
A low-rank tensor reconstruction and denoising
method for enhancing CNN performance

Rohin Harikumar
Department of Mathematical Sciences

The University of Texas at Dallas
Richardson, TX, USA

rxh210003@utdallas.edu

Susan E. Minkoff
Department of Mathematical Sciences

The University of Texas at Dallas
Richardson, TX, USA
sminkoff@utdallas.edu

Yifei Lou
Department of Mathematics

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

yflou@unc.edu

Abstract—Neural network training data is often corrupted by
equipment malfunction or noise leading to red blurry and incom-
plete data. This paper proposes a combination of a reconstruction
technique and a neural network to deal with data corruption in
a machine vision task. Specifically, we consider minimizing the
tensor nuclear norm for low-rank data completion and denoising
and demonstrate the method’s effectiveness using a convolutional
neural network (CNN) for image classification. We conduct
classification experiments on 3 datasets, showing consistently that
training on reconstructed images achieves improved accuracy
ranging from 7-25% over training using corrupted data.

Index Terms—Low-rank tensor completion, tensor nuclear
norm, convolutional neural network, alternating direction
method of multipliers, image classification

I. INTRODUCTION

Data corruption refers to incomplete or blurry images from
equipment failure, decimation, or noise. Most machine vision
systems are sensitive to data corruption. For example, convo-
lutional neural networks (CNNs) are primarily used for image
classification tasks and are typically trained and tested on
images with negligible levels of corruption. Dodge et al. [4]
demonstrate that augmenting the training dataset with noise
can negatively affect the accuracy of large-scale and state-
of-the-art CNNs. Furthermore, they show that the reduced
performance under noise is not limited to a particular CNN ar-
chitecture. As CNNs struggle to make satisfactory associations
of corrupted image patterns to the correct labels, an image
reconstruction algorithm may be employed to reconstruct the
patterns necessary for the CNN to make accurate classification.

Low-rank reconstruction techniques are commonly used for
completing and denoising data with high inherent redundancy
such as seismic data [5], [16]. Ely et al. [5] introduce a
relaxation to tensor rank called the tensor nuclear norm
(TNN) and demonstrate that the alternating direction method
of multipliers (ADMM) [2] can be used to minimize the TNN
to reconstruct the (uncorrupted) seismic data tensor. Popa et
al. (see [14], [15], [16], [13]) investigate this TNN-ADMM
reconstruction procedure which we also use in this work due to
its ease of implementation, effectiveness, and generalizability
to higher-dimensional data tensors.

In this paper, we demonstrate the effectiveness of TNN-
ADMM in completing and denoising data which we then use
to train a CNN for image classification. Experimentally, we

compare the performance of CNNs trained on images that
are clean, images that are noisy and incomplete, and finally,
images that have been completed and denoised using TNN-
ADMM. We show that the CNNs trained on the TNN-ADMM
reconstructed images exhibit higher accuracy compared to
those trained on corrupted images, particularly when evaluated
against ground truth and reconstructed testing sets. Across
three datasets, we see an increase in accuracy of 7–24% for
CNNs trained on reconstructed images compared to CNNs
trained on corrupted images when the neural network is used
to classify clean images.

II. BACKGROUND

A. Tensor Algebra

In this work we consider color images stored as 3D tensors.
An image is a two-dimensional array of colored squares called
pixels. A pixel is a vector in R3 with the three components
representing the intensities of red, green, and blue. For ex-
ample, a square color image can be stored as a 3D tensor of
dimension n× n× 3.

Unlike for matrices, there is not a unique definition of
tensor rank. We use tensor tubal rank, obtained from the tensor
singular value decomposition (t-SVD) [5], as the definition
of tensor rank. As direct minimization of tensor rank is
computationally intractable [3], we use an approximation to
tensor tubal rank called the tensor nuclear norm (TNN) [5].

In this paper tensors are denoted by script letters, e.g. X ,
and matrices by capital letters, e.g. X . Let A be a 3D tensor
of dimension n × n × 3. The kth frontal slice of A is the n
by n matrix A[:, :, k] where A[:, :, k](i, j) = A(i, j, k). The
singular value decomposition of the kth frontal slice of A is
Uk × Sk × V τ

k , where Uk and Vk are orthogonal matrices
(U [:, :, k] = Uk, V[:, :, k] = Vk), S[:, :, k] = Sk is diagonal,
and τ denotes the matrix transpose [9]. The t-SVD of the
tensor A is a factorization of A into three tensors U ,S and V
such that,

A = U ∗ S ∗ V⊤.

where ⊤ denotes tensor transpose [5]. Since Sk are diagonal
matrices, all frontal slices of S are diagonal. We denote the
Fourier transform of A along the 3rd dimension as fft(A)
and the inverse Fourier transform along the 3rd dimension

69979-8-3503-6011-0/24/$31.00 ©2024 IEEE SSIAI 2024

20
24

 IE
EE

 S
ou

th
w

es
t S

ym
po

si
um

 o
n

Im
ag

e
A

na
ly

si
s a

nd
 In

te
rp

re
ta

tio
n

(S
SI

A
I)

 |
97

9-
8-

35
03

-6
01

1-
0/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

SS
IA

I5
95

05
.2

02
4.

10
50

86
87

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2024 at 02:21:09 UTC from IEEE Xplore. Restrictions apply.

as ifft(A). The TNN of A, denoted ||A||TNN, is defined to be
the sum of all diagonal entries of fft(S). The (i, i, k) entries
in fft(S) for all 1 ≤ i ≤ n; 1 ≤ k ≤ 3 are defined to be the
singular values of A.

B. Low-rank minimization

Images may be corrupted due to a lack of pixel values
(decimation) and noise. Let X denote the ground truth image
tensor. We define a decimation operator A of the same
dimension as X with zeros for missing pixel values and ones
elsewhere. Then A(X), the entry-wise product of A and X ,
represents the decimated image. If Y is an image corrupted
by both missing data and noise then,

Y = A(X) +N ,

where N is a noise term. Reconstruction of X given A and Y
is ill-posed. Here we assume the ground truth data X is low
rank. As rank minimization is computationally intractable, we
impose the constraint that X minimizes an approximation to
rank, in our case the tensor nuclear norm or TNN. We solve
the following optimization problem [13],

min
X

λ||X ||TNN +
1

2
||Y − A(X)||2F , (1)

where λ > 0 is a parameter that attempts to balance these two
terms.

We apply the alternating direction method of multipliers
(ADMM) [2] introducing the variable Z to decouple the TNN
regularization and data fidelity terms in (1), i.e.,

min
X ,Z

{λ||Z||TNN +
1

2
||Y − A(X)||2F } such that Z = X . (2)

Its corresponding augmented Lagrangian is given by,

Lρ(Z,X ;B) = λ||Z||TNN +
1

2
||Y − A(X)||2F

+ ρ⟨B,X − Z⟩F +
ρ

2
||X − Z||2F , (3)

where B is a dual variable and ρ > 0 is the step size. ADMM
iterates are as follows:

Zm+1 = arg min
Z

Lρ(Z,Xm;Bm) (4)

Xm+1 = arg min
X

Lρ(Zm+1,X ;Bm) (5)

Bm+1 = Bm + Xm+1 −Zm+1, (6)

where m is iteration number. It is shown in Popa et al. [13] that
if ρ > 1, the iterations (4)-(6) converge to a local minimizer
of (1).

C. Convolutional Neural Networks (CNN)

Consider a set of N images denoted by {X1,X2, . . . ,XN}
which is referred to as the training set. Each image Xi is
associated with a unique integer yi ∈ {1, 2, · · · , C}, known
as its label [8], where C denotes the total number of classes.
The objective of image classification is to find a function F
such that F (Xi) = yi for all 1 ≤ i ≤ N , where yi is the
one-hot vector corresponding to the integer label yi.

Deep neural networks (DNNs) are specialized algorithms
that act as universal function approximations [7]. A typical
DNN consists of arrays of neurons, called layers. Given an
input vector x, each layer evaluates a nonlinear function

ϕ(Wx + b), (7)

where the matrix W is an array of numbers known as weights,
the vector b is a bias term, and ϕ is an activation function. The
nonlinearity introduced by ϕ enables the DNN to approximate
any arbitrary function F . The layers are arranged sequentially
so that the output from one layer becomes the input to the
next. The first layer accepts the input data and the last layer is
the output layer with all the layers in between called hidden
layers. For example, we can write a simple two-layer DNN as

F (X ; {Wj}, {bj}) = Softmax(W2(ReLu(W1x+ b1)) + b2),

where x is an input array (for instance a frontal slice of
an image X). Softmax and ReLu [7] are standard activation
functions used in the last layer and in the hidden layers,
respectively.

The trainable parameters {Wj} and {bj} are iteratively
updated using stochastic gradient descent-based algorithms
(see [10], [12]) to minimize a loss function defined by

J({Wj}, {bj}) =
1

N

N∑
i=1

||yi − ŷi||2, (8)

where ŷi = F (Xi; {Wj}, {bj}), and {Xi,yi}Ni=1 are training
images with one-hot labels {yi}.

Convolutional neural networks (CNNs) [11] are a class of
DNNs primarily used for processing images. In CNNs, 2D
arrays of weights known as kernels capture dominant spatial
patterns, referred to as features, in the training set. Entrywise
product of the kernels with all patches of an image generates
the feature map. The feature map is a 2D array having higher
response at entries where the kernel and the patch represent
similar spatial patterns. CNNs detect features in an input image
using this technique. Multiple kernels are utilized to detect
multiple features, and feature detection occurs across each
frontal slice of an image X .

III. NUMERICAL RESULTS

All experiments presented in this paper were carried out
using Tensorflow [1]. The results are presented as three
separate experiments with different types of color images.

1) Experiment A: Classifying pictures of 5 different bird
species with approximately 640 images in the training
set, 80 images in the validation set, and 80 images in the
testing set1. We use the Adagrad algorithm [12] which
works well for this small dataset to compute the gradient
and minimize the loss.

2) Experiment B: Classifying pictures of cats, dogs, and
wild animals with approximately 12,000 images in the
training set, 1500 images in the validation set, and 1500

1https://www.kaggle.com/datasets/gpiosenka/100-bird-species

70

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2024 at 02:21:09 UTC from IEEE Xplore. Restrictions apply.

images in the testing set2. For the optimization We
used the Adam algorithm [10] which performs better
for larger datasets than Adagrad.

3) Experiment C: Classifying pictures of 6 different land-
scapes with approximately 10,080 images in the training
set, 1260 images in the validation set, and 1260 images
in the testing set3. We use the Adam [10] optimization
algorithm in the CNN.

We partition the images among the training, validation, and
testing sets in an 80-10-10 ratio, respectively, and initialize the
trainable parameters of the CNN by values drawn from the
Glorot uniform distribution [6]. Validation sets are employed
during training to evaluate CNN performance and thereby
assist in hyperparameter tuning. In our experiments, we build
CNNs by stacking three pairs of 2D convolutional and max-
pooling layers, followed by a dense layer and an output layer
with the Softmax activation function. We use ReLU activation
in all the hidden layers.

For each dataset, we train three separate CNNs: one using
the original (or ground truth) data, a second CNN trained on
corrupted images, and a third on TNN-ADMM reconstructed
images. Some examples of the ground truth, corrupted, and
reconstructed images are shown in Figure 1. Subsequently,
we record the accuracy of the CNNs in classifying ground
truth, corrupted, and reconstructed testing sets. The accuracy
is defined to be the ratio of correct predicted labels to the
total predictions over a set of images. We show that the
CNNs trained on reconstructed images exhibit higher accuracy
compared to those trained on corrupted images, particularly
when evaluated against ground truth and reconstructed testing
sets.

A. Workflow for each experiment

We first train a CNN using the ground truth training set.
During this phase, the network’s hyperparameters, such as the
number of training iterations, number of kernels, etc., are tuned
to maximize the accuracy with respect to ground truth in the
validation set. Note that no further changes to the network’s
hyperparameters are made beyond this stage. The CNN trained
on the ground truth training set is then saved (referred to as
Ground truth CNN).

We generate a corrupted version of the ground truth dataset
by applying a low-rank approximation, followed by decimation
and addition of noise to each image sample. Note that decima-
tion is carried out independently across each color channel. For
the “corrupted dataset” we decimate 50% of the data and add
Gaussian noise with a signal-to-noise ratio (SNR) of 10:2. The
CNN is trained using the corrupted training set, and the trained
CNN is saved (referred to as Corrupted CNN). Reconstruction
of each image in the corrupted dataset is carried out by
the TNN-ADMM algorithm. The network trained using the
reconstructed images is referred to as Reconstructed CNN.

2https://www.kaggle.com/datasets/andrewmvd/animal-faces
3https://www.kaggle.com/datasets/puneet6060/intel-image-classification

Fig. 1: From left to right, sample images from (a) ground truth,
(b) corrupted, and (c) reconstructed images respectively. Top:
a bird in Experiment A and bottom: a fox in Experiment B.

B. Testing results

Each of the 3 saved CNNs just described is loaded and
tested on ground truth, corrupted, and reconstructed testing
sets. We document the accuracy of each CNN across three
different testing sets in Tables I, II, and III, based on datasets
used in Experiments A, B, and C, respectively. In each table,
the training set is designated by the row label, while the testing
set utilized is indicated by the column label. We observe the
following:

• All three tables (Tables I-III) consistently illustrate a
maximum accuracy in each row along the diagonal of
the table, which implies that the CNN performs best
when evaluated on the same type of data on which it
was trained.

• CNNs trained and tested on reconstructed images perform
better than CNNs trained and tested on corrupted images.

• CNNs trained on uncorrupted or reconstructed images
perform poorly when tested on corrupted images and ones
trained on corrupted images perform poorly when tested
on uncorrupted or reconstructed images.

More importantly, a consistent trend emerges: CNNs trained
on reconstructed images consistently yield higher accuracy in
classifying ground truth and reconstructed images compared
to those trained on corrupted images.

Ground truth Corrupted Reconstructed
Ground truth CNN 0.96 0.36 0.88

Corrupted CNN 0.56 0.80 0.56
Reconstructed CNN 0.80 0.52 0.88

TABLE I: Testing accuracy for Experiment A (birds). CNNs
are trained/tested on the ground truth, corrupted, and re-
constructed training/testing sets. The row labels denote the
training set used and the column labels denote the testing set.

71

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2024 at 02:21:09 UTC from IEEE Xplore. Restrictions apply.

Ground truth Corrupted Reconstructed
Ground truth CNN 0.96 0.37 0.80

Corrupted CNN 0.86 0.90 0.82
Mixture CNN 0.90 0.88 0.89

Reconstructed CNN 0.93 0.46 0.93

TABLE II: Testing accuracy for Experiment B (cats, dogs and
wild animals). In Table II the row labeled “Mixture CNN”
indicates a training set made up of 50% clean and 50%
corrupted samples.

Ground truth Corrupted Reconstructed
Ground truth CNN 0.81 0.18 0.44

Corrupted CNN 0.53 0.70 0.50
Reconstructed CNN 0.69 0.34 0.75

TABLE III: Testing accuracy of Experiment C (landscapes).

Specifically in Table I it is evident that the Corrupted CNN
exhibits lower accuracy on both the ground truth and the
reconstructed testing sets, whereas the Reconstructed CNN
exhibits higher accuracy. There is an increase in accuracy of
24% when using the Reconstructed CNN on the ground truth
testing set and a 32% increase on the reconstructed testing set.
In Table II, we see that the Reconstructed CNN outperforms
Corrupted CNN on both ground truth and reconstructed testing
sets with an increase in accuracy of 7% and 11% respectively.
Furthermore, the Mixture CNN yields a 4% improvement in
accuracy compared to the Corrupted CNN when tested against
the ground truth. The Reconstructed CNN still outperforms
the Mixture CNN by 3%. Unsurprisingly, training data with
lower levels of corruption show less difference between the
Corrupted and Reconstructed CNNs. Table III shows that the
Reconstructed CNN is more accurate than the Corrupted CNN
on both ground truth and reconstructed testing sets with an
increase in accuracy of 16% and 25% respectively.

IV. DISCUSSION

In this work, we demonstrate that CNNs trained on cor-
rupted images consistently exhibit low accuracy when classi-
fying ground truth and reconstructed images. This observation
suggests that CNNs struggle to learn the inherent features
present in uncorrupted images from corrupted training sets.
On the other hand, CNNs trained on images reconstructed
using the TNN-ADMM algorithm consistently show higher
accuracy for both ground truth and reconstructed testing sets.
This finding indicates that the TNN-ADMM algorithm can
effectively restore essential features that are representative of
the ground truth dataset.

In the case of images with very simple features, such as the
MNIST handwritten digits dataset, no significant degradation
in accuracy was observed for CNNs trained on corrupted
images and tested on uncorrupted images. One possible ex-
planation is that noise and decimation-induced corruption may
not considerably affect the boundaries between different colors
in these cases. Consequently, the CNNs are still capable
of distinguishing between various boundaries and making
correct predictions. Investigating the underlying reasons for
this behavior would be of great interest.

Furthermore, CNNs are widely applied in classification
problems involving tensors of higher dimensions, such as
seismic data tensors. The TNN-ADMM algorithm can be
readily extended to these higher dimensions and has proven
to be particularly effective and efficient in reconstructing low-
rank tensors. Many real-world data tensors are naturally of
higher dimension, are often corrupted, and are of low rank. It
would be worthwhile to explore the potential enhancement
in CNN accuracy that arises from employing higher order
tensors, reconstructed using the TNN-ADMM algorithm, as
training sets.

V. CONCLUSION

We demonstrate in this paper that TNN-ADMM is a viable
image reconstruction procedure that produces better-quality
training sets for CNNs in scenarios where high-quality datasets
are difficult to obtain. Furthermore, the proposed combination
of TNN-ADMM and CNNs offers an effective workflow to
deal with corrupted datasets in classification tasks.

ACKNOWLEDGMENTS

This research is partially supported by the sponsors of the
UT Dallas “3D+4D Seismic FWI” research consortium. YL is
partially supported by NSF CAREER DMS-1846690.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
and et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems, 2015.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2011.

[3] E. Candes and B. Recht. Exact matrix completion via convex optimiza-
tion. Communications of the ACM, 55(6):111–119, 2012.

[4] S. F. Dodge and L. J. Karam. Understanding how image quality affects
deep neural networks. CoRR, abs/1604.04004, 2016.

[5] G. Ely, S. Aeron, N. Hao, and M. E. Kilmer. 5d seismic data completion
and denoising using a novel class of tensor decompositions. Geophysics,
80(4):V83–V95, 2015.

[6] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages
249–256. JMLR Workshop and Conference Proceedings, 2010.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[8] G. James, D. Witten, T. Hastie, R. Tibshirani, et al. An introduction to
statistical learning, volume 112. Springer, 2013.

[9] M. E. Kilmer and C. D. Martin. Factorization strategies for third-order
tensors. Linear Algebra and its Applications, 435(3):641–658, 2011.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
2017.

[11] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[12] A. Lydia and S. Francis. Adagrad—an optimizer for stochastic gradient
descent. Int. J. Inf. Comput. Sci, 6(5):566–568, 2019.

[13] J. Popa, Y. Lou, and S. E. Minkoff. Low-rank tensor data reconstruction
and denoising via admm: Algorithm and convergence analysis. J. Sci.
Comput., 97(2):49, 2023.

[14] J. Popa, S. E. Minkoff, and Y. Lou. Improving seismic data completion
via low-rank tensor optimization. In SEG International Exposition and
Annual Meeting, page D041S075R003, 2020.

[15] J. Popa, S. E. Minkoff, and Y. Lou. An improved seismic data
completion algorithm using low-rank tensor optimization: Cost reduction
and optimal data orientation. Geophysics, 86(3):V219–V232, 2021.

[16] J. Popa, S. E. Minkoff, and Y. Lou. Tensor-based reconstruction applied
to regularized time-lapse data. Geophys. J. Int., 231(1):638–649, 2022.

72

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on May 04,2024 at 02:21:09 UTC from IEEE Xplore. Restrictions apply.

