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ABSTRACT

In this article, we propose an active metric learning method for clustering with pairwise constraints. The
proposed method actively queries the label of informative instance pairs, while estimating underlying
metrics by incorporating unlabeled instance pairs, which leads to a more accurate and efficient clustering
process. In particular, we augment the queried constraints by generating more pairwise labels to provide
additional information in learning a metric to enhance clustering performance. Furthermore, we increase
the robustness of metric learning by updating the learned metric sequentially and penalizing the irrelevant
features adaptively. In addition, we propose a novel active query strategy that evaluates the information
gain of instance pairs more accurately by incorporating the neighborhood structure, which improves
clustering efficiency without extra labeling cost. In theory, we provide a tighter error bound of the proposed
metric learning method using augmented queries compared with methods using existing constraints only.
Furthermore, we also investigate the improvement using the active query strategy instead of random
selection. Numerical studies on simulation settings and real datasets indicate that the proposed method is
especially advantageous when the signal-to-noise ratio between significant features and irrelevant features
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is low.

1. Introduction

In recent years, active learning has become a popular subfield
of machine learning due to the fact that the performance
of any supervised learning system fundamentally relies on
labeled instances which are difficult or expensive to obtain in
many applications. For example, the rise of electronic medical
records introduces huge amounts of medical data which could
be overwhelming and infeasible to examine for the entire
populations. In practice, it is desirable to train diagnostic criteria
through computing algorithms and preprocess a subset of
data to reduce workloads for doctors. In addition, although
the original medical record data are high-dimensional, it is
important to capture essential medical information through
low-dimension summary features. To achieve these goals,
instead of formulating the problem as traditional supervised
learning which requires training a model on a large dataset
labeled by experts, we propose to adjust machine-generated
criteria actively through feedback from experts to reduce costs
and accelerate the training process.

The idea of incorporating the experts domain knowledge
or the user’s feedback has been pursued in the previous clus-
tering methods, e.g., Wagstaft et al. (2001), Basu, Banerjee, and
Mooney (2004), Basu et al. (2006), Davidson, Wagstaft, and Basu
(2006), Lu (2007), and Liu et al. (2017). Specifically, a user can
specify that two instances must either belong to the same cluster
or two different clusters. Then, the clustering procedure selects

the optimal label assignment by penalizing the assignments
that violate these pairwise constraints. Alternatively, instead of
directly clustering the instances in the original feature space,
metric learning approaches, for example, Xing et al. (2003), Niu
et al. (2011), Yang, Jin, and Sukthankar (2012), and Hoi, Liu,
and Chang (2010) sought a specific distance metric trained from
the constraints. The essential goal of distance metric learning
is to identify an appropriate distance metric that encourages
“similar” objects to be close together while separating “dissimi-
lar” objects, which improves the performance of the subsequent
clustering process.

However, the aforementioned metric learning process could
be inefficient and unstable since randomly chosen constraints
may provide little information about the group structure in the
latent space, especially when the sample size is small. Several
active learning solutions have been proposed to solve these
problems. For example, Basu, Banerjee, and Mooney (2004) pro-
posed a explore-consolidate framework which seeks the skeleton
points that are dissimilar to each other first and then use similar
pairs to refine the boundary of the clusters. This method is then
generalized by Mallapragada, Jin, and Jain (2008) in selecting
the most informative pairs in the consolidate phase. Grira, Cru-
cianu, and Boujemaa (2005) proposed active fuzzy constrained
clustering, which sequentially queries and collects the labels for
instances under boundary of clusters. Alternatively, Huang and
Mitchell (2006), Xiong, Azimi, and Fern (2013), and Biswas
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and Jacobs (2014) proposed different models to quantify the
uncertainty of the unlabeled pairs. Other methods include Mai
et al. (2013) using neighborhood information in density-based
clustering, Greene and Cunningham (2007) building an ensem-
ble framework for unlabeled pair selection, and Van Craenen-
donck, Dumancic, and Blockeel (2018a) using the propagation
of similarity relations.

However, approaches exploring active clustering methods
which incorporate metric learning simultaneously are still lim-
ited. To learn the latent metric from pairwise constraints, Yang,
Jin, and Sukthankar (2012) proposed an active Bayesian metric
learning that defines a Mahalanobis distance between instances
and actively queries using entropy based criteria; Xiong, Azimi,
and Fern (2013) proposed an instance-level uncertainty-based
active query strategy combining metric pairwise constrained
Kmeans (MPCKmeans Bilenko, Basu, and Mooney 2004). The
main drawback of their methods is that they do not utilize the
unlabeled instance pairs in learning the metric. Although the
number of pairwise constraints provided by the user is limited,
the relationships between the unlabeled instances can still be
inferred based on the clustering structure, which could sup-
ply additional information and therefore improve the learning
efficiency. Another limitation on the existing active clustering
methods is that they do not utilize a dimension reduction strat-
egy for raw data during human-machine interaction. However,
identifying and selecting significant features which are con-
sistent with a user’s clustering principles are very important
for enhancing the similarity within a cluster, and to achieve
a more robust and consistent clustering outcome. In addition,
dimension reduction also leads to more interpretable clustering
criteria from experts. Furthermore, existing models are typically
retrained each time the new constraints are added, while the
history of training results is ignored. This results in a loss
of information which could be utilized to improve clustering
performance.

In this article, we propose a new active clustering method
with query augmentation and metric aggregation. The novelty
of the proposed method is that we incorporate both pairwise
constraints from the user’s feedback, and the implicit constraints
inferred based on the clustering structure to learn the metric.
We also integrate the unlabeled instance pairs into the metric
learning process through augmented constraints weighted by
uncertainty measurement, which leads to more efficient recov-
ery of the underlying feature space. Another novelty is that
we pursue dimension reduction by penalizing the irrelevant
features adaptively, based on the history of metric learning
results in the sequential querying process. Thus, we obtain more
precise and robust clustering results consistent with the user’s
feedback. In addition, we propose a new instance query strategy
based on the expected entropy change. Compared with existing
active learning methods, we can incorporate the neighborhood
structure and transitivity of the constraints through uncertainty
measurement, which provides a more accurate evaluation of
the potential effect from the queried constraints on the cluster
structure. Theoretical and numerical results confirm that the
proposed method improves clustering accuracy without adding
labeling cost.

The article is organized as follows. Section 2 introduces
notations and background for metric learning and active semi-
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supervised clustering. Section 3 presents a new active met-
ric learning framework and the metric aggregation method.
Section 4 introduces algorithms to implement the proposed
method. Section 5 establishes the theoretical properties. Sec-
tion 6 provides the simulation results of the proposed active
learning. Section 7 illustrates the application of the proposed
method for three real datasets. The last section provides con-
cluding remarks and discussion.

2. Background and Formulation

Given n data points in a p-dimensional feature space, that is,
x; € RP,i = 1,..,n, we assume each x; is sampled from one of
the K clusters, and denote the cluster membership vector as I =
(£1,...,4n), where £; € {1,...,K}. To ensure the identifiability
of the cluster labels, for any two cluster membership vectors
1D and 19 we define IV = 1P if there exists a permutation
map I' of {1,...,K} such that E;l) = F(Zgz)), i=1,..,n Let
the sample space of I be 2, and then the cardinality || equals
the total number of ways to partition a set of # objects into K
non-empty subsets up to label-switching. We also denote the
similarity matrix as Y € R"*", where y;; = 1 if x; and x; are
in the same cluster, and 0 otherwise. Since there is a one-to-one
map between Y and £ determined by y;; = 1(¢; = ¢;), the goal
of clustering can be defined as the estimation of either Y or L
In unsupervised clustering, no elements of Y are known before-
hand, while in semi-supervised clustering, a part of the elements
of Y are queried from users as pairwise constraints. These pair-
wise constraints are referred to as “similar” and “dissimilar” pairs
whose index sets are denoted as S = {(i,)|y;; = 1, observed}
and D = {(i,j)ly; = O0,observed}, respectively, while the
unlabeled set is denoted as & = {(i,j) | (i,j) ¢ SUD}. The
pairwise constraints have the following transitivity property:

Property I (Transitivity). For different indexes i, , k, if (,j) € S
and (i, k) € S, then (j,k) € S.If (i,§) € S and (i, k) € D, then
(G, k) € D.

The transitivity property allows us to generate more con-
straints within one query, which is essential in improving the
efficiency of a query strategy.

Formally, the semi-supervised clustering method aims to
maximize the posterior distribution over the cluster member-
ships 1, where the queried pairwise labels provide additional
information through the prior distribution. Equivalently, we
maximize the posterior distribution p (I|x) o f(x|l)7 (I), where
f(x]D) is the likelihood function, and 7 () is the prior distribu-
tion.

We start with a mixture-Gaussian model such that

1 n
fxID) oc exp (—5 D lxi— ve,.ni) ,
i=1

where vy is the centroid of the kth cluster, |x,~ - xj”i =

(xi - xj)TA (x,' - xj), and A is the precision matrix. In
addition, a low-rank matrix A indicates that the likelihood
of the cluster structure can be captured in a linear subspace
R” € RP, r < p. By correctly estimating A, we are able to
identify the relevant feature space and improve the clustering
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performance. In other works, e.g., Xing et al. (2003) and Xiong,
Azimi, and Fern (2013), A is also called the metric matrix
which measures the distance between x; and x; in the linear
subspace R. Since only limited pairwise constraints are known,
one common principle in learning A is through the distance
|| Xi— X | N which is small if x; and x; belong to the same cluster,
and large if they are from different clusters. Following this
principle, one particular metric learning method (Xing et al.
2003) of A is via

S DI RN S MR

(if)es (ij)eD

and A>0, (1)

where A > 0 denotes that A is positive semi-definite. The above
training process (1) minimizes the distances between similar
pairs while separating dissimilar pairs to avoid trivial solutions
with all zeros.

In addition, the prior distribution 7 (I) penalizes the proba-
bility of cluster label assignments that violate the queried pair-
wise constraints. Following Basu, Banerjee, and Mooney (2004),
we let

() o exp —ZV,-]- €,S,D) ], (2)
ij
where
1 #¢) G,)) €S,
Vij (1,S§,D)={1¢; = ZJ-) (1,j) € D,
0 otherwise.

A key question in semi-supervised clustering is how to obtain
the most informative prior 7 (I) given a limited number of
queries. To this end, we adopt an active learning scheme to
update the query criterion sequentially (Xiong, Azimi, and Fern
2013; Basu, Banerjee, and Mooney 2004; Van Craenendonck,
Dumancic, and Blockeel 2018a).

3. Methodology

In this section, we introduce an efficient metric learning method
with augmented pairwise constraints, and design an active
query strategy based on a new uncertainty criterion.

3.1. Metric Learning With Augmented Pairwise
Constraints

We start with improving metric learning by augmenting limited
numbers of pairwise constraints. One common problem of (1)
and existing metric learning methods (Wagstaft et al. 2001;
Grira, Crucianu, and Boujemaa 2005; Lu 2007) is that only
the violations on queried pairwise constraints are penalized.
However, these queried constraints also provide additional prior
information on other unlabeled neighborhood pairwise rela-
tions implicitly through the underlying cluster structure. To
solve this problem, we generalize the queried pairwise con-
straints S U D to all y;’s by inferring the labels of unlabeled
instance pairs, and train the metric matrix A with both the

queried pairwise constraints and the inferred pairwise con-
straints.

Specifically, we solve for a fuzzy membership matrix H €
R” xK by

H= argming; Z ij — hiThj)2

(i) eSUD
n K
+kzzmin(|hik|,lhik— 1)), 3)
i=1 k=1
K
st. h;j >0, Zhik =1, forall i,
k=1

where hl-T is the ith row of H. In contrast to the discrete labels
i, hj is continuous on [0, 1] and represents the probability
that the ith sample belongs to the kth cluster. The penalty term
min (|h|, |hix — 1]) is a multi-directional separation penalty
(MDSP) (Tang, Xue, and Qu 2020), which penalizes h;; to either
0 or 1 depending on the magnitude of h;;. The purpose of
adding the MDSP penalty is to prevent strong signals from being
pulled toward zero in the process of shrinking weak signals
for sparsity pursuit, and thus to reduce the uncertainty on the
cluster membership of each instance. In addition, we only infer
h; if at least one element of {y;.}’s is observed; otherwise we
let all the elements of h; be 1/K. Note that the augmenting
process (3) uses only the queried constraint information without
involving the distance between data points since the distance
metric is inaccurate during training, which may lead to biased
membership inference.

Next, we use H to introduce additional pairwise constraints

AT~
through the concordance h; h;. The idea is that x; and x; tend to
be similar if h; h; is close to 1, and dissimilar if h; h; is close to
=T =T
0. Considering the completely random case when h; = h; =

(1/K,...,1/K) and /h\l—r/h\] = 1/K, we choose 1/K as a threshold
for the effective concordance between x; and xj, and define the

augmented constraints as S = {G,)) |71T’h\] > 1/K} and D =
{G.)) |/h\;r71\] < 1/K}. Then we train the metric matrix through

1
. A 2
rrgn Loss(A) = E E ll2c; — x4

(ij)eS
1
+ 5] Z willxi — %1%,
(if)eS
) (4)
st — > llxi—xjlla
DI 5
i,j)eD

1
+ B Z wijllxi — xjlla =1, A>=0,
(ij)eD

where |-| denotes the set cardinality, and w;; = % max{h; hj—

%, 0}—K min{ﬁ?i!\j — %, 0}. Compared with (1), we involve the
augmented similar constraints S and the dissimilar constraints
D in both Loss(A) and the constraint in (4), and we normalize
each term by set cardinality to avoid inconsistent scales caused



by imbalanced numbers of similar and dissimilar pairs. In addi-
tion, we use w;; € [0, 1] to quantify the certainty of the inference
by imposing less weight on the augmented constraints that are
similar to random guess, while imposing a large weight on the
constraints queried from users and the inferred constraints if
their concordance equals 0 or 1. In this way, we are able to fully
utilize the information from the total of n(n — 1) /2 pairs to learn
the metric matrix, instead of |S| + |D]| as in the conventional
metric learning methods.

3.2. Active Query With Minimum Expected Entropy

In this subsection, we introduce a new active query strategy.
Instead of randomly selecting a single pair, we propose to select
the most important instance whose neighborhood membership
affects the expected posterior distribution of the cluster label
assignment I significantly. This procedure increases the query
efficiency by generating more pairwise constraints within a
single query due to the transitivity property.

Formally, we define a neighborhood as a subset of instances
which belong to the same cluster based on the queried con-
straints. We start with one neighborhood which contains a
single instance, and sequentially identify the memberships of
the instances outside the existing neighborhoods by querying
their similarity with the instances within the neighborhoods.
Therefore, any pairs within the same neighborhood are similar
while any pairs across different neighborhoods are dissimilar.
We define the budget as the maximum number of queries, which
is denoted by B. Meanwhile, we define each step as the process to
determine the neighborhood membership of a new instance x*
outside the neighborhoods, denoted ast = 1, ..., T. Accordingly,
we denote the number of queries consumed at the tth step as b,
then 1 < b' < K — 1. Note that b’ increases when a query
occurs, and the entire active clustering stops only when the
budget is exhausted, that is, ZtT b' = B. We also denote the mth
neighborhood at the tth step as N}, then for any x;,x; € N,
we have (i,j) € S*, and for any x; € N}, xj € N ,,m # m', we
have (i, j) € D', where S’ and D' denote the set of similar pairs
and dissimilar pairs at the tth step, respectively.

Moreover, we denote the union of the neighborhoods at the
tth step as N¥ = Ny U --- U Npt, where L' < K is the total
number of neighborhoods; then for the next step, we select x; &
N to determine its neighborhood membership by querying its
relationship with x; € Nj,j = 1,..., Nyt sequentially until
a similar pair is found. If x; does not belong to any of the
neighborhoods, then we formulate a new neighborhood as {x;}
and update A/ with N* U {x;} and L with L' + 1. Note this
query procedure costs at most K queries, but can generate |\ d
pairwise constraints due to transitivity. In addition, since |\
increases as t grows, we are able to acquire more constraints with
the same cost as the query procedure continues.

Next, we introduce an uncertainty measurement to query
an instance outside A/". We denote the underlying posterior
as px(I|x) o< f(x|D)m(l), where m,(I) denotes the prior with
the labels of all data pairs; and the posterior of the tth step as
p'(lx) o f(x|Dx'(), where 7'(l) involves S' and D' only.
Under this framework, the discrepancy between p'*!(I|x) and
px(I|x) relies on 7w!T1(I), which is determined by the query
strategy.
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We propose to select x; ¢ N whose neighborhood mem-
bership is expected to make the posterior distribution closest
to the underlying truth via minimizing the Kullback-Leibler
divergence (KL-divergence):

xf = argmian*(l | x)log <M>

xi¢/\/‘l 1€Q 101+(l | x)

— i +

= argmin — ) p.(I| ®)log p;" (1| ), (5)
xigN'! leQ

where ,oi+ (I|x) denotes the posterior distribution after determin-
ing the neighborhood membership of x;. However, since both p,
and the true membership of x; are unobserved, we cannot solve
(5) directly. Instead, we consider the following approximation:

Lt
X = argmin,, g\t — Z P'(t; = m)
m=1

X Z ;b (lx)log p;t (Ilx), (6)
leQ

where ,o;rn(l|x) denotes the posterior distribution assuming
Xi € Ny, The active query strategy (6) can be interpreted as
a minimization of the expected entropy of the posterior distri-
bution when new constraints are added, which is equivalent
to selecting the instance whose neighborhood membership
is the most uncertain based on the information at the tth
step. The neighborhood structure is shown to be effective
in the normalized point-based uncertainty (NPU) (Xiong,
Azimi, and Fern 2013). However, the NPU considers the
uncertainty decrease only based on the queried instance, while
the proposed method (6) measures the uncertainty decrease
over the entire dataset. Therefore, the proposed criterion
estimates the information gain from the new query holistically
and globally, and thus is able to select more informative
instances.

3.3. Metric Aggregation Through Adaptive Penalty

Most of the existing active clustering methods do not incor-
porate the history of training results in the final model. How-
ever, the metric learned during the previous steps may provide
additional information for identifying the significant features
related to the user-specified clustering principles, and therefore
could be utilized to improve the efficiency of learning low-
dimensional feature space.

We propose to aggregate the metric matrices learned in each
step to extract the underlying significant features by imposing
an adaptive penalty on (4), and capture a clustering-oriented
subspace. Note that imposing a penalty on all features simul-
taneously makes a limited impact on the clustering result, since
clustering is invariant to the scale of the elements in the metric
matrix. Instead, we impose a selective penalty on a subset of
features to increase the relative weights of the significant features
over the irrelevant ones.

We denote the minimizer of (4) at the tth step as A’. To deter-
mine which features are important for clustering, we aggregate
the training results of the previous T — 1 steps by imposing a
penalty adaptively based on the eigenvalues of A’. In general,
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the features with smaller eigenvalues on average are less relevant
in clustering and thus should have smaller weights. We let r' =

(rs...,7p), t = 1,.., T—1betherank statistics of p eigenvalues
from A’ in the ascending order, and ¥ = 15 >"["\' #* be the

average rank. To shrink the weights on irrelevant features we
penalize the top g features with the smallest entries in 7, where
q is the number of penalized features. We denote the index set
of the penalized features at the Tth step as G, |G| = g . Then
for the Tth step, we train the metric matrix by adding a selective
penalty on A through

A= argmin, Loss(A) +y Z or(A),
kegT

1
o 2 x5l )

(i,)eDT

1
+o Y il — il =1, A0,
|DT| ; il ]

where y is a tuning parameters and o (A) denotes the kth eigen-
value of A. The reason we use the rank statistic in determining G
instead of using the eigenvalue directly is that the rank statistic
is robust to outliers from the distribution of eigenvalues due
to randomness, which lowers the risk of incorrectly penalizing
significant features. In particular, when the metric matrix is
diagonal, the proposed selective penalizing procedure is equiv-
alent to adding an L; penalty to a subset of the diagonal entries
of A. Different from the commonly used nuclear norm penalty
which penalizes all eigenvalues of A, the selective penalty in
(7) only penalizes the eigenvalues in GT to prevent the signal
features from being penalized; as the Lasso-type penalty tends
to shrink all nonzero values as well, and that may lead to biased
estimation of metric A.

After acquiring A through (7), we solve for the cluster mem-
bership by performing pairwise constrained Kmeans (PCK-
means) (Basu, Banerjee, and Mooney 2004) on the learned
linear subspace via

n
I=argmin; » [xi—vel5+ > 1 #¢)

i=1 (i,)eST

+ Y 1i=¢, ®)

(i)eDT

where v = Y1 x;1(¢; = k)/>_1_, 1(¢; = k) is the centroid
of the kth cluster. Here, we shrink the search space of the
membership I by penalizing the cases where the label assign-
ments violate the queried pairwise constraints. Different from
the original PCKmeans, we compute the distances between the
samples and cluster centers with the learned metric A so that
irrelevant features are excluded.

4. Algorithm and Implementation

In this section, we introduce an algorithm to solve the query
augmentation problem in (3), the metric learning with selective
penalty in (7), and the active query strategy in (6).

We adopt the alternating direction method of multipliers
(ADMM) method to solve (3), and decompose the optimization
problem (3) into several subproblems that can be solved more
easily. The details of ADMM are provided in the supplementary
material.

Next, we implement the active query strategy (6) with the
neighborhood structure. Notice that computation of the exact
expected entropy in (6) requires the enumeration of all pos-
sible membership assignments over €2, which is computation-
ally infeasible. Alternatively, we propose to approximate the
expected entropy by taking the summation of the expected
entropy for each unlabeled pairs, which contains at most [I/| <
n(n — 1)/2 terms. Furthermore, instead of considering the pos-
terior distribution of each pair directly, we estimate the posterior
distribution based on the neighborhood membership of each
data point to simplify computation.

Mathematically, we let R' € R™L' be the neighborhood
membership matrix, where r{, = P(x; € N!,). We also denote
the probability that x; and x; belong to the same neighborhoods
pr Then we approximate the entropy in (6) by

QRY=— > {pfj log pf; + (1 — pf) log(1 —pfj)} ,
(peu

where R' is implicitly included in each pj; and is omitted in
the expression for notation simplicity. The expected entropy by
identifying the neighborhood membership of x; is then

Lt
u'(x) = Y rh, QR ©)
m=1

where ﬁt_‘tlm e R is defined elementwise by

g ifk#i

=14 0, itk=iandj # m,
1, ifk=iandj=m.

F+1

That is, Rt+ denotes the neighborhood membership matrix
assuming that x; belongs to the mth neighborhood, and

u'(x;) estimates the expected entropy after obtaining the
neighborhood membership of x;. We then select x* =
argmin, g ut (x;).

We estimate r;,, and pf; by a random forest trained on the
clustering result with the learned metric matrix at the tth step.
Specifically, pfj is estimated by the number of times when x;
and x; are assigned to the same leaf of the tree divided by
the total number of trees in the random forest, and 7}, =
YNy, P}j/IN},|. The random forest is computationally effi-
cient without assuming the explicit form of f(x|l), making the
model more flexible for general cluster structures. The random
forest has been applied successfully in previous studies (Shi and
Horvath 2006; Xiong, Azimi, and Fern 2013) for unsupervised
clustering tasks, especially for quantifying the uncertainty of
memberships.

Meanwhile, for the selective penalty optimization (7), we first
consider the diagonal case. Denote the diagonal entries of A as a,
then the selective penalty is equivalent to penalizing a subgroup



of entries in a directly. We consider the equivalent form of (7)
such that the constraint is linear regarding a

1
AT
a  — ar max E
s DT
(z,j)EDT

|DT| Z Wij Z am (Xim — x]m)2
Z Z am (Xim — x]m)

(zj)eSTm 1

|ST| Z Z szam(xlm x]m)

ij m=1

+vy :E: ap=L a

peg”

P
Z am (Xim — xjm)2

m=1

> 0. (10)

The above function can be maximized using the projected gra-
dient descent method.

For the nondiagonal case, we separate the optimization pro-
cedure into two steps. We first seek the best subspace in which
data can be clustered more efficiently, and then aggregate the
feature weights within the subspace. Mathematically, denote the
spectral decomposition of the trained metric at the fth step as
Al = P'AY(PY T, where A is diagonal, and P! is orthogonal. We
select the metric matrix with the largest eigengap from {A’}L,,
and denoteitas A* = P* A*(P*) T, where the eigengap is defined
as the maximum ratio of two adjacent eigenvalues. Next, we
project each A onto P* via an orthogonal matrix V* such that
P! = P*V', and thus A* = P*V!A'V{(P*)T. Intuitively, this
step decomposes the features of P'x to features in P*x. We let
Wt = VIAY(VYHT, and denote the diagonal matrix with the
same diagonal entries of W' as D'. Then, we train the diagonal
metric D from {D'}L, via the aggregation procedure for the
diagonal case through (10). Finally, we compute A=rDPHT
as our final learned metric matrix.

We remark that although W' is not necessarily diagonal, D
is still able to capture the main signals of W'. To see this, notice
that the features of P*x which are irrelevant to clustering would
have small diagonal entries in W', and their interaction terms
with other features, that is, the off-diagonal entries of W', should
be close to zero as well. More importantly, the diagonality of { D'}
ensures that the order of weights learned at different steps are
consistent to features in P*x so that they can be aggregated in
the end. The complete algorithm is summarized in Algorithm 1.

The total computational complexity of Algorithm 1 is
O{T(nynlog n+n2K+€lan3+ép3)+npKtpck},where ny is the
number of trees in the random forest used during active query;
€ is the predetermined error bound for constraint augmentation
and metric learning; and t,4 is the iteration number of
PCKmeans. Specifically, for a single query step, the active query
selection costs O (nynlogn + n*K), where nnlogn is the
complexity of training a random forest Breiman (2003) and n2K
is the complexity to compute the information criterion u'(x;).

In addition, the query augmentation costs O (eian3 ), and the

metric learning procedure requires O(%pz) and O(ép3) for
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Algorithm 1 Query-augmented active clustering with metric
aggregation

Input: Data {x;}, budget B, number of clusters K.

Output: Cluster label 1.

Initialization: Single neighborhood N' = {N1},N; = {x1},
where x; is randomly selected. Let G° =S =D = 2, A" = I,
andT=t=1.

1. (Active metric learning) While Zthl b < B, repeat:

(a) (Active query) Train a random forest to estimate the
neighborhood membership matrix R’. Select the most
informative instance x* to minimize (9). Sort {Nf Vs in
descending order of p(x* € Nit). Letb! =0,and T = ¢.

(b) Query x* against an instance x; € N!, update S or D
according to the feedback, b’ < b' + 1.

(c) Repeat step (b) for the rest of the neighborhoods until a
similar link between x* and x; is provided by the user or

thl b' = B.Let N! < N! U {x*}. If no similar link is
found, treat x* as a new neighborhood. Let N* <« {x*}
and Nt < N*' U {N*}.

(d) (Metric update) Augment the pairwise constraints by
solving (3) using the ADMM algorithm. Train metric A’
with the augmented queries by (4). Let t < ¢ + 1.

2. (Metric aggregation) Compute G based on {A’}L_ |, solve for
A with selective penalty (7).

3. (Semi-supervised clustering) Cluster the instances with PCK-
means (8) based on the learned metric A and the acquired
pairwise constraints S and D.

the diagonal and the non-diagonal A, respectively. Finally, the
PCKmeans costs npKtp. Empirically, training a random forest
with 50 trees takes 0.05 sec and one loop in the simulation study
with p = 35,n = 300 and K = 5 costs 8 sec on an Intel 4-Core
i7-8650U CPU at 1.90GHz.

In the following, we provide a brief discussion on the selec-
tion of tuning parameters in Algorithm 1, that is, A in constraint
augmentation (3), and y and g in the selective penalty (7). In
practice, we select A by a 5-fold cross-validation based on the
labeled pairwise constraints with a grid search on [0, 1] after
each loop of step (1) in Algorithm 1. On the other hand, we
select y by maximizing the Calinski-Harabasz index (Calinski
and Harabasz 1974), which evaluates the clustering results by the
ratio of the between-cluster variance and the within-cluster vari-
ance obtained from the PCKmeans. Different from A, we tune y
only at Step 2 of Algorithm 1. Finally, g can be selected based
on the unpenalized metric learning from Step 1 in Algorithm 1.
Specifically, q is selected by the elbow point corresponding to the
average eigenvalues of the metric matrices {A’}L |, which can be
trained without penalty. More details of the parameter tuning
for our numerical studies can be found in the supplementary
materials.

5. Theory

In this section, we introduce theoretical results for the pro-
posed active clustering method. We first show the advantage of
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incorporating the augmented pairwise constraints in the metric
learning step, and next demonstrate the improvement of the
active query strategy over the passive learning approach by
comparing the proposed method with random selection as well
as a simple two-step query strategy.

We formulate the metric learning into the semi-supervised
learning framework which consists of (x;, x;) as pairs of data,
and y;i’s as labels. Our goal is to learn a binary classifier param-
eterized by the metric matrix A trained by the pairwise con-
straints as labeled data. The number of queries required to
achieve a certain prediction accuracy without considering the
unlabeled data can be derived by the VC dimension (Devroye,
Gyorfi, and Lugosi 2013). The VC dimension of a function
space C is the maximum number of arbitrarily labeled points
that can be classified correctly by the functions in C. However,
utilizing the underlying clustering data structure provides addi-
tional implicit constraints and reduces the searching space of
the target classifier, which requires fewer queries and therefore
accelerates the training process. This is achieved by imposing a
penalty on the incompatibility of unlabeled pairs with the metric
through the augmented labels S and D in (4). The proposed
method is able to minimize both the classification error and the
incompatibility simultaneously.

Specifically, the loss function in (1) can be written as

1

D 2 i =00~ % —xlla)

ijeSUD
+ Ly = (llx — %15 — D,

and is a surrogate function to

eha) = —=—— > @yj— Dhalx:x)),
IS1+ 1D i,jeSUD
where ha(x;,xj)) = sign({||lx; — xj||124 — 1}). We denote the

joint distribution of (x;,x;) as F, then ‘e(hy) is the empiri-
cal estimator of the error rate for the labeled data e(hy) =
P(xi,xj)wp(hA(xi,xj) # 2y; — 1). In addition, we define the
incompatibility between hy and F as

(11)

where yx (ha, xi, %) = P(¢; = €))||xi — x5 — P(¢; # €))||xi —
%jll 4. Intuitively, e, measures the average proximity among data
pairs weighted by the probability of being from the same cluster
under the metric A, and e, is small if the metric captures the
important features. The empirical estimator of e, is

eu(ha) = E(x;x)~F X (ha, xi, x)),

?u (hA) =

2 AT~ 2
pros— ;wijﬂ{hi h; — 1/K > 0}l|x;i — xjlI3

ATA
—W,'j]l{hi hj —1/K < 0}||x; — %l 4

where wj; and h; are defined as in (3). Then the proposed
augmented metric learning (4) is equivalent to minimizing both
e(hy) ande,(hy) at the same time.

Furthermore, we denote the function space of hy as C =
{ha : A € RP*P and A is semidefinite}. To quantify the com-
plexity of C regarding the binary classification task for data
sampled from F, we can draw a sample of size n independently

from F and classify it with the functions in C. The expected
number of label assignments that can be correctly classified is
denoted as Sg (n). Note that SIC; (n) is a distribution-dependent
complexity measure of C. In general, a larger S¢(n) implies a
larger function space C. In addition, we let C, (t) = {ha € C :
ey(ha) < t} be the function space whose incompatibility with F
asdefined in (11) is bounded by 7, where 7 is a positive constant.
In the following theorem, we show the classification accuracy
achieved by the proposed query-augmented metric learning
method given the increasing number of pairwise constraints.

Theorem 1. Given any €,s,T > 0, and the number of pairwise
constraints n; = |S| 4+ |D|, assume that

nn—1) p+1 1 1 2
T—m:@( 2 10g2+6—210g§>,

where p is the dimension of A and

1
8= Sng(Hze)(an) exp <_E€nl> )

Then forall hy € C withe(hy) < sande,(ha) < T+ ¢, we have
P(e(hy) <s+¢€)>1-3.

Since C, (T + 2¢) is a subset of C, we have

+1
Cy (t+2€) C 2en; \F
St 2np) < §(2m) < , 12
F ( l)_F( l)_(p+1) ( )

if 2n; > p + 1. Therefore, § converges to 0 as n; increases
to infinity, indicating that the classification accuracy using the
learned metric converges to the optimal accuracy of hy € C
with a probability approaching 1. The second inequality in (12)
is derived from the relation between the growth function and the
VC dimension (Vapnik 2013), where the growth function is the
supremum of Sg (n) among all F’s and the VC dimension equals
p+1inour case. In addition, note that by using the labeled data
only, the convergence rate is

8o = 48% (2n;) exp (—éenl> .

Thus, we have § < & if ng(rﬂé) 2n) < %Sg (2n;), which
can be satisfied if the label of at least one pair from U can
be augmented correctly. With this additional condition, we are
able to achieve a faster convergence rate by incorporating the
unlabeled pairs with the augmented information. R

We remark that Theorem 1 can be generalized when h is a
local minimum of (3) instead of the global minimum. In fact, h;
is only involved in the empirical incompatibility’e\y\ (ha), which
needs to satisfy'éu (ha) < T + €. We only require h; to be close
enough to the global optimizer of (3) such that the difference
betweene, (h,) and its global minimum is of order O (7). On the
other hand, the optimization accuracy affects the search space

size of the metric matrix A through ng (THE)(an), which is
smaller when t decreases. Under the condition that T = O(¢)
as the number of labeled pairs increases, that is, n; — 00, the tail
probability bound of mislabeling P(e(h4) > €) would still be of
the same order as the one when we obtain the global minimum.
In practice, several numerical approaches can be implemented

to find possible global minima or good local minima of (3),



such as the branch-and-bound technique (Land and Doig 2010;
Clausen 1999) or using multiple random start points.

Next, we show an improvement on using the proposed active
query strategy compared with random selection. In the follow-
ing, we denote the posteriors of the membership assignment
from the random query and active query after acquiring the
membership of one extra instance at the tth step as p/, , and
Pl iver Tespectively, and denote the underlying distribution p,
as in Section 3.2. We denote the size of the clusters as & =
(a1, ..,0k), and the size of the neighborhoods at the tth step
as ' = (B},...,B,.). Note that & does not change with t and

Zf a; = n. Without loss of generality, we assume L' = K in
the following; that is, there is one and only one neighborhood
in each cluster, which can be achieved when T is sufficiently
large. We also denote the minimum of the distance between
underlying cluster centers as r; thatis, r = min;; [|u; — Rilla. We
formulate the constrained clustering process from a Bayesian
perspective, in that the constraints are added as a prior in the
form of (2).

Furthermore, we assume that x; follows a multivariate gener-
alized Gaussian distribution (Dytso et al. 2018) given the cluster
membership ¢;; that is,

] d
P(xi|l; = k) oc exp !— (;”xi - ILk||A) , , (13)

where d is a positive constant, p, is the center of the kth cluster
ando? = (’){Var(Xizwi =k)}.

The generalized Gaussian distribution assumption specifies a
unimodal cluster structure, which is common in the analyses of
probabilistic clustering models (Lu and Leen 2007; Marlin et al.
2012; Rodrigues and Engel 2014). Moreover, the generalized
Gaussian distribution includes a broad category of distributions,
for example, the Laplace distribution for d = 1 and the Gaussian
distribution for d = 2, as well as distributions with different
tail behaviors, such as, the super-Gaussian for d < 2 and
the sub-Gaussian for d > 2. In addition, asymmetric clusters
are also applicable if they can be transformed to a symmetric
distribution.

Theorem 2. Given the neighborhoods at the tth step V" and n >
IN|, under the generalized Gaussian distribution assumption
(13), we have

KL(p«| Ipéctive) < KL(ps«l |p1€and0m)’

with probability at least 1 — €, where

rnd
e=0p [nlogKexp{—n (;) }{E(ﬂt)—é(a)}:|, (14)

with

K
E(x) = in exp (—xi - xj)
4

Theorem 2 implies that the discrepancy between the underly-
ing true distribution and the updated posterior distribution is
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smaller based on the active query strategy than random selec-
tion with a probability close to 1. The tail probability € in (14)
depends on the sample size n, neighborhood size B’ and the
underlying cluster structure. In particular, € converges to 0 as n
increases ilef-)j B} exp (—,Bi[ = ,3;) < 1, which can be satisfied
1

when the sam?le size in each neighborhood is large enough
such that exp(2 min; g)/(min; g}) > w Furthermore, €
decreases exponentially with # in a convergence rate bounded by
min; ,Bf and max; ﬂf, since K*"(max; ,Bf)" exp(—2n max; ,Bit) <
£(B") < K*'(min;B})" exp(—2nmin; B}). When n is fixed,
€ can still converge to 0 if we add pairwise constraints and
decrease the value of £(B') — £(a). Notice that 8; < «; for
any i = 1,...,K, therefore, we have £(8") — £(a) > 0, and
£(B") — (@) = 0 when all pairs are queried. In addition, €
decreases if the clusters are more separable (i.e., (r/ o)%is larger).
Here (r/ o)? canbe interpreted as the signal-to-noise ratio in the
clustering task, where r measures the closeness among clusters,
while o and d measure the density of data points around the
cluster center.

To better illustrate the magnitude of the tail probability,
we consider the balanced cluster and balanced neighborhood
case

Corollary 1. Assume the conditions for Theorem 2 hold and
Bi=---=Bk=Ba =... =ag = «, then

KL(,O*H,Oécﬁve) =< KL(IO*“IOrtandom)’

with probability at least 1 — €, where

e=0, {nKZ” log K exp |:—n <£)d:|

o

[B" exp(—2Bn) — o exp(—2an)]} .

(15)

The probability (15) shows that € converges to 0 exponen-
tially as n grows if exp(28)/B8 > K2, which indicates that more
pairwise constraints are needed to ensure convergence when
there are more clusters. In addition, the convergence of € is faster
when B is larger. That is, as the number of queried constraints
increases, we are more confident that the proposed active query
strategy selects more important pairs than a passive strategy
would.

Theorem 2 compares the proposed method with the random
query in one single step. In the following theorem, we compare
the proposed method with a non-random selection strategy
after T queries.

We define a nonrandom selection strategy as follows. In Step
1, we perform the K-means clustering. In Step 2, we select the
top T most uncertain pairs to query based on the clustering
result in Step 1. That is, we select the T pairs with similarity
probability closest to 0.5. The above query method does not
involve a sequential query procedure and can be completed in
two steps. Therefore, we refer to this simple nonrandom selec-
tion method as the two-step strategy, and denote the posterior
distribution of the cluster label at the tth step using the two-
step strategy as pl(£]x), accordingly. The comparison between
the two-step strategy and the proposed strategy is established in
Theorem 3.
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Theorem 3. Under the generalized Gaussian distribution
assumption in (13), for K> < T < Kn, we have

_or
E{KL(p4l| pgerive) — KL(pxllpf)} < CLVT — CT(1 — e ¥2),
(16)
where C; = Ko/ /1, C; = e’(l/")d(K— D/K,and r =
ming; || p; — pjlla-

Here, we require that T < Kn to ensure that not all the
pairs have been labeled in the proposed method. Otherwise,
Prcive = P+ and E{KL(pxl|pseive) — KL(pxllp)} = —
E{KL(p:|lp4)} < 0.

Theorem 3 compares the Kullback-Leibler divergence of
the two methods after T queries, cumulatively. The result of
Theorem 3 implies that, with a sufficiently large budget T >
K2, we have E{KL(p«||pLve)} < E{KL(p«|lpL)}; that is, the
posterior distribution of the label I using the proposed active
query strategy is expected to be closer to p, than the two-
step method. Moreover, the upper bound in (16) indicates that
the discrepancy between the proposed method and the two-
step method increases as T grows. Meanwhile, this discrepancy
also depends on the variance o2, the cluster number K and the
minimum center distance r. The result in (16) demonstrates that
the gain of the proposed method is more significant with a larger
signal-to-noise ratio r/o and a smaller K.

We remark that the result in (16) can also be interpreted
as the discrepancy of the prior information gain from the
labeled data pairs between the two methods: the cumulative
information of the two-step grows in O(+/T), while the
cumulative information of the proposed method grows in
O(T). This is because the two-step method evaluates the
informativeness of pairs based on the initial clustering result
only, which might not be accurate or effective for the subsequent
query steps. Consequently, the information gain of each selected
pair may decrease quickly as querying proceeds. In contrast, the
proposed method updates the information criterion at each step,
and selects the pairs which benefit the posterior distribution at
the current step. This sequential updating strategy mitigates the
loss in information gain of queried pairs in the subsequent steps,
which also facilitates the accumulation of prior information
to increase in a linear order. Moreover, the proposed method
incorporates more labeled pairs than the two-step method
by utilizing the neighborhood structure and the transitivity
property, which further enhances cumulative information
gain.

The proofs of the theoretical results in this section are pro-
vided in the supplementary material.

6. Simulations

In this section, we illustrate the advantages of the proposed
metric learning method and the active query strategy through
simulation settings.

6.1. The Advantages of Incorporating Augmented
Constraints

We first demonstrate the advantage of incorporating the aug-
mented constraints (4). The data points are generated as x| =

{(x(l))T, (x(z))T}, where x) € RP! includes the significant
features for determining the cluster memberships, and x? €
RP2 include irrelevant features.

Specifically, x? is sampled from a Gaussian mixture
model, that is, x|z ~ N(;L%,Ipi), for i = 1,2, where
z® is uniformly sampled from {1,...,p;}, and [L:()i) =
c(]l {z(i) = 1} , 1 {z(i) = 2} A | {z(i) :pi}); that is, all
elements are zero except that the z()th element equals c. Here,
¢ > 0denotes the distance between the center of the clusters and
the origin. A larger ¢ implies a more separable cluster structure.

We let the cluster label £ = z1 and the number of clusters
K = pi, so the cluster memberships are fully determined by
the first py features. An illustration of the simulation data with
K = p1 = p» = 3is shown in Figure 1.

In this experiment, we select py = 6, py = 3,c¢c =
5,n = 60 and K = 6. We train the metric matrix A with
randomly selected pairwise constraints and compare the clus-
tering performance with or without augmented constraints S
and D from (4), which is evaluated by the Adjusted Random
Index (ARI) (Rand 1971). A higher ARI indicates a cluster-
ing result more consistent with the true cluster memberships.
Figure 2 shows the boxplots of ARI with different numbers
of pairwise constraints, which demonstrates that incorporat-
ing the augmented constraints consistently improves the clus-
tering performance under varying numbers of queried con-
straints. The advantage is more obvious when the number of
constraints is large, since more entries in the similarity matrix
Y are labeled and the augmented constraints are more accu-
rate. In addition, the trend that ARI increases as the num-
ber of constraints grows is more stable with the augmented
constraints compared with its counterpart, indicating that the
proposed method also increases robustness in clustering. One
possible reason is that the proposed method uses all n(n —
1)/2 pairs during metric training instead of selected constraints
only, which alleviates randomness and avoids overfitting labeled
pairs.

6.2. Active Clustering With Low Signal-to-Noise Ratio

Another novelty of the proposed method is performing feature
selection in the process of active clustering. In this simulation,
we demonstrate this advantage in a low signal-to-noise ratio
setting where the number of irrelevant features is much larger
than the true features. We adopt the data generating procedure
in Section 6.1, except letting P(u](.z) =cl{j= zi(z)}) = P(M](.z) =

—cl{j = z?z)}) = % to make clustering more difficult in that
the irrelevant features are well-separated. Therefore, clustering
without identifying the true features is likely to underperform
in this case.

We compare the proposed method with other popular active
semi-supervised clustering methods under the setting of p; = 5,
p2=30,¢c=3K=5andp; = 10,p, = 30,c = 3,K = 10,
respectively. In each case, we generate n = 300 samples which
are evenly distributed sampled from K clusters. In addition, we
let the penalty parameter A = 0.5 and the number of penalized
teatures g = p»/2.

The competing methods include constrained Kmeans (COP-
Kmeans) (Wagstaft et al. 2001), pairwise constrained Kmeans
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Figure 1. lllustration of the simulated data with K = p1 = p, = 3, showing the first three dimensions (left) and the last three dimensions (right). The cluster membership

is determined by the first three dimensions, illustrated by different colors.
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Figure 2. The ARI comparisons of the simulation setting with p; = 6, py = 3 and ¢ = 5 using random queries with (green), and without (yellow) augmented constraints,

based on 30 replications for each number of constraints.

(PCKmeans) (Basu, Banerjee, and Mooney 2004), metric
pairwise constrained Kmeans (MPCKmeans) (Bilenko, Basu,
and Mooney 2004), Constraint-based Repeated Aggregation
(COBRA) (Van Craenendonck, Dumancic, and Blockeel 2018a)
, and the Constraint-based Repeated Aggregation and Splitting
(COBRAS) (Van Craenendonck et al. 2018b). Among these
methods, COP-Kmeans, PCKmeans, and MPCKmeans are
centroid-based clustering algorithms, and COP-Kmeans and
PCKmeans do not involve metric learning. The aforementioned
methods were originally designed for one-time-selected pair-
wise constraints. To make a fair comparison, we combined
these three methods with the NPU active query strategy
implemented by Svehla (2018). On the other hand, COBRA is a
model-free hierarchical clustering method, by first preclustering
the instances into several local neighborhoods called super-
instances, and then further combining these super-instances
based on pairwise constraints. The budget of query is controlled
indirectly through the initial number of super-instances. Finally,
COBRAS extends COBRA by controlling the number of queries
directly, and is not biased toward the ellipsoidal clusters.
We implement the COBRA and COBRAS with packages
provided by Craenendonck (2017) and Craenendonck (2020),
respectively.

To illustrate the improvement in our clustering performance
from each section separately, we break down the proposed
method into two parts: the Augmented Query Metric Learning
Method (AQM), and the Minimum Expected Entropy (MEE)
active query strategy. We denote the full implementation of the
proposed method as AQM+MEE. In addition, we also provide
the results of combining the proposed metric learning method
with the competing active strategy NPU denoted as AQM+NPU.

Tables 1 and 2 present the average ARI and standard
deviation based on 30 replications under different numbers of
queries, implying that the combination of AQM+MEE method
achieves the best clustering result when the signal-noise ratio
is low, regardless of the number of queries. In particular, the
proposed AQM method achieves the largest improvements
on ARI by more than 50% compared with the MPCKmeans
when both methods adopt the NPU strategy. In addition,
the comparison between AQM+NPU and AQM+MEE shows
that the proposed active strategy MEE can further enhance
clustering efficiency, especially when p; = 5 and p, = 30.
We also notice that for the methods without metric learning,
namely PCKmeans, COPKmeans, COBRA and COBRAS,
their performances are similar as they are not designed for
extracting features through metric learning. However, although
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Table 1. Comparisons on the simulation data with p; = 5, p» = 30, ¢ = 3,and K = 5, showing average ARI of clustering with standard deviations.

Number of queries 60 120 180 240 300
PCKmeans + NPU 0.291(0.083) 0.347(0.100) 0.377(0.115) 0.407(0.112) 0.429(0.123)
COPKmeans + NPU 0.276(0.125) 0.369(0.147) 0.453(0.186) 0.552(0.198) 0.644(0.202)
MPCKmeans + NPU 0.275(0.115) 0.355(0.113) 0.434(0.131) 0.444(0.157) 0.529(0.157)
COBRAS 0.168(0.083) 0.250(0.083) 0.300(0.084) 0.348(0.077) 0.417(0.077)
AQM + NPU 0.443(0.128) 0.587(0.112) 0.688(0.090) 0.768(0.132) 0.860(0.151)
AQM + MEE 0.474(0.124) 0.630(0.123) 0.725(0.147) 0.845(0.110) 0.921(0.078)
Number of super instances 10 50 90 130 170
Number of queries 19.100(2.737) 101.900(14.614) 179.533(20.713) 250.000(24.220) 321.933(28.578)
ARl of COBRA 0.174(0.065) 0.275(0.070) 0.365(0.065) 0.473(0.057) 0.584(0.056)
NOTE: The second half of the table provides the results of COBRA.

Table 2. Comparisons on the simulation data with p; = 10, p; = 30, ¢ = 3and K = 10, showing average ARI of clustering with standard deviations.

Number of queries 60 120 180 240 300
PCKmeans + NPU 0.109(0.021) 0.131(0.034) 0.177(0.033) 0.200(0.049) 0.228(0.055)
COPKmeans + NPU 0.107(0.030) 0.122(0.031) 0.146(0.041) 0.174(0.048) 0.194(0.047)
MPCKmeans + NPU 0.086(0.024) 0.129(0.034) 0.164(0.040) 0.189(0.044) 0.233(0.042)
COBRAS 0.064(0.031) 0.089(0.035) 0.084(0.037) 0.140(0.051) 0.157(0.068)
AQM + NPU 0.119(0.040) 0.209(0.050) 0.267(0.062) 0.307(0.083) 0.350(0.082)
AQM + MEE 0.131(0.049) 0.203(0.055) 0.263(0.063) 0.327(0.076) 0.350(0.090)
Number of super instances 10 30 50 70 920
Number of queries 28.067(4.626) 116.433(13.728) 187.700(19.338) 259.633(20.180) 317.900(24.347)
ARl of COBRA 0.078(0.023) 0.107(0.029) 0.146(0.028) 0.188(0.024) 0.238(0.032)

NOTE: The second half of the table provides the results of COBRA.

Table 3. ARI comparisons with cluster center on sphere with K = 5,p1 = 100,p; = 400,r = 5, and n = 250, showing the average ARI of clustering with standard

deviations.

Number of queries 60 120 180 240 300
PCKmeans + NPU 0.391(0.051) 0.456(0.071) 0.575(0.074) 0.687(0.074) 0.819(0.103)
COPKmeans + NPU 0.326(0.027) 0.374(0.041) 0.490(0.059) 0.562(0.067) 0.673(0.074)
MPCKmeans + NPU 0.325(0.094) 0.435(0.077) 0.564(0.060) 0.713(0.056) 0.824(0.049)
COBRAS 0.313(0.042) 0.349(0.035) 0.367(0.044) 0.438(0.037) 0.501(0.053)
AQM + MEE 0.384(0.045) 0.489(0.099) 0.595(0.097) 0.773(0.037) 0.906(0.083)
Number of super instances 30 70 90 110 150
Number of queries 55.400(5.389) 141.300(5.675) 180.200(12.983) 222.500(12.902) 320.000(9.571)
ARl of COBRA 0.248(0.017) 0.351(0.023) 0.396(0.016) 0.454(0.015) 0.597(0.020)

MPCKmeans involves metric learning, its accuracy is still
relatively low since it does not exclude the irrelevant features.
In contrast, the proposed methods improves the clustering
accuracy significantly in both simulation settings, indicating
the effectiveness of both AQM and MEE for clustering tasks
actively.

In addition, we compare the proposed method and the
competing methods under a high-dimensional setting. Specifi-
cally, we sample the relevant features from a K-mode Gaussian
mixture model, where the K centers are located on a p; — 1
sphere with a radius r, such that the kth center is located
at r(cos(qb{), sin(¢{) cos(d);), s sin(qﬁ{) sin(qb}‘;_z) cos(qb;;_l),
sin(¢}) sin(¢>‘l’;72) sin(¢1’;71)), where ¢! = ---¢;‘,72 = in/K
and ¢1’;_1 = 2in/K. Welet K = 5, p; = 100, p, =
400, r = 5, and generate 250 samples in total. Table 3 provides
the adjusted random index (ARI) of AQM+MEE and the
competing methods with different numbers of queries. The new
simulation results show that the proposed method still achieves
the highest clustering accuracy, under a higher dimension of
p. This simulation also affirms that the proposed method is
applicable under high-dimensional cases, and can adapt to
different clustering center distributions.

7. Real Data

We apply the proposed method on three real datasets with high
dimensional features. The first dataset is the breast cancer diag-
nostic data from the UCI machine learning repository (Dua and
Graff 2017). The dataset contains 569 samples with 30 features
extracted from the diagnostic images of a breast mass, which
are labeled as either malignant or benign. The second dataset
is the MEU-Mobile dataset which records 71 keystroke features
of phone users, including finger area, pressure and hold time,
etc. We use a subset of the keystroke data from 9 users. Each
user repeats typing the same password 51 times, so there are
459 samples in total. The third dataset is the urban land cover
dataset which contains 675 multi-scale remote sensing images.
For each resolution scale, 21 features are measured, including
area, brightness, asymmetry, etc. These features are repeatedly
constructed for the same image under 7 different resolutions,
resulting in 147 features in total. Based on the extracted features,
the images of the third dataset are categorized into 9 urban
land cover classes including trees, grass, soil, concrete, asphalt,
buildings, cars, pools and shadows.

The goal of our study is to cluster the datasets with sequen-
tially queried pairwise constraints while identifying important
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Figure 3. Performance comparison on three real datasets, showing average ARI against number of constraints based on 30 replications. (The three competing methods

MPCKmeans, COPKmeans and PCKmeans are combined with NPU strategy.)
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Figure 4. The estimated weights of 147 features from the urban land cover dataset, showing the significant features identified by the proposed method compared with

MPCKmeans.

features. In our implementation, we cluster the three datasets
into 2, 9, and 9 categories, respectively. The category labels in
the raw datasets are used only in determining the similarity of
the queried instance pairs, and in verifying the accuracy of the
clustering outcomes through ARI.

Figure 3 provides the ARI comparison between the proposed
method (AQM+MEE) and the competing methods. The pro-
posed method has the overall best performance in all three
datasets in terms of the average ARI with varying number of
constraints. The most competitive method is the MPCKmeans,
as it also applies metric learning to extract the important fea-
tures, while the other competing approaches, that is, PCKmeans,
COPKmeans and COBRA do not. For the breast cancer data,
although the proposed method reaches a similar accuracy as
the MPCKmeans when the number of pairwise constraints is
large, the proposed method has a higher ARI when the number
of constraints is relatively small due to the higher efficiency
in utilizing constraints. In particular, the proposed method
achieves an ARI of 0.928 with 80 queries while the MPCKmeans
achieves only 0.732 with the same number of queries. For the
MEU-Mobile data and urban land cover data, the proposed
method improves the average ARI by 20% and 17%, respec-
tively, compared with the MPCKmeans given 300 queries. In
addition, the ARI of MPCKmeans and COPKmeans fluctuate
significantly in clustering breast cancer data as the number of
queries grows. In contrast, the proposed method leads to a
more stable clustering with consistently increasing ARI when
the query process continues. One possible reason is that the pro-
posed method removes the irrelevant features through selecting
penalty functions. Another possible reason is that the proposed
MEE strategy selects the unlabeled pairs which consistently
contribute to clustering by evaluating the information gain of

the selected queries more accurately compared with the NPU
method.

Furthermore, we investigate the interpretability of the fea-
tures selected by the proposed method via the example of the
urban land cover data. We compare the significance of each
feature by plotting the diagonal entries of the estimated metric
matrix A in a decreasing order as shown in Figure 4. The barplot
of Figure 4 implies that the proposed method divides the feature
into 3 groups. The first 3 largest coefficients correspond to the
19th, 40th, and 61st features in the original data. These three fea-
tures are associated with the Normalized Difference Vegetation
Index (NDVI) on three different resolution scales, respectively,
which implies that NDVI is a crucial factor identified by the
proposed method in determining the image category. The sec-
ond group consists of 25 features, and the third group consists
of the rest of the features which are less important in image
clustering. In contrast, the MPCKmeans tends to assign high
importance to the irrelevant features and the selected features
are not consistent across different resolution scales.

To verify the importance of the selected features, we perform
the Kmeans with the entire 147 features, the first 3 features
and the 28 features in the first two groups, respectively, without
imposing any pairwise constraints. With all 147 features, the
Kmeans returns an ARI of 0.03. In contrast, with the first three
features only, the ARI increases significantly to 0.29. With the
selected 28 features, the ARI further increases to 0.34. The
above results imply that the first three features extracted by the
proposed method play an essential role in determining the cate-
gory of the sampled remote sensing image. Although involving
less important features from the second group can improve the
performance, the improvement is quite negligible. On the other
hand, including more features brings more irrelevant informa-
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tion in measuring the similarity between two images, leading
to a noisy metric space with more difficulties in clustering. The
real data analyses confirm that the proposed method is able
to identify the low-dimensional feature space which is highly
correlated to clustering analyses.

8. Discussion

In this article, we propose an active clustering method with
metric learning. The article has three main contributions: First,
we augment the queried instance-level similarity by generalizing
the pairwise constraints using the cluster structure that is typi-
cally ignored in the existing metric learning methods. Second,
we improve the robustness of the metric learning process by
selectively penalizing the potentially irrelevant features based on
history training results. Third, we propose a new active query
strategy based on the expected entropy change, which makes a
more accurate evaluation of the information gain from a query.
We also investigate the theoretical properties of the proposed
approach, especially on the advantage between the active query
strategy over random selection from the perspective of the
posterior distribution of the cluster membership, which has
not been studied in the existing literature to the best of our
knowledge. Finally, we demonstrate the efficacy of the proposed
method through simulation studies and real data applications in
breast cancer diagnosis, keystroke recognition and multi-scale
remote sensing images.

The proposed framework can be extended to online training
in that both constraint augmentation and metric aggregation
can be adapted into a progressive method without retraining at
each step when new constraints are added, which can improve
computation efficiency. In addition, the proposed method can
be generalized to fit the non-ellipsoidal clusters through non-
linear feature transformation, such as the kernel method (Anand
etal. 2014; Abin and Beigy 2015), or adopting other constrained
clustering methods instead of PCKmeans, for example, spectral
clustering methods (Wang and Davidson 2010; Huang, Chuang,
and Chen 2012) (See supplementary material for details). On
the other hand, the theoretical properties indicate that metric
learning and active query can be interpreted as optimizing the
likelihood function and the prior function sequentially regard-
ing cluster membership distribution, respectively. Therefore,
one future research direction is to develop a unified frame-
work by quantifying the randomness of metric learning in the
active query process. Another potential research direction is to
extend the current method under the setting of the model-free
constraints generating process using deep learning tools such
as generative adversarial networks (GAN) (Goodfellow et al.
2020).

Supplementary Materials
The online supplement contains the ADMM algorithm to solve (3), all

technical proofs and additional numerical results. The code is available at
https://github.com/dyj9999/query_augmented_active_metric_learning.
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