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ABSTRACT
Recent advances in mobile health (mHealth) technology provide an effective way to monitor individuals’
health statuses and deliver just-in-time personalized interventions. However, the practical use of mHealth
technology raises unique challenges to existing methodologies on learning an optimal dynamic treatment
regime. Many mHealth applications involve decision-making with large numbers of intervention options and
under an infinite time horizon setting where the number of decision stages diverges to infinity. In addition,
temporary medication shortages may cause optimal treatments to be unavailable, while it is unclear what
alternatives can be used. To address these challenges, we propose a Proximal Temporal consistency Learning
(pT-Learning) framework to estimate an optimal regime that is adaptively adjusted between deterministic
and stochastic sparse policy models. The resulting minimax estimator avoids the double sampling issue
in the existing algorithms. It can be further simplified and can easily incorporate off-policy data without
mismatched distribution corrections. We study theoretical properties of the sparse policy and establish
finite-sample bounds on the excess risk and performance error. The proposed method is provided in our
proximalDTRpackage and is evaluated through extensive simulation studies and the OhioT1DM mHealth
dataset. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received August 2021
Accepted October 2022

KEYWORDS
Policy optimization; Precision
medicine; Reinforcement
learning; Sparse policy

1. Introduction

Mobile health (mHealth) technology has recently attracted
much attention due to mobile devices such as smartphones or
wearable devices for tracking physical activities and well-being.
It makes real-time communications feasible between health
providers and individuals (Sim 2019). In addition, the mHealth
technology can also be used to collect rich longitudinal data for
exploring optimal dynamic treatment regimes, which are critical
in delivering long-term personalized interventions (Nahum-
Shani et al. 2018). For example, the OhioT1DM mHealth study
(Marling and Bunescu 2020) collects eight weeks’ worth of
mHealth data for type 1 diabetes patients. All patients are
equipped with mobile sensor bands for continuously measuring
blood glucose level, insulin dose level, heart rate, carbohydrate
intake, etc. This allows us to develop tailored dynamic treat-
ment strategies to manage patients’ blood glucose levels. How-
ever, current applications of mHealth technology in clinical use
encounter some unique challenges. First, using mHealth tech-
nology involves data collection and requires decision-making
over a very long period. This is often referred to as the infi-
nite horizon setting. Second, most of the mHealth applica-
tions aim to provide multi-channel interventions with a large
number of treatment combinations (Yang and Van Stee 2019),
or recommend continuous individualized dose levels (Marling
and Bunescu 2020) for maximizing patients’ clinical outcomes.
Third, there is an increasing demand for implementing robust
dynamic treatment regimes to meet unexpected situations such
as temporary shortage of medications or budget constraints
in mHealth studies (Rehg, Murphy, and Kumar 2017). It is
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essential to design an optimal regime that can provide an alter-
native optimal or near-optimal treatment option as a backup
choice. However, existing statistical methodologies are not well-
developed for meeting the challenges mentioned above.

Although there is a rich body of literature on estimating
dynamic treatment regimes (Murphy 2003; Zhao et al. 2015; Shi
et al. 2018) over a fixed period (finite horizon), only a limited
number of statistical methodologies have been developed for
the infinite horizon setting. Ertefaie and Strawderman (2018)
proposed a variant of Greedy GQ-learning to estimate optimal
regimes. Luckett et al. (2020) proposed V-learning to search
for an optimal policy over a prespecified class of policies. Xu,
Laber, and Staicu (2020) later extended V-learning to latent
space models. Among other works, Liao, Klasnja, and Murphy
(2020), Uehara, Huang, and Jiang (2020) and Shi et al. (2020)
focus on a target policy or value function evaluation instead
of finding an optimal policy. In the computer science field,
popular approaches include learning the optimal value function
first, and then recovering the corresponding optimal policy
(Antos, Szepesvári, and Munos 2008; Dai et al. 2018). Other
methods include the residual gradient algorithm (Baird 1995)
and PCL learning (Nachum et al. 2017; Chow, Nachum, and
Ghavamzadeh 2018; Nachum et al. 2018), but these algorithms
encounter the double sampling problem (Sutton and Barto
2018). Alternatively, entropy-augmented methods (Schulman,
Chen, and Abbeel 2017; Lee, Choi, and Oh 2018; Haarnoja et al.
2018) follow the principle of developing reinforcement learn-
ing algorithms with improved exploration and high robustness.
However, their methods are not suitable for continuous state
space or large numbers of treatment options.
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In this article, we propose a novel Proximal Temporal con-
sistency Learning (pT-Learning) framework for estimating the
optimal infinite horizon treatment regime. Through revisiting
the standard Bellman equation from an alternative perspective,
we construct a proximal counterpart simultaneously addressing
the non-smoothness issues and inducing an optimal sparse
policy. This distinguishes our method from commonly used
approaches in the existing literature. We use the path-wise con-
sistency property of the constructed proximal Bellman operator
to incorporate off-policy data, and further propose a consistent
minimax sample estimator for the optimal policy via leveraging
the idea of functional space embedding.

The pT-Learning framework enjoys several unique advan-
tages. First, it shows advantages when the number of treatment
options is large and can be easily extended to a continuous treat-
ment space. The induced optimal policy identifies treatments
from a sparse subset of the treatment space, indicating that
it only assigns (near-)optimal treatment options with nonzero
probabilities. Also, this property adaptively adjusts the policy
between stochastic and deterministic policy models through a
data-driven sparsity parameter, hence, bridging the two popular
models together. In addition, the induced policy is robust to
unexpected situations and guarantees the recommendation of
near-optimal treatment alternatives when the optimal treat-
ment is temporarily unavailable. Second, the proposed minimax
estimator can be directly optimized over the observed sample
transition path without the double sampling required in existing
algorithms. Third, pT-Learning captures the optimal policy and
value function jointly over any arbitrary state-action pair. This
avoids the mismatched distributions adjustments, for example,
inverse propensity-score weighting in Luckett et al. (2020),
for off-policy data. Fourth, our method intrinsically achieves
flexibility in choosing the value function approximation class
(including both linear and nonlinear function approximation)
without the risk of diverging from the optimal solution. In con-
trast, existing methods such as Q-learning (Watkins and Dayan
1992), Greedy GQ-learning (Ertefaie and Strawderman 2018),
and TD-learning (Dann, Neumann, and Peters 2014) with its
stabilized variant Emphatic-TD learning (Sutton, Mahmood,
and White 2016; Yu 2016; Yu, Mahmood, and Sutton 2018)
may either diverge to infinity in off-policy training or only have
guaranteed convergence under linear function approximation.
Lastly, the proposed constrained minimax optimization prob-
lem can be reduced to an unconstrained minimization problem,
which can be solved under a scalable and efficient unified actor-
critic framework. This greatly reduces the computational cost
and improves the stability of the optimal policy and value func-
tion learning.

In addition to these unique advantages, our study makes
important contributions to the fundamental problem of solving
the Bellman equation when function approximation is used. We
provide a substantial development for addressing the decade-
long double sampling problem in policy optimization. In addi-
tion, our approach draws a connection and provides an alterna-
tive understanding to the entropy-augmented Markov decision
process problem (Schulman, Chen, and Abbeel 2017; Lee, Choi,
and Oh 2018; Haarnoja et al. 2018). Our method is motivated by
addressing the non-smoothness issue of the Bellman equation
while inducing policy sparsity. It is fundamentally different

from the principles of the existing entropy-augmented methods,
which focus on improving exploration ability and algorithmic
robustness. In theory, we establish the first theoretical result
for the adaptivity of sparse policy distributions. Moreover, we
develop finite-sample upper bounds on both the excess risk and
the performance error. To the best of our knowledge, this is the
first non-asymptotic result to quantify the performance error on
both deterministic and stochastic policy models jointly.

2. Background and Notation

First, we introduce the background for the estimating dynamic
treatment regime in infinite horizon settings, which can be
modeled by the Markov decision process (MDP, Puterman
2014). The MDP is denoted as a tuple (S ,A, P, u), where S
is a state space, A is an action (treatment) space, P(·|s, a) is
an unknown Markov transition kernel, and u is a unknown
immediate utility function. The immediate utility at the time
t is defined as Rt = u(St+1, St , At) : S × S × A → R. In
this article, we consider a finite action space, that is, |A| <

∞. A trajectory induced by the MDP can be written as D ={
S1, A1, S2, A2, S3, . . . , . . . , ST+1}, where St ∈ S is the patient’s

health state at t, At ∈ A is the action assignment at t, and T
denotes the length of trajectory assumed to be nonrandom for
simplicity. The observed data D1:n = {Di}n

i=1 comprises n inde-
pendent and identical distributed trajectories of D. Here, the
state evolves following the time-homogeneous Markov process.
For all t ≥ 1, St+1 ⊥ (

S1, A1, . . . , St−1, At−1) | (St , At) and
P(St+1 = s′|St = s, At = a) = P(s′|s, a). A treatment regime
(policy) π : S → A is a map from the state spaceS to the action
space A.

The discounted sum of utilities beyond the time t is rep-
resented as

∑∞
k=1 γ k−1Rt+k, where γ ∈ (0, 1) is called dis-

count factor. Our goal is to find a policy π to maximize the
expected discounted sum of utilities from time t until death.
The infinite-horizon value function is defined as Vπ

t (s) =
Eπ

[∑∞
k=1 γ k−1Rt+k | St = s

]
, where the expectation Eπ is

taken by assuming that the system follows a policy π . Accord-
ingly, the infinite-horizon action-value function Qπ

t (s, a) =
Eπ

[∑∞
k=1 γ k−1Rt+k | St = s, At = a

]
can be similarly defined

as Vπ
t (s), except that taking treatment a given the state s at

time t and then following π till the end. In a time-homogenous
Markov process, Vπ

t (s) and Qπ
t (s, a) would not depend on t

anymore (Sutton and Barto 2018). And the optimal action-value
function Qπ∗

(s, a) = maxπ Qπ (s, a) is unique, which satisfies
the Bellman optimality equation (Puterman 2014): Qπ∗

(s, a) =
ESt+1|s,a[Rt + γ maxa′∈A Qπ∗ (St+1, a′) | St = s, At = a],
where ESt+1|s,a is a short notation for ESt+1∼P(·|s,a). The policy
π∗ is referred to as an optimal policy, but it might not be
unique. An optimal policy π∗ can be obtained by taking the
greedy action of Qπ∗

(s, a), such that π∗(s) = arg maxa Qπ∗
(s, a).

Given a value function Vπ (s), the Bellman operator B is
defined as

BVπ (s) := max
a∈A

ESt+1|s,a
[
Rt + γ Vπ (St+1) | St = s, At = a

]
.

(2.1)

Then BVπ∗
(s) = Vπ∗

(s) for all s ∈ S where Vπ∗ is the unique
fixed point of the Bellman operator B (Bertsekas 1997).
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3. Methodology

To develop the new framework, we introduce a proximal Bell-
man operator and the associated sparse and adaptive optimal
policy in Section 3.1. To estimate such optimal policy, we pro-
pose a minimax framework called proximal temporal consis-
tency learning in Section 3.2. The proposed method is able to
address the practical challenges in mHealth applications, and
also has some theoretical guarantees, for example, the bounded
performance error in Section 4.

The greedy optimal policy π∗(s) = arg maxa Qπ∗
(s, a)

is a deterministic policy, which means it suggests an action
according to a deterministic rule without uncertainty. Several
drawbacks exist for the deterministic policy class. First, the
deterministic policy greedily takes an action at each decision
stage, and thus fails to suggest a rule to pick up other (near-
optimal) actions as back-up. This restriction leads the deter-
ministic policy class to be nonrobust for unexpected situations
whenever the true optimal action is temporarily unavailable or
restricted to implement. For example, the insufficient insulin or
patient’s budget restricts him/her to adopt a sufficient dosage of
insulin at each decision stage (Rehg, Murphy, and Kumar 2017;
Marling and Bunescu 2020). Second, the deterministic policy
class is suboptimal due to poor exploration of environment,
which is usually caused by taking greedy actions. The insuf-
ficient exploration impairs the performance of the algorithm,
especially for the MDPs with large action or state spaces (John
1994). In contrast, the stochastic policy takes actions following
a probability distribution, and therefore incorporates a certain
degree of randomness, and successfully encourages exploration
of the dynamic environment (Singh, Jaakkola, and Jordan 1994;
Schulman et al. 2015). Also, the stochastic policy could sug-
gest other actions with specific probabilities, which makes it
more flexible and robust under unexpected situations. A more
detailed comparison between deterministic and stochastic pol-
icy class is provided in Section D, supplementary materials. The
aforementioned advantages motivates many existing work to
consider modeling a stochastic policy. In particular, one popular
choice is using the Boltzmann distribution to model the optimal
policy (Schulman, Chen, and Abbeel 2017; Haarnoja et al. 2018;
Luckett et al. 2020). However, such policy distribution is prone
to assigning nonzero probability mass to all actions, including
nonoptimal and dismissible ones. This could be problematic
when the cardinality of the action space is large, which may
cause the policy distribution to degenerate to a uniform distri-
bution, and potentially fails to provide a desired action recom-
mendation.

These challenges motivate us to develop an optimal policy
following a distribution whose support set is a sparse subset
of the action space containing only (near-)optimal actions. We
refer to this class of policies as the sparse policy class. Spe-
cially, the deterministic policy π∗(s) = arg maxa Qπ∗

(s, a)

can be viewed as the most extreme case of the sparse policy
and inherits some advantages of the sparse policy. However,
it is greedy, resulting suboptimality issue and non-robustness
to uncertainty. Therefore, we aim to design and estimate an
optimal policy that enjoys a suitable and adaptive policy spar-
sity while inheriting the advantages of the stochastic policy
model.

To start with, we first revisit the Bellman optimality equation
in (2.1) from a policy-explicit view. Suppose the policy π follows
a stochastic distribution, then the Bellman optimality equation
can be reformulated as

BVπ∗
(s) := max

π
Ea∼π(·|s), St+1|s,a

[
u(St+1, s, a)

+ γ Vπ∗
(St+1)

]
= Vπ∗

(s), (3.1)

where Vπ∗ is the unique fixed point of B, and π∗ is the max-
imizer of maxπ Ea∼π(·|s), St+1|s,a

[
u(St+1, s, a) + γ Vπ∗

(St+1)
]

.
We use this definition of π∗ for the rest of the article. To solve
the Equation (3.1), a natural idea is to jointly optimize Vπ∗ and
π to minimize the discrepancy between the two sides of (3.1).
However, the Equation (3.1) is nonlinear and contains a non-
smooth max operator. When either the state or action space
is large, directly solving (3.1) often results in policies that are
far from the optimal solution. In addition, the discontinuity
and instability caused by the max operator make estimation
very difficult without large amounts of samples. To address
these issues, we need to consider a proximal counterpart of the
Bellman equation (3.1).

3.1. Proximal Bellman Operator

In this section, we propose a proximal Bellman operator that
circumvents the obstacles of solving (3.1), while simultane-
ously inducing an adaptive and sparse optimal policy. The pro-
posed framework bridges the gap between the deterministic
and stochastic policy models and characterizes the intrinsic
relationship between the two policy models.

Let P(A) be a convex probability simplex over A, we refor-
mulate the Bellman operator B under the Fenchel representa-
tion, that is,

BVπ∗
(s) = max

π∈P(A)

∑
a∈A

[
ESt+1|s,a

[
u(St+1, s, a)

+ γ Vπ∗
(St+1)

] · π(a|s) − μ (π(a|s))
]

, (3.2)

where 〈·, ·〉 denotes the dot product and μ(·) has to be convex
and continuous. We take μ(·) ≡ 0, which satisfies the condition
without introducing additional bias. The representation (3.2)
provides a basis for constructing a proximity toBVπ∗

(s). Specif-
ically, we consider to add a strongly convex and continuous
component, so-called proximity function, d(π) : P(A) → R

to (3.2):

BλVπ∗
λ

λ (s) = max
π∈P(A)

∑
a∈A

[
ESt+1|s,a

[
u(St+1, s, a)

+ γ Vπ∗
λ

λ (St+1)
] · π(a|s) + λd

(
π(a|s))]

= max
π∈P(A)

Ea∼π(·|s)
[

Qπ∗
λ

λ (s, a) + λφ
(
π(a|s))],

(3.3)

where φ(x) = d(x)/x and Qπ∗
λ

λ (s, a) := ESt+1|s,a[u(St+1, s, a) +
γ Vπ∗

λ

λ (St+1)] . Here, the proximal optimal value function Vπ∗
λ

λ is
the unique fixed point of Bλ, that is, BλVπ∗

λ

λ (s) = Vπ∗
λ

λ (s), and
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the policy π∗
λ is the maximizer of (3.3). The explicit forms of the

proximal value functions are deferred in Section B, supplemen-
tary materials.

By the Fenchel transformation theorem, the proximity
BλVπ∗

λ

λ (s) is a smooth approximation for BVπ∗
(s) if some con-

ditions on the proximity function d(·) are satisfied (Hiriart-
Urruty and Lemaréchal 2012). In addition, we should notice
that we are not satisfied with only achieving the smoothing
purpose but aim to develop a sparse optimal policy. To achieve
this goal, we define a class of proximity functions based on the κ-
logarithm function (Korbel, Hanel, and Thurner 2019), that is,
d(x) = xφ(x) = − x

2 logκ(x), where logκ(x) = 1
1−κ

(
x1−κ − 1

)
for x > 0 and κ 
= 1. In this article, we consider a special case
κ = 0, and refer to the operator (3.3) as the proximal Bellman
operator.

Accordingly, the proximal Bellman operator (3.3) has several
unique properties. First, it is a valid approximation for the
Bellman operator B, where the approximation bias is bounded
in Theorem S.1 provided in Section K, supplementary materials.
Second, it is a smooth substitute of B according to the closed
form of Bλ in (3.4). Third, the proximal Bellman operator Bλ

induces a sparse optimal policy whose sparsity can be adjusted
by the magnitude of λ.

Through verifying KKT conditions of the maximization
in (3.3), the proximal Bellman operator Bλ has a closed-
form equivalence (Proposition S.1 in Section K, supplementary
materials):

BλVπ∗
λ

λ (s) = λ

2

⎧⎪⎪⎨⎪⎪⎩1 −
∑

a∈K(s)

⎡⎢⎢⎣
⎛⎜⎝∑a′∈K(s)

Q
π∗
λ

λ (s,a′)
λ

− 1
|K(s)|

⎞⎟⎠
2

−
(

Qπ∗
λ

λ (s, a)

λ

)2
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (3.4)

where K(s) = {a(i) ∈ A : Qπ∗
λ

λ (s, a(i)) > 1
i
∑i

j=1 Qπ∗
λ

λ (s, a(j)) −
λ
i } represents the support action set at state s. Here a(i) is the
action with the ith largest state-action value, and |K(s)| ≤ |A|
holds for any s ∈ S .

The proximal Bellman operator is differentiable everywhere
only except for few splitting points where the support set
K(s) changes, and the degree of smoothness is determined by

the magnitude of λ according to Proposition S.1. We visual-
ize this property in Figure 1 under a binary action setting.
As λ increases, the proximal Bellman operator Bλ becomes a
more smooth approximation of B but the approximation bias
increases accordingly, indicating that the parameter λ controls
the bias and smoothness tradeoff. In addition to the smoothness
property, the proximal Bellman operator Bλ induces a sparse
optimal policy distribution π∗

λ (·|s) whose support set is a sparse
subset of the action space. We illustrate this point by presenting
π∗

λ (a|s) in terms of the state-action value function Qπ∗
λ

λ (s, a)

analytically (see the proof of Proposition S.1). That is

π∗
λ (a|s) =

(Qπ∗
λ

λ (s, a)

λ
−
∑

a′∈K(s)
Q

π∗
λ

λ (s,a′)
λ

− 1
|K(s)|

)+
, (3.5)

which is invariant to the location shift of the immediate utility.
Given any state s, the Equation (3.5) defines a well-defined
probability mass function in that

∑
a∈A π∗

λ (a|s) = 1. Also, the
policy π∗

λ is prone to assign a large probability to the action
according to the rank of the state-action values. This ensures
that the policy π∗

λ (a|s) can suggest the optimal action in a given
state s.

Moreover, the sparsity is shown by analyzing the support set
of π∗

λ (·|s), that is, {a ∈ A : π∗
λ (a|s) > 0}, which satisfies⎧⎨⎩a(i) ∈ A : Qπ∗

λ

λ (s, a(i)) >
1
i

i∑
j=1

Qπ∗
λ

λ (s, a(j)) − λ

i

⎫⎬⎭ . (3.6)

The inequality (3.6) indicates that the sparsity parameter λ

controls the margins between the smallest action value and the
others included in the support set (3.6). In particular, the cardi-
nality of the support set increases as λ increases. Conversely, the
support set of π∗

λ (·|s) shrinks as λ becomes smaller. To illustrate
how this mechanism works, we use a ternary action setting
as an example. By the inequality (3.6), when λ is sufficiently
small in that λ < Qπ∗

λ

λ (s, a(1)) − Qπ∗
λ

λ (s, a(2)), only a(1) is
contained in the support set. The policy distribution becomes
a deterministic rule and takes the greedy action with the largest
action value Qπ∗

λ

λ (s, a(1)). From this point of view, the Q-learning
approach and its variants can be regarded as special cases in our
framework. If λ increases and falls into the range

[
Qπ∗

λ

λ (s, a(1))−
Qπ∗

λ

λ (s, a(2)),
∑2

i=1 Qπ∗
λ

λ (s, a(i)) − 2Qπ∗
λ

λ (s, a(3))
]
, the support set

Figure 1. A comparison of the standard and proximal Bellman operator in a binary action setting.
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contains two actions a(1) and a(2) with the largest state-action
values, but eliminates action a(3). This implies that the induced
policy can be adaptively adjusted between the deterministic and
stochastic policy models. In Section 4, we investigate the sparsity
of the optimal policy distribution in more details.

3.2. Proximal Temporal Consistency Learning

Next, we introduce the proposed proximal temporal consistency
learning framework for estimating the induced sparse policy π∗

λ .
Our development mainly hinges on a path-wise property of the
proximal Bellman operator Bλ and the functional space embed-
ding (Gretton et al. 2012). The proposed minimax estimator is
able to address the double sampling issue and easily incorporate
off-policy data, while intrinsically preserving the convergence in
off-policy training with flexible function approximations.

First, we show that the proximal Bellman operator Bλ

enjoys the temporal consistency property (Rawlik, Toussaint,
and Vijayakumar 2013). Most recently, many state-of-the-art
methods based on this type of property have achieved great
success in real-life applications (Nachum et al. 2017; Chow,
Nachum, and Ghavamzadeh 2018; Nachum et al. 2018). The
temporal consistency property connects the optimal policy and
value function in one equation along with any arbitrary state-
action pair, which provides an elegant way to incorporate off-
policy data. We present the temporal consistency property for
Bλ in the following proposition.

Proposition 3.1. For any s ∈ S , a ∈ A and λ ∈ (0, +∞), if
Vπ∗

λ

λ is the fixed point of the proximal Bellman operator, that
is, BλVπ∗

λ

λ = Vπ∗
λ

λ , and π∗
λ is the induced policy following the

Equation (3.5), then (Vπ∗
λ

λ , π∗
λ ) is a solution of the following

proximal temporal consistency equation:

ESt+1|s,a
[
u(St+1, s, a) + γ Vπλ

λ (St+1)
]− λφ′(πλ(a|s))

− �(s) + ψ(a|s) − Vπλ

λ (s) = 0, (3.7)

where �(s) : S → [−λ/2, 0] and ψ(a|s) : S × A → R
+ are

Lagrangian multipliers with ψ(a|s) · πλ(a|s) = 0, and φ′(x) =
x − 1

2 . Following, we call the discrepancy on the left-hand side
of the Equation (3.7) the proximal temporal consistency error
(pT-error). Here, the “temporal consistency” characterizes that
the equation holds for temporal transitions.

Since the Equation (3.7) holds for any arbitrary state-action
pair (s, a), the policy π∗

λ can be estimated directly over the
observed transition pairs. Using this property lets us skip to
adjust mismatched distributions using, for example, inverse
propensity-score weighting (Luckett et al. 2020), and avoids the
curse of high variance (Jiang and Li 2016) carried over from
the data distribution corrections. To solve the Equation (3.7),
an intuitive idea is to minimize the pT-error with the L2 loss,
that is

min
Vπλ

λ ,πλ,� ,ψ
ESt ,At

[(
Tπλ(St , At , Vπλ

λ ) − �(St)

+ ψ(At|St) − Vπλ

λ (St)
)2] (3.8)

s.t. πλ(a|s) · ψ(a|s) = 0, ψ(a|s) ≥ 0

and − λ

2
≤ �(s) ≤ 0, for all s ∈ S and a ∈ A, (3.9)

where Tπλ(St , At , Vπλ

λ ) = ESt+1|St ,At
[
u(St+1, St , At) +

γ Vπλ

λ (St+1)
]−λφ′(πλ(At|St)), and ESt ,At is a short notation for

E{St ,At}∼dπb
where dπb is the behavior data distribution induced

by the behavior policy πb. The behavior policy πb is the policy
the decision maker follows in collecting the data.

However, directly minimizing the sample version of (3.8)
is not realizable, as the conditional expectation ESt+1|St ,At in
Tπλ(St , At , Vπλ

λ ) is unknown. To approximate this unknown
expectation, bootstrapping can be applied but produces an
inconsistent and biased sample estimator, where an extra con-
ditional variance will be involved as a bias component (Fan
et al. 2020). This problem is usually referred to as the double-
sampling issue (Baird 1995) and exists in many policy optimiza-
tion approaches.

To avoid the double-sampling bias, we consider embedding a
Lebesgue measurable function class to the averaged pT-error. In
particular, we define a critic function h ∈ H = L2(S × A) and
formulate a novel embedding function Lweight as follows,

Lweight(Vπλ

λ , πλ, � , ψ , h) := ESt ,At
[
h(St , At)

(
Tπλ(St , At , Vπλ

λ )

− �(St) + ψ(At|St) − Vπλ

λ (St)
)]

.
(3.10)

The critic function is introduced here to fit the discrepancy
of (3.7) and promotes the transition pairs with large pT-error.
Unlike the naive L2 loss (3.8), the nested conditional expectation
ESt+1|St ,At in Tπλ(St , At , Vπλ

λ ) is not inside the square function
anymore. Intuitively, the Lweight circumvents the double sam-
pling issue since the second order moment of bootstrapping
samples is not involved anymore and the extra condition vari-
ance vanishes. Fundamentally, the Lweight offers compensation
for insufficient sampling on P(s′|s, a). The marginal informa-
tion of the state-action pairs dπb(s, a) and the transition kernel
P(s′|s, a) can be aggregated as a joint distribution pπb(s′, s, a)

by the linearity of the expectation. Instead of extracting the
information from the transition kernel P(s′|s, a), that is, approx-
imating the conditional expectation ESt+1|St ,At , the Lweight can
be approximated using the sample-path transition pairs drawn
from the joint distribution pπb(s′, s, a). In essence, this explains
why the Lweight can address the double sampling issue.

In the following theorem, we proceed to show
Lweight(Vπλ

λ , πλ, � , ψ , h) can identify the optimal value
function and optimal policy (Vπ∗

λ

λ , π∗
λ ).

Theorem 3.1. Suppose S × A is Lebesgue measurable, and
for any h(·) in a bounded L2 space, that is, h(·) ∈ Hζ

L2 :=
{h : ‖h‖L2 ≤ ζ } for ζ ∈ (0, +∞), then the loss
Lweight(Vπ∗

λ

λ , π∗
λ , � , ψ , h) = 0. Conversely, if there exists

(V π̃λ

λ , π̃λ) such that Lweight(V π̃λ

λ , π̃λ, � , ψ , h) = 0, then
(V π̃λ

λ , π̃λ) satisfies the proximal temporal consistency Equation
(3.7).

As Lweight(Vπ∗
λ

λ , π∗
λ , � , ψ , h) = 0 holds for any h ∈ Hζ

L2 ,
Theorem 3.1 leads to a minimax optimization problem with a
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valid loss L2
weight,

min
Vπλ

λ ,πλ,� ,ψ
max

h∈Hζ

L2

L2
weight(Vπλ

λ , πλ, � , ψ , h). (3.11)

The minimax optimization of (3.11) gives a clear direction to
estimate (Vπ∗

λ

λ , π∗
λ ), but it still remains intractable. As the critic

function h(·) could be any arbitrary function in Hζ

L2 , it makes
infeasible to find a proper representation for h(·). Therefore, we
introduce a tractable framework for (3.11), where h(·) can be
appropriately represented. Define h∗ : S × A → R be the
optimal critic function if it satisfies

h∗(·) ∈ arg max
h∈Hζ

L2

L2
weight(Vπ∗

λ

λ , π∗
λ , � , ψ , h). (3.12)

In the following, we shows that h∗(·) lies in a class of continuous
functions under some regular continuity conditions which are
easily satisfied in practice.

Theorem 3.2. Let C(S ×A) be all continuous functions on S ×
A. For any (s, a) ∈ S×A and s′ ∈ S , the optimal critic function
h∗(s, a) has the following properties:

1. (Continuity) Suppose the utility function u(s′, s, a) and the
transition kernel P(s′|s, a) are continuous over (s, a) for any s′,
then h∗ ∈ Hζ

L2 ∩ C(S × A) and is unique.
2. (Lipschitz-continuity) Suppose u(s′, s, a) is uniformly Mu-

Lipschitz continuous and P(s′|s, a) is Mp-Lipschitz continuous
over (s, a) for any s′, where Mu and Mp are some Lipschitz
constants, then there must exist a Lipschitz constant Mh∗ such
that h∗(s, a) is Mh∗-Lipschitz continuous over (s, a).

Theorem 3.2 states that the optimal critic function h∗(s, a) is
continuous over (s, a) if only the utility function and the tran-
sition kernel are continuous. This continuity condition widely
holds for precision medicine and reinforcement learning prob-
lems. As we mentioned, the h∗ could be any arbitrary function in
Hζ

L2 , which imposes exceptional difficulty in the representation
of h∗. Theorem 3.2 indicates that it is sufficient to represent h in
a bounded continuous function space which preserves the opti-
mal solution of (3.11). This provides us a basis for constructing
a tractable framework for solving (3.11).

We propose to represent h∗ in a bounded reproducing kernel
Hilbert space (RKHS) such that Hζ

K := {h : ‖h‖2
HRKHS

≤
ζ }. When Hζ

K is reproduced by a universal kernel, the error
err (ζ ) := supf ∈C(S×A) infh∈Hζ

K
‖f − h‖∞ decreases as ζ

increases and vanishes to zero as ζ goes to infinity (Bach 2017).
Therefore, any continuous function can be approximated by a
function in Hζ

K with arbitrarily small error. As a result, solving
the inner maximization of (3.11) over h ∈ Hζ

K is feasible when
h∗ ∈ Hζ

L2 ∩ C(S × A), which also makes the optimization
become tractable.

Although the optimization (3.11) is tractable with RKHS
representation, solving the minimax optimization is still a chal-
lenging task. Int the following, we transform the minimax opti-
mization to an easier solvable minimization problem, leveraging
the idea of the kernel embedding (Gretton et al. 2012).

Theorem 3.3. Suppose h ∈ Hζ
K is reproduced by a universal ker-

nel K(·, ·) in (3.11) , then the minimax optimization (3.11) can
be decoupled to a single-stage minimization problem wherein

min
Vπλ

λ ,πλ,� ,ψ
LU := ESt ,̃St ,At ,̃At ,St+1,̃St+1

[(
T̃πλ(St , At , Vπλ

λ )

− �(St) + ψ(At|St) − Vπλ

λ (St)
) · ζK

({St , At}, {̃St , Ãt})(
T̃πλ(S̃t , Ãt , Vπλ

λ ) − �(S̃t) + ψ(Ãt|S̃t) − Vπλ

λ (S̃t)
)]

,

(3.13)

where T̃πλ(St , At , Vπλ

λ ) = u(St+1, St , At) + γ Vπλ

λ (St+1) −
λφ′(πλ(At|St)) and (̃St , Ãt , S̃t+1) is an independent copy of the
transition pair (St , At , St+1).

Moreover, if the universal kernel K(·, ·) is strictly positive
definite (Stewart 1976), the loss LU is nonnegative definite. This
implies that LU = 0 when (Vπλ

λ , πλ) = (Vπ∗
λ

λ , π∗
λ ), and thus the

loss LU is a valid loss can identify (Vπ∗
λ

λ , π∗
λ ).

Given the observed data D1:n with the length of trajectory
T, to minimize LU under the constraints in (3.9), we propose
a trajectory-based U-statistic estimator to capture the within-
trajectory loss. Subsequently, the total lossLU can be aggregated
as the empirical mean of n iid within-trajectory loss. That is,

min
Vπλ

λ ,πλ,� ,ψ
L̂U = 1

n

n∑
i=1

2ζ

T(T − 1)

∑
1≤j 
=k≤T

[(
T̃πλ(Sj

i, Aj
i, Vπλ

λ )

− �(Sj
i) + ψ(Aj

i|Sj
i) − Vπλ

λ (Sj
i)
) · K

({Sj
i, Aj

i}, {Sk
i , Ak

i }
)

(
T̃πλ(Sk

i , Ak
i , Vπλ

λ ) − �(Sk
i ) + ψ(Ak

i |Sk
i ) − Vπλ

λ (St
i)
)]

.

s.t. πλ(a|s) · ψ(a|s) = 0, ψ(a|s) ≥ 0 and − λ

2
≤ �(s) ≤ 0,

for all s ∈ S and a ∈ A. (3.14)

Unlike the inconsistent sample estimator in (3.8), the pro-
posed sample estimator L̂U is consistent. The consistency is
shown in Theorem 4.2 in Section 4, through examining the
tail behavior of L̂U . In addition, the gradient of the proposed
loss L̂U can be approximated by the sampled transitions and
optimized using any gradient descent type of algorithm. Hence,
the proposed method achieves great flexibility in the function
approximations of (Vπ∗

λ

λ , π∗
λ ), allowing both linear and non-

linear approximations without the risk of divergence from the
optimal solution. In comparison, popular methods, including
the Q-learning (Watkins and Dayan 1992), TD-learning (Dann,
Neumann, and Peters 2014) and Greedy GQ-learning (Maei
et al. 2010; Ertefaie and Strawderman 2018), either diverge to
infinity in off-policy training or have guaranteed convergence
only in using linear function approximations. Also, we should
note that the pT-Learning framework connects to the impor-
tance weighted variants of off-policy TD-learning algorithms
when the critic function h(·) is restricted into a bounded linear
function space. We provide a discussion on this connection in
Section E, supplementary materials.
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4. Theory

In this section, we establish the theoretical properties of the pT-
Learning framework. Our study mainly focuses on three major
parts. In the first part, we formally study the sparsity of the policy
distribution π∗

λ . Theorem 4.1 shows that the cardinality of the
nonzero probability set for π∗

λ is well-controlled by the magni-
tude of λ, which implies that π∗

λ is adaptively adjusted between
the deterministic and stochastic policy models. We believe this is
the first theoretical result on investigating the sparsity of policy
distributions. In the second part, we establish a convergence rate
of the empirical risk L̂U toward the true risk LU . In particular,
Theorem 4.2 provides a sharp exponential concentration bound,
indicating that L̂U is a consistent estimate forLU and the double
sample issue is solved. In the last part, we measure the excess
risk of L̂U which is applicable for both the parametric and
nonparametric function spaces in Theorem 4.3. Furthermore,
Theorem 4.4 provides a finite-sample upper bound on the per-
formance of the estimated optimal value function. The bound
indicates both the excess risk and the approximation bias of the
proximal Bellman operator will affect the performance error. To
the best of our knowledge, this is the first nonasymptotic result
to quantify the performance error on deterministic and stochas-
tic policy models jointly. In the following, we present our major
assumptions and theorems. The proofs and additional theo-
retical results and assumptions are deferred to supplementary
materials.

First, we define a notation called 
π -sparsity to charac-
terize the cardinality of nonzero probability actions for some
policy π .

Definition 4.1. Denote the maximum cardinality of the support
set for a given policy distribution π(·|s) over s ∈ S as 
π ,
that is,


π := max
s∈S

|{a ∈ A : π(a|s) 
= 0}|,

where | · | is a cardinality operator and 
π ≤ |A|. Then, we
call the policy distribution π(·|s) a 
π -degree sparse policy
distribution.

Before we characterize the sparsity of the proposed sparse
policy model, we first present a boundedness assumption.

Assumption 1. The immediate utility function u(St+1, St , At) is
uniformly bounded by Rmax, that is, ‖u‖∞ ≤ Rmax < ∞.

Assumption 1 is a regular assumption to impose a bound-
edness condition on the MDP (Antos, Szepesvári, and Munos
2008; Liao, Klasnja, and Murphy 2020).

Theorem 4.1. Under Assumption 1 and Assumptions S.1–S.2
provided in Section I, supplementary materials, for all s ∈ S ,
the sparse policy distribution π∗

λ (·|s) in (3.5) has the following
properties: the policy π∗

λ is 
π∗
λ

-degree sparse where 
π∗
λ

→ 1
as λ → 0, and 
πλ → |A| as λ → ∞. In particular, for
any ε > 0, there exists a positive number λ0 such that for all
λ ≥ λ0, the sparse policy distribution π∗

λ (·|s) approaches a
discrete uniform distributionU with a probability mass function
|A|−1, that is, |π∗

λ (a|s) − |A|−1| < ε for all s ∈ S and a ∈ A.

Theorem 4.1 shows that the degree of sparseness, or the
cardinality of the nonzero probability actions set, of the sparse
policy π∗

λ (·|s) can be controlled by λ. In the most extreme case,
when λ → 0, the policy π∗

λ becomes a deterministic policy.
Alternatively, as λ → +∞, the induced policy π∗

λ degenerates
to a uniform distribution that assigns equal probabilities to all
action arms.

Before we present the rest of the theoretical results, we need
to introduce the stationarity and dependency of the stochastic
process {(St , At)}t≥1. For each single patient trajectory, it is
easily observed that the sequence {(St , At)}t≥1 is a stationary
Markov chain. In terms of sample dependency, Farahmand
et al. (2016) and Liao, Klasnja, and Murphy (2020) assume that
within-trajectory samples are independent in order to reduce
technical difficulties in the theoretical developments. However,
this assumption might be too restrictive and often violated in
practice. In our work, we consider the sample dependency and
establish more rigorous theoretical results under the notion of
the mixing process (Kosorok 2008). Specifically, for any sta-
tionary sequence of dependent random variables

{
St , At}

t≥1,
let F c

b be the σ -field generated by
{

Sb, Ab} , . . . , {Sc, Ac} and
define β(k) = E

[
supm≥1

{∣∣P (B | Fm
1
)− P(B)

∣∣ : B ∈ F∞
m+k

} ]
,

and we say that the process
{

St , At}
t≥1 is β-mixing if β(k) → 0

as k → ∞. In the following, we assume a mixing condition to
quantify the within-trajectory sample dependency.

Assumption 2. For a strictly stationary sequence {(St , At)}t≥1,
there exists a constant δ1 > 1 such that the β-mixing coefficient
corresponding to {(St , At)}t≥1 satisfies β(k) � exp(−δ1k) for
k ≥ 1.

Assumption 2 implies an exponential decay rate of the mix-
ing process, which is typically for deriving a polynomial decay
rate of the estimation error (Kosorok 2008).

In Theorem 4.2, we study the tail behaviors of the empirical
loss L̂U , and establish an exponential concentration inequality
for L̂U under an exponential rate of the β-mixing condition.

Theorem 4.2. For any sparsity parameter λ < ∞ and ε >
0, under Assumptions 1–2 and S.1–S.2 provided in Section I,
supplementary materials, we have ε-divergence of |L̂U − LU |
bounded in probability for sufficiently large T, that is

P
(|L̂U − LU | > ε

)
≤ 2
[

exp

(
− c1ε2T/4 − c0c1εU2

max
√

T
U2

max(ε/2 − c0U2
max/

√
T) log T log log 4T + U4

max

)

+ exp

(
− nε2

2U4
max

)]
,

where c0, c1 are some constants depending on δ1; and Umax =
6Rmax+(5−4γ )λ

2(1−γ )
.

Theorem 4.2 shows that L̂U is a consistent estimator for
the loss LU with a high probability at an exponential rate. The
concentration bound is sharper than the bound established in
Borisov and Volodko (2009). Here, we require an exponen-
tial decaying mixing rate, which is standard in the literature
of deriving concentration inequalities for weakly dependent
data (Borisov and Volodko 2009; Merlevède, Peligrad, and Rio



632 W. ZHOU, R. ZHU, AND A. QU

2011). It should be possible to relax this mixing condition to a
polynomial-decay rate of β-mixing with imposing an additional
exponential α-mixing condition. However, that is out of the
scope of this article.

We denote L∗
U = inf {Vπλ

λ ,πλ,� ,ψ} LU(Vπλ

λ , πλ, � , ψ) as
the minimal risk, also called Bayes risk (Bartlett, Jordan, and
McAuliffe 2006). Also, we define the empirical risk minimizer
of L̂U as

(V̂θ1
λ , π̂θ2

λ , �̂ξ , ψ̂θ3)

= arg min
(Vθ1

λ ,πθ2
λ ,�ξ ,ψθ3 )∈�1×�2×�×�3

L̂U(Vθ1
λ , πθ2

λ , �ξ , ψθ3),

where �1, �2, �, and �3 are function spaces corresponding to
Vθ1

λ , πθ2
λ , �ξ , and ψθ3 , respectively.

In Theorem 4.3, we establish the excess risk bound and
convergence rate of LU(V̂θ1

λ , π̂ θ2
λ , �̂ξ , ψ̂θ3)−L∗

U . The following
assumption on the function space capacity is needed in order to
develop the theoretical results.

Assumption 3. There exists a constant C > 0, and q ∈ (0, 2)

such that for any ε > 0, 0 < λ ≤ λmax < ∞, Rmax < ∞, the
following condition on metric entropy is satisfied,

log
(

max
{
N
(
ε, �1, ‖ · ‖∞

)
,N
(
ε, �2, ‖ · ‖∞

)
,

N
(
ε, �, ‖ · ‖∞

)
,N
(
ε, �3, ‖ · ‖∞

)})
≤ C

⎛⎝max{ 4Rmax+(2−γ )λmax
2−2γ

, 1}
ε

⎞⎠q

,

where ‖ · ‖∞ denotes the supreme norm and (Vθ1
λ , πθ2

λ ,
�ξ , ψθ3) ∈ �1 × �2 × � × �3.

Assumption 3 characterizes the complexity of the function
spaces. In general, it is more difficult to estimate the functions as
ε decreases. This assumption is satisfied in the function spaces
such as the RKHS and Sobolev space (Geer and van de Geer
2000; Steinwart and Christmann 2008). Moreover, we compare
this assumption with the assumption 3 in (Antos, Szepesvári,
and Munos 2008) which considers parametric function spaces
with finite effective dimension DF . Their assumption is equiva-
lent to assuming logN

(
ε, �1, {Di}n

i=1
) ≤ DF log (1/ε), which

is only able to account for the capacity of the finite dimension
space. In contrast, our assumption is more general and allows
our theorems can be applied to both finite and infinite dimen-
sion space.

Theorem 4.3. Under Assumptions 1–3 and S.1–S.4 provided
in Section I, supplementary materials, for any δ ∈ (0, 1],
q ∈ (0, 2) and λ ∈ (0, λmax), the excess risk E(LU) :=
LU(V̂θ1

λ , π̂ θ2
λ , �̂ξ , ψ̂θ3)−L∗

U is upper bounded with probability
at least 1 − δ for a sufficiently large T, that is

E(LU) ≤ c2n−1 + c3

√
log
(

2
δ

)
n− 1

2

+ J1(δ)

⎛⎜⎜⎜⎝
log log

(
2− δ1

1+δ1 c
δ1

1+δ1
4 T

δ1
1+δ1

)
T

δ1
1+δ1

⎞⎟⎟⎟⎠
1/2

+ J2(δ)

(
T

1−δ1
(δ1+1)(2+q)

)
+ J3(δ)

⎛⎝ log
(
c5T

2
(1+δ1)

)
T

2
2+q

⎞⎠1/2

,

(4.1)
where the terms {J1(δ), J2(δ), J3(δ)} are functions of
δ, δ1, C, c4, q, Umax, λmax, Rmax, γ , and ζ ; additionally, the con-
stants terms {c2, c3, c4, c5} depend on δ, δ1, C, Umax, λmax, Rmax,
and γ .

If the constant and logarithmic terms are omitted, the excess
risk can be simplified and achieves the rate

E(LU)�O

⎛⎜⎝n− 1
2 ∨

(
T

δ1−1
δ1+1

)− 1
2+q ∨

⎛⎝ T
δ1

1+δ1

log log(T
δ1

1+δ1 )

⎞⎠− 1
2
⎞⎟⎠ .

The first two terms in (4.1) control the statistical error from
the empirical estimation over n iid trajectories. The third and
fourth terms bound the trajectory-based stochastic error from
the variability inherent in weakly dependent within-trajectory
samples. It observes that the third and fourth terms depends
on the complexity of the function spaces �1 × �2 × � × �3.
In addition, the last term is a remainder term due to using the
block devices in dealing with the sample dependency. In general,
this remainder term converges to zero much faster than other
main terms, especially when the sample dependency is weak in
that δ1 is large. Hence, the remainder term does not affect the
established convergence rate.

Theorem 4.3 provides a more powerful result than just a
consistency of estimation as it establishes a finite-sample upper
bound guarantee for the risk. In particular, if the process
{(St , At)}t≥1 forgets its past history sufficiently fast, that is, δ1 →
∞, then T(δ1−1)/(δ1+1) and Tδ1/(1+δ1) both converge to T. Since
the term log log(Tδ1/(1+δ1)) is a negligible to O(Tδ1/(1+δ1)),
we may achieve the optimal sample complexity upper bound
O(n−1/(2+q)) if T is the same order of n. In particular, when
the state space S is an open Euclidean ball in R

d, and for a
second-order Sobolev space Wj,2 with j > d/2, one can choose
q = d/j to obtain the risk upper bound of the rateO(n−d/2(j+d))

if T is the same order of n. Besides establishing the risk bound
in infinite dimensional function spaces, Theorem 4.3 can be
also applied for the finite dimensional function spaces. That is,
Theorem 4.3 recovers the best upper error bound n−1/2 when
q → 0.

In the following, we provide a finite sample upper bound
on the performance error of the estimated optimal value
function. Let K(·, ·) be a continuous integral strictly posi-
tive definite kernel on the compact metric space S × A,
and there exists an orthonormal basis e1, e2, . . . , for L2(S ×
A). Also, we let κ1, κ2, . . . , be corresponding eigenvalues
such that K({s, a}, {̃s, ã}) = ∑∞

j=1 κjej({s, a})ej({̃s, ã}), where

{s, a}, {̃s, ã} ∈ S × A. The L2 norm that
√∫

f 2(s)ddπb(s) for
the observed data distribution dπb over S is denoted by ‖f ‖L2 .

Theorem 4.4. Under Assumptions 1–3 and S.1–S.4 provided
in Section I, supplementary materials, for λ ∈ (0, λmax) and
the finite minimum eigenvalue κmin = min{κ1, κ2, . . . , } <

∞, the performance error between the estimated optimal value
function V̂θ1

λ with respect to the proximal Bellman operator Bλ
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and the optimal value function Vπ∗ with respect to the standard
Bellman operator B is upper bounded by

‖V̂θ1
λ − Vπ∗‖2

L2 ≤ c6E(LU)

κmin(1 − γ )2 + c7λ
2

(1 − γ )2 |A|

+ c8λ
2|A| + λ2c9

(1 − γ )2|A| ,

where c6, c7, c8, c9 are some terms of δ1, C, c2, c3, c4, c5, J1(δ),
J2(δ), J3(δ), q, Umax, ζ , λmax, Rmax, and γ in which c7 > c8.

The above bound provides an insight regarding the perfor-
mance error of the proposed method. Specifically, under the
regularity conditions, the L2 distance between the estimated
optimal proximal value function V̂θ1

λ and the optimal value
function Vπ∗ is upper bounded, and this gap diminishes with
the growth of sample size n and time length T, and with the
decay of the smoothing parameter λ. Note that the last two
terms is approaching to zero as λ is sufficiently small. This
implies that only a small smoothing bias is involved in the finite
sample bound of ‖V̂θ1

λ − Vπ∗‖2
L2

. Moreover, combined with
the sample bound for an excess risk E(LU) in Theorem 4.3,
Theorem 4.4 indicates that the behavior of the upper bound as
a function of samples O(n−1/(2+q)) is the best if T is the same
order of n. In general, a large λ increases the smoothing error
but decreases the approximation error as the solution function
space is better behaved due to stronger smoothness. However,
the approximation error is not reflected in our sample bound
because we make the zero approximation error assumption, that
is, Assumption S.4 in supplementary materials.

5. Implementation and Algorithm

For optimizing (3.14), the functions (Vπλ

λ , πλ, � , ψ) are
required to be parameterized by a class of models for practical
implementations. One may parameterize (Vπλ

λ , πλ, � , ψ) by
{Vπλ

λ (·; β), πλ(·; θ), �(·; ω), ψ(·; ξ)}, where (θ , β , ω, ξ) are asso-
ciated parameters. Note that the policy (actor) πλ(·; θ) and the
value function (critic) Vπλ

λ (·; β) are separately represented by
the two sets of parameters (θ , β). This parameterization repre-
sentation is aligned with the actor-critic paradigm in estimating
the policy, which requires assistance and evaluation from the
critic (Mnih et al. 2016). In our algorithm development, we
introduce a unified actor-critic paradigm where the actor itself
can play a critic role such that the actor can be self-supervised
during the training process. We allow both Vπλ

λ and πλ to be
represented in terms of Qπλ

λ based on the connections in (3.3)
and (3.5), respectively. In other words, it is sufficient to only
parameterize Qπλ

λ for Vπλ

λ and πλ. Specifically, if we parameter-
ize Qπλ

λ by Qπλ

λ (·; θ), then {Vπλ

λ , πλ} can be parameterized by
the same set of parameter θ , that is, {Vπλ

λ (·; θ), πλ(·; θ)}. One
advantage of the new diagram is to reduce the parameter space,
form two sets of parameters to one set, and hence relaxing the
computational intensity. Another key advantage is that the new
diagram only need to track the target policy πλ(·; θ) instead of
tracking the nonstationary target Vπλ

λ (·; θ) which usually results
in divergence issues.

For any state-action pair (s, a), we follow the new unified
actor-critic framework to approximate Qπλ

λ (s, a) using basis

function approximations. The state-action function Qπλ

λ (s, a; θ)

is represented by a linear combination of basis functions
θTϕ(s, a), where θ is a pQ-dimensional weight vector and ϕ(s, a)

is an column vector of nonlinear basis functions computed at
(s, a). For m = pQ/|A|, the vector ϕ(s, a) sets the basis function
value ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕm(s)

)
in the corresponding slot

for a specific action a, while the values of basis function for the
rest of the actions are set to be zero. That is

ϕ (s, a1) =

⎡⎢⎢⎣
ϕ1(s)
· · ·

ϕm(s)
0m(|A|−1)×1

⎤⎥⎥⎦ , . . . ,

ϕ (s, ak) =

⎡⎢⎢⎢⎢⎣
0m(k−1)×1

ϕ1(s)
· · ·

ϕm(s)
0m(|A|−k)×1

⎤⎥⎥⎥⎥⎦ , . . . ,

ϕ
(
s, a|A|

) =

⎡⎢⎢⎣
0m(|A|−1)×1

ϕ1(s)
· · ·

ϕm(s)

⎤⎥⎥⎦ ,

where 0 is a zero vector. Similarly, we model the two Lagrangian
functions as �(s; ω) = ωTϕ(s) and ψ(a|s; ξ) = ξTϕ(s, a). The
flexibility of these working models can be achieved by selecting
different ϕ(·), such as B-splines, radial basis and Fourier basis
functions. Also note that Qπλ

λ (s, a; θ) can be parameterized by
a nonlinear approximation architecture and the optimization
convergence is guaranteed in the pT-learning framework.

In the following, we reformulate the empirical risk mini-
mization (3.14) to a nonlinear programming problem for which
the objective is converted to a quadratic term with a nonlinear
equality constraint and two nonlinear inequality constraint,

min
θ ,ω,ξ

L̂U(θ , ω, ξ) = ζ

n

n∑
i=1

(
Di(θ) − Pi(θ) − Zi(ω)

+ Wi(ξ)
)T

�i
(
Di(θ) − Pi(θ) − Zi(ω) + Wi(ξ)

)
s.t. πλ(a|s; θ) · ψ(a|s; ξ) = 0, ψ(a|s; ξ) ≥ 0

and − λ

2
≤ �(s; ω) ≤ 0, for all s ∈ S , a ∈ A, (5.1)

where �i ∈ R
T×T is a weight matrix with {�i}jk ={

2
(
K({Sj

i, Aj
i}, {Sk

i , Ak
i }) − 1(j = k)

)
/T(T − 1)

}
jk, and

Di(θ), Pi(θ), Zi(ω), Wi(ξ) are provided in Section A, Supple-
mentary Materials.

To solve this quadratic programming problem with non-
linearity constraints, one may consider applying sequential
quadratic programming (Fletcher 2010) to optimize the objec-
tive function with linearized constraints. However, this requires
several derivatives which are required to be solved analytically
before iteration. Therefore, it can be quite cumbersome in
practical implementations. Another approach is to apply exte-
rior penalty methods (Boyd, Boyd, and Vandenberghe 2004),
which convert a constrained problem to a series of uncon-
strained optimization problems. However, the size of constraints
is O(|S||A|), and thus the computation is intensive if either |S|
or |A| is large.
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Alternatively, we propose a computationally more efficient
algorithm, solving an unconstrained optimization via impos-
ing certain restrictions on the representation of {Zi(ω), Wi(ξ)}
such that the two Lagrangian functions satisfy the constraints
automatically. Although this re-parameterization may sacri-
fice certain model flexibility, it gains computational advantages
as it solves a simpler quadratic optimization problem. More
specifically, we parameterize Zi(ω) by flipping a sigmoid func-
tion: �(s; ω) = −(λ/2) · (1 + exp(−k0(ωTs − b0))

)−1 ∈
[−λ/2, 0], where b0 is the sigmoid’s midpoint and k0 is the
logistic growth rate. Obviously, the first inequality constraint
−λ/2 ≤ �(s; ω) ≤ 0 is automatically satisfied under this
parameterization. Observe that the πλ(a|s; θ) > 0 when a ∈
K(s), and πλ(a|s; θ) = 0 otherwise. Therefore, we can further
reduce our parameter space via modeling ψ(a|s; θ) as a function
of θ instead of ξ . That is, ψ(a|s; θ) =

(∑
a∈K(s) θTϕ(s,a)−λ

λ|K(s)| −
θTϕ(s,a)

λ

)+
, where the constraints πλ(a|s; θ) · ψ(a|s; θ) = 0 and

ψ(a|s; θ) ≥ 0 are always satisfied, and Wi(·) in (5.1) are changed
to Wi(θ). The parameter ξ is replaced by θ , and hence the com-
putational complexity is further reduced. The representation
of L̂U(θ , ω, ξ) under �(s; ω) and ψ(a|s; θ), that is, L̂U(θ , ω),
and its derivatives are provided in Section A, Supplementary
Materials.

Algorithm 1 pT-Learning with Stochastic Gradient Descent
1: Input observed data D1:n as the transition pairs format

{(St
i , At

i , Rt
i , St+1

i ) : t = 1, . . . , T}n
i=1.

2: Initialize the primary and auxiliary parameters (θ , ω) =
(θ0, ω0), the mini-batch size n0, the learning rates αθ =
α0

θ , αω = α0
ω, the scale parameter ζ = ζ0, the factors

(κe = 1, κπ = 1, κα = 1), the sparsity parameter λ = λ0,
the bandwidth bw = bw0, and the stopping criterion ε.

3: For k = 1 to k = max.iter
4: Randomly sample a mini-batch {(St

i , At
i , Rt

i , St+1
i ) : t =

1, . . . , T}n0
i=1.

5: Compute the gradient w.r.t. θ as 
̄θ = ζ0Pn0[Di(θ) −
Pi(θ) + Wi(θ) − Zi(ω)]T�i[κe∇θ Di(θ) + κπ∇θ Pi(θ) +
κα∇θ Wi(θ)].

6: Compute the gradient w.r.t. ω, 
̄ω = ζ0Pn0 [Di(θ) −
Pi(θ) + Wi(θ) − Zi(ω)]T�i∇ωZi(ω).

7: Decay the learning rate αk
θ = O(k−1/2), αk

ω = O(k−1).
8: Update the parameters of interest as θk ← θk−1 −

αk
θ 
̄θ , ωk ← ωk−1 − αk

ω
̄ω.
9: Stop if ‖θk − θk−1‖ ≤ ε.

10: Return θ̂ = θk.

The minimization of L̂U(θ , ω) requires O(nqT2) time com-
plexity in calculating the exact gradients. Here, we implement a
stochastic gradient descent (SGD) algorithm, where the training
is on mini-batch datasets and is faster than a vanilla gradient
descent or BFGS algorithm. We summarize details of the pro-
posed algorithm in Algorithm 1, where the derivations of the
gradients are provided in Section A, Supplementary Materials.
In addition, the time complexity of calculating the gradient
requires O(|A| log(|A|)Tqn) by a naive sorting algorithm, and
we can further improve the time complexity to O(|A|Tqn) by
using the bucket-sorting algorithm (Blum et al. 1973).

6. Simulation Studies

We conduct two numerical experiments to evaluate the finite
sample performance of the proposed method. In the first exper-
iment, we consider a binary treatment setting following a
benchmark generative model (Luckett et al. 2020; Liao, Klasnja,
and Murphy 2020). In the second experiment, we mimic an
mHealth cohort study aiming to deliver personalized interven-
tions with 12 choices for managing an individual’s glucose level.
In both experiments, we compare our approach to state-of-
the-art methods including linear, polynomial and Gaussian V-
learning (Luckett et al. 2020), and Greedy GQ-learning (Ertefaie
and Strawderman 2018). The proposed method is available in
our proximalDTR R package.

In the first example, we let the current state St
i = (

St
i,1, St

i,2
)T

be a two-dimensional vector and the current action At
i ∈

{1, 0}. The next state St+1
i is generated according to St+1

i,1 =
(3/4)(2At

i − 1)St
i,1 + (1/4)St

i,1St
i,2 + εt

i,1 and St+1
i,2 = (3/4)(1 −

2At
i)St

i,2 + (1/4)St
i,1St

i,2 + εt
i,2, where the random noises εt+1

i,1 and
εt+1

i,2 follow an independent Gaussian distribution N(0, 0.52).
Note that assigning At

i = 1 imposes a positive effect on St+1
i,1

but has a negative effect on St+1
i,2 . We define a nonlinear utility

function u(St+1
i , St

i , At
i) such that

Rt
i = u(St+1

i , St
i , At

i) = (1/4)(St+1
i,1 )3 + 2St+1

i,1

+ (1/2)(St+1
i,2 )3 + St+1

i,1 + (1/4)(2At
i − 1).

The initial state S1
i follows a Gaussian distribution N(0, I2×2)

and At
i is randomly assigned with an equal probability for each

treatment arm as in micro-randomized trials.
We consider different scenarios in which the number of

patients n = {25, 50, 100} and the follow-up time length T =
{24, 36, 48}. The discount factor γ is set to be 0.9, focusing on
long-term benefits. To specify the basis function ϕ(s) mentioned
in Section 5, we consider a cubic spline containing six knots
located in equal space of interval [0, 1], and then apply it to the
state variables normalized between 0 and 1.

The objective function L̂U(θ , ω) may not be convex with
respect to both θ and ω. Therefore, we adopt a multiple ini-
tialization method to determine an appropriate initial point.
Specifically, we choose an initial point with the smallest objec-
tive value among 50 randomly generated initial points. In our
two numerical experiments, we consider a fixed λ = 0.1. Alter-
natively, we can also use a k-fold cross-validation procedure
to select sparsity parameter λ. We choose an optimal λ which
maximizes the lower bound of the empirical discounted sum of
utilities, that is, λ̂ = arg maxλ

1
k
∑k

r=1 Pn(r)V̂πλ

λ

(r)
(S1) − λφ(0)

1−γ
,

where V̂πλ

λ

(r)
is the proximal value function estimator on the

rth training set, and Pn(r) is the empirical measure on the initial
state S1 for the rth validation set. Note that the cross-validation
procedure may help to select a better λ but it is computationally
expensive. The cross-validation results, the tuning parameters
set-up, and sensitivity analyses on different choices of λ for
model performance are provided in Section C, Supplementary
Materials. To evaluate the model performance, we use the mean
utility under the estimated policy as an evaluation criterion.
Specifically, after obtaining the estimated policy, we simulate
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100 independent individual patients following this estimated
policy over 100 stages, and calculate the mean utility. Therefore,
a larger value of the mean utility indicates a better policy. In
Table 1, we report the average and standard deviations of the
mean utilities over 50 simulations.

Table 1 shows that the proposed method outperforms the
competing methods in all scenarios. When n = 100 and
T = 24, compared to the baseline, that is, the observed mean
utility, the proposed method improves 0.4249 while the polyno-
mial V-learning and Greedy GQ-learning only improve 0.2510
and 0.0834, respectively. This is mainly because the proposed
method does not impose restrictions on the class of policies as
in V-learning. Also, the induced policy can be automatically
adjusted between deterministic and stochastic policy models.
In addition, the proposed method uses the smoothed proximal
Bellman operator, and thus avoids discontinuity and instability.
Moreover, the proposed method has advantages in off-policy
training due to using the proximal temporal consistency prop-
erty. In contrast, Greedy GQ-learning tends to solve the hard
Bellman optimality equation, which could be difficult with-
out large amounts of samples. In terms of computations, pT-
Learning also achieves great gains over V-learning. The actual
computation time tables are provided in Section C of the sup-
plementary materials.

In the second example, we simulate cohorts of patients with
Type 1 diabetes to mimic the mobile health study (Maahs et al.
2012). The study aims to achieve long-term glycemic control
and maintain the rest of the health index in the desired ranges.
Specifically, our hypothetical mHealth study targets to searching
the optimal policy for suggesting multi-channel interventions;
the insulin injection (IN), physical activity (PA), and dietary
intake (DI), to control the blood glucose (BG) level in the
desired range while maintaining healthy levels of Adiponectin
(AD) and blood pressure (BP) (Fidler, Elmelund Christensen,
and Gillard 2011). Hence, the immediate utility Rt

i is defined by
a weighted summation of patients’ health status as following,

Rt
i = α11(70 ≤ BGt+1

i ≤ 120)

+ α21(BGt+1
i < 70 or BGt+1

i > 150)

+ α31(120 ≤ BGt+1
i ≤ 150)

+ α41(5 ≤ ADt+1
i ≤ 23)

+ α51(ADt+1
i < 5 or ADt+1

i > 23)

+ α61(66 ≤ BPt+1
i ≤ 80)

+ α71(BPt+1
i < 66 or BPt+1

i > 80),

where (α1, . . . , α7) = (3, −3, −1, 2, −1, 2, −1) are weights
reflecting the clinical consequences.

The patients are assigned treatment from a combina-
tion of the insulin injections (Yes/No), physical activity
(No/Moderate/Strong) and dietary intake (Yes/No). Note that
there are total 12 different treatment choices, that is, A =
{1, . . . , 12}. The details of the 12 different treatment combina-
tions are enumerated in Section C, supplementary materials. At
each stage, the treatment At

i ∈ A is randomly assigned with
equal probability for each treatment arm. The patient’s state
(BGt

i , ADt
i , BPt

i) evolves according to the given dynamic model:
BGt+1

i = γ11μBG +γ12BGt
i −γ13ADt

i +
∑

a∈A μ1a1(At
i = a)+

εt+1
1i ; ADt+1

i = γ21μAD+γ22ADt
i +γ23BGt

i +
∑

a∈A μ2a1(At
i =

a) + εt+1
2i ; BPt+1

i = γ31μBP + γ32BPt
i +∑a∈A μ3a1(At

i = a) +
εt+1

3i , where ε1i, ε2i and ε3i are individual-level Gaussian random
noises. The values of coefficients in the generative model are
provided in Section C, supplementary materials.

The cohort data is generated under different scenarios with
a follow-up time length T = {24, 36} and sample size n =
{25, 75, 100}. The discount factor γ is set to be 0.9. We use the
same evaluation criterion as in Simulation Example 1 except
that the testing set is simulated over 36 stages. The results are
summarized in Table 2. The pT-Learning approach achieves the
best performance. For example, when n = 100 and T = 36, pT-
Learning achieves 56.7% and 83.8% improvements compared to
Gaussian V-learning and Greedy GQ-learning, respectively. The
improvement of pT-Learning compared to V-learning is due to
the sparse property of pT-Learning. For a better illustration,
we visualize the sparsity and compare the estimated policy

Table 1. Example 1: the average and standard deviation (in parentheses) of the mean utilities under the estimated optimal policy based on 50 simulation runs.

n T Proposed Greedy-GQL Linear VL Poly VL Gauss VL Observed

25 24 0.3827(0.121) 0.0787(0.175) 0.2561(0.011) 0.2564(0.011) 0.2561(0.011) 0.0033
36 0.4153(0.065) 0.0716(0.234) 0.2560(0.013) 0.2561(0.011) 0.2558(0.014) 0.0025
48 0.4001(0.078) 0.0840(0.213) 0.2578(0.012) 0.2578(0.014) 0.2575(0.012) 0.0033

50 24 0.4154(0.080) 0.0844(0.209) 0.2564(0.012) 0.2569(0.012) 0.2564(0.012) 0.0092
36 0.4029(0.093) 0.0829(0.235) 0.2570(0.010) 0.2574(0.012) 0.2569(0.011) 0.0080
48 0.3888(0.084) 0.0836(0.236) 0.2564(0.012) 0.2570(0.012) 0.2530(0.026) 0.0036

100 24 0.4290(0.059) 0.0875(0.240) 0.2529(0.016) 0.2551(0.011) 0.2547(0.011) 0.0041
36 0.4050(0.062) 0.0780(0.266) 0.2538(0.010) 0.2542(0.010) 0.2535(0.010) 0.0043
48 0.4112(0.052) 0.0945(0.254) 0.2548(0.011) 0.2552(0.015) 0.2543(0.017) 0.0090

Table 2. Example 2 (mHealth study): the average and standard deviation (in parentheses) of the mean utilities under the estimated optimal policy based on 50 simulation
runs.

n T Proposed Greedy-GQL Linear VL Poly VL Gauss VL Observed

25 24 2.489(0.631) 1.561(1.034) 1.743(0.748) 1.555(0.652) 1.787(0.784) 1.481
36 2.878(0.568) 1.500(1.244) 1.694(0.702) 1.725(0.705) 1.770(0.674) 1.473

75 24 2.685(0.268) 1.588(1.310) 1.667(0.482) 1.724(0.862) 1.885(0.898) 1.464
36 3.247(0.510) 1.772(1.277) 1.713(0.423) 2.162(0.954) 1.918(0.894) 1.478

100 24 2.785(0.401) 1.720(1.232) 1.561(0.317) 1.849(0.904) 1.981(0.573) 1.471
36 3.409(0.429) 1.854(1.453) 1.768(0.622) 2.105(0.912) 2.177(1.086) 1.473
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distribution of pT-Learning and V-learning in Section C of the
supplementary materials. On the other hand, pT-Learning is
better than Greedy GQ-learning mainly because Greedy GQ-
learning requires modeling the entire data-generating process,
and hence produces a large over-estimation error. Worst of all,
the Greedy GQ-learning approach is designed to take the greedy
action based on the fitted model. This again magnifies the over-
estimation error and ultimately leads to a huge sub-optimality.
In contrast, pT-Learning only requires modeling the optimal
policy and optimal value function. Additionally, pT-Learning
does not take a greedy action, but follows an adaptive and sparse
stochastic policy model.

7. Application to Ohio Type 1 Diabetes Data

We apply the proposed method to two cohorts of individu-
als from the OhioT1DM dataset (Marling and Bunescu 2020),
which was used to study the long-term blood glucose manage-
ment via the just-in-time interventions on the type 1 diabetes
patients. Each cohort contains six individuals of age ranging
within 20–60. All patients were on insulin pump therapy with
continuous glucose monitoring (CGM) sensors, and the life-
event data is collected via a mobile phone app. The physiological
data of the first cohorts was collected by Basis sensor bands,
and the second cohort used Empatica sensor bands. Specifically,
the dataset includes CGM blood glucose levels measured per 5
min, insulin dose levels delivered to the patient, meal intakes,
and corresponding carbohydrate estimates. Note that the heart
rate measured per 5 min is available only for patients using
the Basis sensor band (the first cohort), while the magnitude
of acceleration aggregated per minute is only available with the
Empatica sensor band (the second cohort). The data also include
other features such as the self-reported times of work, sleep and
stress, etc. Based on the preliminary investigation, each patient
has distinct blood glucose dynamics. Therefore, we follow the
pre-processing strategy used in Zhu, Lu, and Song (2020), and
treat the data of each patient as a single dataset. Then we esti-
mate the optimal policy by treating each day as an independent
sample. For the first cohort, we consider a binary intervention
setting, that is, whether or not to provide the insulin injection;
and for the second cohort, we study the individualized dose-
finding problem by discretizing the continuous dose level into
14 disjoint intervals for intervention options. We compare the
performance of pT-Learning with the same competing methods
as in Section 6.

We summarize the collected measurements over 60-min
intervals such that the length of each trajectory is T = 24. After
removing missing samples and outliers, each dataset contains
n = 15 trajectories on average. For the first six patients who
wore the Basis sensor band, the patient’s states at each stage
include the average blood glucose levels St

i,1, the average heart
rate St

i,2 and the total carbohydrates St
i,3 intake from time t − 1

and t. For others equipped with the Empatica sensor band,
the states are the same as the first six patients, except that the
average heart rate is substituted by the average magnitude of
acceleration. Here, the utility is defined as the average of the
index of glycemic control (Rodbard 2009) between time t − 1
and t, measuring the health status of the patient’s glucose level.

That is Rt
i = −1(St

i,1>140)|St
i,1−140|1.35+1(St

i,1<80)(St
i,1−80)2

30 , where Rt
i

is nonpositive and a larger value is preferred. Our goal is to max-
imize the expected discounted sum of utilities Eπ

∑
t≥1 γ t−1Rt .

In the first cohort study, the treatment is binary, that is, At
i ∈

{0, 1}. In the second study, we provide the optimal insulin dose
suggestion via the uniform discretization of the continuous dose
level, that is, At

i ∈ {0 = A(1) < · · · < A(14) = max(A)
}

.
Since the data-generating process is unknown, it is hard to

use the mean utility under the estimated policy as the evaluation
criterion as in Section 6. Instead, we follow Luckett et al. (2020)
to use the Monte Carlo approximation of the expected dis-
counted sum of utilities for evaluating the model performance,
that is, PnV̂π (S1

i ), where S1
i is the initial state for the ith trajec-

tory. In the competing methods, the quantity V̂π (·) represents
the estimated value function. In our method, we consider the
lower bound of our estimated value function V̂πλ

λ̂
(·), that is,

PnV̂πλ

λ̂
(S1

i ) − (1 − γ )−1̂λφ(0), to mitigate the effects of the
sparsity parameter λ̂ on the utilities. This quantity can be also
interpreted as the worst-case of the discounted sum of utilities
produced by pT-Learning. The discounted sum of observed
utilities, that is, Pn

∑
t≥1 γ t−1Rt

i , is used as the baseline.
In our experiments, we choose two discount factors, γ = 0.9

and γ = 0.8. For the γ = 0.9 setting, the boxplots of the relative
improvements of utilities are provided in Figures 2 and 3 for

Figure 2. The first cohort patients: boxplots of the improvements on the dis-
counted sum of utilities under estimated policy over 50 simulation runs, with |A| =
2 and γ = 0.9.

Figure 3. The second cohort patients: boxplots of the improvements on the dis-
counted sum of utilities under estimated policy over 50 simulation runs, with |A| =
14 and γ = 0.9.
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the first and second cohort data, respectively. Additional results
are presented in Section C, supplementary materials. Figure 2
indicates that pT-Learning achieves better improvements over
competing methods across all patients. For example, for the
Patient 1, the proposed method has 98.0% and 51.2% improve-
ment rates compared to Greedy GQ-learning and the linear V-
learning, respectively. This is mainly because pT-Learning does
not impose restrictions on the class of policies and thus is more
flexible. The standard deviation of the proposed method is the
smallest among all approaches, reflecting that pT-Learning is
relatively stable due to the smoothness property of the proxi-
mal Bellman operator and the implemented unified actor-critic
framework. For the second cohort study with a large cardinal-
ity treatment space, pT-Learning substantially outperforms the
competing methods in Figure 3. For the seventh patient, the
improvement of pT-Learning to Greedy GQ-learning and Gaus-
sian V-learning attains 175.4% and 187.0%, respectively. This
result shows that pT-Learning achieves high efficiency in the
continuous treatment space, and our sparse policy estimation
has a clear benefit with large numbers of treatment options.

8. Discussion

In this article, we propose a novel proximal temporal consis-
tency learning framework for estimating the optimal dynamic
treatment regime in infinite time horizon settings. The con-
structed proximal Bellman operator directly leads to a smoothed
Bellman optimality equation, while simultaneously inducing a
sparse optimal policy. The proposed minimax policy estimator
resolves the double sampling issue and can be easily optimized
by a scalable and efficient SGD algorithm.

Several improvements and extensions are worth exploring
in the future. First, we may extend our algorithm to deal with
strong temporal dependency. The idea of the experience-replay
(Mnih et al. 2015) might be useful. It is shown that the gra-
dients calculated by the experience-replay algorithm are 1 −
O(n−1)-nearly independent. Second, it is interesting to extend
pT-Learning to the long-term average reward setting (Murphy
et al. 2016). Third, developing statistical inference methods for
quantifying uncertainty of the policy and value function is also
important.

Under the nonstationary learning setting where the environ-
ment varies over time, a relatively high exploration is typically
preferred, as it may lead to a better policy estimation in the
long run. Therefore, the V-learning method potentially gains
more benefits than pT-Learning in policy estimations due to
a higher exploration rate. To improve the exploration ability
of pT-Learning, one may consider to adopt the ε-greedy strat-
egy (Sutton and Barto 1998). Other future directions include
developing a rigorous extension to continuous action space
with theoretical justifications, and constructing a state-varying
λ(s) which results in a group-wise smoothness and sparsity.
The detailed discussion of the aforementioned extensions is
provided in supplementary materials.

Supplementary Materials

The supplementary materials provide all technical proofs of main theorems
as well as the additional discussions and numerical experiments, and theo-
retical results.

Acknowledgments

The authors thank the Editor, Associate Editor and the anonymous review-
ers for their insightful suggestions and helpful feedback which improved
the article significantly.

Disclosure Statement

The authors declare no financial or nonfinancial interest that has arisen
from the direct applications of this research.

Funding

This work is supported by NSF grants DMS 2210640, DMS 1952406 and
DMS 2210657.

References

Antos, A., Szepesvári, C., and Munos, R. (2008), “Learning Near-Optimal
Policies with Bellman-Residual Minimization based Fitted Policy Iter-
ation and a Single Sample Path,” Machine Learning, 71, 89–129.
[625,631,632]

Bach, F. (2017), “Breaking the Curse of Dimensionality with Convex Neural
Networks,” The Journal of Machine Learning Research, 18, 629–681. [630]

Baird, L. (1995), “Residual Algorithms: Reinforcement Learning with Func-
tion Approximation,” in Machine Learning Proceedings 1995, pp. 30–37,
Elsevier. [625,629]

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006), “Convexity, Classifi-
cation, and Risk Bounds,” Journal of the American Statistical Association,
101, 138–156. [632]

Bertsekas, D. P. (1997), “Nonlinear Programming,” Journal of the Opera-
tional Research Society, 48, 334–334. [626]

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L., and Tarjan, R. E. (1973),
“Time Bounds for Selection,” Journal of Computer and System Sciences,
7, 448–461. [634]

Borisov, I., and Volodko, N. (2009), “Exponential Inequalities for the Dis-
tributions of Canonical U-and V-Statistics of Dependent Observations,”
Siberian Advances in Mathematics, 19, 1–12. [631]

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004), Convex Optimization,
Cambridge: Cambridge University Press. [633]

Chow, Y., Nachum, O., and Ghavamzadeh, M. (2018), “Path Consistency
Learning in Tsallis Entropy Regularized MDPs,” in International Confer-
ence on Machine Learning, pp. 979–988. [625,629]

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., and Song, L. (2018),
“SBEED: Convergent Reinforcement Learning with Nonlinear Function
Approximation,” in International Conference on Machine Learning, pp.
1125–1134, PMLR. [625]

Dann, C., Neumann, G., and Peters, J. (2014), “Policy Evaluation with
Temporal Differences: A Survey and Comparison,” Journal of Machine
Learning Research, 15, 809–883. [626,630]

Ertefaie, A., and Strawderman, R. L. (2018), “Constructing Dynamic Treat-
ment Regimes over Indefinite Time Horizons,” Biometrika, 105, 963–
977. [625,626,630,634]

Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2020), “A Theoretical Analysis of
Deep Q-Learning,” in Learning for Dynamics and Control, pp. 486–489,
PMLR. [629]

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C., and Mannor, S.
(2016), “Regularized Policy Iteration with Nonparametric Function
Spaces,” The Journal of Machine Learning Research, 17, 4809–4874. [631]

Fidler, C., Elmelund Christensen, T., and Gillard, S. (2011), “Hypoglycemia:
An Overview of Fear of Hypoglycemia, Quality-of-Life, and Impact on
Costs,” Journal of Medical Economics, 14, 646–655. [635]

Fletcher, R. (2010), “The Sequential Quadratic Programming Method,” in
Nonlinear Optimization, eds. G. Di Pillo, and F. SchoenSpringer, pp. 165–
214, Berlin: Springer. [633]

Geer, S. A., and van de Geer, S. (2000), Empirical Processes in M-estimation
(Vol. 6), Cambridge: Cambridge University Press. [632]

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A.
(2012), “A Kernel Two-Sample Test,” The Journal of Machine Learning
Research, 13, 723–773. [629,630]



638 W. ZHOU, R. ZHU, AND A. QU

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018), “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” in International Conference on Machine Learning, pp.
1861–1870, PMLR. [625,626,627]

Hiriart-Urruty, J.-B., and Lemaréchal, C. (2012), Fundamentals of Convex
Analysis, Berlin: Springer. [628]

Jiang, N., and Li, L. (2016), “Doubly Robust Off-policy Value Evaluation
for Reinforcement Learning,” in International Conference on Machine
Learning, pp. 652–661, PMLR. [629]

John, G. H. (1994), “When the Best Move isn’t Optimal: Q-learning with
Exploration,” in AAAI-94. [627]

Korbel, J., Hanel, R., and Thurner, S. (2019), “Information Geometric
Duality of φ-Deformed Exponential Families,” Entropy, 21, 112–125.
[628]

Kosorok, M. R. (2008), Introduction to Empirical Processes and Semipara-
metric Inference, New York: Springer. [631]

Lee, K., Choi, S., and Oh, S. (2018), “Sparse Markov Decision Processes with
Causal Sparse Tsallis Entropy Regularization for Reinforcement Learn-
ing,” IEEE Robotics and Automation Letters, 3, 1466–1473. [625,626]

Liao, P., Klasnja, P., and Murphy, S. (2020), “Off-policy Estimation of Long-
Term Average Outcomes with Applications to Mobile Health,” Journal of
the American Statistical Association, 116, 382–391. [625,631,634]

Luckett, D. J., Laber, E. B., Kahkoska, A. R., Maahs, D. M., Mayer-Davis, E.,
and Kosorok, M. R. (2020), “Estimating Dynamic Treatment Regimes
in Mobile Health using v-learning,” Journal of the American Statistical
Association, 115, 692–706. [625,626,627,629,634,636]

Maahs, D. M., Mayer-Davis, E., Bishop, F. K., Wang, L., Mangan, M.,
and McMurray, R. G. (2012), “Outpatient Assessment of Determinants
of Glucose Excursions in Adolescents with Type 1 Diabetes: Proof of
Concept,” Diabetes Technology & Therapeutics, 14, 658–664. [635]

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton, R. S. (2010), “Toward
Off-policy Learning Control with Function Approximation,” in 27th
ICML, pp. 719–726. [630]

Marling, C., and Bunescu, R. (2020), “The ohioT1DM Dataset for Blood
Glucose Level Prediction: Update 2020,” KHD@ IJCAI. [625,627,636]

Merlevède, F., Peligrad, M., and Rio, E. (2011), “A Bernstein Type Inequality
and Moderate Deviations for Weakly Dependent Sequences,” Probability
Theory and Related Fields, 151, 435–474. [632]

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,
Silver, D., and Kavukcuoglu, K. (2016), “Asynchronous Methods for
Deep Reinforcement Learning,” in International Conference on Machine
Learning, pp. 1928–1937. [633]

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. (2015), “Human-Level Control
through Deep Reinforcement Learning,” Nature, 518, 529–533. [637]

Murphy, S. A. (2003), “Optimal Dynamic Treatment Regimes,” Journal of
the Royal Statistical Society, Series B, 65, 331–355. [625]

Murphy, S. A., Deng, Y., Laber, E. B., Maei, H. R., Sutton, R. S., and
Witkiewitz, K. (2016), “A Batch, Off-policy, Actor-Critic Algorithm
for Optimizing the Average Reward.” arXiv preprint arXiv:1607.05047.
[637]

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017), “Bridging
the Gap between Value and Policy based Reinforcement Learning,”
in Advances in Neural Information Processing Systems, pp. 2775–2785.
[625,629]

(2018), “Trust-PCL: An Off-Policy Trust Region Method for Con-
tinuous Control,” in International Conference on Learning Representa-
tions. [625,629]

Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K.,
Tewari, A., and Murphy, S. A. (2018), “Just-in-Time Adaptive Interven-
tions (JITAIs) in Mobile Health: Key Components and Design Principles
for Ongoing Health Behavior Support,” Annals of Behavioral Medicine,
52, 446–462. [625]

Puterman, M. L. (2014), Markov Decision Processes: Discrete Stochastic
Dynamic Programming, Hoboken, NJ: Wiley. [626]

Rawlik, K., Toussaint, M., and Vijayakumar, S. (2013), “On Stochastic Opti-
mal Control and Reinforcement Learning by Approximate Inference,” in
Twenty-third IJCAI. [629]

Rehg, J. M., Murphy, S. A., and Kumar, S. (2017), Mobile Health, Cham:
Springer. [625,627]

Rodbard, D. (2009), “Interpretation of Continuous Glucose Monitoring
Data: Glycemic Variability and Quality of Glycemic Control,” Diabetes
Technology & Therapeutics, 11, S–55. [636]

Schulman, J., Chen, X., and Abbeel, P. (2017), “Equivalence between
Policy Gradients and Soft q-learning.” arXiv preprint arXiv:1704.06440.
[625,626,627]

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015), “Trust
Region Policy Optimization,” in International Conference on Machine
Learning, pp. 1889–1897. [627]

Shi, C., Fan, A., Song, R., and Lu, W. (2018), “High-Dimensional A-learning
for Optimal Dynamic Treatment Regimes,” Annals of Statistics, 46, 925–
967. [625]

Shi, C., Zhang, S., Lu, W., and Song, R. (2020), “Statistical Inference of
the Value Function for Reinforcement Learning in Infinite Horizon
Settings.” arXiv preprint arXiv:2001.04515. [625]

Sim, I. (2019), “Mobile Devices and Health,” New England Journal of
Medicine, 381, 956–968. [625]

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994), “Learning without State-
Estimation in Partially Observable Markovian Decision Processes,” in
Machine Learning 1994, Elsevier, pp. 284–292. [627]

Steinwart, I., and Christmann, A. (2008), Support Vector Machines, New
York: Springer. [632]

Stewart, J. (1976), “Positive Definite Functions and Generalizations, an
Historical Survey,” The Rocky Mountain Journal of Mathematics, 6, 409–
434. [630]

Sutton, R. S., and Barto, A. G. (1998), Introduction to Reinforcement Learn-
ing (Vol. 135), Cambridge, MA: MIT Press. [637]

(2018), Reinforcement Learning: An Introduction, Cambridge, MA:
MIT Press. [625,626]

Sutton, R. S., Mahmood, A. R., and White, M. (2016), “An Emphatic
Approach to the Problem of Off-Policy Temporal-Difference Learn-
ing,” The Journal of Machine Learning Research, 17, 2603–2631.
[626]

Uehara, M., Huang, J., and Jiang, N. (2020), “Minimax Weight and q-
function Learning for Off-Policy Evaluation,” in International Confer-
ence on Machine Learning, pp. 9659–9668, PMLR. [625]

Watkins, C. J., and Dayan, P. (1992), “Q-learning,” Machine Learning, 8,
279–292. [626,630]

Xu, Z., Laber, E., and Staicu, A.-M. (2020), “Latent-State Models for Preci-
sion Medicine.” arXiv preprint arXiv:2005.13001. [625]

Yang, Q., and Van Stee, S. K. (2019), “The Comparative Effective-
ness of Mobile Phone Interventions in Improving Health Out-
comes: Meta-Analytic Review,” JMIR mHealth and uHealth, 7, e11244.
[625]

Yu, H. (2016), “Weak Convergence Properties of Constrained Emphatic
Temporal-Difference Learning with Constant and Slowly Diminishing
Stepsize,” The Journal of Machine Learning Research, 17, 7745–7802.
[626]

Yu, H., Mahmood, A. R., and Sutton, R. S. (2018), “On Generalized Bellman
Equations and Temporal-Difference Learning,” The Journal of Machine
Learning Research, 19, 1864–1912. [626]

Zhao, Y.-Q., Zeng, D., Laber, E. B., and Kosorok, M. R. (2015), “New Sta-
tistical Learning Methods for Estimating Optimal Dynamic Treatment
Regimes,” Journal of the American Statistical Association, 110, 583–598.
[625]

Zhu, L., Lu, W., and Song, R. (2020), “Causal Effect Estimation and Optimal
Dose Suggestions in Mobile Health,” in International Conference on
Machine Learning, pp. 11588–11598, PMLR. [636]


	Abstract
	1.  Introduction
	2.  Background and Notation
	3.  Methodology
	3.1.  Proximal Bellman Operator
	3.2.  Proximal Temporal Consistency Learning

	4.  Theory
	5.  Implementation and Algorithm
	6.  Simulation Studies
	7.  Application to Ohio Type 1 Diabetes Data
	8.  Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	References


