) < ∞, (2.4)

then f is of bounded characteristic with no singular inner factor (i.e. its lift f ◦ Λ is 
of bounded characteristic on D and the inner factor of f ◦ Λ is a quotient of Blaschke 
products on D).

Note that (2.4) holds automatically if f has at most one pole in each gap of E.
The Martin function M has one critical point in each gap, which we denote by cj ∈

(aj , bj). For Widom domains, the Widom function

W(z) =
∏

j

Φcj
(z)

is well defined and nontrivial. Denote its character by βW . Note that with our normal-
ization, W� = W, and Θ′ is a function of bounded characteristic with inner part W, see 
Theorem 2.1.

It is natural to consider the Dirichlet problem on Ω with respect to the Martin bound-
ary ∂Ω – its solutions are harmonic functions on Ω with prescribed boundary values on 
E, allowing different boundary values from above and below (if considered with respect 
to the Euclidean boundary E, the Dirichlet problem only gives solutions symmetric with 
respect to R). The Dirichlet problem on Ω can be solved by using the uniformization and 
pushing harmonic measure on T to the harmonic measure ω on the Martin boundary 
∂Ω, which consists (up to a zero measure set) of two copies of E. For this discussion, let 
us denote those copies by E±; they correspond to boundary values of the solution from 
above and below. For a Widom set E, harmonic measure is mutually a.c. with Lebesgue 
measure on E±. Similarly, Martin measure is naturally defined on this double cover of 
E: the boundary values Θ(ξ ± i0) obey 1

2π dΘ(ξ + i0) = − 1
2π dΘ(ξ − i0) = dϑ(ξ) [31]. By 

combining these measures we obtain the Martin measure on ∂Ω, denoted 1
2π dΘ.

With respect to these measures, we have the standard Lebesgue spaces Lp
∂Ω(dω) and

Lp
∂Ω = Lp

∂Ω

(
1

2π
dΘ
)

≡ Lp(E, dϑ)2,

depending on whether we write the space as a space of functions on the Martin bound-
ary ∂Ω or on two copies of E; compare (1.6). Functions f ∈ N (Ω) have nontangential 
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boundary values from above and below, denoted f(ξ ± i0) for ξ ∈ E, and we will use Lp

conditions on the boundary to f .

2.2. Hardy spaces with respect to harmonic measure and Martin measure and 
reproducing kernels

Character-automorphic Hardy spaces Hp(α) = Hp
Ω(α) can be defined in several equiv-

alent ways [37]; one of the definitions uses the universal covering and the standard Hardy 
spaces Hp(D):

Definition 2.2. Hp(α) is the set of character-automorphic functions f with character α
whose lift F = f ◦ Λ is an element of Hp(D), with the inherited norm.

By passing to a universal covering and using the Smirnov maximum principle [55], an 
equivalent (alternative) definition is:

Definition 2.3. Hp(α) is the space of character automorphic functions on Ω with character 
α which are in Smirnov class N+(Ω) and whose boundary values are in Lp

∂Ω(dω).

Definition 2.3 makes clear that these character-automorphic Hardy spaces are with 
respect to harmonic measure for the internal point ξ∗ of the domain. In our setting, it 
is more natural to work with respect to Martin measure, since that measure plays a 
crucial role in the spectral theory of ergodic and almost periodic differential equations, 
as the so-called integrated density of states. In particular, Definition 2.3 motivates the 
definition of Hardy spaces with respect to Martin measure, made in the introduction; 
we will now show their relations to the spaces H2(α) defined with respect to harmonic 
measure.

If H is a Hilbert space of functions and ψ a function, we denote by ψH the Hilbert 
space {ψu | u ∈ H} with inner product 〈ψu1, ψu2〉ψH = 〈u1, u2〉H.

Lemma 2.4. There is a character automorphic outer function ψ with character βψ such 
that L2

∂Ω(dΘ) = ψL2
∂Ω(dω) and H2(α + βψ) = ψH2(α) for any character α, in the sense 

of equality of Hilbert spaces.

Proof. On C+, the Green function G(·, ξ∗) (or the Martin function M) is the imaginary 
part of a conformal map h to a comb domain, which can be viewed as a generalization of 
Schwarz–Christoffel mappings; the boundary values of arg h on R are piecewise constant, 
so the exponential Herglotz representation of h gives rise to a product formula for h; for 
details see [31], [30, Section 6]. This gives formulas for the Green function and harmonic 
measure used in this proof.

To simplify notation, without loss of generality, in this proof we assume that ξ∗ = 0. 
In particular, in a Widom domain, dω(x) is absolutely continuous w.r.t. the Lebesgue 
measure dx [31], and if we denote by c̃j ∈ (aj , bj) the critical points of G(·, ξ∗), then



R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636 17
2πidω(x) = fω(x)dx, fω(z) = 1
z
√

(1 − z/a0)(1 − z/b0)

∏
j �=0

1 − z/c̃j√
(1 − z/aj)(1 − z/bj)

.

Due to Theorem 2.1 the product fω is of bounded characteristic with no singular inner 
part. Its inner part is the convergent Blaschke product determined by reading off its 
zeros, so we obtain its outer part as

Ψω(z)2 = Φ0(z)
z
√

(1 − z/a0)(1 − z/b0)

∏
j �=0

1 − z/c̃j

Φc̃j
(z)
√

(1 − z/aj)(1 − z/bj)

and on E we have dω(x) = 1
2π |Ψω(x)|2dx. Likewise, assuming that c0 �= 0, we have

2πidΘ(x) = fΘ(x)dx = i|ΨΘ(x)|2dx, ΨΘ(z)2 = C
∏
j �=0

1 − z/cj

Φcj
(z)
√

(1 − z/aj)(1 − z/bj)
.

Thus, dω = |ψ|2dΘ with the outer function ψ = Ψω/ΨΘ. The equality dω = |ψ|2dΘ
implies that L2

∂Ω(dΘ) = ψL2
∂Ω(dω) as Hilbert spaces. Since ψ is outer, ψN+(Ω) = N+(Ω), 

so by Definitions 2.2, 2.3, H2(α + βψ) = ψH2(α). �
In a Widom domain, H2(α) is nontrivial for any α, and it has a reproducing kernel 

inherited from the universal covering and H2(D). By Lemma 2.4, H2(α) inherits these 
properties:

Proposition 2.5. For a Widom Denjoy domain Ω the Hardy space H2(α) is nontrivial for 
every α ∈ π1(Ω)∗. This is a reproducing kernel Hilbert space, i.e., for each z0 ∈ Ω there 
exists kα

z0
∈ H2(α) such that for all f ∈ H2(α),

f(z0) = 〈f, kα
z0

〉.

In particular, 〈kα
z0

, kα
z0

〉 = kα
z0

(z0) > 0. We also write kα(z, z0) = kα
z0

(z).

Remark 2.6. It seems natural to give an alternative definition for H2(α) in the spirit 
of Definition 2.2, by considering subspaces of H2(C+) which are character automorphic 
w.r.t. a discrete subgroup of the group of SL(2, R). However, this is possible only in A-L 
domains [40].

2.3. Pseudocontinuation and DCT. Extensions of symmetric operators and their 
Cayley transforms

From the point of view of function theory, the reflectionless property is closely related 
to the notion of pseudocontinuation. For a function F of bounded characteristic in D, 
we say that a function of bounded characteristic G in Ĉ \ D is the pseudocontinuation 
of F if
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lim
r↑1

F (rζ) = lim
r↓1

G(rζ), a.e. ζ ∈ T .

By the substitution G(ζ) = F∗(1/ζ̄), existence of a pseudocontinuation can be expressed 
entirely in terms of functions on D: F ∈ N (D) has a pseudocontinuation if and only if 
there exists F∗ ∈ N (D) such that

lim
r↑1

F (rζ) = lim
r↑1

F∗(rζ), a.e. ζ ∈ T .

Applying these notions to lifts of character-automorphic functions on Ω leads to a notion 
of pseudocontinuation on Ω and an important involution:

Definition 2.7. We say that f ∈ N (Ω) has a pseudocontinuation if there exists f∗ ∈ N (Ω)
such that

f∗(z) = f(z) for a.e. z ∈ ∂Ω.

We point out that if αf is the character of f then the character of f∗ is αf∗ = −αf .

For Denjoy domains, combining this involution with the involution (. . . )�, we obtain 
the linear involution f �→ f� from the introduction,

f�(z) = (f∗)�(z) = f∗(z), z ∈ Ω.

This is well defined for an arbitrary f which has a pseudocontinuation, and αf�
= −αf . 

Note that on the boundary of the domain we have (1.5).

Example 2.8. If Δ ∈ N (Ω) is an inner function, Δ∗ = 1/Δ so

Δ�(z) = 1
Δ(z̄)

.

In particular, (Φ)� = 1
Φ�

, (Φ�)� = 1
Φ , and v� = v.

Let f ∈ H1
Ω(βW). Then f(z)

W(z) dΘ(z) is a single-valued differential in Ω, moreover 
f Θ′

W ∈ N+(Ω).

Definition 2.9. A Widom domain Ω obeys DCT if for all f ∈ H1
Ω(βW),

∮
∂Ω

f(z)
W(z) dΘ(z) =

∮
∂Ω

f(z)Θ′(z)
W(z) dz = 0.

In this paper, we will work with sets for which DCT holds. A statement equivalent to 
DCT was found by [65, Section 13] with respect to ∞ for bounded E ⊂ R. It is elementary 
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to use a conformal criterion to rewrite that criterion with respect to an internal point 
ξ∗ = 0 of the domain, for E ⊂ R with 0 /∈ E; using the notation of Lemma 2.4, and the 
notation

Wω =
∏

j

Φc̃j

this gives:

Theorem 2.10. [65] For a regular Widom domain Ω, the DCT property holds if and only 
if

L2
∂Ω(dω) = H2

Ω(α) ⊕ Wω

Φ0
H2

Ω(−α + βWω
− βΦ0).

The counterpart of that statement, for Hardy spaces with respect to Martin measures, 
is:

Theorem 2.11. For a regular Widom domain Ω, the DCT property holds if and only if

L2
∂Ω = H2(α) ⊕ WH2(βW − α) (2.5)

for every α ∈ π1(Ω)∗, where H2(βW − α) denotes the set of functions conjugated to 
H2(βW − α).

Proof. We first prove that DCT implies (2.5). We point out that for a.e. z ∈ ∂Ω

Φ0(z)
Wω(z)Ψω(z) = Ψω(z)

and

1
W(z)ΨΘ(z) = ΨΘ(z).

By Theorem 2.10, for g ∈ L2
∂Ω(dω) � H2(α) we have

Wω

Φ0
g ∈ H2

Ω(−α + βWω
− βΦ0). (2.6)

Combining all these, we obtain

Wf ∈ H2(−α − βψ + βWΘ)

for f = ψg ∈ L2
∂Ω(dϑ) � H2(α + βψ). Indeed, see (2.6),
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Wψg = ψW ψ̄

ψ
g = ψW Wω

Φ0

1
W g = ψ

(
Wω

Φ0
g

)
∈ H2(−α − βψ + βWΘ).

It remains to show that the decomposition (2.5) implies DCT. Let f ∈ H1(βW). Consider 
its inner-outer factorization f = fifo and define g1 =

√
fo, g2 = fi

√
fo. If α is the 

character of g1, then g1 ∈ H2(α), respectively, g2 ∈ H2(βW − α). Therefore, Wg2 ∈
WH2(βW − α) = L2

∂Ω(dϑ) � H2(α). We get

1
2π

∮
∂Ω

f
dΘ
W = 1

2π

∮
∂Ω

g1g2
dΘ
W = 〈g1, Wg2〉 = 0. �

Remark 2.12. There are two more important characteristic properties for DCT [37].

(a) DCT holds if and only if kα(z, z) is continuous on π1(Ω)∗.
(b) Let M ⊂ H2(α) and wM ⊂ M for an arbitrary w ∈ H∞

Ω . DCT holds if and only if 
for an arbitrary such M there exists an inner function Δ such that

M = ΔH2(α − βΔ), Δ ◦ γ = e2πiβΔ(γ)Δ.

The following property is closely related to (2.5), and, in fact, is also characteristic 
for DCT.

Corollary 2.13. Denote

τ∗ = eiϕ∗ , ϕ∗ = − arg
(

Θ′(i)
W(i)

i

Φ′(i)

)
,

noting that this phase is independent of α. Denote

α̃ = βW + βΦ − α. (2.7)

Under the assumptions of Theorem 2.11, Kα̃ and Kα̃
� admit pseudocontinuations given 

by the formulae

(Kα̃)∗ = τ∗
Kα

ΦW , (Kα̃
� )∗ = τ̄∗

Kα
�

Φ�W
. (2.8)

Moreover, for any α,

Kα(i)Kα̃(i) =
∣∣∣∣W(i)Φ′(i)

Θ′(i)

∣∣∣∣ . (2.9)

Proof. Since for any f ∈ H2
Ω(α − βΦ),
〈

f,
Kα
〉

= 〈Φf, Kα〉 = 0,
Φ
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it follows that Kα

Φ ⊥ H2
Ω(α − βΦ), so by Theorem 2.11, for some g ∈ H2

Ω(α̃), Kα

Φ = W ḡ

in the sense of equality in L2
∂Ω. For any f ∈ H2

Ω(α̃),

〈f, g〉 = 1
2π

∫
∂Ω

fḡ dΘ = 1
2π

∫
∂Ω

f

W
Kα

Φ dΘ.

Since Φ has a simple zero at i and no other zeros, by the direct Cauchy theorem,

〈f, g〉 = i
f(i)
W(i)

Kα(i)
Φ′(i) Θ′(i).

This implies that g = C̄Kα(i)Kα̃(i)Kα̃ where C = Θ′(i)
W(i)

i
Φ′(i) . Note that C is independent 

of character. Thus, in the sense of equality in L2
∂Ω,

Kα

Φ = CKα(i)Kα̃(i)WKα̃. (2.10)

By the normalization ‖Kα‖ = ‖Kα̃‖ = 1, comparing L2
∂Ω-norms of both sides of (2.10)

implies |C|Kα(i)Kα̃(i) = 1. This implies (2.9), and since arg C = −ϕ∗, allows to 
rewrite (2.10) as the first relation in (2.8). The second relation follows by the involution 
(. . . )�. �
Corollary 2.14. By Corollary 2.13,

(Kα)� = τ̄∗
Kα̃

�

WΦ�
, (Kα

� )� = τ∗
Kα̃

WΦ . (2.11)

Consider the multiplication operator by the independent variable z in H2(α), as an 
unbounded operator with the domain

Dz =
{

Φ
z − i

f : f ∈ H2(α − βΦ)
}

.

Since the Direct Cauchy Theorem holds in Ω, see Remark 2.12(b), Dz is dense in H2(α), 
since Φ

z−i is an outer function.
By (2.2), we can consider multiplication by v(z) its Cayley transform. Let

Dv̄ = clos{(z − i)f : f ∈ Dz} = ΦH2(α − βΦ)

Δv̄ = clos{(z + i)f : f ∈ Dz} = Φ�H2(α − βΦ)

(note that ΦH2(α − βΦ) is closed as the set of functions in H2(α) with a zero at i; 
likewise Φ�H2(α − βΦ) is characterized by a zero at −i). Since v(z) is unimodular for 
z ∈ ∂Ω, multiplication by v(z) acts isometrically from Dv̄ to Δv̄. The defect spaces are 
one dimensional,
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H2(α) = {Kα} ⊕ Dv̄ = {Kα
� } ⊕ Δv̄. (2.12)

Thus, this isometry has a one-parameter family of unitary extensions Ûτ : H2(α) →
H2(α), which are of the form

Ûτ = τKα
� 〈 · , Kα〉 + v̄ · PDv̄

, τ ∈ T . (2.13)

The following matrix element of the resolvent of the unitary Ûτ ,

m(z) = i

〈
I + v(z)Ûτ

I − v(z)Ûτ

Kα, Kα

〉

is viewed as its Titchmarsh–Weyl function.

Proposition 2.15. The Titchmarsh–Weyl function of the unitary extension Ûτ : H2(α) →
H2(α) is of the form

m(z) = i
1 + τv(z)sα

+(z)
1 − τv(z)sα

+(z) , z ∈ C+, (2.14)

where

sα
+(z) =

Kα
� (z)

Kα(z) . (2.15)

Proof. For any z0 ∈ C+, the definition of m(z0) implies

−im(z0) + 1
2 = 〈(I − v(z0)Ûτ )−1Kα, Kα〉,

so by (2.12) there exists f ∈ ΦH2(α − βΦ) such that

(I − v(z0)Ûτ )−1Kα = f + −im(z0) + 1
2 Kα.

Applying I − v(z0)Ûτ and using (2.13) gives

Kα = f − v̄v(z0)f + −im(z0) + 1
2 (Kα − v(z0)τKα

� ).

Multiplying by v gives

vKα = (v − v(z0))f + v
−im(z0) + 1

2 (Kα − v(z0)τKα
� ).

Both sides of the equality are functions in 1
Φ�

H2(α + βΦ), so we can evaluate them at 
z = z0 and obtain
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2Kα(z0) = (−im(z0) + 1)(Kα(z0) − v(z0)τKα
� (z0)).

Now solving for m(z0) gives (2.14), since z0 ∈ C+ is arbitrary. �
2.4. Resolvent representation for the reproducing kernel. Wronskian identity and 
reproducing kernels

In the context of the multiplication operator by z in H2(α), we obtain a kind of 
resolvent representation for the reproducing kernel.

Lemma 2.16. Reproducing kernels obey the identity

kα(z, z0) = i
(z + i)(z0 + i)Kα(z)Kα(z0) − (z − i)(z0 − i)Kα

� (z)Kα
� (z0)

2(z − z̄0)

=
Kα(z)Kα(z0) − v(z)v(z0)Kα

� (z)Kα
� (z0)

1 − v(z)v(z0)
(2.16)

= Kα(z)Kα(z0)
1 − v(z)sα

+(z)v(z0)sα
+(z0)

1 − v(z)v(z0)
.

Proof. Let us use the classical von Neumann formula (see Theorem 1 in Section IV.4 in 
[15])

D(A∗) = Ker(A∗ − i) � Ker(A∗ + i) + D(A),

for the domain D(A∗) of an operator adjoint to a symmetric operator A. Taking A to 
be the multiplication operator by the independent variable z in H2(α), we see that the 
functional

g �→ 〈Ag, kα
z0

〉 = z0g(z0),

is continuous on the dense subset D(A) = Dz of H2(α), hence kα
z0

∈ D(A∗). It follows 
that

kα
z0

= c1Kα
� + c2Kα + Φ

z − i
f,

for some constants c1, c2 and a function f ∈ H2(α − βΦ). Since 〈Ag, kα
z0

〉 = z0g(z0) for 
every g ∈ D(A), we see that kα

z0
∈ Ker(A∗ − z̄0). It follows that for every w ∈ C we have

(A∗ − w)kα
z0

= (z̄0 − w)kα
z0

.

On the other hand, from (2.12) we get



24 R. Bessonov et al. / Advances in Mathematics 444 (2024) 109636
(A∗ − w)(c1Kα
� + c2Kα + Φ

z − i
f) = c1(i − w)Kα

� + c2(−i − w)Kα + Φz − w

z − i
f.

Comparing these two formulas at z = w, we obtain

(z − z̄0)kα
z0

= c1(z − i)Kα
� + c2(z + i)Kα.

By setting z = ±i, we compute the constants

c2Kα(i) = i − z̄0

2i
kα(i, z0), c1Kα

� (−i) = −i − z̄0

−2i
kα(−i, z0).

Since Kα(±i) =
√

kα(±i, ±i), with a trivial algebraic manipulation

1 − v(z)v(z0) = 1 − z − i

z + i

z̄0 + i

z̄0 − i
= − 2i(z − z̄0)

(z + i)(z0 + i)
, (2.17)

we get (2.16). �
Remark 2.17. As is well known, the Titchmarsh–Weyl function m(z) has positive imagi-
nary part on C+, so by (2.14), τsα

+(z) is a Schur function (analytic map from C+ to D). 
This is also evident from (2.16) and positivity of reproducing kernels.

We now define the matrix function

Tα =
(

τ∗Φ�K
α̃ τ̄∗ΦKα̃

�

Kα
� Kα

)
(2.18)

which will play an essential role in what follows. First, using the involutions and the 
resolvent representation for the reproducing kernels, we derive the following “Wronskian 
identity”.

Lemma 2.18. det Tα is an outer function independent of α and given by

det Tα = −i
v′

v

W
Θ′ ΦΦ� = 2W

Θ′
Φ

z − i

Φ�

z + i
. (2.19)

Proof. Using Lemma 2.16, for any f ∈ H2(α),

f(z0) = 1
2π

∫
∂Ω

fkα
z0

dΘ

= 1
2π

∮
∂Ω

f
vτ∗

Kα̃

WΦKα(z0) − v(z0)τ̄∗
Kα̃

�

WΦ�
Kα

� (z0)
v − v(z0) Θ′ dz.
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Since this has a simple pole at z0 and no other singularities, computing the residue at 
z0 and using DCT gives

f(z0) = if(z0)
v(z0)τ∗

Kα̃(z0)
W(z0)Φ(z0) Kα(z0) − v(z0)τ̄∗

Kα̃
� (z0)

W(z0)Φ�(z0) Kα
� (z0)

v′(z0) Θ′(z0).

In this formula, z0 was arbitrary, so we can regard this as equality of functions,

τ∗
Kα̃

Φ Kα − τ̄∗
Kα̃

�

Φ�
Kα

� = 1
i

v′

v

W
Θ′ ,

and (2.19) follows by elementary manipulations. By the second equality in (2.19), det Tα

is an outer function. �
We add a few related matrix identities. For a ∈ D define

V(a) = 1
ρ

(
1 −ā

−a 1

)
∈ SU(1, 1), ρ :=

√
1 − |a|2.

The following lemma is essentially one step in the classical Schur algorithm (if written 
for the unit disk D instead of the upper half-plane C+, it would take the shape in [58]). 
Recall the Schur function sα

+ introduced in (2.15); its value at i determines the transfer 
between kernels at character α and α − βΦ:

Lemma 2.19. For any α,

(
Kα

� Kα
)

V(sα
+(i)) =

(
ΦKα−βΦ

� Φ�K
α−βΦ

)
. (2.20)

Consequently the Schur functions are related by

v(z)sα−βΦ
+ (z) =

sα
+(z) − sα

+(i)
1 − sα

+(z)sα
+(i)

. (2.21)

Proof. The 2-dimensional space H2(α) � ΦΦ�H2(α − 2βΦ) has an orthonormal basis 
Kα, ΦKα−βΦ

� and contains the normalized vector Kα
� , so that vector can be expressed 

in the form

Kα
� = aKα + ρΦKα−βΦ

� . (2.22)

By normalization, |a|2 + |ρ|2 = 1, and by taking the inner product with ΦKα−βΦ
� ,

ρ = 〈ΦKα−βΦ
� , Kα

� 〉 =
Φ(−i)Kα−βΦ

� (−i)
Kα(−i) > 0
�
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so ρ =
√

1 − |a|2. Evaluating (2.22) at i gives a = Kα
� (i)/Kα(i), so

(
Kα

� Kα
)( 1

−a

)
1√

1 − aā
= ΦKα−βΦ

� .

Applying the antilinear involution (. . . )� gives

(
Kα

� Kα
)(−ā

1

)
1√

1 − aā
= Φ�K

α−βΦ .

Combining the two equalities in matrix form gives (2.20), whereas taking their ratio 
gives (2.21). �

The following corollary is a matrix form of the relation (2.20).

Corollary 2.20. For any α,
(

τ∗K2βΦ+βW −α τ̄∗K2βΦ+βW −α
�

ΦKα−βΦ
� Φ�K

α−βΦ

)
= TαV(sα

+(i)).

Proof. The second row of this statement is precisely (2.20). The first row follows from 
(2.20) after applying the involution (. . . )� and multiplying by WΦΦ�. �

Also, using (2.20), we get a representation complementary to (2.16) for the reproduc-
ing kernel.

Lemma 2.21.

Φ�(z)Φ�(z0)kα−βΦ(z, z0) =
Kα(z)Kα(z0) − Kα

� (z)Kα
� (z0)

1 − v(z)v(z0)
. (2.23)

Proof. By writing
(
Kα

� (z) Kα(z)
)

V(sα
+(i)) = Φ�(z)

(
v(z)Kα−βΦ

� (z) Kα−βΦ(z)
)

,

using this for z and z0 implies, since V(sα
+(i)) is j-unitary, that

(
Kα

� (z) Kα(z)
)

j
(
Kα

� (z0) Kα(z0)
)∗

= Φ�(z)Φ�(z0)
(

v(z)Kα−βΦ
� (z) Kα−βΦ(z)

)
j
(

v(z0)Kα−βΦ
� (z0) Kα−βΦ(z0)

)∗
.

Applying (2.16) with α − βΦ instead of α concludes the proof. �
The previous lemma is closely related to one entry of the matrix product

Tα(z)j(Tα(z0))∗; in fact, we can compute all entries of this product.
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Lemma 2.22.

i
Tα(z)jTα(z0)∗

z − z̄0
= 2Φ�(z)

z + i

Φ�(z0)
z0 + i

(
−kα̃(z, z0) W(z)(kα−βΦ

z0
)�(z)

−W(z)(kα̃
z0

)�(z) kα−βΦ(z, z0)

)
(2.24)

Proof. We prove the equality of matrices entry by entry. Equality of the (2, 2)-entry 
in (2.24) follows from (2.23) and the algebraic manipulations (2.17). Equality of the 
(1, 2)-entry in (2.24) follows from the equality of the (2, 2)-entry by applying the involu-
tion (. . . )� and multiplying by WΦΦ�, since (1 0) Tα = WΦΦ� ((0 1) Tα)�. Similarly, 
equality of the (1, 1)-entry follows from (2.17) and (2.16) with α̃ instead of α, and 
equality of the (2, 1)-entry follows by applying the involution (. . . )� and multiplying 
by WΦΦ�. �
3. Reflectionless pairs of Schur functions: classes S(E) and SA(E) and their 
parametrization

The reflectionless property is defined in terms of half-line Schur functions, but is a 
property of a whole line system/operator, and many consequences of the reflectionless 
property are best seen from the perspective of whole line resolvents. We define the 
function

R(z) = i
(1 − s+(z))(1 − s−(z))

1 − s+(z)s−(z) (3.1)

which often has the interpretation of a particular matrix element of the resolvent of 
a whole-line operator whose half-lines are encoded by s±. For instance, the spectral 
interpretation of Definition 1.8.(iii) is that a corresponding whole-line operator does not 
have spectrum outside of E.

Lemma 3.1. If s+ ∈ S(E), then R is a Herglotz function, analytic in C \ E, with the 
symmetry R� = R. Moreover, limε↓0 arg R(ξ + iε) = π

2 for Lebesgue-a.e. ξ ∈ E.

Proof. By Cayley transforms we obtain the Herglotz functions

m±(z) = i
1 + s±(z)
1 − s±(z) (3.2)

which obey (m±)� = m±. A direct calculation gives R = −2/(m++m−), so R is Herglotz, 
meromorphic on C \ E, and R� = R. Since 1 − s+s− is nonzero on R \ E, R has no poles 
there. Since s− = (s+)∗, a calculation gives limε↓0 R(ξ + iε) ∈ iR for Lebesgue-a.e. ξ ∈ E. 
Since that limit is a.e. nonzero and R is Herglotz, the normal limit of the argument is 
π/2. �
Corollary 3.2. If s+, s− are a reflectionless pair of Schur functions with a Widom spec-
trum E, then s± ∈ N (Ω).
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Proof. Since R has no poles on R \ E, m± have at most one pole in each gap. Since 
G(cj , ξ∗) = maxw∈[aj ,bj ] G(w, ξ∗), by the Widom condition, poles of m± satisfy the 
summability condition in Theorem 2.1, so it follows that m± ∈ N (Ω) and therefore 
s± ∈ N (Ω). �
Remark 3.3. The reflectionless property often appears in the literature in the form for 
Titchmarsh–Weyl m-functions; Definition 1.8 converts to that form with the substitu-
tions (3.2). In particular, by calculations like those above, the fact that 1 −s+(z)s−(z) �= 0
implies analyticity in Ω of both the symmetric combinations

− 1
m+(z) + m−(z) ,

m+(z)m−(z)
m+(z) + m−(z)

which appear in whole-line Titchmarsh–Weyl M -matrix functions.

3.1. Schur spectral functions and unitary nodes. The map π1(Ω)∗ × T → SA(E)

In the sense of spectral theory, the Schur class of functions, and its generalization 
to matrix (operator)-valued functions, is associated to the concept of unitary nodes. 
Let E1, E2 be complex Euclidean spaces. We say that E(z) belongs to the Schur class 
S(E1, E2) if it is a linear operator-valued function, E(z) : E1 → E2 for a fixed z ∈ C+, 
analytic in z, and ‖E(z)‖ ≤ 1 for all z ∈ C+.

By passing to a matrix representation with respect to orthonormal bases of E1, E2, the 
operator-valued function E gives a matrix-valued function. Of course, a change of basis 
would correspond to a change of matrix-valued function, as we will see in examples below. 
Respectively, this or that way of basis fixing leads to this or that gauge normalization 
condition for transfer matrices.

Definition 3.4. Let H be a Hilbert space. By a unitary node we mean a unitary operator 
U acting from E1 ⊕ H to E2 ⊕ H. H is called the state space and E1, E2 are called 
coefficient spaces. The operator function

S(z, U) =PE2(IH⊕E2 − v(z)UPH)−1U |E1

=PE2U(IH⊕E1 − v(z)PHU)−1|E1

is called the characteristic function of the unitary node. Here PK and PE2 are the 
orthogonal projections onto the corresponding subspaces.

Theorem 3.5. The characteristic function S(z, U) of a unitary node U : H⊕E1 → H⊕E2

belongs to the class S(E1, E2). Vice versa, if S ∈ S(E1, E2), then there exists a unitary 
node such that S(z) = S(z, U).
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Essentially, this theorem is a certain point of view on the Nagy-Foias theory [53]; for 
a “bird’s eye view” on the subject see [54], and more precisely, we follow [7,8].

Recall that the function v(z) was defined in (2.2).

Proposition 3.6. Multiplication by v̄ in the decomposition

v̄ :
{

Kα
�

Φ�

}
⊕ H2(α − βΦ) →

{
Kα

Φ

}
⊕ H2(α − βΦ) (3.3)

forms a unitary node with the state space H = H2(α − βΦ). Its characteristic function is

sα
+(z) =

Kα
� (z)

Kα(z) .

Proof of Proposition 3.6. Multiplication by v̄ = 1/v is a unitary operator from 
1

Φ�
H2(α) =

{
Kα

�

Φ�

}
⊕ H2(α − βΦ) to 1

ΦH2(α) =
{

Kα

Φ
}

⊕ H2(α − βΦ).
Fix z0 ∈ C+. To compute the value of the characteristic function S(z0), we write

PE2(I − v(z0)UPH)−1U |E1

Kα
�

Φ�
= Kα

Φ S(z0)

so for some g ∈ H2
Ω(α − βΦ),

(I − v(z0)UPH)−1U |E1

Kα
�

Φ�
= g + Kα

Φ S(z0)

and therefore

U
Kα

�

Φ�
= g − v(z0)Ug + Kα

Φ S(z0).

Multiplying by v gives

Kα
�

Φ�
= (v − v(z0))g + vf

Kα

Φ S(z0).

Evaluating at z = z0 gives

Kα
� (z0)

Φ�(z0) = v(z0)Kα(z0)
Φ(z0) S(z0).

Since z0 ∈ C+ was arbitrary, solving for S completes the proof. �
Remark 3.7. In Proposition 3.6, we implicitly took the basis vector Kα

�

Φ�
for the coefficient 

space E1 and Kα

Φ for E2. If we had multiplied those basis vectors by some unimodular 
constants, we would have obtained characteristic functions of the form
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sα,τ
+ (z) = τsα

+(z) = τ
Kα

� (z)
Kα(z) , (α, τ) ∈ π1(Ω)∗ × T .

The functions obtained here are closely related to Proposition 2.15. However, the 
reader should notice the difference between the Cayley transforms, which are operators 
on a single Hilbert space, and unitary nodes, which have the same state space. The 
unitary operator Ûτ and the unitary node (3.3) are related by the following commutative 
diagram

{
Kα

�

Φ�

}
⊕ H2(α − βΦ) −−−−→

v̄

{
Kα

Φ
}

⊕ H2(α − βΦ)⏐⏐�Φ̂τ

⏐⏐�Φ

H2(α) = {Kα} ⊕ Dv̄ −−−−→
Ûτ

H2(α) = {Kα
� } ⊕ Δv̄

where

Φ̂τ |H2(α−βΦ) = Φ and Φ̂τ : τ
Kα

�

Φ�
�→ Kα.

Using (2.8), let us denote

sα,τ
− (z) = τ̄ sα

−(z), sα
−(z) = τ−2

∗
Φ(z)Kα̃

� (z)
Φ�(z)Kα̃(z) .

Corollary 3.8. For any (α, τ) ∈ π1(Ω)∗ × T , the pair (sα,τ
+ , sα,τ

− ) is a reflectionless pair 
of Schur functions and sα,τ

+ ∈ SA(E).

Proof. The property (sα,τ
+ )� = 1/sα,τ

+ follows from the definition and (sα,τ
+ )∗ = sα,τ

− from 
(2.8). Moreover, 1 −sα,τ

+ sα,τ
− has no zeros in R \E by the Wronskian identity, Lemma 2.18. 

Finally, Φ(i) = 0 implies sα,τ
− (i) = 0. �

3.2. Divisors D(E). The map SA(E) → D(E)

We begin with the resolvent function R(z) defined as in (3.1) from s+ ∈ SA(E).

Lemma 3.9. For each gap (aj , bj), there exist xj ∈ [aj , bj ] such that

R(z) = i|1 − s+(i)|e
∫
R

(
1

ξ−z − ξ

1+ξ2

)
χ(ξ)dξ

, (3.4)

where

χ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1/2, x ∈ (aj , xj)
0, x ∈ E
−1/2, x ∈ (x , b )

(3.5)
j j
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Proof. From the Herglotz representation of R, it follows that it is strictly increasing 
on each gap (aj , bj), so there exist xj ∈ [aj , bj ] such that R is negative on (aj , xj) and 
positive on (xj , bj). It follows that the boundary values 1

π arg R(ξ+i0) for ξ ∈ R are given 
by 1

2 + χ(ξ). Since s+ ∈ SA(E), (3.1) implies that |R(i)| = |1 − s+(i)|, the exponential 
Herglotz representation of R gives (3.4). �

Assume that xj ∈ (aj , bj) for some j. Then xj is a zero of R, so by (3.1), at least one 
of the functions s± is equal to 1 at xj . They cannot both be equal to 1, since s+s− �= 1
on Ω. Define the sign εj ∈ {±} so that sεj

(xj) = 1. Of course, if xj = aj or xj = bj , 
it does not correspond to a zero on Ω, nevertheless by continuity of s±(z) at the ends 
of the gap we have 1 = s+(xj) = s−(xj) in the sense of nontangential limit at the gap 
endpoint xj ∈ {aj , bj}. In what follows, we regard the symbol εj both as a sign ± and 
as a number ±1, as convenient.

Definition 3.10. We define D(E) as the product, with the product topology,

D(E) =
∏
j∈Z

Ij , (3.6)

where each Ij is a double cover of the corresponding gap with edges identified and 
endowed with a topology of a circle,

Ij = {(xj , εj) | xj ∈ [aj , bj ] × {+1, −1}}/(aj ,+)∼(aj ,−)
(bj ,+)∼(bj ,−)

.

The above construction describes the map SA(E) → D(E) given by

s+ �→ D = {(xj , εj)}j∈Z. (3.7)

For a better understanding of our further steps assume that indeed s+ = sα,τ
+ . Using 

the Wronskian identity (2.19), we obtain

1 − sα
+(z)sα

−(z) =
KαΦ�K

α̃ − τ−2
∗ Kα

� ΦKα̃
�

KαΦ�Kα̃
= τ−1

∗
2 W

Θ′
Φ

z−i
Φ�

z+i

KαΦ�Kα̃

and then from

Rα,τ (z) = i
(1 − τsα

+(z))(1 − τ̄ sα
−(z))

1 − sα
+(z)sα

−(z)

we conclude

Rα,τ (z) = i

2κ
α,τ (z)κα,τ

∗ (z)(z − i)(z + i)Θ′, (3.8)

where
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κα,τ (z) = Kα(z)(1 − sα,τ
+ (z)) = Kα(z) − τKα

� (z), (α, τ) ∈ π1(Ω)∗ × T , (3.9)

and respectively

ΦΦ�W(z)κα,τ
∗ (z) = τ∗Φ�K

α̃ − τ̄ τ̄∗ΦKα̃
� . (3.10)

Thus, the resulting factorization (3.8) of Rα,τ leads to the symmetric combinations of 
reproducing kernels κα,τ . The following theorem shows that this symmetric reproducing 
kernel κα,τ can be expressed in terms of the divisor D assigned to sα,τ

+ .

Theorem 3.11. The symmetric reproducing kernel κα,τ in terms of the divisor D ∈ D(E)
possesses the following multiplicative representation

κα,τ (z) = C

⎧⎨
⎩Φ(z)

z − i

Φ�(z)
z + i

∏
j

z − xj√
1 + x2

jΦxj
(z)

√
1 + c2

jΦcj
(z)

z − cj

⎫⎬
⎭

1
2 ∏

j

Φxj
(z)

1+εj
2 (3.11)

Respectively, the ratio

Δα,τ =
τ∗Φ�K

α̃ − τ̄ τ̄∗ΦKα̃
�

Kα − τKα
�

is a Blaschke product, given explicitly in terms of the divisor (3.7) by

Δα,τ =
∏

j

Φxj
(z)−εj . (3.12)

Proof. We rewrite (3.8) as

κα,τ (z) (Φ(z)Φ�(z)W(z)κα,τ
∗ (z)) = 2

i
Rα,τ (z) Φ(z)

z − i

Φ�(z)
z + i

W(z)
Θ′(z) . (3.13)

The function Rα,τ is Herglotz and analytic in Ω, so it satisfies the conditions of The-
orem 2.1 and doesn’t have a singular inner factor. Therefore the right-hand side of 
(3.13) has no singular inner factor. By (3.9), (3.10), the linear combinations κα,τ (z) and 
Φ(z)Φ�(z)W(z)κα,τ

∗ (z) are Smirnov class; thus, they don’t have singular inner factors, 
because their product (3.13) doesn’t.

Since κα,τ has simple zeros at those xj with εj = + and no other zeros on Ω, its inner 
factor is the Blaschke product

∏
j

Φxj
(z)

1+εj
2 .

Analogously, the inner part of ΦΦ�W(z)κα,τ
∗ (z) is the Blaschke factor
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∏
j

Φxj
(z)

1−εj
2 .

Note now that both functions κα,τ and ΦΦ�Wκ
α,τ
∗ have the same absolute value on ∂Ω, 

so they have the same outer factor, which we denote by f . Their product has outer factor 
f2, and dividing (3.13) by the Blaschke factors gives for some constant C

f2 = C2 Rα,τ (z)∏
j Φxj

(z)
Φ(z)
z − i

Φ�(z)
z + i

W(z)
Θ′(z) .

The exponential representation in Lemma 3.9 turns into a product indexed by j giving

Rα,τ (z) = i|1 − s+(i)|
∏

j

z − xj√
(z − bj)(z − aj)

(1 + a2
j )1/4(1 + b2

j )1/4

(1 + x2
j )1/2

and together with the same kind of product representation of Θ′/W (see Lemma 2.4), this 
gives f and implies (3.11). Since the outer parts of ΦΦ�W(z)κα,τ

∗ (z) and κα,τ coincide, 
their ratio is exactly the ratio of their Blaschke products, which gives (3.12). �
3.3. The Abel map D(E) → π1(Ω)∗ × T

We now generalize the above correspondence, i.e., starting from an arbitrary divisor 
D = {(xj , εj)}j∈Z ∈ D(E), we consider the product

κD(z) = C

⎧⎨
⎩Φ(z)

z − i

Φ�(z)
z + i

∏
j

z − xj√
1 + x2

jΦxj
(z)

√
1 + c2

jΦcj
(z)

z − cj

⎫⎬
⎭

1
2 ∏

j

Φxj
(z)

1+εj
2 (3.14)

Note that if xj ∈ {aj , bj} then Φxj
≡ 1 and the value of εj is irrelevant. We denote the 

character of the product κ = κD by α = α(D).

Lemma 3.12. κ is a linear combination of Kα and Kα
� . With the right choice of C in 

(3.14), κ is of the form κ = Kα − τKα
� with τ ∈ T .

Proof. We will show that κ is a linear combination of Kα and Kα
� by establishing that 

it is orthogonal to all f ∈ H2(α) with f(±i) = 0. For such a function f , decompose 
f = ΦΦ�g where g ∈ H2(α − 2βΦ). Denote by κ = Cκoκi the inner-outer decomposition 
(3.14). By comparing κ and κ on ∂Ω, we obtain

κ = C

C
κ

1
ΦΦ�W

∏
Φ−εj

xj
= C

C
κo

1
ΦΦ�W

∏
Φ

1−εj
2

xj a.e. on ∂Ω. (3.15)

j j
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In addition to relating the boundary values, since the character of κ is −α, this im-
plies that the character of κo

∏
j Φ

1−εj
2

xj is 2βΦ + βW − α. Thus, g ∈ H2(α − 2βΦ) and 

κo

∏
j Φ

1−εj
2

xj ∈ H2(2βΦ + βW − α), so by DCT, we compute

〈f,κ〉 =
∫

fκdΘ =
∮

∂Ω

gκo

∏
j

Φ
1−εj

2
xj

dΘ
W = 0.

Thus, κ is orthogonal to ΦΦ�H2(α − 2βΦ), so κ = C1Kα + C2Kα
� for some C1, C2. 

Moreover, the representation (3.14) for κ implies that κ� is a multiple of κ, so |C1| = |C2|. 
Thus, κ can be normalized so that κ = Kα − τKα

� with τ ∈ T . �
This procedure gives us an Abel map π : D �→ (α, τ), π : D(E) → π1(Ω)∗ × T . To 

provide explicit formulas for this map, we denote by γk for k �= 0 the generators of 
π1(Ω) so that γk intersects R \ E “upward” through ξ∗ and “downward” through the gap 
(ak, bk). In other words, the contour γk has winding number 1 if bk < a0 and winding 
number −1 if ak < b0. Denote by Ek the part of E between the 0-th and k-th gaps. 
Finally, we denote

Aγk
(D) =

∑
j

εj

2 (ω(xj , Ek) − ω(aj , Ek)) mod Z (3.16)

Lemma 3.13. The Abel map π : D(E) → π1(Ω)∗ × T is continuous and given by the 
following explicit formulas:

α(γk) = βΦ(γk) + Aγk
(D) − Aγk

(Dc), with Dc = {(cj , −1)} (3.17)

for any k, and

τ = −τ∗
2 κD∗(i)
κD∗(−i) . (3.18)

Proof. For fixed k, fix domains Π±
k in Ĉ bounded by simple Jordan curves γ±

k in Ω \{ξ∗}
such that Π−

k ∩ E = Ek, Π+
k ∩ E = E \ Ek, and ξ∗ /∈ Π±

k . Note that ω(z, Ek) is zero on 
Π−

k ∩E and 1 −ω(z, Ek) is zero on Π+
k ∩E. By comparing the harmonic functions ω(z, Ek)

and 1 − ω(z, Ek) with G(z, ξ∗) on the compact images γ±
k and applying the maximum 

principle on the domains Π±
k \ E, we conclude the existence of Ck such that

ω(z, Ek) ≤ CkG(z, ξ∗) ∀z ∈ Π−
k , 1 − ω(z, Ek) ≤ CkG(z, ξ∗) ∀z ∈ Π+

k .

Combined with the Widom condition (2.3) this implies that the series (3.16) is absolutely 
summable uniformly in D, so Aγk

(D) is a continuous function of D.
For fixed z0 ∈ Ω, consider the outer function z−z0

Φz0
; its boundary values have absolute 

value |z − z0| a.e., so we obtain the representation
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log |z − z0|
|Φz0(z)| =

∫
log|x − z0| ω(dx, z).

Using G(z, z0) = G(z0, z) we can switch the roles of z, z0 and then pass to harmonic 
conjugates to obtain

arg z − z0

Φz0(z) =
∫

arg(x − z) ω(dx, z0) + C (3.19)

as an equality of multi-valued harmonic functions up to an additive constant C inde-
pendent of z. In particular, they have the same additive characters, and their additive 
jumps along the closed loop γk are equal to 2πω(z0, Ek). It follows that the character of 
a product 

∏
j Φxj

(z)
εj
2 is Aγk

(D).
The product (3.14) can be regrouped as

κD(z) = C

{
Φ(z)
z − i

Φ�(z)
z + i

} 1
2

⎧⎨
⎩
∏

j

(z − xj)
√

1 + c2
j

(z − cj)
√

1 + x2
j

⎫⎬
⎭

1
2 ∏

j

Φxj
(z)

εj
2
∏

j

Φcj
(z) 1

2 (3.20)

Note that the second bracket is a meromorphic, single-valued function on Ω and we can 
assume without loss of generality that γk does not contain any points in the intervals 
[cj , xj ]. Thus, combining the characters of all the factors in (3.20) gives (3.17).

To compute τ , we use κ∗. Since (2.8) gives

ΦΦ�Wκ∗ = τ∗Φ�K
α̃ − τ∗τΦKα̃

� ,

by (2.1), we see that τ∗(ΦΦ�Wκ∗)(i) = Φ�(i)Kα̃(i) > 0 and similarly τ∗τ(ΦΦ�Wκ∗)(−i)
< 0. By (3.15), ΦΦ�Wκ∗ = C1κD∗ , where D∗ = {(xj , −εj)}. Thus, τ2

∗ τκD∗(−i)/κD∗(i)
< 0. Since |κD∗ | is symmetric, this implies (3.18). �

In particular, all other components of the Abel map correspond to closed curves, but 
τ corresponds to a jump in argument from −i to i through the gap (a0, b0). Changing the 
normalization to a different gap would correspond to a change of τ by another component 
of the Abel map.

3.4. Parametrization of the class SA(E): proof of the uniqueness theorem

We have described the construction of three maps

π1(Ω)∗ × T → SA(E) → D(E) π→ π1(Ω)∗ × T . (3.21)

Theorem 3.14. For a Dirichlet regular Widom set which obeys DCT, the three maps in 
(3.21) are homeomorphisms.
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Proof. We already know that the maps are continuous and that their composition in the 
order (3.21) is the identity map, so the first map is automatically injective and the third 
map is surjective. Then, it remains to prove that the first map is surjective and the third 
is injective: it then follows that these two maps are in fact homeomorphisms by using 
compactness. Clearly, then the map from SA(E) to D(E) is a homeomorphism as well.

Let us prove surjectivity of the first map. For s+ ∈ SA(E), let

s+ �→ D �→ (α, τ), −s+ �→ D1 �→ (α1, τ1).

Then, combining definitions of all these maps we get

1 + s+

1 − s+

1 + s−
1 − s−

= (1 + s+)(1 + s−)
1 − s+s−

1 − s+s−
(1 − s+)(1 − s−) = κα1,τ1κ

α1,τ1
∗

κα,τκ
α,τ
∗

. (3.22)

Since i(1 + s+)/(1 − s+) is a Herglotz function, we can use once again Theorem 2.1. 
Thus, by (3.22), having in mind that s−(i) = 0, we obtain

1 + s+

1 − s+
= κα1,τ1

κα,τ
. (3.23)

Since the LHS in (3.23) is single-valued in Ω, α1 = α. Using Lemma 3.12, for τ2 = τ1/τ

we get

1 + s+

1 − s+
=

1 − τ2sα,τ
+

1 − sα,τ
+

= 1 + τ2

2 + 1 − τ2

2
1 + sα,τ

+
1 − sα,τ

+
.

Since s+(z) ∈ T for z in an arbitrary gap (aj, bj), we get that the LHS is pure imaginary 
valued. We have that in the RHS the real part vanishes, i.e.,

1 + Re τ2

2 − i
Im τ2

2
1 + sα,τ

+ (z)
1 − sα,τ

+ (z) = 0, z ∈ (aj , bj).

Since sα,τ
+ is not a constant, we get Im τ2 = 0 and Re τ2 = −1. Finally, we obtain 

s+(z) = sα,τ
+ (z).

Finally, the Abel map is injective: if π(D1) = π(D2) = (α, τ), then D1, D2 give the 
same product κ = κα,τ . However, κ, κ∗ determine R by (3.8) which uniquely determines 
the xj as zeros of R and the εj according to whether xj is a zero of κ or κ∗. �

In particular, the Abel map is a homeomorphism. This allows us in what follows 
to repeatedly use the same trick: having a continuous X(D) function on D(E) by a 
superposition with the inverse π−1 we get a continuous function Y (α, τ) = X(π−1(α, τ))
on a compact abelian group π1(Ω)∗ × T . In this way we obtain a so called sampling 
function, so that y(t) = Y (α − ηt, e2iθtτ), proving almost periodicity of y(t).
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For any s+ ∈ S(E), we can reduce to the case s−(i) = 0 by acting on s± with some 
automorphism of D, uniquely up to the stabilizer subgroup of 0. This observation implies 
that:

Corollary 3.15. The class S(E) is parametrized by the noncompact space π1(Ω)∗ ×
PSU(1, 1).

4. Reflectionless canonical systems via the chain of invariant subspaces 
ei�ΘH2(α − η�)

4.1. Unitary nodes with the co-invariant KΔ(α) as the state space

Just as Proposition 3.6 reflects the spectral theory of a differential operator on a half 
axis, the next construction is related to a restriction of a differential operator on an 
interval. We will start from a quite general construction. Let Δ be an inner character 
automorphic function and denote its character by βΔ. Later we will specialize to the 
case Δ = ei�Θ, 	 > 0.

A general description of the functions in H2(α) which have a pseudocontinuation is 
given by the following lemma.

Lemma 4.1. Let Δ be an inner character automorphic function with the character βΔ. 
Denote

KΔ(α) = H2(α) � ΔH2(α − βΔ).

Then f ∈ KΔ(α) implies that f has a pseudocontinuation, and moreover

f∗(z) = g(z)
Δ(z)W(z)

for some g ∈ KΔ(βΔ + βW − α).

Proof. Since Δf is orthogonal to H2(α − βΔ), it follows by Theorem 2.11 that g :=
WΔf ∈ H2(−α + βΔ + βW). Moreover, f ∈ H2(α) implies W f̄ ⊥ H2(βW − α), so 
g = WΔf̄ ⊥ ΔH2(βW − α). We finally conclude that g ∈ KΔ(βΔ + βW − α). �
Lemma 4.2. Multiplication by v̄ is a unitary node with the state space KΔ(α − βΦ) and 
two dimensional coefficient spaces:

Uα :
{

Kα
�

Φ�

}
⊕ KΔ(α − βΦ) ⊕ {ΔKα−βΦ−βΔ} →

{
Kα

Φ

}
⊕ KΔ(α − βΦ) ⊕ {ΔKα−βΦ−βΔ

� }.

(4.1)
Moreover, if we denote
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e1 =
Kα

�

Φ�
, e2 = ΔKα−βΦ−βΔ ,

f1 = ΔKα−βΦ−βΔ
� , f2 = Kα

Φ

the characteristic function S for the unitary node (4.1), written in the basis (e1, e2) for 
the coefficient space E1 and the basis (f1, f2) for the coefficient space E2, obeys

(
(e1)� (e2)�

e1 e2

)
=
(

(f1)�v (f2)�v
f1v f2v

)
S. (4.2)

Proof. On the space L2
∂Ω, multiplication by v(z) = 1/v(z) is unitary. Since

f ∈ 1
Φ�

H2(α) ⇐⇒ f

v
∈ 1

ΦH2(α)

and

f ∈ ΔΦH2(α − βΔ − 2βΦ) ⇐⇒ f

v
∈ ΔΦ�H2(α − βΔ − 2βΦ),

multiplication by v̄ is a unitary map from 1
ΦH2(α) �ΔΦ�H2(α−βΔ −2βΦ) to 1

Φ�
H2(α) �

ΔΦH2(α − βΔ − 2βΦ). Decomposing these spaces, we get a unitary node with the state 
space KΔ(α − βΦ) and two dimensional coefficient spaces (4.1).

To compute S(z0), we use the fact that for any c1, c2 ∈ C,

PE2(I − v(z0)UαPKΔ(α−βΦ))−1Uα|E1 (e1 e2 )
(

c1
c2

)
= (f1 f2 ) S(z0)

(
c1
c2

)

so for some g ∈ KΔ(α − βΦ),

(I − v(z0)UαPKΔ(α−b∗))−1Uα|E1 (e1 e2 )
(

c1
c2

)
= g + (f1 f2 ) S(z0)

(
c1
c2

)
.

Applying I − v(z0)UαPKΔ(α−βΦ) and then multiplying by v gives

(e1 e2 )
(

c1
c2

)
= (v − v(z0))g + v (f1 f2 ) S(z0)

(
c1
c2

)
. (4.3)

Since all functions in (4.3) have pseudocontinuations, applying the linear involution (. . . )�

and using v� = v gives

((e1)� (e2)� )
(

c1
c2

)
= (v − v(z0))g� + v ((f1)� (f2)� ) S(z0)

(
c1
c2

)
. (4.4)

Evaluating (4.3) and (4.4) at z = z0, the unknown functions g, g� vanish from the 
equations and we obtain
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(e1(z0) e2(z0))
(

c1
c2

)
= v(z0) (f1(z0) f2(z0)) S(z0)

(
c1
c2

)

((e1)�(z0) (e2)�(z0))
(

c1
c2

)
= v(z0) ((f1)�(z0) (f2)�(z0)) S(z0)

(
c1
c2

)
.

Since c1, c2 are arbitrary, (4.2) holds at z0 ∈ C+. Since z0 ∈ C+ is arbitrary, this 
concludes the proof. �

At this point let us compute

(e1)� = τ∗KβW +βΦ−α

W , (e2)� =
τ̄∗Δ�K

βΔ+2βΦ+βW −α
�

WΦ�

(f1)� = τ∗Δ�K
βΔ+2βΦ+βW −α

WΦ , (f2)� =
τ̄∗KβW +βΦ−α

�

W

4.2. Potapov–Ginzburg transform and transfer matrices corresponding to Δ

We will now study the transfer matrix AΔ defined by

TαAΔ =
(

Δ� 0
0 Δ

)
Tα−βΔ (4.5)

with the matrix Tα defined in (2.18). We will see that AΔ is closely related to the unitary 
node (4.1).

Lemma 4.3. AΔ is a well-defined meromorphic function on Ω and can only have poles 
at zeros of Δ�. If Δ = Δ�, then detAΔ = 1. Moreover, if Δ(i) > 0, AΔ(i) is lower 
triangular with strictly positive diagonal entries.

Proof. Since det Tα is outer and independent of α, AΔ is well-defined meromorphic by 
(4.5), poles can only come from Δ� = 1/Δ�, and detAΔ = Δ�Δ. In particular, if Δ = Δ�, 
then detAΔ = 1. From (2.18), the matrix Tα(i) is lower triangular and (Tα(i))22 > 0. 
If Δ(i) > 0, a calculation shows that AΔ(i) is lower triangular and (AΔ(i))22 > 0. By 
detAΔ = 1, (AΔ(i))11 > 0. �

Straightforward calculations show that

(
(e1)� v(f2)�

e1 vf2

)
=
(

1
WΦ�

0
0 1

Φ�

)
Tα

(
v(f1)� (e2)�

vf1 e2

)
=
(

1
WΦ�

0
0 1

Φ�

)(
Δ� 0
0 Δ

)
Tα−βΔV(sα−βΔ

+ (i))

(the last step uses Corollary 2.20) so the matrix AΔ defined by
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AΔ = AΔV(sα−βΔ
+ (i))−1 (4.6)

obeys
(

(e1)� v(f2)�

e1 vf2

)
AΔ(z) =

(
v(f1)� (e2)�

vf1 e2

)
. (4.7)

Comparing (4.7) with (4.2), we see that AΔ and S are related precisely by the Potapov-
Ginzburg transform. In general, the Potapov-Ginzburg transform compactifies the class 
of j-contractive matrix functions by relating a j-contractive matrix function A to a 
contractive matrix function S so that

P + AQ = (Q + AP )S, P =
(

1 0
0 0

)
, Q =

(
0 0
0 1

)
, j = −P + Q (4.8)

In our case, applying the Potapov–Ginzburg transform to (4.2) separates the terms 
containing Δ from those that don’t contain Δ.

Explicitly,

S(z) =
(

s11(z) s12(z)
s21(z) s22(z)

)
=
(

a11(z) 0
a21(z) 1

)−1(1 a12(z)
0 a22(z)

)
(4.9)

Lemma 4.4. AΔ is j-contractive for z ∈ C+.

Proof. On C+, away from the discrete set of poles of functions in (4.7), by (4.8),

j − AjA∗ = Q + APA∗ − P − AQA∗ = (Q + AP )(I − SS∗)(Q + AP )∗ ≥ 0 (4.10)

so AΔ is j-contractive. Since V(sα−βΔ
+ (i)) is j-unitary, by (4.6), AΔ is also j-contractive 

on C+. �
Lemma 4.5. The boundary values on E from above and below coincide,

AΔ(ξ + i0) = AΔ(ξ − i0), a.e. ξ ∈ E. (4.11)

Proof. AΔ(z) has nontangential boundary values a.e., moreover
(

(e1)� v(f2)�

e1 vf2

)
(ξ ± i0)AΔ(ξ ± i0) =

(
v(f1)� (e2)�

vf1 e2

)
(ξ ± i0).

By the definition of the �-involution we have
(

e1 vf2
(e1)� v(f2)�

)
(ξ + i0)AΔ(ξ − i0) =

(
vf1 e2

v(f1)� (e2)�

)
(ξ + i0).

Multiplying both parts by 
(

0 1
1 0

)
and using (4.6) gives (4.11). �
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4.3. From transfer matrices to reflectionless canonical systems in Arov gauge

We now specialize to the case Δ(z) = ei�Θ(z), with 	 as a parameter. Let

Θ(i) = θr + iθi, θr ∈ R, θi > 0.

We generalize the definition (2.18) and define for (α, τ) ∈ π1(Ω)∗ × T ,

Tα,τ =
(

τ∗Φ�K
α̃ τ̄∗τ̄ΦKα̃

�

τKα
� Kα

)
= U−1

τ TαUτ (4.12)

This reduces to (2.18) by conjugation with a diagonal unitary and j-unitary matrix Uτ ,

Tα,τ = U−1
τ TαUτ , Uτ =

(
τ1/2 0

0 τ−1/2.

)
. (4.13)

Sometimes it is convenient to pass to the SL(2, C) normalization of this matrix, i.e. to 
Πα,τ (z) = (det Tα,τ (z))−1/2Tα,τ (z). Due to (2.19), det Tα,τ (z) does not depend of (α, τ). 
Since

Tα,τ =
(

τ∗Φ�K
α̃ 0

0 Kα

)(
1 τ̄ sα

−
τsα

+ 1

)
, (4.14)

Πα,τ can also be written in the form

Πα,τ (z) =
(√

ια(z) 0
0 (

√
ια(z))−1

) ( 1 sα,τ
− (z)

sα,τ
+ (z) 1

)
√

1 − sα,τ
+ (z)sα,τ

− (z)
.

where

ια = τ∗Φ�K
α̃

Kα
. (4.15)

We point out that |Kα̃(z)| = |Kα(z)| on ∂Ω. Therefore ια is a meromorphic inner 
function.

With these notations we define the following family of matrices.

Definition 4.6. Let (α, τ) ∈ π1(Ω)∗ × T . We define the transfer matrix Aα,τ (z, 	) by the 
identity

Aα,τ (z, 	) =Tα,τ (z)−1ΛΘ(z)−θr
(	)Tα−η�,τ (z) (4.16)

=Πα,τ (z)−1ΛΘ(z)−θr
(	)Πα−η�,τ (z), (4.17)
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where

Λθ(	) =
(

e−i�θ 0
0 ei�θ

)
.

Note that the additive correction of Θ(z) by θr is required to obey e−i�(Θ(i)−θr) > 0
and therefore for Aα,τ (z, 	) to obey the Arov gauge condition.

Immediately from the definition we obtain the chain rule

Aα,τ (z, 	1 + 	2) = Aα,τ (z, 	1)Aα−η�1,τ (z, 	2), (4.18)

so Lemmas 4.3, 4.4, 4.5 imply:

Theorem 4.7.

(a) Aα,τ (z, 	) is holomorphic in Ω.
(b) For 	 ≥ 0, Aα,τ is j-contractive in C+ and detAα,τ (z, 	) = 1.
(c) The boundary values on E coincide,

Aα,τ (ξ + i0, 	) = Aα,τ (ξ − i0, 	), a.e. ξ ∈ E. (4.19)

(d) Aα,τ (z, 	) is jointly continuous with respect to α, τ, 	, for an arbitrary z ∈ Ω.
(e) The family is j-monotonic with respect to 	, i.e.,

j − Aα,τ (z, 	2)jAα,τ (z, 	2)∗ ≥ j − Aα,τ (z, 	1)jAα,τ (z, 	1)∗ ≥ 0

for 	1 < 	2.

Now, we prove one of the most important properties. We show that all possible sin-
gularities of Aα,τ (z, 	) on E are removable.

Lemma 4.8. For fixed (α, τ) ∈ π1(Ω)∗ × T and 	 ∈ R, the matrix Aα,τ (z, 	) is entire.

Proof. Let En be a subset of E, En = E ∩ [bn− , an+ ], bn− < an+ . Consider an arbi-
trary rectangle Q whose vertical edges pass throw the gaps (an− , bn−) and (an+ , bn+)
respectively, En ⊂ Q.

It is easy to see that ΩQ = Ω ∩ Q is of Widom type and DCT holds in it. Indeed, if α̌
is a character on π1(ΩQ) we can find a character α ∈ π1(Ω)∗, so that α|π1(ΩQ) = α̌. Since 
H∞

Ω (α) contains a non-trivial function, this function in its restriction on ΩQ provides a 
non-trivial function in H∞

ΩQ
(α). That is, ΩQ is of Widom type. Let α̌n be a sequence 

of characters which converge to the trivial character in π1(ΩQ)∗. Again, we can find a 
sequence αn such that

αn|π1(ΩQ) = α̌n and αn → 0π1(Ω)∗ .
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Fix z0 ∈ ΩQ. By the DCT in Ω we have

lim
n→∞

sup{|w(z0)| : w ∈ H∞
Ω (αn)} = 1.

Moreover

lim
n→∞

sup{|w(z0)| : w ∈ H∞
ΩQ

(α̌n)} = 1,

and this is one of characteristic properties of DCT [37, Theorem, p. 206].
We can explicitly write

Aα,τ (z, 	) = 1
det Tα

(
Kα −τ̄∗τ̄ΦKα̃

�

−τKα
� τ∗Φ�K

α̃

)
ΛΘ(z)−θr

(	)Tα−η�,τ (z). (4.20)

Since e±i�Θ ∈ H∞
ΩQ

(±η	) and z−i
Φ , z+i

Φ�
∈ H∞

ΩQ
(−βΦ), (4.20) implies Aα,τ = Θ′

W B where 

entries of the matrix B are in the set H1
ΩQ

(βW). By DCT in ΩQ, for any z0 ∈ ΩQ,

Aα,τ (z0, 	) = 1
2πi

∮
∂ΩQ

Aα,τ (z, 	)
z − z0

dz

Due to (4.19),

1
2πi

∮
En∩∂ΩQ

Aα,τ (z, 	)
z − z0

dz = 0,

so for all z0 ∈ ΩQ,

Aα,τ (z0, 	) = 1
2πi

∮
∂Q

Aα,τ (z, 	)
z − z0

dz

with Aα,τ (z, 	) integrable on ∂Q. The right-hand side defines an analytic function in 
Q. Thus, all possible singularities of Aα,τ (z, 	), given by (4.20), on the subset En are 
removable. Since En is an arbitrary piece of E in the finite part of the plane C, Aα,τ (z, 	)
is entire. �
Remark 4.9. Let 1 ≤ p ≤ ∞ and z0 ∈ Ω. Let hα

p be the extremal function of the problem: 
find

hα
p (z0) = sup{|g(z0)| : g ∈ Hp(α), ‖g‖ ≤ 1}.

In fact, the theorem on page 206 in [37] claims an equivalence of DCT and the condition
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hα
p (z0) is continuous on π1(Ω)∗ for every p with 1 ≤ p ≤ ∞. (4.21)

But (4.21) is an easy consequence of continuity of hα
∞(z0) in the vicinity of the origin 

0π1(Ω)∗ . Indeed, for an arbitrary α, β ∈ π1(Ω)∗ we have

hβ
p (z0)hα−β

∞ (z0) ≤ hα
p (z0) and hα

p (z0)hβ−α
∞ (z0) ≤ hβ

p (z0).

Passing to the limits as α → β we have

hβ
p (z0) ≤ lim inf

α→β
hα

p (z0) ≤ lim sup
α→β

hα
p (z0) ≤ hβ

p (z0),

that is, (4.21) holds.

Theorem 4.10. The function sα,τ
+ is the Schur function corresponding to the family of 

transfer matrices {Aα,τ (z, 	)}�∈R+ .

Proof. For z ∈ C+,

(
sα,τ

+ (z) 1
)
Aα,τ (z, 	) 	 (0 1) ΛΘ−θr

(	)Tα−η�,τ (z)

	 (0 1) Tα−η�,τ (z) 	
(
sα−η�,τ

+ (z) 1
)

.

Since sα−η�,τ
+ (z) ∈ D, it follows that sα,τ

+ (z) is in the Weyl disk for every 	 > 0.
Simultaneously, we can observe that τ is an “integral of motion” for the translation 

flow in Arov gauge generated by this family, i.e., the flow sα,τ
+ (z) �→ sα−η�,τ

+ (z). �
Now that we have constructed the j-monotonic family Aα,τ , we have to invoke general 

facts about canonical systems in A-gauge (general proofs in A-gauge are available in [14]). 
We will need the following:

Remark 4.11 ([14]). Let A(z, 	) be a j-monotonic family in A-gauge with A(z, 0) = I for 
all z. Then:

(1) A is the solution of a canonical system in A-gauge (1.17), which we also write in the 
form

A(z, 	)j = j+
�∫

0

A(z, l) (izA(l) − B(l)) dμ(l), A =
(

1 −ā

−a 1

)
, B =

(
0 ā

−a 0

)
.

(2) A22(i, 	) is a decreasing function of 	 and the positive measure μ is determined by 
μ(	) = − logA22(i, 	). The family is in the Weyl limit point case if and only if 
μ(	) → ∞ as 	 → ∞. The parameters a are determined by
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A(	) + B(	) =
(

1 0
−2a(	) 1

)
= −(A(i, 	))−1∂μA(i, 	)j, μ-a.e. 	.

Here, like elsewhere, ∂μ denotes Radon–Nikodym derivative: in particular, A(i, 	) is 
a.c. with respect to μ and |a(	)| ≤ 1 for μ-a.e. 	.

(3) (Ricatti equation) The translation flow on canonical systems can be obtained by 
a familiar coefficient stripping process or, at the level of the transfer matrices, by 
considering for 	 > 0 the family {A(z, 	)−1A(z, l+	)}l≥0. Denoting the corresponding 
Schur functions by s+(z, 	), their behavior is described by the Ricatti equation

∂μs+(z, 	) = (s+(z, 	) 1) (−izA(	) + B(	))
(

1
s+(z, 	)

)
. (4.22)

(4) (continuous Verblunsky parameters as boundary values of Schur functions) For μ-a.e. 
	 ≥ 0,

lim
z→∞

arg z∈[δ,π−δ]
s+(z, 	) = a(	)

1 +
√

1 − |a(	)|2
. (4.23)

(5) Denoting by c(	) ∈ D the right-hand side of (4.23), we have the mutually inverse 
formulas

a(	) = 2c(	)
1 + |c(	)|2 and c(	) = a(	)

1 +
√

1 − |a(	)|2
. (4.24)

In particular,

√
A(	) = 1√

1 + |c(	)|2

(
1 −c(	)

−c(	) 1

)
.

(6) (Krein–de Branges formula [25,43,14]) The exponential type of the transfer matrix 
is

lim sup
y→∞

log ‖A(iy, 	)‖
y

=
�∫

0

√
det A(l) dμ(l) =

�∫
0

√
1 − |a(l)|2 dμ(l). (4.25)

(7) (de Branges uniqueness theorem) For any Schur function s+ : C+ → D, there is 
a half-line canonical system in A-gauge (1.17) with Schur function s+, determined 
uniquely up to reparametrizations μ̃(	) = μ(g(	)), ã(	) = a(g(	)) with an increasing 
bijection g : [0, ∞) → [0, ∞).

(8) A reflection of the 	-axis gives the j-monotonic family

Ã(z, 	) = j1A(z, −	)j−1
1 , j1 =

(
0 1
1 0

)
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which is not in A-gauge; it is upper triangular at z = i instead of lower triangular. Its 
spectral function s− necessarily obeys s−(i) = 0. In fact, that is the only restriction: 
s−(z) = z−i

z+i
←−s +(z) where ←−s + is the Schur function corresponding to the canonical 

system in A-gauge with reflected parameters ←−μ (	) = −μ(−	), ←−a (	) = a(−	).

Theorem 4.12. Aα,τ (z, 	) solves the canonical system equation (1.17) with μ = μα given 
by (1.9) and a = aα,τ = τaα where aα is the Radon–Nikodym derivative given by (1.11).

Proof. We already established that Aα,τ is a j-monotonic family in A-gauge. By a direct 
calculation,

A
α,τ
22 (i, 	) = Kα−η�(i)

Kα(i) ei�(Θ(i)−θr). (4.26)

The reproducing kernel depends continuously on the character due to DCT, so Aα,τ
22 (i, 	)

is continuous in 	. Thus, Aα,τ is the solution of a canonical system in A-gauge. The 
measure has the distribution function

μ(	) = − logAα,τ
22 (i, 	) = 	θi − log Kα−η�(i)

Kα(i)

which gives precisely the measure μ = μα independent of τ and given by (1.9).
By construction, coefficient stripping corresponds to a linear shift in character, so 

sα,τ
+ (z, 	) = sα−η�,τ

+ (z). Thus, applying the Ricatti equation at z = i and integrating 
gives

sα−η�,τ
+ (i) − sα,τ

+ (i) = 2
�∫

0

sα−ηl,τ
+ (i)dμα(l) − 2

�∫
0

a(l)dμα(l)

Algebraic manipulations bring this to the form 
∫ �

0 a(l)dμα(l) = τμα
1 ((0, 	]) with μα

1 de-
fined by (1.10). Therefore μα

1 is absolutely continuous w.r.t. μα, a = τaα with aα given 
by (1.11), and |aα| ≤ 1 a.e. �

In particular, this proves Theorem 1.1(a),(b).

Remark 4.13. We have already seen that μα,τ = μα is τ -independent, and by (1.9), we 
have that in average

∫
∗

�∫
dμα(l)dα = θi	. (4.27)
π1(Ω) 0
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The additional parameter τ ∈ T is needed to describe all reflectionless systems, but 
in many formulas its influence is simple and can be factored out. We will denote the 
canonical system parameters by

Aα,τ (z, 	)j = j +
�∫

0

Aα,τ (z, l) (izAα,τ (l) − Bα,τ (l)) dμα,τ (l).

Since the coefficient aα,τ depends of τ in a trivial way aα,τ = τaα, we write

Aα,τ = U−1
τ AαUτ , Bα,τ = U−1

τ BαUτ ,

with Aα = Aα,1, Bα = Bα,1, with the diagonal unitary and j-unitary Uτ from (4.13).

4.4. M -type: growth of transfer matrices with respect to the Martin function

4.4.1. Growth at ∞ of positive harmonic functions on Ω
Borichev and Sodin [16] proved the following lemma:

Lemma 4.14 (Borichev–Sodin). Let h be a positive harmonic function on C \ E such that 
h(z̄) = h(z). The function can be decomposed as h(z) = CM(z) + h̃(z) where C ≥ 0, h̃
is a positive harmonic function on C \ E, and

lim
y→∞

h̃(iy)
M(iy) = 0. (4.28)

It has the following corollary:

Corollary 4.15. If f is an outer function on Ω, |f | ≥ 1 and |f(z̄)| = |f(z)|, then

lim
y→∞

log|f(iy)|
M(iy) = 0.

Proof. By Lemma 4.14, there exists C ≥ 0 such that

C = lim
y→∞

log|f(iy)|
M(iy)

and log|f | ≥ CM . This implies that

1
|f(z)| ≤ |eiCΘ(z)|. (4.29)

If C > 0, eiCΘ(z) is a singular inner function and 1/f an outer function, so (4.29) would 
give a contradiction. �
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We will apply this corollary in order to compute the M -exponential type of the transfer 
matrix Aα(z, x) of a reflectionless canonical system, see Lemma 4.21. In this section we 
provide a systematic approach to the Borichev-Sodin kind propositions, see Theorem 4.19
below.

We recall briefly the construction of the Martin boundary [48]. Consider for w ∈ Ω
the Green function with a pole at w normalized at some z∗ ∈ Ω,

M(z, w) = G(z, w)
G(z∗, w) . (4.30)

The Martin boundary ∂M Ω is the collection of limits of sequences M(z, wn) for sequences 
of wn ∈ Ω which eventually leave every compact subset of Ω. The limits are considered in 
the sense of uniform convergence on compact subsets of Ω; in particular, they are positive 
harmonic functions on Ω. The construction of the Martin compactification extends the 
definition of M(z, w) to w ∈ Ω̂ = Ω ∪ ∂M Ω.

Let ∂M
1 Ω denote the subset of the Martin boundary consisting of minimal harmonic 

functions. Since Ω is a Denjoy domain, ∂M
1 Ω contains 1 or 2 points for each point of 

E ∪ {∞} [11]. We denote that correspondence by P : ∂M
1 Ω → E ∪ {∞}. Every positive 

harmonic function on Ω has a unique representation

h(z) =
∫

∂M
1 Ω

M(z, w) dσh(w) (4.31)

with a unique finite measure σh on ∂M
1 Ω.

Lemma 4.16. For any δ > 0,

sup
|z|≥1

arg z∈[δ,π−δ]

sup
w∈∂M

1 Ω

M(z, w)
M(z) < ∞. (4.32)

Proof. Recall that all Martin functions are normalized at the same internal point z∗ ∈ Ω; 
however, by the Harnack principle, the desired conclusion (4.32) is independent of the 
choice of z∗. For the proof, let us fix z∗ = 10i, so that

M(z, w) = G(z, w)
G(10i, w) , w ∈ Ω.

The key is the use of the boundary Harnack principle for Denjoy domains [3,32]. Let us 
use the notation f � g if f ≤ Cg for some universal constant C and f 	 g if f � g and 
g � f . For instance, for any δ > 0, by a Harnack chain with constant complex modulus 
of size depending only on δ,

M(z, w) 	 M(iIm z, w)

M(z) M(iIm z)
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so to prove the nontangential bound (4.32), it suffices to prove the normal bound for 
z = iy, y ≥ 1. It will also be more convenient to apply an inversion and prove

sup
y∈(0,1]

sup
w∈∂M

1 Ω

M(iy, w)
M(iy, 0) < ∞, (4.33)

where 0 ∈ ∂M
1 Ω.

By [32, Thm. 3], Denjoy domains obey the following boundary Harnack principle: if 
r > 0, for all x, y ∈ C+ such that |x| < r, |y| < r, and t ≥ 10r,

G(x, it)
G(x, 2ri) 	 G(y, it)

G(y, 2ri) .

We apply this to r ∈ (0, 1] and t = 10 to conclude

G(10i, x)
G(2ri, x) 	 G(10i, y)

G(2ri, y) , ∀x, y ∈ C+ : |x| < r, |y| < r.

Letting x → ri and letting y → 0 gives

M(2ri, ri) 	 M(2ri, 0), r ∈ (0, 1]. (4.34)

For x ∈ ∂M
1 Ω, by the Harnack principle applied in the domain Ω \ {ri},

M(z, ri)
M(z, x) 	 M(2ri, ri)

M(2ri, x) , |z − ri| = r

2 .

By the maximum principle,

M(z, ri) � M(z, x)M(2ri, ri)
M(2ri, x) , |z − ri| ≥ r

2

since on the domain {z ∈ Ω̂ | |z − ri| ≥ r/2}, the left-hand side achieves its maximum on 
the circle |z−ri| ≥ r/2 and the right-hand side achieves its minimum there. In particular, 
using z = 10i, we conclude M(2ri, x) � M(2ri, ri) for r ∈ (0, 1]. Combining this with 
(4.34) gives M(2ri, x) � M(2ri, 0) for r ∈ (0, 1], x ∈ ∂M

1 Ω, which implies (4.33). �
Lemma 4.17. For any w ∈ ∂M

1 Ω with π(w) �= ∞ and any δ > 0,

lim
z→∞

arg z∈[δ,π−δ]

M(z, w)
M(z) = 0.

Proof. Since π(w) �= ∞, the Martin function M(z, w) is subharmonic in some neighbor-
hood of ∞ and therefore bounded there. Meanwhile, the symmetric Martin function has 
a Riesz representation
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M(z) = M(ξ∗) +
∫

log
∣∣∣∣ x − z

x − ξ∗

∣∣∣∣ dϑ(x)

with ξ∗ ∈ R \ E and suppϑ = E. From this representation, by monotone convergence, 
M(iy) → ∞ as y → ∞. By the Harnack principle applied with Harnack chains of 
fixed size along an arc with fixed |z|, this implies that M(z) → ∞ as z → ∞ with 
arg z ∈ [δ, π − δ]. �

It is a general fact about Denjoy domains that all elements of P−1({∞}) can be 
obtained as limits of M(z, wn) for sequences wn = iyn → ±i∞. Thus, let us denote the 
corresponding elements of the Martin boundary as ±i∞. In this notation, the Akhiezer–
Levin case is precisely the case +i∞ �= −i∞.

From now on, let us assume that the normalization point z∗ from (4.30) is in R \ E. 
Then the symmetric Martin function is

M(z) = M(z, +i∞) + M(z, −i∞)
2 .

Moreover, in the Akhiezer–Levin case, M(z, −i∞) = o(M(z, +i∞)) as |z| → ∞ with 
arg z ∈ [δ, π − δ], so Lemma 4.17 implies that (in both cases):

Lemma 4.18. For any w ∈ ∂M
1 Ω with w �= +i∞ and any δ > 0,

lim
z→∞

arg z∈[δ,π−δ]

M(z, w)
M(z, +i∞) = 0.

Theorem 4.19. For any positive harmonic function h on Ω and any δ > 0,

lim
|z|→∞

arg(±z)∈[δ,π−δ]

h(z)
M(z, ±i∞) = σh({±i∞}) = inf

z∈Ω

h(z)
M(z, ±i∞) .

Proof. The second equality is general Martin theory [5, Chapter 9]. For the first, use 
(4.31) to write

lim
|z|→∞

arg(±z)∈[δ,π−δ]

h(z)
M(z) = lim

|z|→∞
arg(±z)∈[δ,π−δ]

∫
∂M

1 Ω

M(z, w)
M(z) dσh(w).

By (4.32) and since σh is a finite measure, the dominated convergence theorem can be 
applied with a constant majorant. Thus, by Lemma 4.18, this gives

lim
|z|→∞

arg(±z)∈[δ,π−δ]

h(z)
M(z) =

∫
M

χ{±i∞}(w)dσh(w) = σh({±i∞}). �

∂1 Ω
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This has a corollary for symmetric functions h and the symmetric Martin function. 
The proof is immediate, by considering separately the A–L case and the non-A–L case:

Corollary 4.20. For any positive harmonic function h on Ω which obeys h(z̄) = h(z),

lim
|z|→∞

arg(±z)∈[δ,π−δ]

h(z)
M(z) = inf

z∈Ω

h(z)
M(z) , ∀δ > 0.

4.4.2. Growth at ∞ of the transfer matrices

Theorem 4.21. For all (α, τ), all 	 > 0, and all δ > 0,

lim
z→∞

arg z∈[δ,π−δ]

log‖Aα,τ (z, 	)‖
M(z) = 	. (4.35)

Proof. We use the representation (4.17). Since det Πα,τ = 1 for all (α, τ), it follows 
that ‖Πα,τ ‖ ≥ 1. Each entry (Πα,τ )ij can be majorized by an outer function aij with 
|aij | ≥ 1: it suffices to define aij by its boundary values on ∂Ω, log|aij | = log+|(Πα,τ )ij |. 
Then consider the outer function f defined by its boundary values log|f | = max{log|aij | |
i, j ∈ {1, 2}} on ∂Ω (well defined because the pointwise maximum of integrable functions 
is integrable). Then |aij(z)| ≤ |f(z)| for all z ∈ Ω so

0 ≤ log‖Πα‖ ≤ log
2∑

i,j=1
|aij | ≤ log(4|f |)

and since f is outer and |f(z̄)| = |f(z)|,

lim
z→∞

arg z∈[δ,π−δ]

log|f(z)|
M(z) = 0.

Thus

lim
z→∞

arg z∈[δ,π−δ]

log‖Πα,τ (z)‖
M(z) = 0

for all (α, τ) ∈ π1(Ω)∗ × T .
Since Πα,τ is a 2 ×2 matrix and det Πα,τ = 1, ‖Π−1

α,τ ‖ = ‖Πα,τ ‖. By submultiplicativity 
of operator norm,

‖Aα,τ ‖ ≤ ‖Π−1
α,τ ‖‖ΛΘ(z)−θr

(	)‖‖Πα−η�,τ ‖

and
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‖ΛΘ(z)−θr
(	)‖ ≤ ‖Πα,τ ‖‖Aα,τ ‖‖Π−1

α−η�,τ ‖

so (4.35) follows from

lim
z→∞

arg z∈[δ,π−δ]

log‖ΛΘ(z)−θr
(	)‖

M(z) = 	. �

Proof of Theorem 1.11. By Theorem 3.14, all reflectionless canonical systems with spec-
trum E correspond to Schur functions sα,τ

+ , and by Theorem 4.10 and de Branges’ unique-
ness theorem, they all correspond to j-monotonic families of the form Aα,τ(z, 	), up to 
reparametrization. By (1.18) our construction obeys (4.35), so μ = μα and a = τaα. �
5. Fourier transform

In this section, we construct unitary Fourier transforms. The basic strategy is stan-
dard: we construct norm-preserving maps on dense sets and show that their continuous 
extensions are unitary (compare [53,54]). We start by working on the spaces Kei�Θ(α)
and compute inner products in order to obtain the norm-preserving properties. Eventu-
ally, the space Kei�Θ(α) will correspond to the interval [0, 	] on the target Hilbert space, 
so working on this space is related to working on compactly supported functions.

5.1. Reproducing kernels on Kei�Θ(α) and involutions

Lemma 5.1. If Δ is inner, ΔΔ(z0)kα−βΔ
z0

is the reproducing kernel for ΔH2(α − βΔ).

Proof. For any f ∈ ΔH2(α − βΔ),

〈
f, ΔΔ(z0)kα−βΔ

z0

〉
=
〈

f

Δ , Δ(z0)kα−βΔ
z0

〉
= Δ(z0)

(
f

Δ

)
(z0) = f(z0). �

Lemma 5.2. If Δ is inner, the function kα
z0

− ΔΔ(z0)kα−βΔ
z0

is the reproducing kernel for 
KΔ(α).

Proof. The function kα
z0

− ΔΔ(z0)kα−βΔ
z0

is obviously in H2(α). Moreover, for any g ∈
ΔH2(α − βΔ),

〈g, kα
z0

− ΔΔ(z0)kα−βΔ
z0

〉 = g(z0) −
〈 g

Δ , Δ(z0)kα−βΔ
z0

〉
= g(z0) − Δ(z0)

( g

Δ

)
(z0) = 0,

so kα
z0

− ΔΔ(z0)kα−βΔ
z0

∈ KΔ(α). Finally, for any f ∈ KΔ(α),

〈f, kα
z0

− ΔΔ(z0)kα−βΔ
z0

〉 = 〈f, kα
z0

〉 − 〈f, ΔΔ(z0)kα−βΔ
z0

〉 = f(z0) − 0. �
Note, in particular, that evaluating this reproducing kernel at z0 gives:
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Corollary 5.3. If Δ is inner then kα
z0

(z0) > |Δ(z0)|2kα−βΔ
z0

(z0).

Lemma 5.4. If f ∈ KΔ(α), then

f� = h

Δ�W

for some h ∈ KΔ�
(βΔ + βW − α).

Proof. By Lemma 4.1, f∗ = g
ΔW for some g ∈ KΔ(βΔ +βW −α). Applying the involution 

(. . . )� and using W� = W gives f� = g�

Δ�W . Note that g ∈ KΔ(βΔ + βW − α) implies 
h = g� ∈ KΔ�

(βΔ + βW − α). �
In particular, we will apply this to Δ = ei�Θ. By Lemma 5.2, the function

V α
z0,� = kα

z0
− ei�(Θ−Θ(z0))kα−η�

z0

is the reproducing kernel in Kei�Θ(α). We also define

Ṽ α
z0,� = ei�(Θ+Θ(z0))W(V η�+βW −α

z0,� )�

= W
(

ei�(Θ+Θ(z0))(kη�+βW −α
z0

)� − (kβW −α
z0

)�

)
. (5.1)

This is a kind of dual reproducing kernel in Kei�Θ(α):

Lemma 5.5. The vector Ṽ α
z0,� is an element of Kei�Θ(α) and

W(z0)f�(z0) = 〈f, Ṽ α
z0,�〉, ∀f ∈ Kei�Θ(α). (5.2)

Proof. By Lemma 5.4 with Δ = Δ� = ei�Θ, Ṽ α
z0,� ∈ Kei�Θ(α). Moreover, for any f ∈

Kei�Θ(α),

〈f, ei�ΘW(V η�+βW −α
z0,� )�〉 = 〈ei�ΘWf�, V η�+βW −α

z0,� 〉 = ei�Θ(z0)W(z0)f�(z0)

by the reproducing kernel property of V η�+βW −α
z0,� . Dividing by ei�Θ(z0) gives (5.2). �

We now compute inner products of reproducing kernels and dual reproducing kernels.

Lemma 5.6. For any z1, z2 ∈ Ω and 	1, 	2 > 0 and with 	 := min(	1, 	2),

〈
V α

z1,�1
, V α

z2,�2

〉
= kα(z2, z1) − ei�(Θ(z2)−Θ(z1))kα−η�(z2, z1) (5.3)〈

Ṽ α
z1,�1

, V α
z2,�2

〉
= W(z2)

(
ei�(Θ(z2)+Θ(z1))(kη�+βW −α

z1
)�(z2) − (kβW −α

z1
)�(z2)

)
(5.4)

〈
Ṽ α

z ,� , Ṽ α
z ,�

〉
= e−i�(Θ(z2)−Θ(z1))kη�+βW −α

z (z2) − kβW −α
z (z2) (5.5)
1 1 2 2 1 1
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Proof. To prove (5.3), assume without loss of generality that 	1 ≤ 	2; the other case re-
duces to this by complex conjugation. If 	1 ≤ 	2, both functions are elements of Kei�2Θ(α)
and V α

z2,�2
is a reproducing kernel so

〈V α
z1,�1

, V α
z2,�2

〉 = V α
z1,�1

(z2).

Evaluating this by definition gives (5.3).
To prove (5.4) if 	1 ≤ 	2, use Ṽ α

z1,�1
∈ Kei�1Θ(α) ⊂ Kei�2Θ(α) to compute

〈Ṽ α
z1,�1

, V α
z2,�2

〉 = Ṽ α
z1,�1

(z2).

Evaluating this by (5.1) gives (5.4) for the case 	1 ≤ 	2. If 	1 ≥ 	2, by a direct calculation 
using (5.1),

Ṽ α
z1,�1

− Ṽ α
z1,�2

= ei�2(Θ+Θ(z1))Ṽ α−η�2
z1,�1−�2

∈ ei�2ΘH2(α − η	2),

so this vector is orthogonal to V α
z2,�2

. Thus,

〈Ṽ α
z1,�1

, V α
z2,�2

〉 = 〈Ṽ α
z1,�2

, V α
z2,�2

〉,

so the calculation for 	1 ≥ 	2 reduces to the case 	1 = 	2 computed above.
To prove (5.5), assume without loss of generality that 	1 ≤ 	2; the other case reduces 

to this by complex conjugation. Using Lemma 5.5,

〈Ṽ α
z1,�1

, Ṽ α
z2,�2

〉 = W(z2)(Ṽ α
z1,�1

)�(z2)

and evaluating by (5.1) completes the proof. �
5.2. Fourier transform (general case)

Our goal is to prove Theorem 1.2. We will begin constructing the Fourier transform 
Fα by assigning how it maps certain functions and extending by linearity and continuity. 
We assume that θr = 0 (this is only for notational convenience, see Remark 5.11).

We denote vector functions

fα(z) = (0 1) Tα(z) =
(
Kα

� (z) Kα(z)
)

gα(z) = (1 0) Tα(z) =
(
τ∗Φ�K

α̃ τ̄∗ΦKα̃
�

)
Let us point out that

fα(z)Aα(z, 	) = fα−η�(z)ei�Θ(z),

gα(z)Aα(z, 	) = gα−η�(z)e−i�Θ(z),
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so fα−η�(z)ei�Θ(z) and gα−η�(z)e−i�Θ(z) are Weyl solutions at +∞ and −∞ for the canon-
ical system.

We begin constructing the Fourier transform Fα by prescribing that it maps, for 
z0 ∈ Ω and 	 > 0,

Fα :
√

Aα(l)(fα−ηl(z0))∗e−iΘ(z0)lχ[0,�](l) �→
√

2Φ�(z0)
z0 + i

V α−βΦ
z0,� (5.6)

Fα :
√

Aα(l)(gα−ηl(z0))∗eiΘ(z0)lχ[0,�](l) �→
√

2Φ�(z0)
z0 + i

Ṽ α−βΦ
z0,� (5.7)

The next lemma ensures that this preserves inner products:

Lemma 5.7. For all z, z0 ∈ Ω and 	 > 0,

�∫
0

ΛΘ(z)(l)Tα−ηl(z)Aα(l)Tα−ηl(z0)∗ΛΘ(z0)(l)∗ dμα(l)

= 2Φ�(z)
z + i

(
Φ�(z0)
z0 + i

)(〈Ṽ α−βΦ
z0,� , Ṽ α−βΦ

z,� 〉 〈V α−βΦ
z0,� , Ṽ α−βΦ

z,� 〉
〈Ṽ α−βΦ

z0,� , V α−βΦ
z,� 〉 〈V α−βΦ

z0,� , V α−βΦ
z,� 〉

)

Proof. By the canonical system equation,

∂μA
α(z, α)j = Aα(z, α)(izAα − Bα).

Since Aα is self-adjoint and Bα anti-self-adjoint, this implies

j∂μA
α(z0, α)∗ = (iz̄0Aα + Bα)Aα(z0, α)∗.

Computing ∂μ(Aα(z, 	)jAα(z0, 	)∗) by the product rule and integrating gives

�∫
0

Aα(z, l)Aα(l)Aα(z0, l)∗ dμα(l) = i
j − Aα(z, 	)jAα(z0, 	)∗

z − z̄0
.

Multiplying by Tα(z) on the left and Tα(z0)∗ on the right and using (4.16) gives

�∫
0

ΛΘ(z)(l)Tα−ηl(z)Aα(l)Tα−ηl(z0)∗ΛΘ(z0)(l)∗ dμα(l)

= i
Tα(z)jTα(z0)∗ − ΛΘ(z)(	)Tα−η�(z)jTα−η�(z0)∗ΛΘ(z0)(	)∗

z − z̄0
.

(5.8)

Using Lemma 2.22 twice for the right-hand side, and comparing entries with the inner 
products computed in Lemma 5.6 completes the proof. �
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Lemma 5.8. For any L > 0, Fα extends by linearity and continuity to a unitary operator
√

AαL2([0, L],C2, dμα) → KeiLΘ(α − βΦ). (5.9)

Proof. We begin by proving that the left sides of (5.6), (5.7) with 	 ∈ [0, L] have a dense 

span in 
√

AαL2([0, L],C2, dμα). Namely, let f̂ be in the orthogonal complement of the 
span. Then for all z ∈ Ω and 	 ∈ [0, L],

�∫
0

eiΘ(z)lfα−ηl(z)
√

Aα(l)f̂(l)∗dμα(l) = 0,

�∫
0

e−iΘ(z)lgα−ηl(z)
√

Aα(l)f̂(l)∗dμα(l) = 0.

Combining these equations in matrix form gives

�∫
0

ΛΘ(z)(l)Tα−ηl(z)
√

Aα(l)f̂(l)∗dμα(l) = 0.

Since 	 ∈ [0, L] is arbitrary, this implies that for μα-a.e. l ∈ [0, L],

ΛΘ(z)(z)Tα−ηl(z)
√

Aα(l)f̂(l)∗ = 0

and therefore 
√

Aαf̂∗ = 0 μα-a.e. Multiplying by arbitrary ĝ ∈ L2(R, C2, dμα),
∫

ĝ
√

Aαf̂∗ dμ = 0

so f̂ corresponds to the trivial functional on the Hilbert space 
√

AαL2([0, L],C2, dμα). 
Therefore, f̂ = 0 in 

√
AαL2([0, L],C2, dμα).

Right sides of (5.6), (5.7) are elements of KeiLΘ(α − βΦ). Moreover, since V α−βΦ
z0,L are 

reproducing kernels of KeiLΘ(α − βΦ), orthogonality to all reproducing kernels implies 
that the function is trivial. Thus, the right sides of (5.6), (5.7) have a dense span in 
KeiLΘ(α − βΦ).

By Lemma 5.7, the map Fα preserves inner products between vectors in (5.6), (5.7). 
By linearity and continuity, it extends uniquely to a unitary operator (5.9). �
Lemma 5.9. Fα extends by linearity and continuity to a unitary operator

Fα :
√

AαL2([0, ∞),C2, dμα) → H2(α − βΦ). (5.10)

This operator can be represented in the form (1.12) with 	 = 0.
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Proof. The union ∪�>0Kei�Θ(α − βΦ) is a dense subset of H2(α − βΦ), since
⋂
�>0

(
H2(α − βΦ) � Kei�Θ(α − βΦ)

)
=
⋂
�>0

ei�ΘH2(α − βΦ − 	η) = {0}. (5.11)

Thus, Fα extends by continuity to a unitary operator (5.10). �
Remark 5.10. By continuity, taking 	 → ∞ on both sides of (5.6), (5.7) shows that

Fα :
√

Aα(l)(fα−ηl(z0))∗e−iΘ(z0)lχ[0,∞)(l) �→
√

2Φ�(z0)
z0 + i

kα−βΦ
z0

.

Denote for z0 ∈ Ω the functions

k̂α
z0

(	) =
(

z0 + i√
2Φ�(z0)

eiΘ(z0)�

)√
Aα(	)(fα−η�(z0))∗, 	 > 0. (5.12)

Since Fαk̂α
z0

= kα−βΦ
z0

and the reproducing kernels are dense in H2(α − βΦ), the span of 
the set of vectors {k̂α

z0
| z0 ∈ Ω} is dense in 

√
AαL2([0, ∞),C2, dμα). Therefore, (1.12)

reflects the identity

f(z) = 〈f, kα−βΦ
z 〉, ∀f ∈ H2(α − βΦ).

Proof of Theorem 1.2. Passing from zero in Lemma 5.9 to an arbitrary L in Theorem 1.2
is a matter of change of the variable 	 �→ 	 + L. It remains to show that

clos{∪L∈R−eiLΘH2(α − βΦ − ηL)} = L2
∂Ω.

By Theorem 2.11 we pass to orthogonal complements and use (5.11). �
Remark 5.11. Let us show that the assumption Re Θ(i) = 0 is not essential. Define 

Θ1 = Θ + iθr, θr ∈ R. Define now (k̂1)α
z0

∈
√

AαL2([0, ∞),C2, dμα) by (5.12) with 
respect to Θ1. We get

‖(k̂1)α
z0

‖2 = ‖k̂α
z0

‖2 = kα−βΦ(z0, z0)

and therefore a Fourier transform with respect to a new Θ1.

5.3. Specialization: A-L condition fails

By definition

lim Im Θ(iy) = 0.

y→∞ y
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By Theorem 4.21 and the Krein-de Branges formula (4.25),

L∫
0

√
1 − |a(	)|2dμα(	) = 0,

that is, |a(	)| = 1 μα-a.e. Therefore f̂ ∈
√

AαL2(R, C2, dμα) can be represented as

f̂(	) = 1√
2

(
1

−a(	)

)
ĝ(	), ĝ ∈ L2(R,C2, dμα).

This is an isometry; since L2(R, C2, dμα) is closed, so is 
√

AαL2(R, C2, dμα), and (1.12)
is reduced to

(Fαĝ)(z) = z + i√
2Φ�(z)

∞∫
0

κα−η�,cα(�)(z)eiΘ(z)�ĝ(	)dμα(	),

where, recall, for a fixed α the following limit is well defined for μα-a.e. 	

cα(	) = lim
y→∞

sα−η�
+ (iy).

We point out that in the case under consideration two measures μα and μβ for the same 
spectrum E are possibly mutually singular for certain α, β ∈ π1(Ω)∗ (see Theorem 6.23), 
even though in the average all isospectral measures form d	, see (4.27).

5.4. Specialization: A-L condition holds

When A-L holds, it is common to normalize the complex Martin function so that

lim
y→∞

Im Θ(iy)
y

= 1.

By Theorem 4.21 and the Krein–de Branges formula (4.25), for all L,

L∫
0

1 − |cα(	)|2
1 + |cα(	)|2 dμα(	) =

L∫
0

√
1 − |aα(	)|2dμα(	) = L.

It immediately follows that:

Lemma 5.12. If A-L holds, Lebesgue measure is absolutely continuous with respect to μα; 
in particular, |cα(	)| < 1 for Lebesgue-a.e. 	.

However, we conjecture that the converse is not automatic:
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Conjecture 5.13. There exists a Dirichlet-regular Widom set E with DCT such that A-L 
holds and μα has a nontrivial singular component with respect to Lebesgue measure for 
some α.

We begin by working in the general A-L case, with results that hold regardless of 
whether μα has a nontrivial singular part. The results in this section imply, in particular, 
Lemma 1.3 and Theorem 1.4.

Lemma 5.14. For μα-a.e. 	 the limits (1.14) exist. Moreover

(Lα
−(z, 	) Lα

+(z, 	)) =
√

1 + |cα(	)|2
2Kβ(i)

z + i

Φ�(z)fβ(z)
√

Aα(	)
(

t1 0
0 t2

)
, (5.13)

where t1 = Φ(i∞) ∈ T and t2 = v(i∞)Φ(i∞) ∈ T .

Proof. Recall that

cα(	) = lim
y→+∞

Kα−η�
� (iy)

Kα−η�(iy) , fα =
(
Kα

� Kα
)

.

Also

kα−βΦ(z, iy) = z + i√
2Φ�(z)

i(1 + y)√
2Φ�(iy)

Kα(z)Kα(iy) − Kα
� (z)Kα

� (iy)
z + iy

Thus for β = α − η	 we have

Lα
+(z, 	) = lim

y→∞
−kβ−βΦ(z, iy)
Kβ(i)Kβ(iy)

= z + i

2Kβ(i)Φ�(z)Φ�(i∞)
(Kβ(z) − cα(	)Kβ

� (z))

For kα−βΦ(z, −iy) we have

kα−βΦ(z, −iy) = z + i√
2Φ�(z)

i(1 − y)√
2Φ�(−iy)

Kα(z)Kα
� (iy) − Kα

� (z)Kα(iy)
z − iy

Therefore, since Kβ
� (z̄) = Kβ(z) and Φ�(z̄) = Φ(z), we get

Lα
−(z, 	) = lim

y→∞
kβ−βΦ(z, −iy)

Kβ
� (−i)Kβ

� (−iy)
= z + i

2Kβ(i)Φ�(z)Φ(i∞) (−Kα(z)cα(	) + Kα
� (z))

Combining these computations we obtain

(Lα
−(z, 	) Lα

+(z, 	)) = z + i
β

fβ(z)
(

1 −cα(	)
−cα(	) 1

)(
Φ(i∞) 0

0 Φ (i∞)

)

2K (i)Φ�(z) �
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that is, (5.13). �
Lemma 5.15. For the matrix (1.15), the following limit exists

dα(	) = lim
y→+∞

det Lα(iy, 	) = 1 − |cα(	)|2
2kα−η�(i, i) . (5.14)

Proof. As before β = α − η	. By (5.13) and (2.11) we have

Lα(z, 	) =
√

1 + |cα(	)|2
2Kβ(i)

z + i

Φ�(z)

( 1
W(z) 0

0 1

)
Tβ(z)

√
Aα(	)

( 1
Φ(i∞) 0

0 Φ(i∞)
v(i∞)

)
.

Using (2.19), we get

det Lα(z, 	) =1 − |cα(	)|2
4kβ(i, i)

(
z + i

Φ�(z)

)2 2
Θ′(z)

Φ
z − i

Φ�

z + i
v(i∞)

=1 − |cα(	)|2
2kβ(i, i)

z + i

z − i
v(z)v(i∞) 1

Θ′(z) = 1 − |cα(	)|2
2kβ(i, i)Θ′(z) .

In the normalization limy→∞ Θ′(iy) = 1 we have (5.14). �
The measure (dμα)ac = 1+|cα(�)|2

1−|cα(�)|2 d	 generates a closed subspace L2(R, C2, (dμα)ac) of 
L2(R, C2, dμα). The Fourier transform restricted to this subspace can be rewritten as:

Theorem 5.16. The a.c. part of the Fourier transform is unitarily equivalent to the norm-
preserving map Fα

ac : L2([0, ∞), C2) → L2
∂Ω given by

(Fα
a.c.ĝ)(z) =

∞∫
0

eiΘ(z)�√
dα(	)

(Lα
−(z, 	) Lα

+(z, 	)) ĝ(	)d	, ĝ ∈ L2([0, ∞),C2).

Proof. According to (5.13) and (5.14)

1√
dα(	)

[0 1] Lα(z, 	) =

√
1 + |cα(	)|2
1 − |cα(	)|2

z + i√
2Φ�(z)

fα−η�(z)
√

Aα(	)
(

t1 0
0 t2

)

with constants tj ∈ T . On the other hand due to (1.12)

(Fα
a.c.f̂)(z) = z + i√

2Φ�(z)

∞∫
0

eiΘ(z)�fα−η�(z)
√

Aα(	)f̂(	)1 + |cα(	)|2
1 − |cα(	)|2 d	

=
∞∫

0

eiΘ(z)�√
dα(	)

[0 1] Lα(z, 	)ĝ(	)d	
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with

ĝ(	) =

√
1 + |cα(	)|2
1 − |cα(	)|2

(
t̄1 0
0 t̄2

)
f̂(	).

Note that

‖ĝ‖2
L2([0,∞),C2) = ‖f̂‖2

L2([0,∞),C2,dμα) = ‖Fαf̂‖2
H2(α−βΦ). �

The best known sufficient A-L condition is the finite logarithmic gap length condition 
(1.13). In the end of this section we show that (1.13) implies that μα is absolutely 
continuous for an arbitrary α, moreover with a uniformly bounded derivative. Before 
that, we would like to comment on its relation to the concept of Ahlfors’ analytic capacity, 
see e.g. [64].

Recall that for an arbitrary domain Ω we say that the boundary of this domain has 
positive analytic capacity if there exists nontrivial single-valued w(z) ∈ H∞

Ω such that 
w(z0) = 0 for a fixed z0 ∈ Ω. The analytic capacity w.r.t. z0 is given by

CA
z0

(Ω) = sup{|w′(z0)| : ‖w‖H∞
Ω

≤ 1, w(z0) = 0}. (5.15)

Strict positivity of the analytic capacity, CA
z0

(Ω) > 0, implies strict positivity of 
(potential-theoretic) capacity, but not vice versa. It is evident that a non trivial w ∈ H∞

Ω
such that w(z0) = 0 allows a factorization

w(z) = Φz0(z)w1(z)

where Φz0(z) is the complex Green function in the domain. Respectively w1 ∈
H∞

Ω (−βΦz0
) and the extremal problem (5.15) can be reduced to the extremal problem 

for bounded functions with a given character : find

sup{|w1(z0)| : w1 ∈ H∞
Ω (−βΦz0

), ‖w1‖ ≤ 1}. (5.16)

We restrict the further discussion again only to the case of Denjoy domains. Note that 
the analytic capacity in this case is closely related to the Lebesgue length of its boundary 
E, see e.g. [64, §8.8]. It is natural to raise the question: how to restate the problem (5.15)
for a boundary point of the domain, say ∞ ∈ E? Having in mind (5.16), this problem 
has the following setting.

Problem 5.17. Let Ω be a Denjoy domain, Ω = C \ E, and ∞ ∈ E. Let Θ(z) be the 
symmetric complex Martin function w.r.t. ∞ and η be its additive character. Does there 
exist a non trivial additive character automorphic function N1(z), N1(γ(z)) = N1(z) −
η(γ), with a positive imaginary part Im N1(z) ≥ 0 in the domain? In other words, does 
there exist a single valued function N(z) such that Im N(z) ≥ 0, z ∈ Ω, and
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lim
y→∞

Im N(iy)
Im Θ(iy) > 0. (5.17)

Proposition 5.18. If the condition (1.13) holds, there exists a single valued function N(z)
with positive imaginary part in the domain such that (5.17) is satisfied.

Proof. We define N(z) in the upper half plane by its argument on the real axis

χN (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ E, x > 0
1/2, x ∈ R \ E
1, x ∈ E, x < 0

The function (up to a positive constant multiplier) is of the form

N(z) = e
∫
R

(
1

x−z − x
1+x2

)
χN (x)dx = ze

1
2
∫
R\E

(
1

x−z − x
1+x2

)
sgnxdx

.

By definition Im N(x + i0) = 0 for a.e. x ∈ E. Assuming logarithmic finite gap length 
condition we obtain a finite limit

σN := lim
y→∞

Im N(iy)
y

= e
− 1

2
∫
R\E

|x|dx

1+x2 > 0. (5.18)

Since N(z) assumes pure imaginary values in gaps we get an extension of this function 
in Ω due to the symmetry principle N(z̄) = −N(z). Thus Im N(z) ≥ 0 for all z ∈ Ω.

In other words we get an affirmative answer to the question, which was posed in Prob-
lem 5.17. Due to (5.18) we get a function N1(z) = 1

σN
N(z) −Θ(z) such that Im N1(z) ≥ 0

for z ∈ Ω whose additive character is −η. �
Corollary 5.19. If the log-finite-length condition (1.13) holds then μα is absolutely con-
tinuous with uniformly bounded (in 	 and α) derivative.

Proof. Now in addition to the fact that e−Im Θ(i)�Kα−η�(i) is monotonically decreasing 
we have that the function e−Im N1(i)�Kα+η�(i) is also decreasing, by Corollary 5.3 applied 
to Δ(z) = ei�N1(z). Thus the directional derivative ∂η log Kα(i) = d

d� log Kα+η�(i)|�=0
obeys

−Im Θ(i) ≤ ∂η log Kα(i) ≤ Im N1(i).

In other words

0 ≤ dμα(	)
d	

≤ Im N(i)
σN

= e
1
2
∫
R\E

|x|dx

1+x2 cos

⎛
⎜⎝1

2

∫ sgnx dx

1 + x2

⎞
⎟⎠ . �
R\E
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6. Almost periodicity of coefficients

6.1. Almost periodic measures

A complex measure ν on R is said to be translation bounded if for any compact S ⊂ R,

‖ν‖S := sup
x∈R

|ν|(x + S) < ∞.

In this notation, the measure |ν| is said to be uniformly continuous if limL↓0‖ν‖[0,L] = 0.
Almost periodicity of translation bounded measures is usually defined by convolution 

with some family of test functions.

Definition 6.1. Let ν be a translation bounded measure on R and X a set of test functions 
on R. We say ν is an X-almost periodic measure if for all h ∈ X, the convolution

(h ∗ ν)(	) :=
∫

h(	 − l) dν(l)

is a (uniformly) almost periodic function.

In particular, Cc(R)-almost periodicity is commonly called strong almost periodicity 
[4,26], and we will consider the stronger notion of PCc(R)-almost periodicity, where 
PCc(R) denotes the set of piecewise continuous compactly supported functions. With 
uniform continuity, these properties are equivalent.

Lemma 6.2. If ν is a complex measure on R such that |ν| is uniformly continuous, the 
following are equivalent:

(i) ν is strongly almost periodic;
(ii) for every L > 0, ν((	, 	 + L]) is an almost periodic function of 	.

Proof. (i) =⇒ (ii): Fix L > 0 and define the sequence of functions hn(x) = max(0, 1 −
ndist(x, [0, L])). Then

|(hn ∗ ν)(x) − (χ[0,L] ∗ ν)(x)| ≤ |ν|([x, x + 1/n]) + |ν|([x − L − 1/n, x − L])

Thus, by uniform continuity of |ν|, hn ∗ ν converges uniformly to χ[0,L] ∗ ν as n → ∞. 
Since the functions hn ∗ ν are almost periodic, their uniform limit χ[0,L] ∗ ν is almost 
periodic.

Conversely, assume that (ii) holds and fix h ∈ Cc(R). Take a sequence hn of piecewise 
constant functions with supphn ⊂ supph which uniformly approximate h. Then hn ∗ ν

are almost periodic, as linear combinations of almost periodic functions. Moreover, for 
all x,
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|(hn ∗ ν)(x) − (h ∗ ν)(x)| ≤ ‖hn − h‖∞|ν|(supph),

so hn ∗ ν converges to h ∗ ν uniformly as n → ∞. It follows that h ∗ ν is almost periodic, 
as a uniform limit of almost periodic functions. Thus, ν is strongly almost periodic. �

Our proofs will require another perspective on almost periodicity in terms of linear 
sampling along a compact torus. We will use the following terminology:

Definition 6.3. For a set of test functions X, the measure ν is an X-almost periodic 
measure with frequency vector η ∈ R∞ if it is a member of a collection {να}α∈T∞ of 
complex measures on R indexed by α ∈ T∞, a torus of countable dimension with the 
product topology, with the following properties:

(i) (uniform local boundedness) For every compact S ⊂ R, supα∈T∞ |να|(S) < ∞.
(ii) (translation is a linear action on the torus) The vector η encodes translation in the 

sense that

να((0, L]) = να−η�((	, 	 + L]), ∀α ∈ Γ ∀	 ∈ R ∀L > 0. (6.1)

(iii) For any h ∈ X, 
∫

h dνα is a continuous function of α.

Clearly, Definition 6.3 implies Definition 6.1. The properties in Definition 6.3 can also 
be reconstructed by integrating measures on intervals:

Lemma 6.4. Let {να}α∈T∞ be a collection of complex measures which is uniformly locally 
bounded, obeys (6.1), has no point masses, and for any L > 0, να((0, L]) is a continu-
ous function of α. Then {να} is a collection of PCc(R)-almost periodic measures with 
frequency vector η.

Proof. We prove that α �→
∫

hdνα is continuous for successively larger classes of test 
functions h. By assumption, this holds for h = χ(0,L]. By translation, it holds for h =
χ(L1,L2] for any L1 < L2. Since να are continuous measures, it holds for the characteristic 
function of any bounded interval. By using linear combinations, it holds for piecewise 
constant compactly supported functions.

If h is a piecewise continuous compactly supported function, it is uniformly approx-
imated by piecewise constant compactly supported hn with supphn ⊂ supph. Then ∫

hn dνα are continuous in α. Moreover, for all α,

∣∣∣∣
∫

hndνα −
∫

hdνα

∣∣∣∣ ≤ ‖hn − h‖∞|να|(supph),

so 
∫

hndνα converges to 
∫

hdνα uniformly as n → ∞. It follows that 
∫

hdνα is continuous 
in α. �
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We will also need an abstract lemma:

Lemma 6.5. Let {να} be a collection of PCc(R)-almost periodic measures with frequency 
vector η. For any L > 0, if g : T∞ → C is continuous, then the function

Y(α) =
L∫

0

g(α − ηl)dνα(l)

is continuous in α.

Proof. Assume that αn → α. Since g(αn − η	) → g(α − η	) uniformly in 	 ∈ [0, L] and 
by uniform local boundedness, it follows that

L∫
0

g(αn − η	)dναn(	) −
L∫

0

g(α − η	)dναn(	) → 0, n → ∞.

Meanwhile, by applying Lemma 6.4 to the function h(	) = χ(0,L](	)g(α−η	), we conclude 
that

L∫
0

g(α − η	)dναn(	) −
L∫

0

g(α − η	)dνα(	) → 0, n → ∞.

Together, these conclusions imply Y(αn) → Y(α) as n → ∞. �
6.2. Almost periodicity in A-gauge

Our next goal is to show that the coefficients of the constructed canonical systems in 
A-gauge are almost periodic.

Lemma 6.6. The family {μα}α∈π1(Ω)∗ is a family of PCc(R)-almost periodic positive 
measures with frequency vector η.

Proof. It has already been proved that the measures μα are positive, continuous measures 
and (1.9) can be written as

μα((0, L]) = μα−η�((	, 	 + L]) = XL(α)

where

XL(α) := Lθi − log Kα−ηL(i)
α

. (6.2)

K (i)
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By DCT, Kα(i) is continuous and positive in α, so XL is a continuous function of α.
After translation, we can assume that the compact S is in (0, L] for some L. Since μα

are positive measures, by continuity and compactness,

sup
α∈π1(Ω)∗

μα(S) ≤ sup
α∈π1(Ω)∗

XL(α) < ∞.

Thus, by Lemma 6.4, the claim follows. �
Remark 6.7. Similarly to almost periodic functions, almost periodic measures have an 
average E(μ) with the property that E(h ∗ μ) = E(μ) 

∫
h(l)dl for suitable test functions 

h. In our case, (6.2) implies that the measures μα have average θi; compare (4.27).

Lemma 6.8. The family {aαdμα}α∈π1(Ω)∗ is a family of PCc(R)-almost periodic complex 
measures with frequency vector η.

Proof. The measures dμα are uniformly locally bounded and continuous, and since |aα| ≤
1, so are the measures aα dμα. The representation of translation follows from (1.11). From 
(1.11), we obtain

L∫
0

aα(l) dμα(l) =
L∫

0

sα−ηl
+ (i) dμα(l) − 1

2

(
sα−η�

+ (i) − sα
+(i)

)
. (6.3)

Since sα
+(i) depends continuously on the character, so does (6.3), by Lemma 6.5. �

In particular, this proves Theorem 1.1(c).

6.3. Passing to the Dirac gauge

6.3.1. The gauge transform
Not every canonical system can be transformed to Dirac gauge (1.22). We will de-

scribe a transformation and note the requirements along the way. Applying the Krein–de 
Branges formula (4.25) to Dirac gauge shows that the variable t for a canonical system 
in the Dirac gauge is equal to the exponential type of the transfer matrix D(z, t). That 
is t = 	 in our notation.

Thus, to pass from A-gauge to Dirac gauge, we first pass to derivative w.r.t. 	, which 
we denote by ( ˙...), and obtain the system in the form

Ȧ(z, 	)j = ∂�A(z, 	)j = A(z, 	)(izA(	) − B(	))μ̇(	).

Note that now det(μ̇(	)A(	)) = 1. We use a transformation

D(z, 	) = U(0)−1A(z, 	)U(	), U(	) ∈ SU(1, 1).
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Right-multiplication is a gauge transformation; left-multiplication ensures D(z, 0) = I

and affects the Schur function. We have

Ḋ(z, 	)j = U(0)−1Ȧ(z, 	)U(	)j + U(0)−1A(z, 	)U̇(	)j

= U(0)−1A(z, 	)(izA(	) − B(	))μ̇(	)jU(	)j + D(z, 	)U(	)−1U̇(	)j

= D(z, 	)U(	)−1(izA(	) − B(	))μ̇(	)(U(	)∗)−1 + D(z, 	)U(	)−1U̇(	)j.

By choosing

U(	) =
√

A(	)μ̇(	) = V(c(	)) = 1√
1 − |c(	)|2

(
1 −c(	)

−c(	) 1

)

we get a canonical system in a Dirac (D) gauge

Ḋ(z, 	)j = D(z, 	)(izI − Q(	)), Q(	) = μ̇(	)U(	)−1B(	)(U(	)∗)−1 − U(	)−1U̇(	)j.

We point out that c(	) should be differentiable to this end. We automatically have the 
normalization tr Q(	)j = 0. In addition one of standard normalizations [45] requires 
tr Q(	) = 0. To this end, generally speaking, we need an extra diagonal gauge transform

D1(z, 	) = D(z, 	)Uψ(	), Uψ(	) =
(

e−iψ(�) 0
0 eiψ(�)

)
, ψ(0) = 0.

We get a canonical system

Ḋ1(z, 	)j = D(z, 	)1(izI − Q1(	)), Q1(	) = Uψ(	)−1Q(	)(Uψ(	)∗)−1 − iψ̇(	)I.

Thus ψ(	) should be chosen as the integral

iψ(	) = 1
2

�∫
0

tr Q(	)d	.

Note that almost periodicity of c(	) and ċ(	) does not necessarily imply almost periodicity 
of the quantity e2iψ(�) related to the integral [12].

We arrive to the following proposition.

Theorem 6.9. Let A(z, 	) be the transfer matrix of a canonical system in A-gauge with 
parameters {μ(	), a(	)}, where 	 is its exponential type. If μ is absolutely continuous and 
a(	) is differentiable, then it can be transformed to a D-gauge,

Ḋ(z, 	)j = D(z, 	)(izI − Q(	)),

where
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Q(	) = 1
1 − |c(	)|2

(
0 2c(	) + ċ(	)

−(2c(	) + ċ(	)) 0

)
+ i

Im (ċ(	)c(	))
1 − |c(	)|2 I. (6.4)

With an extra (canonical form) normalization condition

Ḋ1(z, 	)j = D1(z, 	)(izI − Q1(	))), tr Q1(	) = 0,

the matrix coefficient Q1(	) is given by

Q1(	) = 1
1 − |c(	)|2

(
0 e2iψ(�)(2c(	) + ċ(	))

−e−2iψ(�)(2c(	) + ċ(	)) 0

)
(6.5)

with

ψ(	) =
�∫

0

Im (c(	)ċ(	))d	

1 − |c(	)|2 .

Proof. It remains to compute Q(	), Q1(	) and ψ(	). Recall

μ̇(	)B(	) = 1 + |c(	)|2
1 − |c(	)|2

1
1 + |c(	)|2

(
0 2c(	)

−2c(	) 0

)
.

We have

(1 − |c|2)2

2 μ̇U−1B(U∗)−1 =
(

1 c

c 1

)(
0 c

−c 0

)(
1 c

c 1

)
= (1 − |c|2)

(
0 c

−c 0

)
.

That is,

μ̇U−1B(U∗)−1 = 1
1 − |c(	)|2

(
0 2c(	)

−2c(	) 0

)
.

Further,

U̇ = 1√
1 − |c|2

(
0 −ċ

−ċ 0

)
+ Re (ċc̄)

1 − |c|2 U

and we obtain

U−1U̇j = 1
1 − |c|2

(
1 c

c 1

)(
0 −ċ

ċ 0

)
+ Re (ċc̄)

1 − |c|2 j = 1
1 − |c|2

(
iIm (ċc̄) −ċ

ċ −iIm (cċ)

)

Finally,

Q = 1
2

(
0 2c + ċ

−(2c + ċ) 0

)
+ i

Im (ċc̄)
2 I. �
1 − |c| 1 − |c|
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6.3.2. Logarithmic gap length condition and the first term in the asymptotics
We consider the logarithmic gap length condition (1.13).

Theorem 6.10. The limit values

lim
y→∞

Rα,τ (iy)

exist for all (α, τ) ∈ π1(Ω)∗ × T if and only if (1.13) holds. Moreover, in this case

R(α, τ) := −i lim
y→∞

Rα,τ (iy) = |1 − τsα
+(i)|e−

∫
R

ξ

1+ξ2 χα,τ (ξ)dξ (6.6)

represents a continuous strictly positive function on π1(Ω)∗ × T .

Proof. We have

Rα,τ (iy) = i|1 − τsα
+(i)|e

∫
R

(
− (y2−1)ξ

(ξ2+y2)(1+ξ2) +i y

ξ2+y2

)
χα,τ (ξ)dξ

. (6.7)

We choose (α0, τ0) such that x0
j = aj for bj < 0 and x0

j = bj for aj > 0. In this choice 
we get

Rα0,τ0(iy) = i|1 − τ0sα0
+ (i)|e

1
2
∫
R\E

(
(y2−1)|ξ|

(ξ2+y2)(1+ξ2) −i y sgnξ

ξ2+y2

)
dξ

.

Due to the Beppo Levi Theorem

lim
y→∞

∫
R\E

y2

x2 + y2
|ξ|dξ

ξ2 + 1 =
∫

R\E

|ξ|dξ

ξ2 + 1 .

Thus existence of the limit implies (1.13).
On the other hand if (1.13) holds we get an integrable majorant for both summands 

in the integral (6.7). In particular, for the second one we use

2y

x2 + y2 ≤
{

1, |x| ≤ 1
1

|x| , |x| ≥ 1
for y ≥ 2.

Therefore we can pass to the limit and we get (6.6). Since the resulting value is continuous 
in D ∈ D(E), R(α, τ) is continuous. �
Corollary 6.11. Let

Ξ(α) = R(α, 1) − R(α, −1) + i(−R(α, i) + R(α, −i))
. (6.8)
2 + R(α, 1) + R(α, −1)
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If (1.13) holds, then the following limits exist and represent continuous functions in α

lim
y→∞

sα
+(iy) = Ξ(α), lim

y→∞
sα

−(iy) = Ξ(α). (6.9)

Moreover

sup
α∈π1(Ω)∗

1
1 − |Ξ(α)|2 < ∞. (6.10)

Proof. We have

R(α, 1) + R(α, −1) = 2 lim
y→∞

1 + sα
+(iy)sα

−(iy)
1 − sα

+(iy)sα
−(iy)

Thus the limit

lim
y→∞

2
1 − sα

+(iy)sα
−(iy) = 1 + R(α, 1) + R(α, −1)

2 (6.11)

exists. Also

R(α, 1) − R(α, −1)
2 = lim

y→∞

sα
+(iy) + sα

−(iy)
1 − sα

+(iy)sα
−(iy)

Therefore

lim
y→∞

(sα
+(iy) + sα

−(iy)) = 2(R(α, 1) − R(α, −1))
2 + R(α, 1) + R(α, −1) (6.12)

Similarly,

R(α, i) − R(α, −i)
2 = i lim

y→∞

sα
+(iy) − sα

−(iy)
1 − sα

+(iy)sα
−(iy)

Therefore

lim
y→∞

(sα
+(iy) − sα

−(iy)) = 2i(−R(α, i) + R(α, −i))
2 + R(α, i) + R(α, −i) . (6.13)

Note that by definition (6.6) R(α, τ) is positive. From (6.12) and (6.13) we get (6.9) with 
(6.8). By (6.11) we have (6.10). �

In connection with Dirac operators the following normalization condition is natural.

Definition 6.12. We denote by SD(E) the set of s+ ∈ S(E) for which the following limit 
exists limy→∞ s+(iy) = 0.
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Proposition 6.13. If (1.13) holds, then SD(E) is a compact, which allows the following 
parametric description

SD(E) =
{

(sD)α,τ
+ = τ

sα − Ξ(α)
1 − sα

+Ξ(α)
, (α, τ) ∈ π1(Ω)∗ × T

}
(6.14)

Proof. By Corollary 3.15, any s+ ∈ S(E) is of the form (s+ 1) 	 (sα
+ 1) U for some 

U ∈ SU(1, 1). If s+ ∈ SD(E), by Corollary 6.11, we have

(0 1) 	 (Ξ(α) 1) U .

Therefore U = V(Ξ(α))Uτ for some τ ∈ T . The inverse statement is evident. �
6.3.3. Finite gap length condition and the second term in the asymptotics

The finite sum length gap condition with respect to infinity is (1.23). When (1.23)
holds, we can define

Υ(α, τ) =
∑

j

(
xj − aj + bj

2

)
, (α, τ) = π(D), D ∈ D(E).

Since the RHS is continuous in D(E), Υ(α, τ) is continuous on π1(Ω)∗ × T .

Lemma 6.14. If (1.23) holds, then

Rα,τ (iy) = iR(α, τ)
(

1 + i

y
Υ(α, τ) + o

(
1
y

))
, (6.15)

uniformly in π1(Ω)∗ × T .

Proof. (1.23) evidently implies (1.13), therefore the integral related to the second term 
in

∫ ( 1
ξ − z

− ξ

1 + ξ2

)
χα,τ (ξ)dξ

converges. For the first one we have
∫ ( 1

ξ − z
+ 1

z

)
χα,τ (ξ)dξ − 1

z

∫
χα,τ (ξ)dξ.

Since ∣∣∣∣
∫

ξ2 + iξy

ξ2 + y2 χα,τ (ξ)dξ

∣∣∣∣ ≤ 1
2

∫
ξ2 + |ξ|y
ξ2 + y2 dξ
R\E
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and the last integrand has an integrable majorant it tends to zero as y → ∞. We get
∫ 1

ξ − iy
χα,τ (ξ)dξ = i

y

∫
χα,τ (ξ)dξ + o

(
1
y

)

uniformly in (α, τ). Respectively, we obtain

Rα,τ (iy) = iR(α, τ)e
i
y

∫
χα,τ (ξ)dξ+o

(
1
y

)

which gives (6.15). �
Together with Corollary 6.11 we have the main conclusion on two term asymptotics 

for sα
±(z) at infinity.

Proposition 6.15. If (1.23) holds, then

sα
+(iy) = Ξ(α) + Ξ1(α)

y
+ o

(
1
y

)
, y → ∞ (6.16)

uniformly in α. Moreover, Ξ(α) and Ξ1(α) are continuous and can be given explicitly in 
terms of R(α, τ) and Υ(α, τ). Respectively the Schur functions (sD)α,τ

+ defined by (6.14)
obey

(sD)α,τ
+ (iy) = τΞ1(α)

1 − |Ξ(α)|2
1
y

+ o

(
1
y

)
, y → ∞.

6.3.4. Almost periodicity in D-gauge
We now prove a more precise version of Theorem 1.14:

Theorem 6.16. Let Ω = C \ E be of Widom type and DCT hold. If E obeys the gap length 
condition (1.23), then for an arbitrary (α, τ), (sD)α,τ

+ ∈ SD(E) is the Schur spectral func-
tion of a canonical system (6.4) with almost periodic Qα,τ (	). Moreover, the coefficients 
are of the form

cα,τ (	) = τΞ(α − η	), ċα,τ (	) = 2τ(Ξ1(α − η	) − Ξ(α − η	)). (6.17)

Proof. According to Proposition 6.15, the limit exists limy→∞ sα
+(iy) = Ξ(α). Therefore, 

the first relation (6.17) holds. By (6.10) and

	 =
�∫

0

1 − |Ξ(α − ηl)|2
1 + |Ξ(α − ηl)|2 dμα,τ (l)

we get that μα,τ is absolutely continuous w.r.t. 	, moreover
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μ̇α,τ (	) = 1 + |Ξ(α − η	)|2
1 − |Ξ(α − η	)|2 . (6.18)

Using the Ricatti equation (4.22) in the integral form we have

sα−η�
+ (z) − sα

+(0) =

−iz

�∫
0

(
sα−ηl

+ (z) 1
)
(

1 −Ξ(α − ηl)
−Ξ(α − ηl) 1

)2

1 − |Ξ(α − ηl)|2
(

1
sα−ηl

+ (z)

)
dl

+
�∫

0

(
sα−ηl

+ (z) 1
)
(

0 2Ξ(α − ηl)
−2Ξ(α − ηl) 0

)
1 − |Ξ(α − ηl)|2

(
1

sα−ηl
+ (z)

)
dl

= −2iz

�∫
0

(sα−ηl
+ (z) − Ξ(α − ηl))

1 − sα−ηl
+ (z)Ξ(α − ηl)

1 − |Ξ(α − ηl)|2 dl

−2
�∫

0

Ξ(α − ηl) − (sα−ηl
+ (z))2Ξ(α − ηl)

1 − |Ξ(α − ηl)|2 dl

According to (6.16) we can pass to the limit as z = iy, y → ∞. We obtain

Ξ(α − η	) − Ξ(α) = 2
�∫

0

Ξ1(α − ηl)dl − 2
�∫

0

Ξ(α − ηl)dl.

That is, cα(	) = Ξ(α−η	) is differentiable and moreover the derivative is almost periodic, 
since we get the representation (6.17). �
Remark 6.17. As it was already mentioned almost periodicity of Qα,τ (	) does not guaran-
tee almost periodicity of the phase function e2iψ(�) in the representation (6.5) for Qα,τ

1 (	)
in the Dirac gauge. It requires additional restrictions on the set E. A similar phenomenon 
we will discuss precisely in the next section, where we will see that the logarithmic gap 
length condition w.r.t. the origin (1.20) has to be accompanied by a potential theory 
constraint (1.21). Note also that the translations

(
(sD)α(�),τ(�)

+ (z) 1
)

	
(

(sD)α,τ
+ (z) 1

)
D(z, 	) and(

(sD)α1(�),τ1(�)
+ (z) 1

)
	
(

(sD)α,τ
+ (z) 1

)
D1(z, 	)

are respectively of the form

(α(	), τ(	)) = (α − η	, τ) and (α1(	), τ1(	)) = (α − η	, τe−2iψ(�)).
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That is, our choice of Qα,τ provides a conservation law τ = const.

Remark 6.18. From another point of view absolute continuity of μα was discussed and 
proved in the end of Section 5.4, cf. (6.18).

6.4. Passing to the Potapov-de Branges gauge

6.4.1. Criterion for almost periodicity
To pass from A-gauge to PdB-gauge we make the substitution

Bα(z, 	) = Aα(z, 	)Aα(0, 	)−1.

As a result we get the canonical system in PdB gauge,

Bα(z, 	)j = j + iz

�∫
0

Bα(z, l)Hα(l)dμα(l). (6.19)

This canonical system is determined by the positive matrix measure Hαdμα. We denote 
by (. . . )′ the derivative in z; in particular, (6.19) implies

Bα(0, 	)′j = i

�∫
0

Hα(l)dμα(l). (6.20)

We will use Lemma 6.2 to study almost periodicity of the matrix measure Hαdμα. 
Thus, we need a relation for its integrals over intervals.

Lemma 6.19. The Hamiltonian Hα(	) obeys the following identity

L+�∫
�

Hα(l)dμα(l) = Aα(0, 	)

⎧⎨
⎩

L∫
0

Hα−η�(l)dμα−η�(l)

⎫⎬
⎭Aα(0, 	)∗. (6.21)

Proof. As a consequence of the chain rule (4.18) for Aα(z, 	), the transfer matrix Bα(z, 	)
obeys

Bα(z, 	 + L) = Bα(z, 	)Aα(0, 	)Bα−η�(z, L)Aα(0, 	)−1. (6.22)

Differentiating (6.22) in z and evaluating at z = 0 gives

(Bα)′(0, 	 + L) = (Bα)′(0, 	) + Aα(0, 	)(Bα−η�)′(0, L)Aα(0, 	)−1.

Multiplying from the right by j, using (6.20) for each term, and using Aα(0, 	)−1j =
jAα(0, 	)∗ (since Aα(0, 	) ∈ SU(1, 1)) gives (6.21). �
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Since

L∫
0

Hα(l)dμα(l) = −iBα(0, L)′j = −i(Aα(0, L))′Aα(0, L)−1j

is a continuous function of α on the compact abelian group π1(Ω)∗, the internal term 
in (6.21) is almost periodic in 	. Thus the almost periodicity of the whole expression is 
guaranteed by almost periodicity of Aα(0, 	) with respect to the variable 	.

The main result of this section is the following proposition.

Theorem 6.20. Under the assumptions of Theorem 1.12, Aα(0, 	) is almost periodic in 	. 
For a generic η, conditions (1.21), (1.20) are also necessary.

Remark 6.21. Note that if 0 �∈ E, then Aα(0, 	) is even unbounded. Moreover, (1.20)
means that 0 is not an end of a gap aj �= 0, bj �= 0 for all j. Respectively, in this case 
each gap contains a critical point, (c∗)j ∈ (aj , bj) for all j.

Proof of Theorem 6.20. We start with the following remark. Condition (1.21) means 
exactly that the function

Z(D) =
∑

j

(ω(xj , E∗) − ω(aj , E∗))εj mod 1

on the set D(E) is continuous. Therefore z(α, τ) := Z(D) for (α, τ) = π(D) is continuous 
on π1(Ω)∗ × T .

We will use the representation (4.17) for Aα(z, 	). Without loss of generality, we can 
assume that Θ(0) = 0, see remark above, that is, ΛΘ(0)(	) = I. Condition (1.20) implies 
that Rα,τ (0) is continuous in α, respectively sα

±(0) are well defined, sα
−(0) = sα

+(0), sα
+(0)

continuous and

sup
α

|sα
+(0)|2 < 1.

On the other hand we do not have any control on the inner function ια, see (4.15)
(actually, we do not know whether it is a Blaschke product or not). To overcome this 
problem we use the identity

ια(z) = eiϕ∗Φ�K
α̃

Kα
=

eiϕ∗Φ�K
α̃ − τ̄ e−iϕ∗ΦKα̃

�

Kα − τKα
�

1 − τsα
+

1 − τ̄ sα
−

= Δα,τ (υα,τ )2,

where

υα,τ (z) :=

√
1 − τsα

+(z)
1 − τ̄ sα (z) , υα := υα,1.
−
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Recall that Δα,τ here is the Blaschke product (3.12).
Thus, Πα(z) is now a product Πα(z) = ΠΔ

α (z)Πs
α(z), in which

Πs
α(z) =

(
υα(z) 0

0 υα(z)−1

) ( 1 sα
−(z)

sα
+(z) 1

)
√

1 − sα
−(z)sα

+(z)
,

and Πs
α(0) is well defined and represents continuous matrix function with values in 

SU(1, 1). The first factor

ΠΔ
α (z) =

(√
Δα(z) 0

0
√

Δα(z)−1

)

is given it terms of the Blaschke product Δα(z) with well localized zeros and poles (one 
zero or pole in one gap depending on the divisor D defined by the inverse Abel map 
D = π−1(α, 1)).

Since Aα(z, 	) is entire, by (4.17) we have that

(ΠΔ
α (z))−1ΠΔ

α−η�(z) = Πs
α(z)Aα(z, 	)(Πs

α−η�(z))−1

has limit value at z = 0, and moreover |Δα−η�(z)/Δα(z)| → 1. The limit of the argument 
of Δα−η�(z)/Δα(z) can be represented in terms of harmonic measures, see Section 3.3, 
particularly (3.19),

∑
j

(
(ω(xα−η�

j , E∗) − ω(aj , E∗))εα−η�
j − (ω(xα

j , E∗) − ω(aj , E∗))εα
j

)
mod 1

what is z(α − η	, 1) − z(α, 1). Thus finally

Aα(0, 	) = (Πs
α(0))−1

(
eπi(z(α−η�,1)−z(α,1)) 0

0 e−πi(z(α−η�,1)−z(α,1))

)
Πs

α−η�(0)

is almost periodic in 	.
Conversely, from the representation (4.17) in the generic position we can conclude 

that almost periodicity of Aα(0, 	) should imply continuity of sα
+(0) and of the limit 

argument of the ratio Δα−η�(z)/Δα(z) as z → 0. These both functions, being expressed 
in terms of D(E) are continuous if and only if (1.21) and (1.20) hold. �
Proof of Theorem 1.12. Theorem 6.20 proves the case s+ = sα

+, α ∈ π1(Ω)∗. By Corol-
lary 3.15, any s+ ∈ S(E) is of the form (s+ 1) 	 (sα

+ 1) U for some U ∈ SU(1, 1). 
The corresponding transfer matrices in PdB-gauge are obtained by the conjugation 
B(z, 	) = U−1Bα(z, 	)U which preserves PdB-gauge, acts on the Hamiltonian by 
H(	) = U−1Hα(	)(U−1)∗, and preserves almost periodicity. �
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6.4.2. Symmetric canonical system in PdB gauge and counterexample (geometric 
progression)

In this section we demonstrate an example of a canonical system associated to a 
homogeneous spectrum E such that the corresponding Hamiltonian in PdB gauge is not 
almost periodic. The easiest way to violate conditions (1.20) and simultaneously (1.21)
is to consider a set, so that the ends of gaps form geometric progressions. Such set is 
homogeneous. We will show that at least generically the associated Hamiltonian is not 
almost periodic.

Let Es be symmetric, i.e., x ∈ Es ⇒ (−x) ∈ Es and 0 ∈ Es. Using the substitution 
λ = z2 we can pass to a semi-bounded set F = R+ \ ∪j(aj , bj). We say that a character 
αs is symmetric in C \ Es if it is generated by a character α ∈ π1(C \ F)∗. First we 
describe certain specific properties of Hamiltonians with a symmetric spectral set [72]. 
They are diagonal in the standard form for de Branges canonical systems, see (6.23).

As soon as the domain Ω = C \ Es is of Widom type and DCT holds the coefficients 
of a canonical system in PdB gauge corresponding to a symmetric character αs are of 
the form

A(z, 	)J = J − z

�∫
0

A(z, l)
[

dν1(l) 0
0 dν2(l)

]
, J =

[
0 1

−1 0

]
. (6.23)

Moreover, the measures dνj can be given explicitly in terms of special functions (repro-
ducing kernels and their limits), see Theorem 6.23 below.

Note that the normalization point z∗ = i corresponds to λ∗ = −1. In this subsection 
we assume that the complex Martin function in Ω is normalized by Θ(λ∗) = i and its 
additive character is denoted by η.

Lemma 6.22. [72] Let kα(λ, λ0) denote the reproducing kernel in H2(α, C \ F). Then the 
limit

vα(λ) = lim
λ0→−∞

kα(λ, λ0)
kα(λ∗, λ0)

exists and represents a continuous function in α. Moreover, the limit

vα(α − η	) := lim
λ→−0

vα(λ)
vα−η�(λ)

exists for 	 ∈ R+ and represent a continuous function in 	.

Theorem 6.23. [72] Let j be the character generated by 
√

λ in C \F. Then the coefficients 
of the canonical system (6.23) are of the form

dν1(	) = dνα+j(	), dν2(	) = dνα(	)
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and

dνα(	) = −vα(α − η	)2

κ(α) e2�de−2�kα−η�(λ∗, λ∗), (6.24)

where κ(α) = kα(λ∗, λ∗) + kα+j(λ∗, λ∗). Moreover, if A-L condition is violated in the 
symmetric domain Ω = C \ Es, then the measures να and να+j are mutually singular.

Based on this we get the following proposition:

Proposition 6.24. Let

να
L(	) =

L+�∫
�

dνα(l) and νL(α) = να
L(0).

Then

να
L(	) = κ(α − η	)

κ(α) vα(α − η	)2νL(α − η	). (6.25)

Proof. By definition

vα(α − η(	 + l)) = lim
λ→−0

vα(λ)
vα−η�(λ)

vα−η�(λ)
v(α−η�)−ηl(λ) = vα(β)vβ(β − ηl)

with β = α − η	. Therefore the same change of variable (	 is fixed) in (6.24) provides

dνα(	 + l) = −vα(α − η	 − ηl)2e2lde−2lkα−η�−ηl(λ∗, λ∗)
κ(α) = κ(β)

κ(α)vα(β)2dνβ(l).

Respectively, we have

L+�∫
�

dνα(l) =
L∫

0

dνα(l + 	) = κ(β)
κ(α)vα(β)2

L∫
0

dνβ(l),

that is, (6.25) with β = α − η	. �
Remark 6.25. The functions κ(α) and νL(α) are continuous in π1(C \ F)∗. The almost 
periodicity for the diagonal entries of the Hamiltonian in (6.23) are reduced to the 
question: is it possible to extend vα(β) by continuity on the hull clos{β = α−η	 : 	 ∈ R}?

Now we will demonstrate that for a geometric progressions set, at least generically 
(non algebraic numbers) the answer is no. Let F = R+ \ ∪n∈Z(an, bn) be formed by a 
geometric progression, i.e.
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an = ρna0, bn = ρnb0, 0 < a0 < b0 < ρa0.

We have an automorphism in C\F : λ �→ ρλ. We identify a character α with the sequence 
{αk}k∈Z of its values on the standard generators αk = α(γk). If f(λ) has a character α, 
then f(ρλ) has the character Sα 	 {Sα}k∈Z, where

(Sα)k = αk+1.

For the Martin function we have

Θ(ρλ) = rΘ(λ), where r = η1

η0
.

Lemma 6.26. For a set F forming by a geometric progression

rkα(ρλ, ρλ0) = kSα(λ, λ0), vα(ρλ) = vα(ρλ∗)vSα(λ). (6.26)

Respectively, if vα(β) is well defined, then

vα(β) = vα(λ∗/ρ)
vβ(λ∗/ρ)vS−1α(S−1β). (6.27)

Proof. For f ∈ H2(α) we have

f(ρλ0) =
∫

kα(λ, ρλ0)f(λ)dΘ(λ) =
∫

kα(ρλ, ρλ0)f(ρλ)dΘ(ρλ)

= r

∫
kα(ρλ, ρλ0)f(ρλ)dΘ(λ) =

∫
kSα(λ, λ0)f(ρλ)dΘ(λ).

Hence we get (6.26). In its turn

vα(β) = lim
λ→−0

vα(λ/ρ)
vβ(λ/ρ) = vα(λ∗/ρ)

vβ(λ∗/ρ) lim
λ→−0

vS−1α(λ)
vS−1β(λ)

and we have (6.27). �
Proposition 6.27. Let r be a non-algebraic number and Sα = α. Then the function vα(α−
η	) is not almost periodic, i.e., the associated canonical system in the PdB gauge is not 
almost periodic.

Proof. Since frequencies {rk} are rationally independent clos {α − η	 : 	 ∈ R} =
π1(C \ F )∗. If Sα = α, Sβ∗ = β∗ and vα(λ∗/ρ) > vβ∗(λ∗/ρ), assuming continuity vα(β), 
we get a contradiction

lim
α−η�→β∗

vα(α − η	) = ∞.

In particular, we can choose β∗ = α + j. �
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