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Abstract
There is a vast theory of Chebyshev and residual polynomials and their asymptotic
behavior. The former ones maximize the leading coefficient and the latter ones max-
imize the point evaluation with respect to an L∞ norm. We study Chebyshev and
residual extremal problems for rational functions with real poles with respect to sub-
sets ofR. We prove root asymptotics under fairly general assumptions on the sequence
of poles. Moreover, we prove Szegő–Widom asymptotics for sets which are regular
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Constructive Approximation

1 Introduction

Chebyshev polynomials are extremal polynomials with respect to the supremum norm
on a compact set E. First discovered with explicit formulas for the set E = [−1, 1],
see [3, 4], a general theory has developed for more general sets E, with important
classical and modern developments [5, 7, 11, 27, 31]. Aspects of this theory have been
extended to the setting of residual polynomials [7] (which are extremizers with respect
to a point evaluation rather than leading coefficient) and to the setting of Chebyshev
rational functions with poles in R = R ∪ {∞} [17].

To state the problems precisely, we make the following definitions. For c ∈ R we
denote

r(z, c) =
{

1
c−z , c �= ∞,

z, c = ∞.

We fix a compact proper subset E ⊂ R containing infinitely many points. Connected
components of R \ E are called gaps of E. We fix a sequence of poles C = (ck)

∞
k=1

with ck ∈ R\E. The sequence C can have repetitions, which are used to designate
multiplicity: we consider the spaces of rational functions Ln defined as

Ln =
{

P(z)

Rn(z)
: P ∈ Pn

}
, (1.1)

where Pn denotes the set of polynomials of degree at most n and

Rn(z) =
∏

1≤k≤n
ck �=∞

(z − ck). (1.2)

Of course, the spaces Ln could also be defined iteratively, by

Ln = span
{

r(z, cn)dn
}
⊕ Ln−1, L0 = {1},

where dn denotes the multiplicity of the pole cn up to that point,

dn =
∑

1≤k≤n
ck=cn

1.

Let ‖ · ‖E denote the supremum norm on E. We consider the two related extremal
problems:

Problem 1.1 (Chebyshev Extremal Problem)

mn(cn) := sup{Re λn : ∃Fn ∈ Ln such that ‖Fn‖E ≤ 1 and Fn − λnr(·, cn)dn ∈ Ln−1}.
(1.3)
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Problem 1.2 (Residual Extremal Problem) For x∗ ∈ R\(E ∪ {ck : 1 ≤ k ≤ n}),

mn(x∗) := sup{Re Fn(x∗) : Fn ∈ Ln, ‖Fn‖E ≤ 1}. (1.4)

If ck = ∞ for all k, Problem 1.1 is the standard extremal problem for Chebyshev
polynomials on E. For this reasonwe refer toλn still as the leading coefficient.Whereas
theChebyshev extremal problemmaximizes the leading coefficient at the pole x∗ = cn ,
the residual extremal problem maximizes the value at a point x∗ which is not a pole.
We will use the notation x∗ for both problems when convenient.

For both problems, an extremal function exists (i.e., the supremum is a maximum)
and is unique (see Sect. 2). The goal of this paper is to study the extremal functions
Fn and their asymptotics as n →∞.

Problems 1.1 and 1.2 have a conformal invariance with respect to the group
PSL(2, R) ofR-preserving, orientation-preservingMöbius transformations. This con-
formal invariance is obfuscated by the use of polynomials in the definitions (1.1) and
(1.2), but can be made explicit in the language of divisors. Divisors on the Riemann
sphere C = C ∪ {∞} are elements of the free Abelian group over C. They can be
implemented as formal sums or as functions D : C → Z which take nonzero values
only at finitely many points; we will find the second interpretation notationally conve-
nient. The degree of D is the integer deg D = ∑

z D(z), and the divisor D is integral
if D(z) ≥ 0 for all z. We also write D1 ≤ D2, if D2 − D1 is integral and denote by
suppD = {z ∈ C : D(z) �= 0} the support of D. In particular, for a meromorphic
nonconstant function f : C → C, we denote its polar divisor by ( f )∞; the polar
divisor assigns to each pole the multiplicity of that pole, and takes zero values else-
where. Similarly, for w ∈ C, we define ( f )w = (1/( f −w))∞. The value deg( f )w is
independent of w and corresponds to the degree of f . We also follow the convention
to set ( f )w = 0, if f is a constant. For any n, we define the divisor D∞

n by

D∞
n (c) = #{k : ck = c, 1 ≤ k ≤ n}. (1.5)

In other words, in the functional interpretation, D∞
n = ∑n

k=1 χ{ck }. Note that by
definition deg D∞

n = n. Any integral divisor D with degree n generates a n + 1
dimensional vector space

L(D) = { f : C → C | f is meromorphic and ( f )∞ ≤ D}, (1.6)

and the definition (1.1) is equivalent to

Ln = L(D∞
n ). (1.7)

Now Problems 1.1, 1.2 can be unified as follows:

Problem 1.3 For a real integral divisor D∞
n with deg D∞

n = n containing only points
in R \ E, and a point x∗ ∈ R \ E, denote dn = D∞

n (x∗) and Ln = L(D∞
n ) and find

mn(x∗) := sup{Re lim
x→x∗

Fn(x)

r(x, x∗)dn
: Fn ∈ Ln, ‖Fn‖E ≤ 1}. (1.8)
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The Chebyshev problem corresponds to dn > 0 (up to a permutation of c1, . . . , cn)
and the residual problem corresponds to dn = 0. Throughout this paper, we work in
the general setting of Problem 1.3.

In order to state our results in a conformally invariant form, we use the following
language:

Definition 1.4 For a sequence (t j )
m
j=0 in R with m ≥ 2, we say that the sequence is

cyclically ordered if it has no repetitions and there exists f ∈ PSL(2, R) such that
f (t0) = ∞ and f (t1) < f (t2) < · · · < f (tm). We will also use cyclic interval
notation: for distinct a, b ∈ R, we denote

(a, b) = {c | (a, c, b) is cyclically ordered}, [a, b] = {a, b} ∪ (a, b).

This gives a well-defined cyclic order, since PSL(2, R) transformations preserve
orientation on R.

Chebyshev polynomials for subsets of R have many universal properties; the
Chebyshev alternation theorem compresses all these properties in a way that uniquely
characterizes the extremizer. Namely, a polynomial Pn of degree n so that ‖Pn‖E ≤ 1
has a maximal set of alternation points if there are n + 1 points x1 < · · · < xn+1,
xi ∈ E, so that

Pn(x j ) = (−1)n+1− j . (1.9)

Then Pn is the Chebyshev polynomial for the set E, if and only if it has a maximal
set of alternation points. One way of viewing the alternation theorem is the following.
The Chebyshev polynomial, Tn , for E has n real and simple zeros and between each
of them there should be an alternation point, which gives n− 1 of them and then there
should be one at each gap edge of the extremal gap (in this case the one containing
∞) which sums up to n+1 points of alternation. In particular x1 and xn+1 will always
be counted, because of the natural order of R. Similarly, residual polynomials have an
alternation theorem, which relies on a notion of an x∗ alternation set [7]. Furthermore,
by [7], in the polynomial case, such a set characterizes the residual polynomial: Pn

is the residual polynomial for the set E if and only if ‖Pn‖E ≤ 1 and Pn has an x∗
alternation set.

In the setting of rational functions the counting is essentially more delicate, and the
relative ordering of the poles and alternation points play an important role. The reason
for this is that if between two zeros there is a gap with a pole c j , then the sign at the
next gap edge depends on the parity of the pole. This makes it necessary to define the
following sign function:

Sn(x) =
∑

1≤k≤n
ck �=x∗

χ[x∗,ck )(x) =
∑

c∈R\{x∗}
D∞

n (c)χ[x∗,c)(x).

Recall that a function F is called real if for all z ∈ C, F(z) = F(z).
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Definition 1.5 For a real function F ∈ Ln with ‖F‖E1, a set of distinct points
x1, . . . , xm ∈ E such that the sequence (x∗, x1, . . . , xm) is cyclically ordered and
satisfies the following alternation property

F(x j ) = (−1)m− j−Sn(x j ) (1.10)

for all j = 1, . . . , m is called an alternation set.We say that F has amaximal alternation
set if m = n + 1.

It should be noted that the notion of alternation set depends on the function F , the
class Ln , the set E, and the reference point x∗. We note that in what follows, whenever
we refer to extremal functions, we mean this in the sense of Problem 1.3.

Theorem 1.6 (Alternation theorem) A real function F ∈ Ln with ‖F‖E ≤ 1 is an
extremal function if and only if it has a maximal alternation set.

These results generalize standard results from the polynomial case: in the Cheby-
shev polynomial case, Sn(x) ≡ 0, and in the residual polynomial case, Sn has one
jump which may or may not affect the alternation criterion, depending on degree.
The case of Chebyshev rational functions was also previously formulated in [17]. In
all the real extremal problems, previously considered in the literature, the extremizer
is seen to be nonconstant. However, in the setting of residual rational functions, the
extremizer can be a constant function, and the alternation theorem lets us characterize
when this happens:

Theorem 1.7 The extremal function Fn is constant if and only if the divisor D∞
n is of

the form (1.5) for points c1, . . . , cn such that the points x∗, c1, c2, . . . , cn are in n+ 1
distinct gaps of E.

In particular, for the Chebyshev problem, x∗ = cn so Fn is always nonconstant.
These results will be proved in Sect. 2, along with additional properties of Fn and

its zeros. Let us assume that Fn is not constant and recall that (Fn)∞ ≤ D∞
n ; we call

a point x a “generalized zero” of Fn if either (Fn)0(x) > 0 or if

D∞
n (x)− (Fn)∞(x) > 0.

Thus, this notion includes both actual zeros of Fn and places where there is a reduction
in the order of the pole compared to the maximal allowed order. These generalized
zeros are precisely counted by the divisor

D0
n := (Fn)0 + D∞

n − (Fn)∞.

Since an alternation set is on E, note that changing x∗ through a single gap only
changes the alternation conditions up to an overall j-independent±1 factor. Therefore,
up to ± sign, the extremizer Fn for Problem 1.3 is unchanged as x∗ varies through a
single gap of E. Thus, Fn should be regarded as an extremal function of a gap, rather
than of a single point. In particular, the Chebyshev extremizer for Problem 1.1 is the
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same (up to ± sign) as the residual extremizer for Problem 1.2 for any x∗ in the
gap containing cn . Moreover, Fn might even be extremal for more than one gap. This
phenomenon is already known for the so-calledWidommaximizer defined below, and
is the content of the following corollary.

Corollary 1.8 Let Fn be an extremal function for x∗ ∈ (a,b). If (a j ,b j ) is a gap such
that |Fn(a j )| = |Fn(b j )| = 1 and D0

n = 0 on (a j ,b j ), then up to a ±1 factor, Fn is

an extremal function for any x j∗ ∈ (a j ,b j ).

From deg(Fn)0 = deg(Fn)∞ it follows that

deg D0
n = deg D∞

n = n (1.11)

so we can define the normalized pole counting measure

μn := 1

n

∑
c

D∞
n (c)δc (1.12)

and normalized generalized zero counting measure

νn := 1

n

∑
c

D0
n(c)δc. (1.13)

In Sect. 3,we consider the asymptotics of the extremal rational functions as n →∞,
extending results about root asymptotics from the polynomial setting. For a sequence
of divisors D∞

n as in Problem 1.3 we define

KC =
⋃
n≥1

suppD∞
n .

We will use the following hypothesis repeatedly in the results that follow:

Hypothesis 1.9 KC ∩ E = ∅ and in the topology dual to C(R), w-limn→∞ μn = μ.

A similar combination of assumptions, but with poles away from the convex hull
of E, is used in [28, Chapter 6] to study rational interpolation. Some of our current
work mirrors our work for orthogonal rational functions [10], but that work required
a periodic sequence of poles. In this sense, in addition to studying a different extremal
problem, our current setting is more general. To the best of our knowledge all previous
works also assumed that the sequence of divisors D∞

n ismonotonic. Let further (x∗n )∞n=0
be a sequence in R \ E which does not accumulate on E.

The behavior of log|Fn| is governed by the zero and pole distributions. This cor-
responds to two Riesz representations, with log|Fn| superharmonic (respectively,
subharmonic) away from the set of zeros (respectively, poles). The limiting pole distri-
bution μ directly determines the root asymptotics of the functions Fn and the limiting
zero distribution.
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We assume that E is not a polar set, i.e., the domain Ω = C\E is Greenian, and
we denote by G(z, w) = GE(z, w) the Green function and by ωE(dz, x) harmonic
measure for this domain.

Theorem 1.10 (Root asymptotics) Assume that E is not a polar set, Hypothesis 1.9
holds, and (x∗n )∞n=0 be a sequence in R\E not accumulating on E. Then uniformly on
compact subsets of C \ R,

lim
n→∞

1

n
log|Fn(z)| =

∫
GE(z, x)dμ(x).

Moreover,

w-lim
n→∞ νn =

∫
ωE(dz, x)dμ(x).

Our proof of root asymptotics relies on an explicit representation of Fn in terms of
the so-called n-extension En = F−1

n ([−1, 1]). Representations of this type appear for
instance in [7, 27]. In particular, using E ⊂ En and monotonicity of the Green function,
we obtain a Bernstein-Walsh type upper bound for Fn in terms of the Green functions
GE(z, c). This is the major difference between the L2 and the L∞ setting. In the L2

setting [10] an asymptotic upper bound is equivalent to Stahl–Totik regularity of the
measure, whereas in the L∞ setting this bound holds for any n.

As in [25, Corollary 1.2], this can be used to describe the behavior of the leading
coefficient.

Theorem 1.10 generalizes known polynomial results, which correspond to the
degenerate pole distribution μ = δ∞. Another notable case, related to [10], is of
a p-periodically repeating sequence of poles μ = 1

p

∑p
j=1 δc j .

In Sect. 4, we prove so-called Szegő-Widom asymptotics for Fn . To the best of
our knowledge, all previous results are only for polynomial extremal problems. Let
Ω be a domain in C which contains ∞ and E = ∂Ω be an analytic Jordan curve,
Tn the associated Chebyshev polynomial and BE denote the Riemann map that maps
Ω → D and BE(∞) = 0, normalized so that lim

z→∞ zBE(z) > 0. Faber [13] showed

that uniformly on compact subsets of Ω

lim
n→∞ Tn Bn

E = 1. (1.14)

In his landmark paper [31], Widom generalized this notion to multiply connected
domains. In the following let Ω be a domain in C which contains∞ so that E = ∂Ω

is not polar. We will describe the type of results for multiply connected domains, but
refer the reader for the precise definitions and statements to Sect. 4. The correct analog
for the Riemann map for multiply connected domains is the so-called complex Green
function

BE(z,∞) = e−GE(z,∞)−i G̃E(z,∞), (1.15)
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where ˜GE(z,∞) denotes the harmonic conjugate of GE(z,∞). To be more precise,
since GE(z,∞) is harmonic, BE(z,∞) is first defined locally and then using the
monodromy theorem [26, Theorem 11.2.1] extended to a global multivalued analytic
function in Ω . Due to the multivaluedness of BE, one cannot expect that Bn

E Tn con-
verges to a single analytic function as in (1.14). For this reason, Widom considered
a related character automorphic extremal problem. Let z0 ∈ Ω and let π1(Ω, z0)
denote the fundamental group of Ω with basepoint fixed at z0, and π1(Ω)∗ the group
of unitary characters of π1(Ω, z0); that is, group homomorphisms from π1(Ω, z0)
into T := R/Z. If F is an analytic function on Ω , then we call F (π1(Ω)∗-)
character-automorphic with character α, if

F ◦ γ̃ = e2π iα(γ̃ )F, ∀γ̃ ∈ π1(Ω, z∗).

Let H∞
Ω (α) denote the space of analytic character-automorphic functions, F , in Ω

which are uniformly bounded, i.e.,

‖F‖Ω := sup
z∈Ω

|F(z)| < ∞. (1.16)

In his ‘69 paper [31], Widom considered the extremal problem

sup{Re F(x∗) : F ∈ H∞
Ω (α), ‖F‖Ω ≤ 1} (1.17)

under the assumption that E is a finite union of C2 Jordan curves and arcs and showed
existence and uniqueness of the extremizer; let us call this the Widom maximizer. Let
χn denote the character of Bn

E and Wn the Widommaximizer with character χn for the
extremal point x∗ = ∞. If E is the finite union of C2 Jordan curves, Widom showed
that uniformly on compact subsets of Ω

Bn
E Tn − Wn → 0. (1.18)

If such type of convergence holds, we say Tn has Szegő-Widom asymptotics. The cases
of arcs turned out to be essentially harder and for non-real problems only very simple
cases such as one arc of the unit circle [8] are known. IfE ⊂ R the situation is essentially
better, since in this case there are many symmetry properties, which manifests in the
fact that the extremal function is real and allows for the explicit representation of the
type we will derive in (2.11). If E is a finite union of intervals Christiansen, Simon
and Zinchenko [7] showed that Tn has Szegő-Widom asymptotics. In 1971 Widom
[32] also showed that (1.17) has a non-trivial solution as long as Ω is of Parreau–
Widom type. We will define this notion in Sect. 4, but mention at this place that it also
includes infinitely connected domains. Recently Christiansen, Simon, Yuditskii and
Zinchenko [5] proved Szegő-Widom asymptotics for Tn if E ⊂ R such that Ω is a
regular Parreau–Widom domain with Direct Cauchy theorem and this was later also
proved under the same assumptions for residual polynomials [7].

We point out that

(Tn)∞ = n(BE(·,∞))0,
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which makes Bn
E Tn analytic and in fact a normal family. Since by definition

(Fn)∞ ≤ D∞
n ,

in our setting Bn
E should be substituted by the product of complex Green functions

associated to the divisor D∞
n , i.e.

B(n)
E (z) = eiφn

∏
c

D∞
n (c)BE(z, c), (1.19)

where

BE(z, c) = e−GE(z,c)−i G̃E(z,c) (1.20)

and the phase will be specified in Sect. 4. With this modification we prove:

Theorem 1.11 Let Ω = C \ E be a regular Parreau–Widom domain so that the Direct
Cauchy theorem holds in Ω . Assume further that Hypothesis 1.9 holds, and (x∗n )∞n=0
be a sequence in R\E without accumulation points in E. Then Fn admits Szegő-Widom
asymptotics.

In Sect. 4, we will provide necessary definitions to state the above theorem more
precisely asTheorem4.5, and provide a proof. ForChebyshev problemson Jordan arcs,
it is known that it may be necessary to add an additional factor to (1.18); cf. [29, 30].
In particular, for extremal problems which are symmetric with respect to the real line,
this factor is typically 1

2 . The same phenomena can be seen in our asymptotic statement
(4.14). Sincewe chose to consider normalized extremal functions, the additional factor
appears in the asymptotics of the extremal function rather than in the assymptotics of
the extremal value as in [5, Theorem 1.3].

Wewant to highlight that this generalizes the known results in several ways. First of
all, polynomials correspond to the case that D∞

n = nχ{∞} and so the class of functions
that we allow ismore general. Secondly, we allow for a sequence of extremal points x∗n ,
which in particular means that depending on n, Fn might be a residual or a Chebyshev
maximizer.

2 Properties of the Extremal Rational Functions

In this section we study the extremal functions for fixed n. Let us begin by acknowl-
edging that their existence follows by usual arguments. Namely, the leading coefficient
λn and the value Fn(x∗) are continuous functions of polynomial coefficients of Fn Rn .
Since Ln is finite-dimensional, the norm ‖·‖E is mutually equivalent with a norm
made from the polynomial coefficients, so Problem 1.3 is an extremal problem for
continuous maps on the compact unit ball ‖·‖E ≤ 1.

Next, we describe the behavior of extremal functions under PSL(2, R) transforma-
tions. This will require the following claim from [27], for which we provide a short
proof.
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Lemma 2.1 For every z0 ∈ C\R and x ∈ R, there exists t ∈ R such that

maxz∈R

∣∣∣ (z−t)(x−z0)
(z−z0)(x−t)

∣∣∣ = 1 and z = x is the unique maximum.

Proof Let f be a Möbius transformation mapping R to ∂D with f (z0) = 0. Since
Möbius transformations preserve cross-ratios,∣∣∣∣ (x − z0)(z − t)

(x − t)(z − z0)

∣∣∣∣ =
∣∣∣∣ f (x)( f (z)− f (t))

( f (x)− f (t)) f (z)

∣∣∣∣ =
∣∣∣∣ f (z)− f (t)

f (x)− f (t)

∣∣∣∣ .
By choosing t so that f (t) = − f (x), we have∣∣∣∣ (x − z0)(z − t)

(x − t)(z − z0)

∣∣∣∣ =
∣∣∣∣ f (z)− f (t)

f (x)− f (t)

∣∣∣∣ = | f (z)+ f (x)|
2

≤ 1

with equality if and only if f (z) = f (x), i.e., z = x . ��
In the next lemma, we consider the effect of a conformal transformation on the

extremal problems, so we will emphasize dependencies on the poles, the point x∗ and
the set E where appropriate. We denote by Fn(z, E, D∞

n ; x∗) a maximizer for (1.8),
and by L(D∞

n ) the space defined in (1.6). For a divisor D and a a conformal map
f ∈ PSL(2, R) we define the pushforward f∗D = D ◦ f −1. Lemma 2.2 is an analog
of [10, Lemma 2.1] adapted to the L∞ extremal problem (1.8).

We would like to claim that the extremizers move by a conformal map f ∈
PSL(2, R) by

Fn( f (z), f (E), f∗D∞
n ; f (x∗)) = Fn(z, E, D∞

n ; x∗).

However, this statement would be ambiguous until we prove uniqueness of extremiz-
ers, so we have to formulate the claim more carefully:

Lemma 2.2 Let f ∈ PSL(2, R) and let Fn(z, f (E), f∗D∞
n , f (x∗)) be a maximizer of

(1.8) for f∗D∞
n , f (E) and f (x∗). Then Fn( f (z), f (E), f∗D∞

n , f (x∗)) is a maximizer
for (1.8) for D∞

n , E and x∗.

Proof Möbius transformations preserve zeros and their multiplicity, i.e., for any
rational function F and any w ∈ C,

f −1∗ (F)w = (F ◦ f )w.

Therefore, since pushforwards of integral divisors are integral, it follows from (1.6)
that

F ∈ L( f∗D∞
n ) �⇒ F ◦ f ∈ L(D∞

n ). (2.1)

In particular, Fn( f (z), f (E), f∗D∞
n , f (x∗)) ∈ L(D∞

n ). Since Fn(z, f (E), f∗D∞
n ,

f (x∗)) solves the extremal problem on f (E), we have

‖Fn( f (·), f (E), f∗D∞
n , f (x∗))‖E = ‖Fn(·, f (E), f∗D∞

n , f (x∗))‖ f (E) ≤ 1.
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It remains then to show F(z) := Fn( f (z), f (E), f∗D∞
n , f (x∗)) is an extremizer

for n, E, D∞
n and x∗. This will follow from showing that for dn > 0

r( f (z), f (x∗))dn − cnr(z, x∗)dn ∈ L(D∞
n − x∗), (2.2)

r( f −1(z), x∗)dn − 1

cn
r(z, f (x∗))dn ∈ L( f (D∞

n )− f (x∗)), (2.3)

for constants cn > 0. Indeed, given (2.2), (2.3),we suppose for the sakeof contradiction

there is a F̃ ∈ L(D∞
n ) with Re limx→x∗

F̃(x)

r(x,x∗)dn > Re limx→x∗
F(x)

r(x,x∗)dn . Then, since

F̃ ◦ f −1 ∈ L( f∗D∞
n ) by (2.1) and

‖F̃ ◦ f −1‖ f (E) ≤ 1,

we contradict extremality of F(z).
To show (2.2) and (2.3), we note that for the inversions z �→ − 1

z and the affine
transformations z �→ az + b, b ∈ R and a > 0, (2.2) and (2.3) follow by elementary
computations. Since these generate the group PSL(2, R), by writing f in this group
as f = f1 ◦ f2 ◦ f3, with f1, f3 affine, f2 an inversion, and applying the argument
immediately above three times, we have Lemma 2.2. ��

Before we state one of the main theorems of the section, we recall that the set
supp( f )a is called the set of a-points of the function f . Polynomials or entire functions
with real ±1-points play an important role for uniform approximation problems and
in the spectral theory of self adjoint operators; cf. [12, 18]. They are also intimately
related with the notion of a set of alternation.

We will write

E = R \
⋃

i

(ai ,bi ),

where (ai ,bi ) are the gaps of E, indexed by i from a countable indexing set.

Theorem 2.3 Let Fn be a maximizer for Problem 1.3. Let (a,b) be the gap containing
x∗.

(i) Fn has only real generalized zeros.
(ii) Fn is real.

(iii) For any distinct points x1, x2 ∈ R such that D0
n(xi ) ≥ 1, there is a point

y ∈ E ∩ (x1, x2) with |Fn(y)| = 1.
(iv) Fn has only simple generalized zeros, i.e., D0

n ≤ 1.
(v) Fn has at most one generalized zero in each gap.

(vi) Fn has no generalized zeros in the gap (a,b) containing x∗.
(vii) There is a unique extremizer Fn.

(viii) If Fn is not constant, {z ∈ C : Fn(z) ∈ [−1, 1]} ⊂ R. In particular, all
±1-points of Fn lie on R.

123



Constructive Approximation

(ix) If Fn is not constant, let m = deg Fn and let the connected components of
F−1

n ((−1, 1)) be called open bands of En := F−1
n [−1, 1]. Then, there are m

open bands on En, Fn is strictly monotonic on each of them and their endpoints
account for all ±1 points.

(x) Fn(a) = (−1)
∑

c∈(a,x∗) D∞
n (c) and Fn(b) = (−1)

∑
c∈[x∗,b) D∞

n (c),

(xi) For any gap (ai ,bi ) containing a pole ci , either |Fn(bi )| = 1 or |Fn(ai )| = 1.
If D0

n(ci ) = 1, then |Fn(bi )| = |Fn(ai )| = 1.

Remark Note that (iii) is stronger than saying between two zeros of Fn , we find an
extremal point on the set; this statement provides extremal points between a zero and
a pole c j at which Fn has a reduction in order.

Many of the statements in Theorem 2.3 will be proved by Markov correction argu-
ments. We will call a rational function M a Markov correction term if M Fn ∈ Ln and
M(x∗) = 0. We will define the rational function F̃n = (1− εM)Fn , and note that

m̃n(x∗) = Re lim
x→x∗

F̃n(x)

r(x, x∗)dn
= Re lim

z→x∗

Fn(x)

r(x, x∗)dn
= mn(x∗).

If there exists ε so that ‖F̃n‖E < 1, then considering the rescaled function F̃n/‖F̃n‖E ∈
Ln , we see that m̃n(x∗)/‖F̃n‖E > mn(x∗), contradicting the extremality of Fn .

Proof of Theorem 2.3 All the conclusions are invariant under PSL(2, R) maps, so by
Lemma 2.2, it suffices to consider the case x∗ = ∞. In this case, E is a compact subset
of R.

(i): Suppose for the sake of contradiction that there is a generalized zero z0 ∈ C\R.
Define

F̃n(z) =
(

z − t

z − z0

)
Fn(z)

where t is selected so that maxz∈R

∣∣∣ z−t
z−z0

∣∣∣ = 1, using Lemma 2.1 for x = ∞. Since the

maximum at∞ is unique and E is compact, we have ‖F̃n‖E < 1, and by the discussion
above, this would be a contradiction.

(ii): Since all poles and zeros of Fn are real, we may write Fn = AF̃n , where A ∈ C

with |A| = 1 and F̃n is real. It remains to show that A ∈ R. Note that ±F̃n are also
admissible functions for the extremal problem. Since Fn is extremal and F̃n is real,
we have

Re lim
x→x∗

AF̃n(x)

r(x, x∗)dn
= Re lim

x→x∗
Fn(x)

r(x, x∗)dn
≥ ±Re lim

x→x∗
F̃n(x)

r(x, x∗)dn
= ± lim

x→x∗
F̃n(x)

r(x, x∗)dn
.

Since Re limx→x∗
Fn(x)

r(x,x∗)dn �= 0, we conclude that |Re(A)| ≥ 1 and therefore A ∈
{1,−1}.

123



Constructive Approximation

(iii): We have supE∩(x1,x2) |Fn| = supE∩[x1,x2] |Fn| = maxE∩[x1,x2] |Fn|. Since Fn

is continuous on E we only have to explain the first equality. We only argue for x1
since x2 follows analogously. We distinguish two cases. If Fn(x1) = 0, then clearly
the sup is not changed by adding x1. If instead D∞

n (x1) > 0, then x1 /∈ E and
(x1, x2) ∩ E = [x1, x2) ∩ E.

Now, we assume for the sake of contradiction that maxE∩[x1,x2] |Fn| < 1. Recalling
that x∗ = ∞ so that D0

n(∞) = 0, define the Markov correction term

M(z; x1, x2) =
{

1
(z−x1)(z−x2)

, x1 < x2
1

(z−x1)(x2−z) , x1 > x2

By distinguishing again the cases Fn(xi ) = 0 and D∞
n (xi ) > 0, we see that in either

case M Fn is continuous on E∩[x1, x2]. Thus, by our assumption we find ε > 0 so that
max[x1,x2]∩E |F̃n| < 1. Since on the rest of E, the norm is lowered, we may conclude
by contradiction.

(iv): Clearly, D0
n(x∗) = 0. With our convention x∗ = ∞ and by (i), all generalized

zeros are in R. Suppose x ∈ R with D0
n(x) ≥ 2. First, we take x /∈ E. We define

the Markov correction term M(z, x) = 1
(z−x)2

. If x /∈ E, z → M(z, x) is continuous

on E and so we may find an ε > 0 such that ‖F̃n‖E < 1. If instead, x ∈ E, then we
conclude as in (iii) by continuity of M Fn that we may find a small enough ε > 0 so
that ‖F̃n‖E < 1.

(v): It follows from (iii) that between any two generalized zeros there must be a
point in E.

(vi): Assume there is a zero in R \ [b, a]. We use the Markov correction term

M(z; x) =
{

1
z−x , x < b
1

x−z , x > a

which is continuous and strictly positive on E. By continuity and compactness, for all
small enough ε > 0, ‖1 − εM‖E < 1, so F̃n = (1 − εM)Fn once again contradicts
extremality.

(vii): Assume that there are two extremizers F1
n , F2

n . By convexity, Tn = 1
2 (F1

n +
F2

n ) is then also an extremizer. Let yi ∈ E be the points given by (iii) with |Tn(yi )| = 1.
We note that by (iv) there are n such points. Then since |F1

n (yi )|, |F2
n (yi )| ≤ 1 and

|Tn(yi )| = 1, F1
n (yi ) = F2

n (yi ) = Tn(yi ) so that F1
n (yi ) − F2

n (yi ) = 0. Define
Hn = F1

n − F2
n and let D0

n denote its divisor of generalized zeros. Then D0
n(x∗) ≥ 1

and D0
n(y j ) ≥ 1 and we conclude that deg D0

n ≥ n + 1. Since Hn ∈ Ln , this implies
Hn ≡ 0 and F1

n = F2
n .

(viii): We write Fn in reduced form as Fn = P
Q , with deg(P) = m and note that

deg Q ≤ m so that deg(Fn) = m. If Fn is nonconstant, we use a counting argument.
Take two consecutive zeros of Fn , x1 and x2. If there is no pole between them, there

must be a critical value y and by (iii), it must obey |Fn(y)| ≥ 1. Separating cases by
whether |Fn(y)| = 1, we either obtain an (at least) double zero of F2

n −1 at y, or zeros
on intervals (x1, y) and (y, x2). Similarly, if there is a pole y ∈ (x1, x2), by continuity
there are ±1-points on intervals (x1, y) and (y, x2).
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Thus, counted with multiplicity, there are at least two ±1-points on this interval.
The m simple zeros of P partition R into m such intervals, so we have at least 2m
total ±1-points. Since deg(Fn) = m, this construction gives all the ±1-points of Fn .
In particular, this now also holds for the set of ±a-points for any a ∈ [−1, 1].

(ix): Let I k
n be the connected components of the open set F−1

n ((−1, 1)). The
previous argument shows that for a ∈ (−1, 1), the ±a-points are simple. Thus, if
Fn(x) = ±a, then F ′

n(x) �= 0, so by continuity, the derivative has the same sign
on each open band I k

n . In particular, Fn(I k
n ) = (−1, 1) for each k and there are m

connected components, F−1
n ((−1, 1)) = ∪m

k=1 I k
n . That the endpoints of I k

n account
for all ±1 points follows from the counting above.

(x): First we show the modulus is 1 at each point. If Fn ≡ 1, this is clear. If
deg(Fn) ≥ 1,wewillmake use of the zeros of Fn . Suppose for the sake of contradiction
that |Fn(b)| < 1. Then, define x := min{y : Fn(y) = 0}, with x ≥ b by (vi). We have
supz∈[b,x] |Fn(z)| < 1 by (ix). Define the Markov correction term M(z, x) = 1

x−z and
note that M ≤ 0 on [b, x]. By the same arguments as (iii) we derive a contradiction.
The same argument at a shows |Fn(a)| = 1.

By (vi), the sign changes on (a,∞) can only occur at the poles contained in this
interval,whichwe order as cn1 < · · · < cnm . By (vi), Fn has no reduction of order at the
poles at the cni , so for a t ∈ (cnm ,∞), sgn(Fn(a)) = (−1)

∑
c∈(a,∞) D∞

n (c) sgn(Fn(t)).
By our definition of r(z, c), Fn > 0 on (cnm ,∞). Since |Fn(a)| = 1 by our work
above, this proves the claim at a. Similar analysis at b, with the modification that the
parity of dn contributes to the sign, completes the proof.

(xi): If Fn is constant, Fn ≡ 1 and the claim is clear. Thus, we take Fn noncon-
stant. By (x), it suffices to consider gaps (ai ,bi ) �= (a,b). If |Fn(ai )| = 1 there is
nothing to prove. If |Fn(ai )| < 1, it follows from monotonicity on the bands and
limx→∞ Fn(x) > 1 that there is a x̃1 < ai with Fn(x̃1) = 0. Similar considerations
hold for bi . If max{|Fn(ai )|, |Fn(bi )|} < 1, let x1 := max{y : y < ci , D0

n(y) = 1}
and x2 := min{y : y > ci , D0

n(y) = 1}. By (iii) there must be y ∈ (x1, x2) ∩ E, with
|Fn(y)| = 1. As in the proof of (x), we conclude from monotonicity on the bands
that either y = ai or y = bi . If D0

n(ci ) = 1, we conclude in the same way that there
is y1 ∈ (x1, c1) and y2 ∈ (c1, x2) with |Fn(y j )| = 1 and finally that y1 = ai and
y2 = bi . ��
Theorem 2.4 Let F ∈ Ln be real and D0

n its generalized zero divisor. Then, any set of
alternation points has at most n + 1− D0

n(x∗) points.

Proof Set m = D0
n(x∗) ≥ 0 and let y j ∈ R\{x∗} be the k points with D0

n(y j ) > 0,
where regardless of its multiplicity each point appears only once. Since deg D0

n = n,
we see that k ≤ n − m. Adding x∗ to this list, we cyclically order the points as
(x∗, y1, . . . , yk). We note that these points cannot be part of an alternating set, as
they either are zeros of F , or coincide with some ci /∈ E or x∗ /∈ E. We also write
y0 = yk+1 = x∗.

Fix 1 ≤ j ≤ k+1.On the interval (y j−1, y j ), F has no generalized zeros, so the sign
changes of F only occur at poles, according to the divisor D∞

n : if (x1, x2) ⊂ (y j−1, y j ),
and x1, x2 are not poles, then

F(x2) = (−1)
∑

c∈(x1,x2) D∞
n (c)F(x1) = (−1)Sn(x2)−Sn(x1)F(x1). (2.4)
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Thus, x1, x2 cannot be two consecutive points of the same alternation set, because by
the definition of alternation set, this would imply F(x2) = (−1)1+Sn(x2)−Sn(x1)F(x1)
and lead to contradiction. Thus, any alternation set has atmost one point in each interval
(y j−1, y j ) for 1 ≤ j ≤ k + 1, so any alternation set has at most k + 1 ≤ n − m + 1
alternation points. ��

The above theorem justifies the following definition.

Definition 2.5 We say that Fn has a maximal set of alternation points if it has a set of
alternation points of size n + 1.

Theorem 2.6 If Fn is the maximizer for (1.8), then it has a maximal set of alternation
points.

Proof Due toTheorem2.3(vi), D0
n(y) = 0 for all y ∈ (a,b) and therefore, using (1.11)

and Theorem 2.3(ii),(iv), there is a cyclically ordered sequence (b, y1, . . . , yn, a), so
that D0

n(yi ) = 1. By Theorem 2.3(iii), for 2 ≤ j ≤ n, there is a point x j ∈ (y j−1, y j )

and x j ∈ E, so that |Fn(x j )| = 1. We claim that together with xn+1 = a and x1 = b
these points form a maximal set of alternation points.

We start with xn+1 and x1. Let (a,b) be the gap containing x∗. We have

Sn(a) =
∑

c∈(a,x∗)
D∞

n (c).

Thus, it follows directly from Theorem 2.3(x) that xn+1 = a is an alternation point.
Similarly, we see that

Sn(b) =
∑

c∈(b,x∗)
D∞

n (c)

and therefore since deg D0
n =

∑
c D∞

n (c) = n and D∞
n (b) = 0,

n + 1− 1− Sn(b) =
∑
c

D∞
n (c)−

∑
c∈(b,x∗)

D∞
n (c) =

∑
c∈[x∗,b)

D∞
n (c).

Thus, again by Theorem 2.3(x), also x1 = b is an alternation point in the above sense.
Now for j ≥ 1 take x j , x j+1 and y j ∈ (x j , x j+1) and assume that x j is an alterna-

tion point. Note that all sign changes of Fn correspond either to a pole of Fn or to y j .
Thus,

Fn(x j ) = (−1)
1+∑

c∈(x j ,x j+1) D∞
n (c)

Fn(x j+1). (2.5)

This is easily seen if D∞
n (y j ) = 0. If D∞

n (y j ) > 0, then (Fn)∞(y j ) = D∞
n (y j )− 1

and (2.5) still holds. On the other hand

Sn(x j )− Sn(x j+1) =
∑

c∈(x j ,x j+1)

D∞
n (c).
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Therefore, x j+1 is also an alternating point. Thus, by induction we conclude that
{xi }n+1

i=1 form a maximal set of alternation points for Fn . ��
We also have a form of converse to Theorem 2.6, which we prove as the following

theorem.

Theorem 2.7 If F ∈ Ln is real and has a maximal alternation set, then F is the unique
maximizer for Problem 1.3.

Proof Let F ∈ Ln be real and suppose that it has a maximal set of alternation points
{x1, . . . , xn+1}. By relabeling, we assume the cyclic ordering (x∗, x1, . . . , xn+1). By
Theorem 2.4, if F has an alternation set with n + 1 points, then (F)∞(x∗) = dn .
Therefore, we can define limx→x∗ F(x)/r(x, x∗)dn =: αn ∈ R \ {0}. It is convenient
to rephrase our extremal problem: Fn solves (1.3) if and only if F̃n := 1

λn
Fn solves

the dual problem

inf{‖F̃n‖E : lim
x→x∗

F̃n(x)

r(x, x∗)dn
= 1, F̃n ∈ Ln}. (2.6)

By this duality and Theorem 2.3(vii), it will suffice to show F̃ := 1
αn

F is also

an extremizer for (2.6); ‖F̃‖E = ‖F̃n‖E. Suppose that ‖F̃‖E > ‖F̃n‖E. We define
H̃n = F̃ − F̃n and denote its generalized zero divisor by D0

n . Our normalization
implies that D0

n(x∗) ≥ 1. Since sgn(Hn(x j )) = sgn(F(x j )), we have sgn(Hn(x j )) =
(−1)n+1− j−Sn(x j ) for 1 ≤ j ≤ n+1. By the computation (2.4), we conclude that there
must be y j ∈ (x j , x j+1) with D0

n(y j ) ≥ 1 for 1 ≤ j ≤ n. Thus, deg(D0
n) ≥ n + 1,

which contradicts Hn ∈ Ln . ��
In particular, the proof of Theorem 1.6 is now complete and we may prove

Corollary 1.8.

Proof of Corollary 1.8 We let {x1, . . . , xn+1} be an alternation set for Fn and the point
x∗, with cyclic ordering (x∗, x1, . . . , xn+1), wherewe recall that x1 = a and xn+1 = b.
By definition of Sn we see that for 1 ≤ � ≤ n we have

Fn(x�)

Fn(x�+1)
= (−1)

1+∑
c∈(x�,x�+1) D∞

n (c)
. (2.7)

However,

Fn(a)
Fn(b)

= (−1)
∑

c∈(a,b) D∞
n (c), (2.8)

which is easier to see by using the expressions in Theorem 2.3(x). The difference
between (2.7) and (2.8) is manifested in the fact that Sn is anchored at x∗ ∈ (a,b).
Moreover, by Theorem 1.6, if there exists a set {x1, . . . , xn+1}which can be cyclically
ordered so that Fn satisfies (2.7) and (2.8), then for any x̃∗ ∈ (a,b) up to a factor ±1,
Fn is the maximizer of (1.8).
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Denote by x∗j a point in the gap (a j ,b j ). Let S j
n (x) := ∑

c∈R\{x j∗ } D∞
n (c)χ[x j∗ ,c)(x).

There is 1 ≤ k ≤ n so that x j∗ ∈ (xk, xk+1). Let us order the yi with D0
n(yi ) = 1

cyclically as (a,b, y1, . . . , yn). The assumption D0
n = 0 on (a j ,b j ) implies a j ,b j ∈

(yi , yi+1) for some 1 ≤ i ≤ n − 1. By (ix), a j and b j are the only points in (yi , yi+1)

with |Fn| = 1, and since there is exactly one of the xi in each of the (yi , yi+1), one
and only one of a j and b j is in the alternation set {x1, . . . , xn+1}. Without a loss of
generality we take xk = a j . We now claim the set {x1, . . . , xk,b j , xk+1, . . . xn} will
form our alternation set. Since S j

n is now anchored at x∗j ∈ (a j ,b j ), we need to check

(2.8) for the gap (a j ,b j ). From the assumption that D0
n = 0 on (a j ,b j ) it follows that

Fn(a j )

Fn(b j )
= (−1)

∑
c∈(a j ,b j )

D∞
n (c)

.

By the assumption that {x1, . . . , xn+1} form an alternation set (for Sn), (2.7) (for
S j

n ) is clearly satisfied for {x1, . . . , xk} and for {xk+1, . . . , xn}. Using again that
{x1, . . . , xn+1} form an alternation set and that a j = xk , we have

Fn(xk+1) = (−1)
1+∑

c∈(xk ,xk+1) D∞
n (c)

Fn(xk) = (−1)
1+∑

c∈(xk ,xk+1) D∞
n (c)

(−1)
∑

c∈(a j ,b j )
D∞

n (c)
Fn(b j )

= (−1)
1+∑

c∈(b j ,xk+1) D∞
n (c)

Fn(b j ).

Thus, (2.7) is also satisfied for xk+1 and b j . Similarly we can check (2.7) for xn and
x1 and conclude that up to a factor of ±1 Fn is also extremal for x∗j . ��
Remark In the above argument, one could have removed x1 and kept xn+1 to form an
alternation set for x j∗ .

Next, we describe when the extremizer is constant:

Proof of Theorem 1.7 Suppose E takes the above form. Without a loss of generality
we assume that (x∗, c1, . . . , cn) are cyclically ordered. Then, (b0, a0, x1, . . . , xn−1),
where x� ∈ E∩ (c�, c�+1) for 1 ≤ � ≤ n− 1 forms a set of alternation for Fn ≡ 1. By
Theorem 2.7, Fn is the maximizer for (1.8).

Suppose now the set is not of the above form. If there is a c j with D∞
n (c j ) ≥ 2,

by (iv), the extremizer Fn is nonconstant. If there are two distinct poles ci and c j in a
single gap, then Fn cannot be constant by (v). In either case, Fn is nonconstant. ��

We record a final corollary of Theorem 2.6.

Corollary 2.8 If the extremal function Fn is not constant, then deg Fn ≥ � n+1
2 �.

Proof By Theorem 2.6, Fn has at least � n+1
2 � points with |Fn| = 1 with the same

sign. Thus, if Fn is nonconstant, it has degree at least � n+1
2 �, and we can have at most

� n−1
2 � cancellations. ��
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The set En = F−1
n ([−1, 1]) is called the n extension of E. Note that by definition

it is an extension, i.e., E ⊂ En . Theorem 2.3, particularly the locating of ±1 points in
(viii) allows us to characterize this set with more specificity in the following theorem.

We recall our ternary order, and let ui , vi ∈ R\E̊with vi ∈ [ai ,bi ] and ui ∈ [ai , vi ].
Then

Theorem 2.9 For Fn nonconstant, the n extension of E is of the form

En = E ∪
⋃
i≥1

[ui , vi ]

with [ui , vi ] ⊆ [ai ,bi ].
The following cases are possible:

(1) The gap remains unchanged, corresponding to ui = vi = ai .
(2) E is extended on one edge, corresponding to ai = ui and vi �= ui , vi �= bi , or on

the other side, vi = bi and ui �= ai , ui �= vi .
(3) An internal interval is added, corresponding to [ui , vi ] ⊂ (ai ,bi ), ui �= vi .
(4) The gap (ai ,bi ) may close, corresponding to ai = ui and bi = vi .

Moreover, in the following cases there is not extension into a gap:

(i) If x∗ ∈ (ai ,bi ), then this gap remains unchanged, i.e., ui = vi = ai .
(ii) If there is a pole ci ∈ (ai ,bi ) and D0

n(ci ) = 1, then this gap remains unchanged,
i.e., ui = vi = ai .

Remark (i) Aswewill see in the proof, for gaps (ai ,bi ) containing poles of Fn , which
is guaranteed for D∞

n (ci ) ≥ 2 by (iv), only the first three behaviors are possible.
(ii) If there is an interval added to En as in (3) above, then this is always related

to a zero xi of Fn and moreover |Fn(ai )| = |Fn(bi )| = 1. Clearly, if this zero
approaches a pole, the interval around it becomes smaller. In this sense (ii) of the
above theorem can be viewed as a limit of such situations, where the additional
interval degenerates to a point.

Proof Applying conformal invariance of the setting, we assume again that x∗ = ∞
and E is a compact subset of R. Since we will prove (i) independently, we can assume
that all extensions occur in bounded gaps.We first note that any internal interval cannot
degenerate to a point, i.e. when ui = vi in (3), since due to 2.3(ix) there are m open
bands and their endpoints account for all ±1 points. Thus, if the extension of the gap
is not of the above form, then there would either be more then one internal interval, an
extension on both sides or an extension combined with an internal interval. All cases
imply that there are open bands Ik = (y−k , y+k ), k = 1, 2, so that y+1 , y−2 /∈ E. Let
xk denote the simple zero of Fn on these open bands. Using that |Fn| < 1 on Ik and
y+1 , y−2 /∈ E, we see that max[x1,x2]∩E |Fn| < 1, contradicting Theorem 2.3(iii).

Let us now prove (i): Due to (x) and (ix) of Theorem 2.3, an extensionwould contain
an open band that lies entirely in (ai ,bi ). Therefore in particular, this would lead to a
zero of Fn on the extremal gap contradicting (vi) of Theorem 2.3.

It remains to prove (ii): In this case again due to (xi) and (ix) of Theorem 2.3,
this would lead to an open band that lies entirely in (ai ,bi ) forcing Fn to have an
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additional zero in this gap. But since already Dn(ci ) = 1, this would contradict (v) of
Theorem 2.3. ��

In the following let us assume that Fn is nonconstant so thatC\En is Greenian. Note
that due to Theorem 2.9(3), En is a finite union of proper intervals and in particular is
regular for the Dirichlet problem. We define

Bn(z) = eiφn
∏
c

(Fn)∞(c)BEn (z, c), (2.9)

and normalize the phase of Bn by the condition

lim
x→x∗

Bn(x)r(x, x∗)dn > 0. (2.10)

Recall that in general BEn (z, c) define multivalued functions. However, we will show
that their product Bn(z) is in fact single valued in C \ En .

Theorem 2.10 Bn is a single-valued analytic function on C\En and

Fn(z) = 1

2

(
Bn(z)+ 1

Bn(z)

)
. (2.11)

Proof Recall that En = {z ∈ C : Fn(z) ∈ [−1, 1]}. Therefore, since the Joukowsky
map J (ζ ) = 1

2

(
ζ + 1

ζ

)
maps D conformally onto C \ [−1, 1], the function

Ψn(z) = J−1(Fn(z)),

is well defined and single-valued in C\En . Moreover, for x ∈ En , limz→x |Ψn(z)| = 1
and Ψn(z) has a zero of multiplicity (Fn)∞(c) at each c. Thus, we conclude by the
maximum principle that

− log |Ψn(z)| =
∑
c

(Fn)∞(c)GEn (z, c) = − log |Bn(z)|.

Thus, by adding the complex conjugate, Bn is defined up to a unimodular constant c.
Finally,

0 < lim
x→x∗

Fn(x)

r(x, x∗)dn
= 1

2
lim

x→x∗

(
cBn(x)

r(x, x∗)dn
+ 1

cBn(x)r(x, x∗)dn

)

= 1

2
lim

x→x∗

1

cBn(x)r(x, x∗)dn
.

Using the normalization (2.10), we conclude c = 1 and obtain (2.11). ��
This has the following consequence:
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Constructive Approximation

Lemma 2.11 Let Fn be represented as in (2.11) and let In be an open band of En. Then

1 =
∑
c

(Fn)∞(c)ωEn (In, c). (2.12)

Proof Recall that

Fn(z) = J (Bn(z)) (2.13)

and that Fn is strictly monotonic on In . That is, either Fn increases from −1 to 1 or
decreases from 1 to−1 strictly monotonically. Let In = (a, b). Since J : ∂D∩C± →
(−1, 1) bijectively, it follows from the definition of In and (2.13) that

| arg Bn(b)− arg Bn(a)| = π.

By using the Cauchy-Riemann equations, we get

arg Bn(b)− arg Bn(a) =
∫ b

a

∂Gn(x)

∂n
dx .

On the other hand

ωEn (dx, c) = 1

π

∂GEn (x, c)
∂n

dx .

Thus, we get

arg Bn(b)− arg Bn(a) = π
∑
c

(Fn)∞(c)ωEn (In, c)

and the claim follows. ��

We finish this section with a Bernstein-Walsh lemma for rational functions.

Lemma 2.12 Let K ⊂ C be a compact, nonpolar set such that C \ K is connected.
Let h be a meromorphic function on C Then,

|h(z)|
‖h‖K

≤ e
∑

c(h)∞(c)G K (z,c) (2.14)

If we assume in addition that K ⊂ R and that h is real, then

|h(z)|
‖h‖K

≤ 1

2

(
e
∑

c(h)∞(c)G K (z,c) + e−
∑

c(h)∞(c)G K (z,c)
)

. (2.15)
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Constructive Approximation

Proof For (2.14) we follow the standard proof of the Bernstein-Walsh lemma. Set
H = h/‖h‖K and consider F(z) = log |H(z)| − ∑

c(h)∞(c)G K (z, c). Then, F is
subharmonic in Ω = C \ K and for q.e. ζ ∈ ∂Ω we have lim supz→ζ F(z) ≤ 0.
Moreover, if Vc are vicinities of the points with (h)∞(c) > 0 and V = ∪cVc, then
log |H(z)| is subharmonic on C\V and thus bounded above by [19, Theorem 2.1.2].
Since the logarithmic pole on Vc is canceled, F is also bounded above on V and we
conclude from the maximum principle [14, Theorem 8.1] that F(z) ≤ 0 in Ω .

Assume that H is real and that K is real. Define K H = {z ∈ C : H(z) ∈ [−1, 1]},
but note that K is not necessarily a subset of R. However, using that H is real, we
have that K ⊂ K H . Now, as in the proof of Theorem 2.10 we see that

H(z) = 1

2

(
eG H (z)+i G̃ H (z) + e−(G H (z)+i G̃ H (z))

)
, G H (z) =

∑
c

(h)∞(c)G K H (z, c).

Let us also put G(z) = ∑
c(h)∞(c)G K (z, c�). Then it follows from the monotonicity

of Green functions with respect to the domain that for z ∈ C \ K H , we have

|H(z)| =
∣∣∣cosh (

G H (z)+ i G̃ H (z)
)∣∣∣ ≤ cosh G H (z) ≤ cosh G(z).

Note that for z ∈ K H\K , G(z) > 0 and thus (2.15) also holds for such z. This finishes
the proof. ��

We point out that (2.14) is an analog of the standard Bernstein-Walsh lemma,
whereas (2.15) is a fairly recent improvement of Schiefermayr for real polynomial
problems [23]. Note that this also implies that (2.15) holds for x∗ ∈ R\K , without the
extra assumption on hn to be real. This follows from Theorem 2.3, where we showed
that the residual extremizer is always real.

3 Root Asymptotics

We now turn to the study of the limiting behavior of Fn as n → ∞. In this section,
we will often assume Hypothesis 1.9 holds, and that (x∗n ) is a sequence in R \ E
without accumulation points in E. We note that the first part of Hypothesis 1.9 implies
suppμ ∩ E = ∅. Let further νn be the normalized counting measure of generalized
zeros of Fn , i.e,

νn = 1

n

∑
x

D0
n(x)δx .

We define the family of functions

hn(z) = 1

n
log |Fn(z)| (3.1)
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and note that hn is subharmonic in C\suppD∞
n ; in particular, all functions hn are

subharmonic in

ΩC = C \ KC.

We start with an upper estimate:

Lemma 3.1 Assume Hypothesis 1.9 holds. Then, for any z ∈ C \ R we have

lim sup hn(z) ≤
∫

GE(z, x)dμ(x). (3.2)

Proof Due to Lemma 2.12 and the definition of μn we have

hn(z) ≤
∫

GE(z, x)dμn(x).

On the other hand, since μn → μ and by continuity of GE(z, y) on KC we have

lim
n→∞

∫
GE(z, x)dμn(x) =

∫
GE(z, x)dμ(x).

��
We continue with some facts about potentials.

Lemma 3.2 Let E � R be closed and not polar so that Ω = C \ E is Greenian and μ

be a probability measure supported on R with suppμ∩ E = ∅. Then
∫

GE(z, x)dμ(x)

defines a positive superharmonic function in Ω and a harmonic function in Ω \suppμ.
Moreover, as a harmonic function, it has a unique subharmonic extension to C\suppμ,
which vanishes q.e. on E.

Proof If suppμ ⊂ R, it follows from [21, Theorem II.5.1] and the minimum principle
for superharmonic functions that

∫
GE(z, x)dμ(x) defines a positive superharmonic

function in Ω and a harmonic function in Ω \ suppμ that vanishes q.e. on E. In
particular, locally in vicinities of E it is subharmonic and vanishes away from a polar
set. Thus, by [1, Theorem 5.2.1.], for ζ ∈ E∫

GE(ζ, x)dμ(x) = lim sup
z→ζ

∫
GE(z, x)dμ(x)

defines the unique subharmonic extension to Ω \ suppμ; since all claims are
conformally invariant, the general case follows. ��
Lemma 3.3 Assume Hypothesis 1.9. Then, the set KC intersects only finitely many
open gaps.

Proof KC is a closed subset of R, so it is compact. It is contained in R \ E, so its cover
by the open sets (a j ,b j ) has a finite subcover; in other words, KC only intersects
finitely many gaps. ��
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We obtain immediately the following corollary:

Corollary 3.4 Assume Hypothesis1.9. Then, for n sufficiently large, Fn is non-constant.

Proof Because D0
n ≤ 1 for any gap and there is at most one generalized zero per gap

due to Theorem 2.3(iv),(v), the claim follows by Lemma 3.3 and deg D∞
n = n. ��

Since we are interested in asymptotics of Fn as n →∞, we assume from now on that
Fn is non-constant.

Lemma 3.5 Fix an open set O ⊂ R \ E so that μ(O) > 0. Then

lim
n→∞

∑
c∈O

D∞
n (c) = +∞. (3.3)

Proof By definition,

μn(O) = 1

n

∑
c∈O

D∞
n (c).

By the Portmanteau theorem, lim infn→∞ μn(O) ≥ μ(O) > 0, so

lim inf
n→∞

1

n

∑
c∈O

D∞
n (c) > 0

which implies (3.3). ��
The following analog of Koosis’s formula for the Martin or Phragmén Lindelöf

function [16, Theorem on page 407] will be very useful. It was already used in [5,
Proposition 4.3].

Lemma 3.6 Let E1 ⊂ E2 ⊂ R so that E1 is not polar and let c ∈ R \ E2. Then,

GE1(z, c)− GE2(z, c) =
∫
E2\E1

GE1(z, x)ωE2(dx, c). (3.4)

Proof Since (3.4) is conformally invariant, by applying a conformal map we can
assume that ∞ ∈ E1, i.e., Ω1 = C \ E1 ⊂ C. Define also Ω2 = C \ E2. Since the
logarithmic pole at c is canceled, GE1(z, c)−GE2(z, c) defines a superharmonic func-
tion onΩ1 which is bounded. Moreover, its Riesz measure is given by ωE2(dx, c)|Ω1.

Since E1 ⊂ E2 it follows by the maximum principle that GE1(z, c) − GE2(z, c) ≥ 0.
Thus, in particular it has a nonnegative subharmonic minorant in Ω1 and it follows by
the Riesz decomposition theorem that

GE1(z, c)− GE2(z, c) =
∫

Ω1

G E1(z, x)ωE2(dx, c)+ u(z),
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where u is the greatest harmonic minorant of GE1(z, c)− GE2(z, c). We have already
seen that u ≥ 0. On the other hand, since E1 is the boundary for Ω1 and Ω2 it follows
that for q.e. x ∈ E1 we have

lim sup
z→x

u(z) ≤ lim sup
z→x

(GE1(z, c)− GE2(z, c)) = 0.

Thus, u is a bounded harmonic function in Ω1 which vanishes q.e. on E1. It follows
by the maximum principle [14, Corollary 8.3] that u = 0 and we obtain (3.4). ��

Compared to the standard Chebyshev problem, we encounter a technical difference
for residual extremal functions. Let (ai ,bi ) be a gap so that (3.3) is satisfied for
O = (ai ,bi ). We want to estimate GEn (z, c) for c ∈ (ai ,bi ). But since (ai ,bi ) is
not necessarily the extremal gap, there can be an extension (ui , vi ) in this gap, which
intuitively makes GEn (z, c) smaller if [ui , vi ] is close to c. However, we have already
encountered in Theorem 2.9(ii), that a cancellation of a pole can be regarded as a
degenerated internal interval. Thus, we are led to expect that an additional interval
can have no more “effect” than reducing the number of Green functions in the sum by
one. This is the content of the following lemma:

Lemma 3.7 Let En and ui , vi be defined as in Theorem 2.9. Fix a gap (ai ,bi ) and
define Ei

n = En \ (ai ,bi ). Let z ∈ C\En and (Fn)∞(z) = 0. Then there is a t ∈ [ai ,bi ]
such that GE(t, z) = maxx∈[ai ,bi ] GE(x, z) and we have

∑
c

(Fn)∞(c)GEn (z, c) ≥
∑
c

(Fn)∞(c)GEi
n
(z, c)− GE(z, t). (3.5)

In particular, if z /∈ (ai ,bi ), then

lim
n→∞

∑
c

(Fn)∞(c)GEi
n
(z, c) = ∞ �⇒ lim

n→∞
∑
c

(Fn)∞(c)GEn (z, c) = ∞. (3.6)

Proof If z ∈ (ai ,bi ), then t = z and (3.5) is trivial. Thus, let z /∈ (ai ,bi ).
Since En is a finite union of intervals it is clearly not polar and putting En \ Ei

n =
[ui , vi ], we obtain from Lemma 3.6 that

GEi
n
(z, c)− GEn (z, c) =

∫ vi

ui

GEi
n
(z, x)ωEn (dx, c). (3.7)

By [19, Theorem 2.1.2] a subharmonic function attains its maximum on compacts and
thus t is well defined. Define

ρn(dx) =
∑
c

(Fn)∞(c)ωEn (dx, c),

and note that it follows from Theorem 2.9 and Lemma 2.11 that ρn([ui , vi ]) ≤ 1.
Moreover, by the maximum principle

GEi
n
(z, x) ≤ GE(z, x).
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Thus,

∑
c

(Fn)∞(c)
∫ vi

ui

GEi
n
(z, x)ωEn (dx, c)

=
∫ vi

ui

GEi
n
(z, x)ρn(dx) ≤

∫ vi

ui

GE(z, x)ρn(dx) ≤ GE(z, t).

Combining this with (3.7) yields (3.5). ��
By the representation (2.11), we have

hn(z) = −1

n
log |Bn(z)| − 1

n
log 2+ 1

n
log |1+ Bn(z)2|. (3.8)

The next lemma shows that the the asymptotics of hn for n →∞ are determined by
the term − 1

n log |Bn(z)|. In fact, we even prove a stronger statement, which will be
needed in Sect. 4.

Lemma 3.8 Suppose Hypothesis 1.9 holds. Then, uniformly on compact subsets of
C \ R we have

lim
n→∞ log

∣∣∣1+ Bn(z)
2
∣∣∣ = 0. (3.9)

If we pass to a subsequence such that lim�→∞ x∗n�
= x∗∞ and (a,b) denotes the gap

containing x∗∞, then also for z ∈ (a,b)

lim
�→∞ log

∣∣∣1+ Bn�
(z)2

∣∣∣ = 0. (3.10)

Proof Consider Bn as an analytic single-valued function on C+ or C− and note that
0 < |Bn(z)| < 1. Thus, log

∣∣1+ Bn(z)2
∣∣ = Re log(1 + Bn(z)2) defines a family of

harmonic functions which is uniformly bounded from above. Thus, by the Harnack
principle, the family is precompact in the space of harmonic functions together with
the function which is identically −∞. Therefore, it suffices to show that pointwise
for fixed z every subsequence has a subsequence so that (3.9) holds. Let us pass to a
subsequence so that lim�→∞ x∗n�

= x∗∞ and let (a,b) denote the gap containing x∗∞.
If necessary, we pass to a further subsequence so that xn�

∈ (a,b) for all � > 0. Since
for |z| < 1

| log(|1+ z|)| = |Re(log(1+ z))| ≤ | log(1+ z)| =
∣∣∣∣
∫ 1

0

z

1+ zt
dt

∣∣∣∣ ≤ |z|
1− |z| ,

it suffices to show that

lim
�→∞ |Bn�

(z)| = 0.
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By (2.9) and (1.20) this is equivalent to

lim
�→∞

∑
c

(Fn�
)∞(c)GEn�

(z, c) = +∞. (3.11)

Since E∩KC = ∅, we find a gap (ai ,bi ) and ε > 0 so that μ((ai + ε,bi − ε)) > 0.
Thus, by Lemma 3.5 we have

lim
�→∞

∑
c∈(ai+ε,bi−ε)

D∞
n�

(c) = +∞. (3.12)

Note that it could be that (ai ,bi ) = (a,b), which causes no problems in the following.
Set Ei = R\((a,b)∪(ai ,bi )) and Ei

n�
= En�

\(ai ,bi ). ByTheorem2.9(i), Ei
n�
⊂ Ei ,

so the maximum principle yields

GEi (z, c) ≤ GEi
n�

(z, c). (3.13)

Fix z ∈ C+ ∪ C− ∪ (a,b) and note that lower semicontinuity implies

0 < δ = min
c∈[ai+ε,bi−ε] GEi (z, c).

Then, by Theorem 2.3(v)

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c) ≥ δ

(
− 1+

∑
c∈(ai+ε,bi−ε)

D∞
n�

(c)
)

.

Thus, by (3.12) we obtain

lim
�→∞

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c) = ∞. (3.14)

Since by positivity of the Green function

∑
c

(Fn�
)∞(c)GEi (z, c) ≥

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c)

we obtain together with (3.13) that

lim
�→∞

∑
c

(Fn�
)∞(c)GEi

n�
(z, c) = ∞.

By an application of Lemma 3.7 we obtain (3.11) which concludes the proof. ��
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Lemma 3.9 Assume Hypothesis 1.9Then, for z ∈ C \ R, we have

lim inf
n→∞

1

n
log |Fn(z)| ≥ 0. (3.15)

Proof Fix z ∈ C \R and recall (3.8). Noting that |Bn(z)| ≤ 1, the claim follows from
Lemma 3.8. ��

In contrast to the classical polynomial setting, our limits will be described by
the difference of two potentials, one corresponding to the zeros of Fn , leading to a
subharmonic part and one corresponding to the poles leading to a superharmonic part.
Since in the following considerations we will work with the Riesz measures for both
of them, there is no natural choice of a “coordinate system” and it will be convenient
to apply conformal maps to logarithmic potentials. For a probability measure ν with
suppν � R and z∗ ∈ R \ suppν, let us introduce the notation

Φν(z, z∗) =
∫

K (x, z; z∗)dν(x),

where

K (x, z; z∗) =
{
log

∣∣∣1− z−z∗
x−z∗

∣∣∣ , z∗ �= ∞,

log |z − x |, z∗ = ∞.

It is straightforward to see that if z1, z2 ∈ R \ suppν, then there is β ∈ R so that

Φν(z, z1) = β +Φν(z, z2).

Lemma 3.10 Let ν be a probability measure on R, suppν ⊂ E and f ∈ PSL(2, R). If
f (∞) = ∞, then

Φν(z, z∗) = Φ f∗ν( f (z), f (z∗)).

Otherwise,

Φν(z, z∗) = Φ f∗ν( f (z), f (z∗))−Φ f∗δ∞( f (z), f (z∗)).

Proof Let us first assume that f (∞) = ∞, i.e., f (z) = az + b with a �= 0. Then we
have

1− z − z∗
x − z∗

= 1− f (z)− f (z∗)
f (x)− f (z∗)

.

Thus, the claim follows by the transformation rule for pushforward measures.
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Let now f (∞) �= ∞. Since f preserves cross-ratios, we get

1− z − z∗
x − z∗

= x − z

x − z∗
= f (x)− f (z)

f (x)− f (z∗)
f (z∗)− f (∞)

f (z)− f (∞)

=
(
1− f (z)− f (z∗)

f (∞)− f (z∗)

)−1 (
1− f (z)− f (z∗)

f (x)− f (z∗)

)
.

Noting that f∗δ∞ = δ f (∞), again the claim follows by applying the transformation
rule for pushforward measures. ��
Lemma 3.11 The measures νn are a precompact family with respect to weak conver-
gence on C(R). Any accumulation point ν = lim�→∞ νn�

is a probability measure
and suppν ⊂ E.

Proof Since deg D0
n = n, precompactness follows by the Banach-Alaoglu theorem

and any accumulation point is a probability measure on R. Let (a,b) be a connected
component of R\E. Let us prove that ν((a,b)) = 0. By Möbius invariance, it suffices
to assume that (a,b) is a bounded subset of R. Due to Theorem 2.3 (vi), there is at
most one generalized zero in (a,b), thus νn�

((a,b)) ≤ 1
n�

and by the Portmanteau
theorem ν((a,b)) = 0 and suppν ⊂ E. ��

In the followingwewill need statements also for a subsequence (hn�
)∞�=1. Therefore,

for a fixed subsequence let us define

K ′ =
⋃
�≥1

suppD∞
n�

, and ΩK ′ = C \ K ′, (3.16)

so that hn�
is subharmonic on ΩK ′ for all �. Since limn→∞ μn = μ, we have for

any subsequence (and therefore any K ′), that suppμ ⊂ K ′ ⊂ KC and therefore
ΩC ⊂ ΩK ′ ⊂ C\suppμ.

If D0
n(z1∗) = D∞

n (z2∗) = 0, then by factoring Fn we see that there is βn ∈ R so that

hn(z) = βn +Φνn (z, z1∗)−Φμn (z, z2∗). (3.17)

Theorem 3.12 Assume Hypothesis 1.9 and pass to a subsequence so that lim� νn�
= ν,

lim� x∗n�
= x∞ and lim� βn�

= β ∈ R ∪ {−∞,+∞}. Then, in fact β ∈ R and for
z∗ /∈ KC we have uniformly on compact subsets of C \ R

lim
�→∞ hn�

(z) = β +Φν(z, x∞)−Φμ(z, z∗) =: h(z). (3.18)

In particular, h extends to a positive superharmonic function on C \ E and to a
subharmonic function on C \ suppμ. Moreover, for q.e. every z ∈ ΩK ′

lim sup
�→∞

hn�
(z) = β +Φν(z, x∗∞)−Φμ(z, z∗).
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Proof Let (a,b) denote the gap containing x∞ and let us assume that � is big enough
so that all x∗n�

are in (a,b). Due to Theorem 2.3(vi), νn�
((a,b)) = 0. Thus, we can

write

hn�
(z) = βn�

+Φνn�
(z, x∗∞)−Φμn�

(z, z∗). (3.19)

Since K (·, z, x∞) is continuous on suppνn�
⊂ R\(a,b) and K (·, z, z∗) is continuous

on R\K ′, we get

lim
�→∞Φνn�

(z, x∗∞) = Φν(z, x∗∞), lim
�→∞Φμn�

(z, x∗∞) = Φμ(z, x∗∞).

Since, for z0 ∈ C+, Φν(z0, x∗∞),Φμ(z0, z∗) ∈ R the upper and lower estimates (3.2)
and (3.15) imply that β ∈ R. In fact, convergence is uniform on compact subsets of
C \R: since supp(νn�

), supp(μn�
) ⊂ R for all � and all measures are normalized, the

estimate

log

∣∣∣∣ x − z1
x − z2

∣∣∣∣ ≤ log

(
1+ |z1 − z2|

dist(z2, R)

)
≤ |z1 − z2|

dist(z2, R)
, z1, z2 ∈ C \ R

implies uniform equicontinuity of the potentials
∫
log

∣∣∣1− z−x∗∞
x−x∗∞

∣∣∣ dνn�
(x) and∫

log
∣∣∣1− z−z∗

x−z∗

∣∣∣ dμn�
(x) on compact subsets ofC\R, and the Arzelà–Ascoli theorem

implies uniform convergence on compacts.
By applying a conformal map f ∈ PSL(2, R) and Lemma 2.2 we assume that

∞ ∈ (a,b) so that E and K ′ are compact subsets of R.
We note that Φρ , for ρ = μ, ν, are subharmonic in C and harmonic in C \ suppρ.

Thus, we only need to argue why h is harmonic at∞. Since suppμ and E are bounded
and μ, ν are probability measures, we have

Φρ(z) = log |z| + O(1) (3.20)

as z →∞ and therefore, h(z) = O(1) there and h has a harmonic extension to∞.
Finally, for z ∈ ΩK ′ \{∞}, K (·, z, z∗) is continuous on K ′ and thus

lim
�→∞Φμn�

(z, z∗) = Φμ(z, z∗). (3.21)

By the upper envelope theorem for q.e. z ∈ C

lim sup
�→∞

Φνn�
(z, x∗∞) = Φν(z, x∗∞). (3.22)

Combining (3.21) and (3.22), for q.e. z ∈ ΩK ′ we have

lim sup
�→∞

hn�
(z) = lim

�→∞βn�
+ lim sup

�→∞
Φνn�

(z, x∗∞)− lim
�→∞Φμn�

(z, z∗) = h(z).

��
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Lemma 3.13 Assume Hypothesis 1.9. Then, for z ∈ C \ R, we have

lim inf
n→∞

1

n
log |Fn(z)| ≥

∫
GE(z, x)dμ(x).

Proof By applying a conformal map f , we assume ∞ ∈ E so that Ω ⊂ C. Fix
z ∈ C \ R and let n� be such that

lim
�→∞ hn�

(z) = lim inf
n→∞ hn(z)

and

lim
�→∞ hn�

(z) = h(z) = β +Φν(z, x∞)−Φμ(z, z∗)

in the sense of Theorem 3.12. Thus, h defines a positive superharmonic function on
Ω and

−Δh = ΔΦμ(z, z∗) = 2πμ.

By the Riesz decomposition theorem [1, Theorem 4.4.1], we have

h(z) =
∫

GE(z, x)dμ(x)+ u(z),

where u(z) is the greatest harmonic minorant of h. Since h is positive, it follows that
u ≥ 0. Thus,

h(z) ≥
∫

GE(z, x)dμ(x)

and the claim follows. ��
We can now prove the root asymptotics of Fn and convergence of generalized zero

counting measures:

Proof of Theorem 1.10 Root asymptotics follow by combining Lemma 3.1 and
Lemma 3.13.

By conformal invariance,we assume that∞ ∈ suppμ so thatΩμ := C\suppμ ⊂ C

and E is compact in R. Due to Lemma 3.11 the family {νn} is precompact and we can
consider a weakly convergent subsequence ν = lim j→∞ νn j . Moreover, by Lemma
3.2,

∫
GE(z, x)dμ(x) defines a subharmonic function inΩμ. Let us compute its Riesz

measure. Take φ ∈ C∞
c (Ωμ) and compute

∫∫
GE(z, x)dμ(x)Δφ(z)d A(z) =

∫∫
GE(z, x)Δφ(z)d A(z)dμ(x)

= 2π
∫∫

ωE(dz, x)dμ(x)φ(z)d A(z),
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where Fubini’s theorem is justified since supp(φ) ⊂ C\supp(μ), supsupp(φ)×supp(μ)

|GE(z, x)| < ∞. That is,

1

2π
Δ

(∫
GE(z, x)dμ(x)

)
=

∫
ωE(dz, x)dμ(x) =: ρ.

Root asymptotics and Theorem 3.12 imply that on C \ R

∫
GE(z, x)dμ(x) = β +Φν(z, x∞)−Φμ(z, z∗).

Applying the weak identity principle for subharmonic functions [19, Theorem 2.7.5],
this equality also holds on Ωμ. Thus, computing the distributional Laplacian on both
sides yields ν = ρ and w-lim νn = ρ. ��
Lemma 3.14 Assume Hypothesis 1.9. Then, fix a gap (a,b) and let [un, vn] = En ∩
[a,b]. Passing to a subsequence such that there are limits u∞, v∞ ∈ [a,b], i.e.,

lim
�→∞ vn�

= v∞, lim
�→∞ un�

= u∞

we have

u∞ = v∞.

Proof Byconformal invariancewe can assume that∞ /∈ (a,b) and consider again {hn}
as a family of subharmonic functions in ΩC. We have En ∩ suppD∞

n = ∅, since either
Fn has a pole at c or if Fn has a generalized zero at c then by (ii) of Theorem 2.9 there
is no extension in this gap. Due to Theorem 1.10, limn→∞ hn = ∫

GE(·, x)dμ(x).

Assume that v∞ − u∞ = δ > 0. For any 0 < ε < δ/2, there exists �0 such that for
all � > �0, we have

A := [u∞ + ε, v∞ − ε] ⊂ [un�
, vn�

]. (3.23)

Therefore, defining K ′ as in (3.16), we have A∩ K ′ = ∅. Note that first we only have
empty intersection without taking the closure, but since ε above can be made smaller,
we also conclude that it holds for K ′.

By Theorem 3.12 we have for q.e. z ∈ ΩK ′

lim sup
�→∞

hn�
(z) =

∫
GE(z, x)dμ(x).

Since suppμ ⊂ K ′, it follows from Lemma 3.2 that
∫

GE(z, x)dμ(x) > 0 for every
z ∈ ΩK ′ and therefore in particular for z ∈ A. On the other hand, by definition of
En and (3.23), we have hn�

(z) ≤ 0 there. Since A has positive capacity, this gives a
contradiction. ��
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4 Szegő–WidomAsysmptotics

4.1 Asymptotics of log |Fn|

In the following in addition to the assumptions made in Sect. 3, we assume that E is
a regular Parreau–Widom set. Let us recall its definition. First we assume that E is
regular for the Dirichlet problem. Let z0 ∈ R \ E and denote the gap containing z0 by
(a,b). Due to regularity and concavity of the Green function, GE(z, z0) has exactly
one critical point in each gap (a j ,b j ) except in the gap (a,b). Let us denote these
critical points of GE(z, z0) by ξ j . Then we call E a regular Parreau–Widom set, if

PWE(z0) =
∑

j

GE(ξ j , z0) < ∞. (4.1)

It is well known that this does not depend on the choice of z0; see e.g. [15, Chapter
V].

Denote the topological circle T j = [a j ,b j ]/a j∼b j . Since a j ,b j are Dirichlet
regular points,

lim
x↓a j

GE(z, x) = lim
x↑b j

GE(z, x) = 0

so with the usual convention

GE(z, a j ) = GE(z,b j ) = 0, (4.2)

the Green function GE(z, t j ) depends continuously on t j ∈ T j . We also consider the
compact space

D(E) =
∞∏
j=0

T j , (4.3)

equipped with the product topology. As for divisors, a functional interpretation will be
convenient. Thus, for an element D ∈ D(E), D = (t j )

∞
j=0, we also use the functional

interpretation

D(x) =
∞∑
j=0

χ{t j }(x).

Wewant to associate to the divisor D0
n an element Dn ∈ D(E). In principle we want

to define Dn as the restriction of D0
n to R \ E. Recall that due to Theorem 2.3(v) and

(vi), there is at most one generalized zero in each gap and no generalized zero in the
gap containing x∗. Since deg D0

n = n, almost all gaps do not contain a generalized
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zero. To overcome this, we define

Dn = (t j
n )∞j=0, (4.4)

where t j
n = t , if there is t ∈ [a j ,b j ] such that D0

n(t) = 1 and otherwise we define t j
n

to be the coset of a j ∼ b j in T j . Due to (4.2), these choices formally complete the
definition of Dn ∈ D(E) without affecting certain sums below.

In the previous section we have described root asymptotics, i.e., asymptotics of
1
n log |Fn(z)|. The following theorem describes asymptotics of log |Fn(z)| and is the
key to prove Szegő-Widom asymptotics in Theorem 4.5.

Theorem 4.1 Assume Hypothesis 1.9 and let n� be such that lim�→∞ x∗n�
= x∗∞ ∈

(a,b) and lim�→∞ Dn�
= D. Then for z ∈ C \ (R \ (a,b)), we have

lim
�→∞

(
log |Fn�

(z)| −
∑
c

D∞
n�

(c)GE(z, c)

)
= − log 2−

∑
t

D(t)GE(z, t). (4.5)

Moreover, D(a) = 1.

Proof Define

Hn�
(z) =

∑
c

(
(Fn�

)∞(c)GEn�
(z, c)− D∞

n�
(c)GE(z, c)

)
.

Due to (3.8) and Lemma 3.8 it remains to show that

lim
�→∞ Hn�

(z) = −
∑

t

D(t)GE(z, t). (4.6)

Let us assume without loss of generality that all x∗n�
lie in (a,b). Recall that by

Theorem 2.9(i) Dn�
(a) = 1, showing that D(a) = 1. Moreover, Theorem 2.9(i)

implies En�
∩ (a,b) = ∅ and since GE(z, c) − GEn (z, c) ≥ 0 and (Fn)∞ = D∞

n on
(a,b), we conclude that (−Hn�

)� defines a family of positive harmonic functions in
C\(R\(a,b)) and is thus by the Harnack principle precompact in the space of positive
harmonic functions together with the function which is identically+∞ equipped with
uniform convergence on compact subsets.

Let us now turn to the other gaps. Let [u j
n, v

j
n ] denote the extension in the j th gap

of the set En as in Theorem 2.9 and consider

GEn�
(z, c)− GE(z, c)

as a subharmonic function in Ω = C \ E, which vanishes on E. Thus, by Lemma 3.6

GEn�
(z, c)− GE(z, c) = −

∑
j

∫ v
j
n�

u j
n�

GE(z, x)ωEn�
(dx, c),
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Let us define

ωn�
(dx) =

∑
c

(Fn�
)∞(c)ωEn�

(dx, c),

and recall that this is just a finite sum. We conclude that

Hn�
(z) =

∑
c

(Fn�
)∞(c)

(
GEn�

(z, c)− GE(z, c)
)

−
∑
c

(
(D∞

n�
(c)− (Fn�

)∞(c))GE(z, c)
)

= −
∞∑
j=0

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx)−

∑
c

(
(D∞

n�
(c)− (Fn�

)∞(c))GE(z, c)
)
.

(4.7)

Due to Lemma 3.3 there are finitely many gaps containing poles. So by partitioning
into finitely many subsequences, we can assume that for each j , for all � > 0 either
D∞

n�
(t j

n�
) > 0 or D∞

n�
(t j

n�
) = 0, i.e., in the first case t j

n�
corresponds to a pole reduction

of Fn�
. We will show that both cases lead to the same limit.

Let us first consider a gap (a j ,b j ) so that D∞
n�

(t j
n�

) = 0 and let us assume that

t j
n�
→ t j∞ ∈ (a j ,b j ). Due to Lemma 3.14,

lim
�

u j
n�
= lim

�
v

j
n�
= t j∞. (4.8)

In particular for � big enough we have [u j
n�

, v
j
n�
] ⊂ (a j ,b j ) and it follows then from

Lemma 2.11 that

ωn�
([u j

n�
, v

j
n�
]) = 1.

Hence,

ωn�
|[u j

n�
, v

j
n�
] → δ

t j∞

and therefore

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx) → GE(z, t j∞).

If t j∞ = a j , using that GE(z, ·) vanishes at a j we conclude as above that

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx) → 0 = GE(z, t j∞).
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It remains to discuss the gaps where D∞
n�

(t j
n�

) = 1. Due to Theorem 2.9(ii), u j
n�
=

v
j
n�
= a j , but in this case

D∞
n�

(t j
n�

)− (Fn�
)∞(t j

n�
) = 1.

Thus, these are exactly the terms that contribute in the second sum in (4.7). Since GE

is continuous we conclude that GE(z, t j
n�

) → GE(z, t j∞). Hence, if we are allowed
to interchange the limit and summation in (4.7), we have proved (4.6). As in [15,
Chapter V], by a Harnack-type argument, the Parreau–Widom condition implies∑

j supx∈(a j ,b j )
GE(z, x) < ∞ and since moreover ωn�

((a j ,b j )) ≤ 1 interchanging
the limits is justified and we are done. ��

4.2 Blaschke Products, Character-automorphic Hardy Spaces and a Related H∞
Extremal Problem

We will now pass from asymptotics of the superharmonic function log |Fn| to asymp-
totics of the rational function Fn . Thus, essentially in (4.5) we need to add harmonic
conjugates and apply exp. Thus, the left-hand side in (4.5) will lead to complex Green
functions

BE(z, c) = e−(GE(z,c)+i G̃E(z,c)),

as defined in (1.20). We have already mentioned that in general BE(z, c) is a multi-
valued function in Ω . Let us fix a normalization gap (a,b) and z0 ∈ (a,b) and define
E j = [z0, a j ] ∩ E. Let γ̃ j be the generator of the fundamental group π1(Ω, z0), which
starts at z0 and passes through the gap (a j ,b j ), encircling the set E j once. If we extend
BE(z, c) analytically along γ j , we get

BE(γ̃ j (z), c) = e2π iωE(E j ,c) BE(z, c). (4.9)

When working with multi-valued functions, it is convenient to consider them as
single-valued functions on the universal cover of Ω = C \ E. By means of the Koebe–
Poincaré uniformization theorem, Ω is uniformized by the disk D; that is, there exists
a Fuchsian group Γ and a meromorphic function z : D → Ω with the following
properties:

1. ∀z ∈ Ω ∃ ζ ∈ D : z(ζ ) = z,

2. z(ζ1) = z(ζ2) ⇐⇒ ∃ γ̃ ∈ Γ : ζ1 = γ̃ (ζ2).

We fix it by the normalization z(0) = z0, z′(0) > 0. For Denjoy domains the cover-
ing map can be explicitly constructed [20, Section 4]. Moreover, there exists a Ford
fundamental domain F , so that z : F → Ω is bijective. We denote by Γ ∗ the group
of unitary characters of Γ ; that is, group homomorphisms from Γ into T := R/Z.
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By the covering space formalism, Γ is group isomorphic to the fundamental group
π1(Ω, z0). For a fixed ζ1 ∈ D we denote by

b(ζ, ζ1) :=
∏
γ∈Γ

γ (ζ1)

|γ (ζ1)|
γ (ζ1)− ζ

1− γ (ζ1)ζ
, (4.10)

the standard Blaschke product. Since CapE > 0, Γ is of convergent type and thus the
product is indeed convergent. The functions b(ζ, ζ1) are character-automorphic, i.e.,
there exists χz1 ∈ Γ ∗ such that

b(γ (ζ ), ζ1) = e2π iχz1 (γ )b(ζ, ζ1), ∀γ ∈ Γ .

If z1 = z(ζ1), then these Blaschke product are related to the Green function of Ω , by

− log |b(ζ, ζ1)| = GE(z(ζ ), z1).

Thus, we can regard the multi-valued functions BE(z, z1) as single-valued character-
automorphic function on the universal cover.

Definition 4.2 Let f be analytic in D. We call f (Γ ∗-) character-automorphic with
character α ∈ Γ ∗ if

f ◦ γ = e2π iα(γ ) f , ∀γ ∈ Γ .

Similarly, if F is an analytic function on Ω , then we call F (π1(Ω)∗-) character-
automorphic with character α ∈ π1(Ω)∗, if

F ◦ γ̃ = e2π iα(γ̃ )F, ∀γ̃ ∈ π1(Ω).

Via the covering map z, Γ ∗- and π1(Ω)∗-character-automorphic functions are in one-
to-one correspondence. The advantage is thatΓ ∗- character-automorphic functions on
the universal cover D are single-valued. Therefore, we will formulate all convergence
results for the corresponding single-valued lifts on D.

Recall that H∞
Ω (α) denotes the space of bounded analytic character-automorphic

functions, F , in Ω; see (1.16). It is a fundamental result of Widom [32] that if E
is a Parreau–Widom set, then H∞

Ω (α) �= {0} for every α ∈ π1(Ω)∗. The Widom
maximizer for x∗ and character α is the unique function W (z;α, x∗) in the unit ball
of H∞

Ω (α) such that

W (x∗;α, x∗) = max{Re F(x∗) : F ∈ H∞
Ω (α), ‖F‖Ω ≤ 1}. (4.11)

We are now ready to state a definition of Direct Cauchy theorem. It is usually stated
as a point evaluation property for certain H1 functions inΩ [15], and hence the name,
but it can be equivalently defined by the following:
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Definition 4.3 We say that the Direct Cauchy Theorem (DCT) holds in Ω , if for one
and hence for all x∗ ∈ Ω , the map α �→ W (x∗;α, x∗) is continuous on π1(Ω)∗
equipped with the topology dual to the discrete topology on Γ .

Let us for notational convenience also define BE(z, z0) ≡ 1, if z0 ∈ E. Note that
generally the harmonic conjugate is fixed up to an additive constant. So an additional
normalization is required in (1.20). Since we will have varying normalizations, we
will not fix it for a single function, but assume instead that for products of complex
Green functions all of them are normalized to be positive at the same point. In this
way, we can associate to any divisor D ∈ D(E) a product of complex Green functions,
in other words a Blaschke product, by

BE(z, D) = BE(z, D, φ) = eiφ
∏

t

D(t)BE(z, t). (4.12)

Note that

− log |BE(z, D)| =
∑

t

D(t)GE(z, t),

that is, these are exactly expression of the type appearing in (4.5). Moreover, the
Widom condition guarantees that BE(z, D) converges to a non-trivial function for any
D ∈ D(E). Let us define the restriction

Dk(E) = {D ∈ D(E) : D(ak) = 1}.

For D ∈ Dk(E) it is natural to normalize BE(z, D, φ) such that BE(z, D, φ) > 0 on
(ak,bk) which we fixes φ. To be more precise, since complex Green functions are
defined locally and then extended analytically, this normalization holds only for one
branch. Let us always assume that this branch corresponds to the values of the lift to
D in the fundamental domain F .

The Abel map is an important object in the spectral theory of self adjoint difference
and differential operators. It is a map π fromDivisorsDk(E) to the characters π1(Ω)∗.
However, there is a subtle difference between this Abel map and the Abel map which
we will implicitly use for Problem 1.3. It can be seen from the definition of D(E). In
spectral theory one would usually take a two-fold cover of the interval [a j ,b j ] and
identify the endpoints of the two copies of the interval, whereas in our case we only
took one copy and identified a j ∼ b j . This map π is also the reason why the DCT
property is needed, because this assumption makes π a bijection which is used in the
proof of the following theorem. The proof relies on the fundamental construction of
the generalized Abel map from Sodin and Yuditskii [22].

Theorem 4.4 ([5, Theorem 5.1], [11, Proposition 2.3]) Let Ω be a regular Parreau–
Widom domain such that DCT holds. Let D ∈ Dk(E) and let α be the character of
BE(z, D) defined by (4.12). Then, for x∗ ∈ (ak,bk) we have

W (z;α, x∗) = BE(z, D).
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We see again that as for Fn , the extremal function only depends on the chosen gap
(ak,bk) and not the particular extremal point in the gap. Since the above theorem
holds for any gap and arbitrary Blaschke products associated to divisors in Dk(E), we
conclude that if D ∈ D j (E) for j �= k, then up to a unimodular constant BE(z, D) is
also the Widom maximizer for the gap (a j ,b j ). This is in line with the Corollary 1.8
for Fn .

Let D∞
n , x∗n and dn be as in Problem 1.3 and define

B(n)
E (z) = eiφn

∏
c

D∞
n (c)BE(z, c),

where eiφn is chosen such that

lim
x→x∗n

B(n)
E (x)r(x, x∗n )dn > 0. (4.13)

Let χn denote the character of B(n)
E . Let further

Wn(z) = W (z;χn, x∗n ),

denote the Widom maximizer for the point x∗n and character χn .
For the following we follow the spirit of [5] and state convergence results on the

universal coverDwithout introducing the corresponding lift of multi-valued functions
on Ω . To give an example: if Qn are π1(Ω)∗-character-automorphic function on Ω ,
we will write Qn → Q uniformly on compact subsets of D, meaning that there are
lifts qn of the Qn which are Γ ∗-character-automorphic functions such that qn → q
uniformly on compact subsets of D and Q is the projection of q.

Theorem 4.5 Let E be a regular Parreau–Widom set, such that DCT holds in Ω and
Fn be the extremizer of (1.3). Then, assuming Hypothesis 1.9, uniformly on compact
subsets of D, we have

lim
n→∞

(
B(n)
E (z)Fn(z)− 1

2
Wn(z)

)
= 0. (4.14)

Wewill use the following simple criterion based on normality; note that it is simpler
than the corresponding criterion used in the polynomial case [5, Proposition 4.2], since
our approach avoids working on multivalued functions on varying domains:

Proposition 4.6 Let {qn}∞n=1 be a normal family on D. Let q∞ be analytic on D so that
for some ζ0 ∈ D and some neighborhood, V , of ζ0 we have that

lim
n→∞ |qn(ζ )| = |q∞(ζ )| for all ζ ∈ V ; (4.15)

qn(ζ0) > 0, q∞(ζ0) > 0. (4.16)

Then qn → q∞ uniformly on compact subsets of D.
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Proof Bynormality, it suffices to prove that any subsequence (qn�
)∞�=1 which converges

uniformly on compacts has the limit q∞. Denote by f the limit of such a sequence.
By (4.15), | f (ζ )| = |q∞(ζ )| for all ζ ∈ V . By (4.16), by possibly decreasing V , we
can assume q∞(ζ ) �= 0 for ζ ∈ V , so by the maximum principle applied to f /q∞,
we conclude f = eiφq∞ for some unimodular constant eiφ . By (4.16), f (ζ0) ≥ 0 and
q∞(ζ0) > 0, so eiφ = 1 and f = q∞. ��

Defining

Qn(z) = Fn(z)B(n)
E (z),

the strategy is now clear: First we need to check that Qn(z) defines a normal family.
Realizing that log |Qn(z)| is exactly the left hand-side in (4.5), Theorem 4.1 and
Proposition 4.6 imply that all accumulation points are Blaschke products. Combining
this with Theorem 4.4 finishes the proof of Theorem 4.5.

Lemma 4.7 The sequence {Qn}∞n=1 forms a normal family in D.

Proof Since on Ω

(Fn)∞ ≤ D∞
n = (B(n)

E )0,

Qn are analytic π1(Ω)∗-character automorphic functions in Ω . They have therefore
Γ ∗-character automorphic lifts toD. ByMontel’s theorem [26, Chapter 6], it suffices to
show that |Fn B(n)

E | ≤ 1 inΩ . The functions log |Qn| are subharmonic inΩ .Moreover,
since E is regular and |Fn| ≤ 1 on E, for every ζ ∈ E

lim sup
z→ζ

log |Qn(z)| = lim sup
z→ζ

log |Fn(z)| − lim
z→ζ

∑
t

D∞
n (t) lim

z→ζ
GE(ζ, t) ≤ 0,

where we used Dirichlet regularity and the fact that the sum is only finite. The claim
follows by the maximum principle for subharmonic functions [19, Theorem 2.3.1].

��
Lemma 4.8 Suppose Hypothesis 1.9 holds and let n� be a subsequence such that
lim�→∞ Dn�

= D and lim�→∞ x∗n�
= x∗∞ ∈ (a j ,b j ) for some j ≥ 0. Then, uniformly

on compact subsets of D we have

lim
�→∞ Qn�

(z) = 1

2
BE(z, D),

where D ∈ D j (E) and BE(x∗∞, D) > 0.

Proof Let us assume without loss of generality that all x∗n�
lie in (a j ,b j ). By (4.13),

we have

Qn�
(x∗n�

) > 0.
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Moreover, Qn�
are real, i.e., Qn�

(z) = Qn�
(z). Since D0

n(t) = 0 for every t ∈ (a j ,b j ),
it follows that Qn�

(t) > 0. Thus, in particular at x∗∞. Thuswe can apply Proposition 4.6
in a vicinity of x∗∞ and then the claim follows from Theorem 4.1. ��
Proof of Theorem 4.5 Since Qn, Wn form normal families, by precompactness it suf-
fices to prove that every subsequencehas a subsubsequence so that lim� Qn�

−Wn�
= 0.

Let us pass to a subsequence such that lim�→∞ Dn�
= D and lim�→∞ x∗n�

= x∗∞ ∈
(a j ,b j ) as in Lemma 4.8. Then by Lemma 4.8

lim
�→∞ Qn�

(z) = 1

2
BE(z, D).

If α is the character of BE(z, D) this implies that χn�
→ α. By Theorem 4.4,

BE(z, D) = W (z, α, x∗∞). On the other hand, it is proven in [5, Theorem 3.1] that
DCT implies that W (z;χn�

, x∗n�
) → W (z, α, x∗∞) uniformly on compact subsets of

D. In this reference there is no sequence of extremal points, but since theWidommax-
imizer only depends on the given gap and not on the particular point, the sequence
W (z;χn�

, x∗n�
) eventually only depends on the character. This concludes the proof.

��
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10. Eichinger, B., Lukić, M., Young, G.: Orthogonal rational functions with real poles, root asymptotics,
and GMP matrices, arXiv:2008.11884 (2020)

11. Eichinger, B., Yuditskii, P.: The Ahlfors problem for polynomials. Mat. Sb. 209(3), 34–66 (2018) MR
3769214

12. Eremenko, A., Yuditskii, P.: Comb functions, Recent advances in orthogonal polynomials, special
functions, and their applications, Contemp.Math., vol. 578, Amer. Math. Soc., Providence, RI, pp. 99–
118. (2012)MR 2964141

13. Faber,G.:ÜberTschebyscheffschePolynome. J. ReineAngew.Math. 150, 79–106 (1920)MR1580974
14. Garnett, J. B., Marshall, D. E.: Harmonic measure, NewMathematical Monographs, vol. 2, Cambridge

University Press, Cambridge, (2005). MR 2150803

123

http://arxiv.org/abs/2008.09669
http://arxiv.org/abs/2001.00875
http://arxiv.org/abs/2008.11884


Constructive Approximation

15. Hasumi, M.: Hardy classes on infinitely connected Riemann surfaces. Lecture Notes in Mathematics,
vol. 1027. Springer-Verlag, Berlin (1983)

16. Koosis, P.: The logarithmic integral. I, Cambridge Studies in Advanced Mathematics, vol. 12,
Cambridge University Press, Cambridge, (1998). MR 1670244

17. Lukashov, A.L.: On Chebyshev-Markov rational functions over several intervals. J. Approx. Theory
95(3), 233–352 (1998) MR 1657679
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