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inherently high-dimensional problem. Here, we evaluate the perform-
ance of the Secondary sTructural Ensembles with machine LeArning
(StELa) double-clustering method, which clusters protein structures
based on the relationship between the ¢ and y dihedral angles in a
protein backbone and the secondary structure of the protein, thus
focusing on the local properties of protein structures. The classification
of states as vectors composed of the clusters” indices arising naturally
from the Ramachandran plot is followed by the hierarchical clustering of
the vectors to allow for the identification of the main features of the
corresponding free energy landscape (FEL). We compare the
performance of StELa with the established root-mean-squared-deviation
(RMSD)-based clustering algorithm, which focuses on global properties of protein structures and with Combinatorial Averaged
Transient Structure (CATS), the combinatorial averaged transient structure clustering method based on distributions of the ¢ and y
dihedral angle coordinates. Using ensembles of conformations from molecular dynamics simulations of intrinsically disordered
proteins (IDPs) of various lengths (tau protein fragments) or short fragments from a globular protein, we show that StELa is the
clustering method that identifies many of the minima and relevant energy states around the minima from the corresponding FELs. In
contrast, the RMSD-based algorithm yields a large number of clusters that usually cover most of the FEL, thus being unable to
distinguish between states, while CATS does not sample well the FELs for long IDPs and fragments from globular proteins.

Principal Component 2

Principal Component 1

H INTRODUCTION the Al-based AlphaFold, are employed to predict protein
structures from protein sequences using machine learning.*~"*
However, all of these methods struggle to characterize regions
or entire proteins that are “fuzzy” or that are heterogeneous
due to a lack of order. They also have difficulty capturing
structural transitions over time.

All-atomistic computational tools, such as molecular
dynamics (MD) simulations, allow for a more detailed
exploration of the conformational landscape. The challenge
then becomes the extraction of the most dominant sampled
states from a large and complex data set, particularly when
characterizing how environments or allosteric modulators
affect the conformational space. The aforementioned proteins
that lack a well-defined structure are known as intrinsically
disordered proteins (IDPs). Despite the usage of the term

In many enzymes, conformational changes can occur due to
the binding of ligands, other proteins, or protein mutations.
These are fundamental processes with important functional
implications." Such conformational changes sometimes corre-
spond to a global rearrangement of the protein. This is
observed in the quaternary structure of the microtubule (MT)
tubulin dimers where the straight guanosine 5'-triphosphate
(GTP)-bound tubulin becomes curved when the hydrolyzable
GTP is chemically converted into guanosine 5’-diphos-
phate.”™* Other times, they correspond to local changes at
the secondary level or to a transition from ordered to
disordered (or vice versa) as seen in MT-severing enzymes
when the substrate-binding loops become ordered in the
presence of the MT substrate.””® Great effort has been
expended to predict the steps that lead to both global and local

levels of conformational changes and the corresponding states. Received: September 19, 2023
Experimental methods, such as X-ray crystallography and Revised:  December 22, 2023
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identifying conformational transitions by solving structures in Published: January 4, 2024

the presence or absence of cofactors of interest.” Computa-
tional tools, such as the bioinformatics-based PSIPRED and
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“disorder”, IDPs do not sample their conformational space in a
completely random manner."> An IDP favors certain
conformations over others, albeit to a much less extreme
degree than structured globular proteins.'* IDPs sample a large
number of diverse conformations while carrying out their
functions in the cell, in apparent contrast to the traditional
“structure—function” paradigm.'>~"” A well-known example of
an IDP is the MT-stabilizing protein found primarily in
neurons called tau.'® Tau is made up of an N-terminal
projection domain, a proline-rich domain, a combination of
repeat domains (R1—R4 and a pseudorepeat R’), and a C-
terminal domain that are spliced together in various isoforms.
The misregulation of tau is associated with neurodegenerative
diseases such as Alzheimer’s disease where tau is found to
aggregate as a result of a change to its conformational
space. *~** Describing these changes is an essential piece for
understanding neurodegenerative diseases, and therefore MD
is commonly employed to probe the underlying conforma-
tional space of IDPs.'”*%*

IDPs are not the only types of proteins characterized by a
large or changing conformational space that could be
challenging to explore. Regions of proteins that experience
conformational changes due to the allosteric influence of a
modulator are also difficult to characterize. These types of
transitions have been captured with the above-mentioned
experimental methods, as well as with computational tools. In
our previous work, using all-atomistic MD simulations to study
lower-order oligomers of the MT-severing enzyme katanin, we
identified a ligand-dependent conformational transition in a
region of the protein from a loop—helix to a helix—helix
structure.”* Results from PSIPRED predicted only a structure
resembling that reported in the cryo-EM structure (loop—
helix).*** As the helix—helix structure was also proposed based
on the X-ray structure of the monomeric form of katanin,*” our
finding of the conformational switch in simulations was
essential for understanding the allosteric contribution of the
binding cofactors in katanin and for assessing the stability of
the lower-order oligomers. Additional transient and flexible
structures were identified in dimers and trimers in the presence
and absence of binding ligands. MD simulations were also used
to identify a nucleotide-dependent conformational transition in
secondary structure from a loop in the G-actin filament to a
helix in the F-actin filament.”* > Another classic example of
extensive ligand-induced allosteric control over a quaternary
protein structure is hemoglobin.”’ A single-point mutation
(E6V) in the f chains of hemoglobin leads to sickle cell
anemia.*”?" This mutation causes the aggregation of
hemoglobin fibrils in the absence of O, (T) that leads to the
deformation of red blood cells; however, when O, is present
(R), the fibrils disintegrelte.3l’32 Having a means of character-
izing the conformational landscape is crucial for identifying
states for these more heterogeneous proteins/regions, which
are essential for understanding enzymatic mechanisms or the
effects of allosteric modulators and of disease-related
mutations.

Unsupervised machine-learning methods such as clustering
algorithms have been used to extract significantly populated
states from the sampled space by grouping together structures
identified as similar according to a given criterion. Previous
studies have emphasized the impact that the choice of the
clustering methodology has on the predicted states based on
both the size and intrinsic properties of the system being
characterized.”””* For the identification of more global
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changes, approaches such as root-mean-squared-deviation
(RMSD)-based algorithms that determine similarity using an
RMSD cutoff have been found to be particularly effective.
Structures within this cutoff are grouped together, whereas a
neighbor outside of the cutoff is assigned to a distinct group.'*
While additional similarity measurements have been applied to
RMSD-based clustering to explain localized changes, such as
within a ligand-binding pocket, studies found that the RMSD
criterion produces larger errors in structure separation, which
would result in inaccurate characterization of more subtle
conformational changes.”>*® To address these more subtle
changes, Cheung and Ezerski focused on the identification of
local structures with similar patterns, especially in IDPs, when
introducing a new algorithm, Combinatorial Averaged
Transient Structure (CATS), which first characterizes
structures based on an internal collective variable before
determining similarity.”” Inspired by their use of the
descriptive internal coordinate, we developed our in-house
double-clustering algorithm, StELa (Secondary sTructural
Ensembles with machine LeArning), to probe for a secondary
structural transition in a local heterogeneous region of severing
enzymes referred to as the helical bundle domain tip (“HBD
tip”) in our previously mentioned study of oligomeric species
from MT severing enzymes.24 Here, we put our algorithm
through rigorous testing to map its performance on a number
of protein systems. Namely, we performed clustering of the
states from the sampled conformational space of R2/Tau
fragments, R4—R’/Tau fragments, and the HBD tip fragments,
all taken from the corresponding MD simulations, using each
of the three algorithms: RMSD-based, CATS, and
StELa.'*?%?**” We evaluated the differences in the free energy
landscapes (FELs) between short and long fragments of IDPs
(R2/Tau and R4—R’/Tau), as well as between IDPs and the
transient, but ordered, region from a globular protein in a
tertiary and quaternary assembly (HBD tip of each of the
katanin protomers). Mapping out the clusters of states on the
FEL in the principal component (PC) space, which is the most
general illustration of the energy space of a protein,”””
allowed us to evaluate the ability of each method to sample the
conformational space. We conclude with a comparison of the
advantages and pitfalls of each of the methods.

B METHODS

MD Simulations. To address how the three clustering
methods discussed in the Introduction handle different
systems, we used MD simulations for a short fragment of an
IDP (R2/Tau),”””” a longer fragment of an IDP (R4—R’/
Tau), a short fragment from a tertiary globular protein
structure (katanin), and the same fragment from its quaternary
form (ABC/katanin).** The MD simulations for the R2
fragment of tau (14 units), computed with the GROMACS
4.6.1, detailed in Table S1, were from an earlier paper.'””" In
that study, the authors tested how different solvents induce the
formation of aggregation-prone states of R2/Tau: urea to
mimic a denatured state, water for a more standard state, and
TMAO for a more aggregation-prone state.””**~** The models
used for TMAO (2 M) and urea (S M) were previously
developed by Weerasinghe and Smith and Larini and Shea.*>**
For their simulations, the authors used the all-atom-optimized
potentials for liquid simulation (OPLS) force field with three-
site transferable intermolecular potential rigid water.”"*>*
The RMSD for the provided simulations is shown in Figure S1,
and the corresponding global averages are provided in Table
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S2. The structural changes observed in these simulations,
resulting from an altered conformational landscape, were
characterized by the Cheung and Ezerski using two different
clustering methods: the RMSD-based algorithm and their in-
house developed algorithm, CATS.”’

We carried out all-atom MD simulations for R4—R’/Tau
(121 residues) using GROMACS 2022 and the AMBER99SB-
ILDN force field, for which system details are reported in
Table $3.*7*" We created the structure used in the
simulations by applying the Modeler plug-in from ChimeraX
visualization software to the PDB 7PQC configuration
(without the tubulin).**™>° We then centered this structure
in a dodecahedral box with periodic boundary conditions
(PBCs), solvated with TIP3P water molecules, and neutralized
with NaCL>" We performed energy minimization for 50,000
steps using the steepest descent algorithm and the Verlet cutoff
scheme.”> We did NVT equilibration for 500 ps, followed by
NPT equilibration for an additional 500 ps. Both equilibrations
employed the leapfrog integrator, Verlet cutoff scheme, and
velocity-rescaling thermostat. The NPT equilibration used also
the Parrinello—Rahman pressure coupling.’>** We ran four
production trajectories, each 200 ns long, using the same
temperature and pressure coupling methods as in the NPT
equilibration. Coulombic interactions were treated using the
Particle Mesh Ewald (PME) algorithm, while other non-
bonded interactions were computed using the Verlet cutoff
scheme.””** Equilibration was monitored by using both RMSD
and the DCCM convergence test, as shown in Figure S2.

The MD simulations used for the analysis of conformational
behaviors of lower-order oligomers of katanin in our previous
studies™ were carried out with GROMACS 2019 using the
GROMOS96 54a7 force field and cubic boxes with SPC
solvent, as described in Table §3.*0*%5¢0~%% Utilizing PBC,
these systems were minimized with the steepest descent
algorithm and the Verlet cutoff-scheme for 50,000 steps with a
criterion of the maximum force value less than 23.9006 kcal/
mol/A to account for steric clashes.”” An NVT ensemble was
used to bring the system to 300 K with the velocity-rescaling
thermostat and the leapfrog integrator for 500 ps.>3 Then, the
NPT ensemble with the leapfrog integrator and the Parrinello—
Rahman pressure coupling scheme was used to keep the
system at 1.0 bar for 500 ps.”* The LINCS algorithm was used
with an integration step of 2 fs.”” The PME algorithm was used
for the electrostatic interactions, and a cutoff of 10.0 A was
used to define nonbonded interactions.*>*® The starting
structures corresponded to select chains from the katanin
spiral (PDB: 6UGD) and ring (PDB: 6UGE) hexamers
modeled in our previous study.”® The missing residues from
disordered loops (residues 183—187 and 324—331) in the
cryo-EM structure were modeled in our previous work with
Modeler (version 9.23).°*°° We note that the spiral
conformation corresponds to the prehydrolysis assembly of
katanin, characterized by a 40 A gap between the terminal
protomers (A and F) where adenosine 5'-triphosphate (ATP)
is present in each of the six protomers. In turn, the ring
conformation is a posthydrolysis state where the nucleotide is
missing from protomer A resulting in the closing of the gap
between the end protomers due to induced flexibility in its
nucleotide-binding domain.”® The automated topology builder
server was used to parametrize the ATP molecules based on
the GROMOS54a7 force field. >

In the study of lower-order oligomers, we probed monomers
from the spiral conformation as well as dimers (AB and BC)
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and trimers (ABC) from the spiral and ring conformations of
katanin, as described in Figure S3. To understand the effects of
binding the ligands, the monomer was simulated with both the
ATP and polyglutamate MT minimal substrate (COMPLEX),
as found in the solved cryo-EM structure,” with ATP only
(NUCLEOTIDE), with the minimal substrate (SUB-
STRATE), and in the absence of both ligands (APO). The
trimers were simulated in the COMPLEX and APO states. The
RMSD over time for each of the described systems is shown in
Figures S4 and S5 with their accompanying DCCM
convergence tests, following eq S1, to show that the systems
were appropriate for analysis. Global averages were calculated
and are provided in Table S4 to assess overall stability. We
observed that a region in the helical bundle domain, which we
dubbed the “HBD tip” (see Figure S3), consisting of amino
acids ASP417-LEU437 (21 peptide bonds), showed significant
structural fluctuations in several of the setups. Our hot spot
analysis determined that only three regions from katanin
experience allosteric changes upon the binding of the ATP, the
MT substrate, and the formation of the various interprotomer
interfaces. The HBD tip was one of these regions.”* We
developed our in-house algorithm, StELa, to characterize such
structural changes from the extracted HBD tip region
conformations of each protomer in a simulation. Clustering
with StELa showed that this region undergoes a structural
change in the monomer upon the binding of ATP and the
minimal MT substrate. In the ring ABC trimer, we found a
similar structural change associated with the binding of
cofactors to that seen in the monomer. However, this time,
the concave interface made between the ith and the (i + 1)th
protomers and/or the convex interface formed between the ith
and the (i — 1)th protomers, described in Figure S3, also
caused interesting changes to the conformational space of the
HBD tip in the ith protomer (B).>° In this oligomer, protomer
A has only the concave interface, formed between both its
nucleotide-binding domain (NBD) and HBD regions and the
NBD of protomer B. Protomer C has only the convex
interface, formed between its NBD region and the NBD of
protomer B. Our analysis of the PC motions showed that
protomer A is highly flexible due to its absence of the
nucleotide, so much so that its NBD detached from the NBD
of protomer B. We determined that, while protomers B and C
would likely remain bound to each other, protomer A would
dissociate from protomer B due to the motions leading to the
detachment of its HBD from the NBD of protomer B. This
indicated that the NBD—HBD contacts are more important for
the stability of the interprotomer interface and the overall
stability of the machine than the NBD—NBD interfaces.
Importantly, the NBD—HBD contacts are formed with the
long HBD helix and the loop/helix of the HBD tip making the
region particularly important to characterize.”*

Current Methods for Clustering Protein Fragments.
The RMSD-based clustering algorithm'* implemented with
GROMACS* (gmx cluster-gromos) has long been consid-
ered the gold standard for evaluating the structures explored in
MD trajectories. This algorithm uses the RMSD to evaluate
how similar a data point, or structure, is to its neighbors within
a specified cutoff.'”*” We determined an appropriate cutoff for
each system by carrying out clustering using a range of cutoffs
dependent on the system. For example, we took increments of
0.01 between 0.1 and 0.25 for R2/Tau, whereas for the R4—
R’/Tau system, we took values ranging from 0.14 to 0.50. The
cutoff was chosen by evaluating the distribution of the RMSD
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between the cluster center of the tog)most populated clusters
for each cutoff and all the frames.”” The actual cutoff was
selected based on the idea that a robust clustering should result
in clusters for which all the cluster members are closely
distributed around the cluster center, while any other frames
belonging to other clusters are well separated from that center
(RMSD., ;). To this end, we chose cutoffs that resulted in
well-defined first peaks of the RMSD distributions, followed by
a decrease to as close to 0 as possible.”” Examples of such
distributions for the R4—R’/Tau and the katanin monomer-
APO are shown in Figures S6 and S7. The chosen cutoffs for
all systems are listed in Table SS. The RMSD-based clustering
is based on the Cartesian coordinate space of the structure. For
representation purposes in the FEL space, we used as cluster
representatives the cluster centers, which are the structures
with the largest number of neighbors. Cheung and Ezerski used
this method as a control for testing the performance of their in-
house algorithm, CATS.”

The CATS algorithm (https:/ /github.com/Cheung-group/
CATS) converts the structure found in each frame of a
trajectory to a vector, prior to determining similarity using
clustering. The authors chose the ¢ and y dihedral backbone
angles as descriptive collective variables (CVs), instead of the
Cartesian s;)ace—based CVs used in the RMSD-based
algorithm.37’ * This was significant, as the dihedral angles
provide a detailed internal descriptor of the secondary
structure of proteins and are known to capture conformational
changes.”* The user provides the ¢ and y backbone angles as
the input, which we extracted using the gmx rama function in
GROMACS." Distributions of each residue’s ¢ and y angles
are fitted with Gaussian curves in order to identify one to three
main peaks. Next, CATS creates representative vectors for each
trajectory frame consisting of a series of integer labels
corresponding to the Gaussian curve in which each angle
was found, resulting in two labels per residue (Figure S8).
CATS then groups together identical representative vectors,
which could result in a large number of small clusters, as seen
with the RMSD-based algorithm; however, this makes it
difficult to analyze/identify the types of important structures
sampled by the simulations. To address this issue, we added a
centroid-based clustering step at the end of our implementa-
tion of CATS, which we refer to as “CATS+”, to group similar
clusters. This also makes for a more fair comparison between
the CATS+ and StELa results. Our version of CATS was
written in Python, while the original CATS algorithm used a
combination of MATLAB, C++, and TCL.

Clustering Protein Fragments with StELa. Inspired by
the use of ¢ and y dihedral backbone angles as a CV for
describing the structure before determining similarity, we
developed our own in-house algorithm, StELa. The first
version of this algorithm was described in our previous work
where we used StELa to characterize the conformations of the
HBD tip in katanin.”* StELa is a double-clustering algorithm,
written in Python, which uses libraries such as SciPy and
sklearn.®>®® Similar to CATS, StELa first characterizes the
input structures per sample frame by using the calculated ¢/y
backbone torsion angles extracted from the MD trajectories.
This set of angles is the ideal descriptive reaction coordinate
for characterizing types of protein structures because it defines
the geometry observed in specific secondary structure
motifs.””*”*® These backbone angles are plotted together on
the Ramachandran plot, a classic tool for describing the
secondary structure. It has been well established that residues
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in secondary structures populate specific regions of this plot, in
particular @ helices and f strands.”>*” We take advantage of
this finding by applying the first round of clustering directly to
the ¢/w dimensions with the centroid based k-means
algorithm. In doing so, we determine the number of clusters
based on whether or not they split these well-defined regions
associated with a helices and f strands/sheets, as described in
Figure S9. We then convert each structure from a given
sampling of frames from MD into a representative vector
composed of cluster labels describing each region of the
Ramachandran plot. In doing so, we describe the local
structure of a residue in the protein fragment with a single
integer. In the previously reported version of our algorithm, we
then performed an automated biochemical correction of the
vector geometries to ensure that an « helix cannot be shorter
than four consecutive residues with at least two consecutive
residues between separated helices.”” In addition, we now
apply a similar check to the § sheet region of the plot, such that
 strands cannot be shorter than three consecutive residues.’®
To this corrected set of representative vectors, we then apply
complete linkage agglomerative hierarchical clustering with the
Euclidean distance metric as our second clustering step. In
complete linkage agglomerative clustering, structures are
sequentially grouped into larger clusters based on the
maximum distance between elements. The number of clusters
was chosen using statistical-based measurements called the
silhouette score, calculated with eq S2, and the Calinski—
Harabasz index, calculated with eq $3.°7°77* For representa-
tion of the resulting clusters in the FEL space, we chose the
representative structure by calculating the most probable
vector per position of the vectors for a given cluster and then
identifying a matching frame.

Evaluation of the Clustering Methods. Testing the
performance of the three methods on each of the protein
systems requires the use of a common measure. As previously
discussed, clustering of frames from MD simulations is
employed to extract the most dominant (largest Boltzmann
weight) states, with the goal of providing a more detailed view
of the conformational landscape. Therefore, the natural
measure of performance of a clustering approach is how well
the representative structures for each cluster describe the
respective protein FEL.*' Previous work®’ expressed the FEL
in the radius of gyration (Ry,) and the end-to-end distance
(Rgg) space. This choice, depicted in Figure S10a,c for the R2/
Tau and the HBD tip in a protomer, generally resulted in
single minima representations and the lumping of unique
structures, which indicates that R, and Rgg are not good
choices of reaction coordinates. The customarily used
representation of the FEL in the literature is in the PC
space. For example, the representation of the FEL in the
principal components 1 (PC1) and 2 (PC2) space has been
used in the past couple of years for various systems from
globular proteins to IDPs (including tau).**37°%73~77 There-
fore, to evaluate the performance of the clustering methods, we
chose to plot the FELs in the (PC1, PC2) space. We evaluated
the PCs based on the C-a atom of each residue using the
GROMACS" command gmx anaeig. The first two PCs are
representative of the most significant motions from a given
data set and are found to be distinct. The variance covered by
the first three PCs for each system, reported in Tables S6 and
S8, varied between 40% (for the R2/Tau) and 74% (for the
HBD tip). The explained variance of the first two PCs for R2/
Tau covered around 30%, for R4—R’/Tau covered over 40%,

https://doi.org/10.1021/acs.jcim.3c01511
J. Chem. Inf. Model. 2024, 64, 470—482


https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://github.com/Cheung-group/CATS
https://github.com/Cheung-group/CATS
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a..) StELa

i) ,Hii)

s 111. (iv.)

Figure 1. Centers of the identified clusters for the R2/Tau in water plotted on the FEL in the (PC1, PC2) space for each method: (a) StELa, (b)
RMSD, and (c) CATS+. The white star in (a) indicates the structure at the beginning of the simulation. Representative structures (i—v) are for the
minima indicated in (a). The N-terminal end of the structure is indicated with a black bead.

and for the HBD tip of katanin, it covered over 50%. To
determine whether the first two PCs are sufficient for
describing the FEL of tau, we plotted the FEL of tau fragments
projected onto the first three PC spaces (see Figure S11).
These plots show that the addition of PC3 (covering 7.0 and
8.5% of the variance for the R2/Tau and R4—R’/Tau systems,
respectively) does not describe any new minima compared to
the projection onto the (PC1, PC2) space. Importantly, the
FEL in the (PC1, PC2) space, for example, in Figure S10b,d,
showed additional minima and regions between them
compared to the (R, Rgg) space. The FELs in the (PCI,
PC2) space for all the systems tested in this work are shown in
Figures 1—4 and S14—S23. By plotting the cluster centers or
representatives resulting from each method on the correspond-
ing FEL, we can compare the degree to which a method
captures the conformational space. It is important to note that
we do not apply clustering to the FEL as done in other
studies.’””* The evaluation of how well a clustering method
performs is based on how well the resulting cluster centers
cover the FEL minima and the states around and between
minima, without populating the entire space, i.e., while still
differentiating between the input conformations.
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B RESULTS

StELa Selects an Optimal Number of Clusters by
Using Statistical Checkpoints in a Second Clustering
Step to Determine the Number of Unique Structures.
One of the main challenges encountered when using clustering
algorithms, which stems from their unsupervised learning
origin, is the decision on the number of selected clusters. For
example, in the case of secondary structures, this means how
many unique structures are found in the data set. In our StELa
algorithm, this challenge appears in the second step, when
using the complete linkage hierarchical clustering. To address
this challenge, we relied on statistical-based measures such as
the silhouette score and the Calinski—Harabasz index which
yield a score versus the number of clusters.”>’*~"* A maximum
(usually local) in either of these two scores signals the number
that results in the best separation of the clusters, thus
indicating the optimal number of clusters. More often than
not, we found the two scoring methods to be in agreement in
their selection of the number of clusters, as shown in Figure
S12. An additional checkpoint consists of the analysis of the
corresponding dendrogram, an example of which is shown in
Figure S13, to determine if the breakdown of the selected
number of clusters agrees with the organization of the
dendrogram.”® The final checkpoint consists of the analysis
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Figure 2. Centers of the identified clusters for the R4—R’/Tau in water plotted on the FEL in (PC1, PC2) space for each method: (a) StELa, (b)
RMSD, and (c) CATS+. The white star in (a) indicates the structure at the beginning of the simulation. Representative structures (i—iv) are for the
minima indicated in (a). The N-terminal end of the structure is indicated with a black bead.

of each of the resulting clusters to ensure that the selected
number of clusters adequately separates unique structures. The
number of clusters identified by each algorithm for the various
systems probed is reported in Tables S7—S10. Across all of the
katanin protomers included in this study, we found the number
of clusters to be around 13 for the HBD tip. In turn, for the
R2/Tau, we found around 20 clusters, and for R4—R’/Tau, we
needed 23 clusters to describe the respective conformational
spaces. Our results show that, in general, the more disordered
the fragment, the higher the number of clusters that get
selected by StELa. Importantly, for all of the systems, the
number of clusters is small enough to make it manageable for
future analysis. In turn, the RMSD-based algorithm for katanin
identified around 30 clusters for each of the monomers, around
20 clusters for protomers A and B, regardless of the presence of
the cofactors, and around 75 clusters for protomer C. For R2/
Tau, under each of the solvent conditions, the RMSD-based
algorithm identified over 1500 clusters. Finally, the CATS+
algorithm selected fewer than 15 clusters across all of the
systems probed in our study. Next, we discuss in detail the
results for each protein system probed with the three clustering
algorithms.

Selection of Representative States from Small
Intrinsically Disordered Protein Fragments: R2/Tau.
Previous work on the R2 fragment of tau focused on studying
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the effects of different solvents on the conformational space of
this peptide, which can influence its aggregation propen-
sity.zo'37 The FELs in the PC space, shown in Figures 1, S14,
and S15, provide insight into how the different solvents affect
the conformational landscapes. We found that all of the
landscapes are generally characterized by one main basin with
multiple minima separated by low energy barriers. In water, (a)
three main minima were identified, separated by comparatively
higher barriers than those found for the TMAO (b) or urea (c)
solvents. R2/Tau in TMAO, the solvent used to induce
aggregation, sampled three distinct minima. In contrast, R2/
Tau in urea, the solvent used to prevent the formation of
secondary structure, was largely confined to a single minimum.

The cluster centers or representatives found with each
clustering method for the R2/Tau fragment in water are listed
in Figure 1. The structures corresponding to the five potential
minima of interest from the FEL, indicated in panel (a), are
shown in the, respective, (i—v) snapshots.

The FEL plot shows two deeper minima, one in the upper
region (i), which corresponds to a bent loop, and one toward
the middle region (v), which corresponds to a loop with some
helical characteristics. The RMSD-based algorithm, depicted in
panel (b), struggled to find any similarity between the probed
loop structures, resulting in a large number of clusters that
cover most of the space.”” The CATS+ algorithm from panel
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Figure 3. Centers of the identified clusters for the HBD tip of the monomer COMPLEX setup plotted on the FEL in (PC1, PC2) space for each
method: (a) StELa, (b) RMSD, and (c) CATS+. The white star in (a) indicates the structure at the beginning of the simulation. Representative
structures (i—vi) are for the minima indicated in (a). The N-terminal end of the structure is indicated with a black bead.

(c) identified all but one minimum; however, the resulting
populations, shown in Table 1, used to represent the two
deeper minima are <1% for (i) and (v), which is unexpected
considering their low energy, thus their high Boltzmann
weight. The majority of the population is located in the
clusters from region (iii), with the remaining population
contributing primarily to region (ii). In addition, CATS+ did
not identify any states between the minima.

The StELa clusters identified each of the five regions and
with populations closer to the expected range, such that the
majority of the structures populated regions (i) and (ii). The
remaining population was located in clusters representing
structures from higher-energy states, located around and
between the minima. The above trends found in the RMSD-
based and CATS+ algorithms persisted across the different
solvent systems, as shown in Figure S14, for TMAO and in
Figure S15 for urea. Interestingly, the FEL from the TMAO
setup showed that region (i) corresponds to a folded fS-sheet.
CATS+ did identify a cluster near this area characterized by
the folded f-sheet conformation; however, the population was
only 0.3%, whereas StELa found it to be 15%. The most
striking difference between the clustering for R2/Tau
according to the three methods was in the populations of
the clusters, most notably of the largest cluster, as detailed in
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Tables S9—S11. The population of the largest cluster for the
RMSD-based algorithm was 4%, that for CATS+ was 85%, and
that for StELa was 28%. This cluster for the RMSD-based and
StELa algorithms is located in region (ii), while for CATS+, it
is found in region (iii). The very large population of the largest
cluster for CATS+ is indicative of a clustering algorithm that
would result in a distorted conformational space, centered on
one deep minimum, while most of the space is left
unrepresented. These results illustrate the difficulty in grouping
together structures from the MD data sets.

Selection of Representative States from Large
Intrinsically Disordered Protein Fragments: R4—R’/
Tau. We tested the performance of the clustering algorithms
when applied to a longer IDP: a 121-residue long portion of
Tau, consisting of the fourth repeat in the MT-binding domain
and the adjacent pseudorepeat located toward the N-terminal.
The FEL in the (PCI1, PC2) space (Figure 2) shows four
minima (i—iv), with (ii) and (iii) located in a shared basin and
separated by a relatively low energy barrier. Minima (i) and
(iv) are separated from this basin and each other by larger
barriers. This is notable compared to the shorter R2/Tau
system, whose FEL exhibited only low energy barriers between
the minima. Figure 2 depicts the cluster centers from each of
the three algorithms plotted on the FEL. The populations of
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Figure 4. Centers for the identified clusters for the HBD tip of protomer B from the ring—ABC—APO setup plotted on the FEL in PC1/PC2 space
for each method: (a) StELa, (b) RMSD, and (c) CATS+. The white star in (a) indicates where the structure is at the beginning of the simulation.
Representative structures (i—v) are for the minima indicated in (a). The N-terminal end of the structure is indicated with a black bead.

Table 1. Collective Populations for the Clusters Found in
Each Minimum from Figure 1

FEL region CATS+ (%) StELa (%)
i 0.2 20
ii S 28
iii 9S 9
iv - 0.8
v 0.3 12

the top five largest clusters for each of the three methods are
given in Table S12. This clearly shows that CATS+ finds only a
single cluster, with a representative frame in minimum (iid).
The RMSD-based algorithm identifies over 300 clusters, with
the centers being distributed across most of the FEL. The
largest cluster has a population of 18%. In contrast, StELa is
the only algorithm able to successfully locate a reasonable
amount (23) of well-sized clusters that are spread across all
four minima and nearby states.

States from a Tertiary Protein Fragment: the HBD Tip
of the Katanin Monomer. In a previous study, we
determined the effects of binding the associated cofactors,
ATP and the MT minimal substrate, on the structural stability
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of lower-order oligomers of katanin.”* The HBD tip fragment,
taken from the tertiary structure of the katanin monomer as
described in the Methods, has well-defined FELs in the various
setups (Figures 3 and S16—S18). The fragment from the
monomer in the NUCLEOTIDE setup (b) resulted in
relatively more shallow energy barriers in comparison to the
other setups but still high in comparison to the barriers found
in the R2/Tau FEL. The FEL for the COMPLEX (a) and
SUBSTRATE (c) setups resulted in minima separated by high
and wide energy barriers along the PC1. We noticed that the
FELs for these katanin monomers have a similar number of
well-defined regions, with the change in energy barriers
reflecting their dependence on the presence of the cofactors.
The FEL for the COMPLEX setup of the katanin monomer
has six minima, as indicated in Figure 3a, with the
representative structures plotted in (i—vi). The deepest
minima are (i) and (iii), which are characterized by structures
differentiated by the length of the helix and the orientation of
the loop region. The more shallow region (ii) corresponds to
the C-terminal helix being similar in length to that in region
(iii) but with the orientation of the N-terminal loop being
more similar to the one found in region (i). Thus, this region
of the FEL could correspond to a potential intermediate state
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between (i) and (iii). There is a large and wide barrier
described by PC1 to another group of minima in the landscape
where structures (iv—vi) are found. The structure in region
(iv) corresponds to a state where the N-terminal loop
transitioned into a 3—10 helix, according to the STRIDE
assignment with VMD.”® The structures that represent regions
(v) and (vi) correspond to loop regions and a helix of varying
length. For this well-defined tertiary structure of the fragment
from the katanin monomer, the RMSD-based algorithm in (b)
finds a smaller number of clusters in comparison to those
found for the tau fragments (Tables S9—S12), but the
corresponding cluster centers populate only the (jii) region.
CATS+, shown in (c), only identifies three clusters, all of
which are localized in region (i). In contrast, StELa, shown in
(a), yields clusters whose centers cover all the minima and the
states between them, including the potentially intermediate
from region (ii). The largest cluster for the RMSD-based
algorithm was 58% and corresponded to region (iii), for CATS
+, it was 56% and corresponded to region (i), and for StELa, it
was 30% and corresponded to region (iii). For the other setups
of the katanin monomer, shown in Figures S20—S22, similar
sets of representative structures were identified, corresponding
to the various minima. The RMSD-based algorithm sampled
two of the minima found for the NUCLEOTIDE setup, one
for the SUBSTRATE setup, and four for the APO setup. CATS
+ identified three minima for the NUCLEOTIDE setup, two
for the SUBSTRATE setup, and two for the APO setup. StELa
did fail to characterize one minimum in the APO setup for the
katanin monomer that was captured with the RMSD-based
algorithm; however, the RMSD-based algorithm failed to
represent three other well-defined areas as well.

Selection of Representative States from a Protein
Fragment in Quaternary Assemblies: The HBD Tip of
Each Protomer from the Katanin Ring Trimer. In our
previous study, we characterized the effects of the interpro-
tomer interface formation (i — 1, i and i + 1, i) on the
conformational flexibility and allostery of severing enzyme
protomers in dimers and trimers.”* Our analysis showed that
the ring ABC trimer was the least-stable quaternary
configuration, characterized by the dissociation of protomer
A due to the increase in disorder of its NBD due to the lack of
the nucleotide.”® This movement resulted in bending and
conformational changes in the HBD tip of protomer B, which
in turn allowed it to preserve its contacts with protomer C.
The lack of the concave interface in C led to more flexible
structures in its HBD tip. The characterization of the HBD tip
region in each of the protomers was particularly important for
understanding the inner working of the katanin oligomers: the
persistence of contacts between the HBD tip fragment of
protomer i and the NBD of protomer i + 1 is essential for the
stability of any quaternary assembly. It thus comes as no
surprise that the FELs for each protomer of the ring ABC
trimer in the COMPLEX and APO setups are distinct,
depending on the bound cofactors and the presence of
different types of interfaces (Figures 4 and S19-—S23).
Moreover, these profiles are also distinct from the correspond-
ing FELs of the katanin monomer, which supports the idea that
the HBD tip experiences conformational changes due to the
presence of the specific interprotomer interfaces of the
quaternary ensembles.

The FEL for protomer B in the APO setup, from Figure 4, is
particularly interesting due to the unique structures corre-
sponding to a bent helix in the HBD tip. In this FEL, region
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(iv) contains a structure resembling the starting structure, and
region (i) corresponds to the formation of a helix at the N-
terminal end of the fragment. Regions (ii) and (iii) are
separated by low-energy barriers from regions (i) and (iv). The
structure associated with region (ii) has a single turn helix at
the N-terminal end and a helix at the C-terminal end. The
structure associated with region (iii) has a loop at the N-
terminal end and a dramatically bent helix at the C-terminal
end. As pointed out above, based on the putative intermediate
state in the COMPLEX setup of the monomer, these regions
likely correspond to two intermediate states between the
loop—helix structure and the helix—helix structure. Region (v)
is broad but relatively shallow, and it is separated by a high
energy barrier from the other regions. This region corresponds
to a flexible structure with a single-turn helix in the middle of
the fragment. The RMSD-based algorithm (b) identified
regions (iv) and (iii), while CATS+ (c) identified clusters from
(i), (iv) and (v) but did not identify the described
intermediate regions (ii) and (iii). In contrast, StELa (a)
identified each indicated region. The results obtained using
StELa were key in determining that the unique behavior of the
conformational space of protomer B is due to the persistance
of its contacts with the NBD of protomer C.”* In the
COMPLEX state, shown in Figure S21, the FEL for protomer
B presents five regions of interest. Regions (i) and (ii) are close
to each other in space and configurations, being separated by
medium energy barriers and corresponding to various N-
terminal loop orientations and C-terminal helix lengths. Region
(v) represents a similar C-terminal helix, but it is higher in
energy due to a tight turn and coiled loop arrangement. Region
(iv) corresponds to a bent C-terminal helix, similar to that
found in the APO setup. StELa identified clusters correspond-
ing to each of these regions, while the RMSD-based algorithm
only identified two and CATS+ identified three regions. In
summary, the analysis of the FELs in the (PC1, PC2) space for
the HBD tip of the lower-order katanin oligomers showed that
only the use of a clustering algorithm such as StELa, which
employs an accurate representation of the unique types of
secondary structures adopted by protein fragments, allows for
the identification of all of the important energy states. This in
turn provided useful insight into the influence of the cofactors
and of the interfaces for the structural and functional behavior
of katanin. A full description and comparison of the results for
each of the protomers in the ring trimer in the presence and
absence of the binding cofactors can be found in the
Supporting Information.

B DISCUSSION AND CONCLUSIONS

Unsupervised Machine Learning Offers Powerful
Tools for Describing and Extracting Representative
Protein Structures. Computational tools such as MD
simulations allow us to access the conformational landscape
of proteins in atomistic detail under dynamic equilibrium
conditions.'* The challenge of identifying the rich structural
variety from MD data is due to the sheer size of the system,
which makes the identification of the number and the identity
of the unique states a very challenging problem. Because
usually there is little or no prior knowledge regarding the
number of the representative states, unsupervised learning
methods such as clustering are the only types of machine
learning tools that can be employed to identify subgroups from
a data set.”” Effective clustering approaches, however, are
highly dependent on whether the intention is to study more
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global structural changes of larger systems or focus more on
local shifts such as with IDPs, where the vast array of sampled
conformations require more detailed CVs.””*" Characterizing
these disordered or flexible regions, often associated with
functional regions, allows for the description of changes to the
conformational landscape in different environments or due to
ligand binding, which is crucial to understanding enzymatic
mechanisms. Accessing these states is a starting point for
identifying functionally relevant conformations, determining
structures appropriate for docking, or for accelerated
simulations to further interrogate the conformational space
of the protein of choice.”’ Additional challenges associated
with clustering are the determination of the number of
clusters/states. Importantly, it is also possible to think of
approaches that perform a clustering of the initial set of
clusters to further reduce the data complexity and collectively
describe the structures from a simulation.*”

RMSD-Based Clustering Captures Large Global
Changes but Struggles to Determine Similarity for
IDPs and Secondary Structures in Parts of Globular
Proteins. We found that the standard RMSD-based algorithm
favors one large primary cluster that usually gravitates toward a
folded native structure, which can be particularly useful for
well-defined protein structures that generally maintain that
same shape, as observed for many tertiary structures of
globular proteins.”'* This is particularly useful when the goal
is to describe global tertiary or quaternary sampled states, as
found in previous studies."** Unlike globular proteins, IDPs
are characterized by broad conformational landscapes and
shallow energy barriers. As a result, they tend to populate a rich
variety of structures, which makes it difficult for algorithms to
appropriately identify the similarity between states. The
RMSD-based algorithm, which determines similarity based
on an RMSD cutoff, struggled to describe short or long IDP
fragments, as it produced a large number of small clusters.®”
This is further demonstrated by the significantly overlapping
RMSD distributions that we found for R2/Tau (Figure S24).
The RMSD algorithm has better performance when applied to
the HBD tip region from the tertiary and quaternary protein
structures and results in similar populations for the largest
clusters, as listed in Tables S13—S18; however, it only
characterized one or two of the identified minima in each
system, which were usually the lowest in energy. While these
minima described states considered to be the most populated,
it failed to describe the full conformational space as it missed
or over-represented key regions of interest. The minima that
corresponded to the helix—helix conformation, that we
previously associated with ligand binding, were not well
represented by the RMSD-based algorithm. For example, this
state was missing in the trimer-A-COMPLEX setup (Figure
S19b) and was over-represented in the monomer-SUB-
STRATE setup (Figure S17b). In conclusion, the RMSD-
based clustering does not reflect the atomistic detail required
for determining similarity in IDP states, as previously
reported,” or for characterizing local secondary structures in
folded proteins, as seen in the monomers and trimers of
katanin.

Reducing the Backbone Torsion Angles to a Single
Dimension Allows for Better Structural Character-
ization Prior to Clustering of Protein Structures. To
address the challenge of finding a more useful similarity metric,
Cheung and Ezerski created the CATS algorithm, based on the
@ and y backbone torsion angles, which is a well-known and
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detailed internal descriptor for the secondary structures of
proteins.”” Prior to determining similarity, the user describes
the structure with a chosen number of labels from Gaussian
distributions of the ¢ angle and then the y angle. The
algorithm then defines similarity based on whether or not two
vectors are found to be identical, which takes additional time.>”
The longer the protein, the longer the time it takes to make
these decisions. One of the drawbacks they observed for the
clustering of R2/Tau was that, similar to the RMSD-based
algorithm, CATS identifies a large number of small clusters.
When an additional clustering step, using k-means, is applied
to the resulting clusters, CATS+ identifies no more than 10
similar clusters for the tau data sets. Even more striking is the
fact that CATS+ only identified one cluster for the longer tau
fragment (R4—R’) (Figure 2c). Similar to the RMSD-based
algorithm, we found that the clusters extracted with CATS+
resulted in a poor representation of the FEL regions and, at
times, did not identify regions of the landscape at all, as seen in
the R2/Tau TMAO setup (Figure S14c). When clustering the
katanin data sets, CATS+ provided a relatively reasonable set
of clusters compared to the tau results, but it still struggled
with misrepresenting and identifying the minima and states
around them, as observed in more challenging landscapes from
the COMPLEX setup of the monomer (Figure 3c) of
protomer B in the APO setup (Figure 4c) and of protomer
C in the COMPLEX and APO setups (Figures S22c and
S23c). Additionally, one of the reported limitations of CATS
was its ability to characterize the regions associated with f
strands and sheets that are found in abundance in the R2/Tau
simulations.”” The Ramachandran plots for R2/Tau had a
relative higher density in the f region in comparison to the
HBD tip of Katanin, as shown in Figure S25, signaling the
importance of finding a better way to describe # strands and
sheets than the approach employed by CATS. By considering
the @ and y angles together and reducing the two dimensions
into one using centroid cluster labels, our StELa approach was
able to overcome this shortcoming of CATS in characterizing
all the major protein secondary structures.

StELa Identifies Unique Regions from the Free
Energy Landscape for IDPs and Secondary Structures.
Characterizing the protein fragments prior to clustering, as
done by Cheung and Ezerski, opens up exciting doors for
probing local conformational transitions.”” Inspired by CATS,
StELa uses the Ramachandran plot more holistically to
describe proteins and defined helices as at least four helical
angles and a f strand as at least three angles in the /3 region.
StELa then determined the number of states for each setup
using statistical scoring methods and applied hierarchical
clustering directly to these enhanced descriptive vectors. In our
algorithm, we employed the maximum Euclidean distance
between vectors to signal similarity (complete linkage). The
KMeans and hierarchical clustering functions from sklearn and
SciPy are quite efficient at handling the data set.">% The
resulting clusters from StELa were striking. The clusters for the
tau data sets more appropriately represented and identified
unique regions from the FEL in each of the solvent
environments. This was particularly true with regard to the
significantly longer R4—R’ fragment. Similarly, the clusters
identified from the katanin data sets sampled the landscape
well, only missing a minimum of interest in the monomer-APO
setup (Figure S18a) and the trimer—C—COMPLEX setup
(Figure S22a), although neither the RMSD-based nor CATS+
captured these two minima. For each system, the cluster
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centers from CATS+ oftentimes were found to occupy main
minima. The centers from RMSD-based clustering were spread
out for the IDP systems, identifying high- and low-energy
states. However, for the katanin systems, the centers generally
fell into main minima for the katanin systems, often ignoring
other regions identified as significant by the FEL. In contrast,
the cluster centers from StELa identified the majority of the
minima, as well as the higher-energy regions between the
minima for both the IDP and katanin systems.

In our previous study, we used StELa to characterize the
observed changes in the HBD tip for various lower-order
oligomers of katanin.”* The results of this analysis identified a
state that resembled the structure described by cryo-EM
(loop—helix) and a state that was unique to the binding ligands
in the monomer (helix—helix). In the dimers and trimers, we
identified additional more flexible and potential intermediate
states that were unique to the protein—protein interactions of
the protomers. This analysis was the key to understanding the
stability and allostery of these assemblies as well as the overall
hexamer. This would have been a challenge, or even
impossible, to characterize and understand using the RMSD-
based algorithm or CATS, as the resulting cluster centers do
not cover the energy landscape well, being unable to identify
all of the minima and the states between them.

Dihedral Angle-Based Clustering Algorithms Are
Challenged by the Presence of Substantial f-Sheet
Structures. The ability of StELa to correctly cluster structures
depends on how well the initial centroid-based clustering step
separates the regions in the Ramachandran plot, which we
found to generally perform better in katanin than in tau.
Notably, the fewer centroids used, the less distinct the resulting
vectors are going to be. Furthermore, similar to CATS, StELa
found it challenging to characterize the f region. The f region
of the Ramachandran plot includes straight § strands as well as
sheets, and StELa has no way of identifying a difference
between consecutive straight f strands and the sheet
conformation, which is tertiary in nature, although it does a
very good job of characterizing and identifying o helices.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01511.

Additional computational details and methods, addi-
tional details of clustering the quaternary assemblies,
details of results, convergence tests, choices of cut-offs,
and clustering examples (PDF)

B AUTHOR INFORMATION

Corresponding Author
Ruxandra I. Dima — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States;
orcid.org/0000-0001-6105-7287; Phone: +1 (513) 556-
3961; Email: ruxandra.dima@uc.edu; Fax: +1 (513) 556-
9239

Authors
Amanda C. Macke — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States
Jacob E. Stump — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States

480

Maria S. Kelly — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States

Jamie Rowley — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States

Vageesha Herath — Department of Chemistry, University of
Cincinnati, Cincinnati, Ohio 45221, United States;
Department of Chemistry, Emory University, Atlanta,
Georgia 30322, United States

Sarah Mullen — Department of Chemistry, The College of
Wooster, Wooster, Ohio 44691, United States; Department of
Chemistry, Virginia Tech, Blacksburg, Virginia 24061,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.3c01511

Notes

The authors declare no competing financial interest.

The MD trajectory input files for the various systems simulated
by the Dima group and tested in this work are available on our
GitHub page. The code for StELa can be found on our GitHub
page at https://github.com/DimaUClab/StELa-Protein-
Structure-Clustering-Algorithm.

B ACKNOWLEDGMENTS

We thank Joan-Emma Shea and Margaret Cheung for
providing the MD simulations files for TAU/R2 as well as
Rohith Anand Varikoti for the MD simulation files for the
katanin monomers. This research was funded by the National
Science Foundation (NSF) MCB-1817948 (to RID). S.M. was
supported through the NSF Research Experience for Under-
graduates in Chemistry grant CHE-1950244. This work used
the Extreme Science and Engineering Discovery Environment
(XSEDE) through allocation TG-BI0210094 to R.LD.

B REFERENCES

(1) Ahmad, E; Rabbani, G.; Zaidi, N.; Khan, M. A.; Qadeer, A;
Ishtikhar, M.; Singh, S.; Khan, R. H. Revisiting ligand-induced
conformational changes in proteins: essence, advancements, implica-
tions and future challenges. J. Biomol. Struct. Dyn. 2013, 31, 630—648.

(2) Bailey, M. E,; Jiang, N.; Dima, R. I; Ross, J. L. Invited review:
Microtubule severing enzymes couple atpase activity with tubulin
GTPase spring loading. Biopolymers 2016, 105, 547—556.

(3) Alushin, G. M; Lander, G. C.; Kellogg, E. H.; Zhang, R; Baker,
D.; Nogales, E. High-Resolution Microtubule Structures Reveal the
Structural Transitions in @f-Tubulin upon GTP Hydrolysis. Cell
2014, 157, 1117—1129.

(4) Zhang, R; Alushin, G. M.; Brown, A.; Nogales, E. Mechanistic
Origin of Microtubule Dynamic Instability and Its Modulation by EB
Proteins. Cell 20185, 162, 849—859.

(5) Zehr, E. A.; Szyk, A.; Piszczek, G.; Szczesna, E.; Zuo, X.; Roll-
Mecak, A. Katanin spiral and ring structures shed light on power
stroke for microtubule severing. Nat. Struct. Mol. Biol. 2017, 24, 717—
725.

(6) Zehr, E. A; Szyk, A.; Szczesna, E.; Roll-Mecak, A. Katanin Grips
the A-Tubulin Tail through an Electropositive Double Spiral to Sever
Microtubules. Dev. Cell 2020, 52, 118—131.e6.

(7) Russell, R. B; Alber, F.,; Aloy, P.; Davis, F. P.; Korkin, D.;
Pichaud, M.; Topf, M.; Sali, A. A structural perspective on protein-
protein interactions. Curr. Opin. Struct. Biol. 2004, 14, 313—324.

(8) McGauffin, L. J.; Bryson, K; Jones, D. T. The PSIPRED protein
structure prediction server. Bioinformatics 2000, 16, 404—405.

9) Jumper, J.; Evans, R,; Pritzel, A; Green, T.; Figurnov, M,
Ronneberger, O.; Tunyasuvunakool, K. Bates, R; Zidek, A;
Potapenko, A.; Bridgland, A.; Meyer, C,; Kohl, S. A. A; Ballard, A.
J; Cowie, A;; Romera-Paredes, B.; Nikolov, S.; Jain, R,; Adler, J;

https://doi.org/10.1021/acs.jcim.3c01511
J. Chem. Inf. Model. 2024, 64, 470—482


https://pubs.acs.org/doi/10.1021/acs.jcim.3c01511?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c01511/suppl_file/ci3c01511_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruxandra+I.+Dima"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6105-7287
https://orcid.org/0000-0001-6105-7287
mailto:ruxandra.dima@uc.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amanda+C.+Macke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+E.+Stump"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+S.+Kelly"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jamie+Rowley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vageesha+Herath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+Mullen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01511?ref=pdf
https://github.com/DimaUClab/StELa-Protein-Structure-Clustering-Algorithm
https://github.com/DimaUClab/StELa-Protein-Structure-Clustering-Algorithm
https://doi.org/10.1080/07391102.2012.706081
https://doi.org/10.1080/07391102.2012.706081
https://doi.org/10.1080/07391102.2012.706081
https://doi.org/10.1002/bip.22842
https://doi.org/10.1002/bip.22842
https://doi.org/10.1002/bip.22842
https://doi.org/10.1016/j.cell.2014.03.053
https://doi.org/10.1016/j.cell.2014.03.053
https://doi.org/10.1016/j.cell.2015.07.012
https://doi.org/10.1016/j.cell.2015.07.012
https://doi.org/10.1016/j.cell.2015.07.012
https://doi.org/10.1038/nsmb.3448
https://doi.org/10.1038/nsmb.3448
https://doi.org/10.1016/j.devcel.2019.10.010
https://doi.org/10.1016/j.devcel.2019.10.010
https://doi.org/10.1016/j.devcel.2019.10.010
https://doi.org/10.1016/j.sbi.2004.04.006
https://doi.org/10.1016/j.sbi.2004.04.006
https://doi.org/10.1093/bioinformatics/16.4.404
https://doi.org/10.1093/bioinformatics/16.4.404
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M,;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K; Kohli, P.;
Hassabis, D. Highly accurate protein structure prediction with
AlphaFold. Nature 2021, 596, 583—589.

(10) Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.;
Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Zidek, A,;
Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.;
Green, R.; Vora, A,; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N,;
Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S.
AlphaFold Protein Structure Database: massively expanding the
structural coverage of protein-sequence space with high-accuracy
models. Nucleic Acids Res. 2022, 50, D439—D444.

(11) Ruff, K. M,; Pappu, R. V. AlphaFold and Implications for
Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208.

(12) Miskei, M.; Horvath, A.,; Vendruscolo, M.; Fuxreiter, M.
Sequence-Based Prediction of Fuzzy Protein Interactions. J. Mol. Biol.
2020, 432, 2289—2303.

(13) Receveur-Brechot, V.; Durand, D. How random are intrinsically
disordered proteins? A small angle scattering perspective. Curr. Protein
Pept. Sci. 2012, 13, S5-75.

(14) Daura, X.; van Gunsteren, W. F.; Mark, A. E. Folding-Unfolding
Thermodynamics of a B-Heptapeptide From Equilibrium Simulations.
Proteins: Struct.,, Funct, Genet. 1999, 34, 269—280.

(15) Wright, P. E,; Dyson, H. Intrinsically unstructured proteins:
reassessing the protein structure-function paradigm. J. Mol. Biol. 1999,
293, 321-331.

(16) van der Lee, R; Buljan, M,; Lang, B.; Weatheritt, R. J;
Daughdrill, G. W.; Dunker, A. K.; Fuxreiter, M.; Gough, J.; Gsponer,
J.; Jones, D. T.; Kim, P. M.; Kriwacki, R. W.; Oldfield, C. J.; Pappu, R.
V., Tompa, P.,; Uversky, V. N,; Wright, P. E; Babu, M. M.
Classification of Intrinsically Disordered Regions and Proteins. Chem.
Rev. 2014, 114, 6589—6631.

(17) Levine, Z. A.; Shea, J.-E. Simulations of disordered proteins and
systems with conformational heterogeneity. Curr. Opin. Struct. Biol.
2017, 43, 95—103.

(18) Venkatramani, A.; Panda, D. Regulation of neuronal micro-
tubule dynamics by tau: Implications for tauopathies. Int. J. Biol
Macromol. 2019, 133, 473—483.

(19) Eschmann, N. A;; Do, T. D.; LaPointe, N. E.; Shea, J.-E.;
Feinstein, S. C.; Bowers, M. T.; Han, S. Tau Aggregation Propensity
Engrained in its Solution State. J. Phys. Chem. B 2015, 119, 14421—
14432.

(20) Levine, Z. A,; Larini, L.; LaPointe, N. E.; Feinstein, S. C.; Shea,
J.-E. Regulation and aggregation of intrinsically disordered peptides.
Proc. Natl. Acad. Sci. US.A. 2018, 112, 2758—2763.

(21) Jahn, T. R;; Radford, S. E. The Yin and Yang of protein folding.
FEBS J. 2008, 272, 5962—5970.

(22) Grundke-Igbal, L; Igbal, K.; Tung, Y.; Quinlan, M.; Wisniewski,
H.; Binder, L. Abnormal phosphorylation of the microtubule-
associated protein tau (tau) in Alzheimer cytoskeletal pathology.
Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 4913—4917.

(23) Lyons, A. J.; Gandhi, N. S.; Mancera, R. L. Molecular dynamics
simulation of the phosphorylation-induced conformational changes of
a tau peptide fragment. Proteins: Struct, Funct, Bioinf. 2014, 82,
1907—-1923.

(24) Macke, A. C.; Kelly, M. S.; Varikoti, R. A,; Mullen, S.; Groves,
D.; Forbes, C,; Dima, R. I. Microtubule severing enzymes
oligomerization and allostery: a tale of two domains. J. Phys. Chem.
B 2022, 126, 10569—10586.

(25) Nithianantham, S.; McNally, F. J.; Al-Bassam, J. Structural basis
for disassembly of Katanin heterododecamers. J. Biol. Chem. 2018,
293, 10590—10605.

(26) Pfaendtner, J.; Lyman, E; Pollard, T. D.; Voth, G. A. Structure
and Dynamics of the Actin Filament. J. Mol. Biol. 2010, 396, 252—
263.

(27) Pfaendtner, J.; De La Cruz, E.; Voth, G. A. Actin filament
remodeling by actin depolymerization factor/cofilin. Proc. Natl. Acad.
Sci. U.S.A. 2010, 107, 7299—7304.

481

(28) Mani, S.; Katkar, H. H.; Voth, G. A. Compressive and Tensile
Deformations Alter ATP Hydrolysis and Phosphate Release Rates in
Actin Filaments. J. Chem. Theory Comput. 2021, 17, 1900—1919.

(29) Lukin, J. A.; Kontaxis, G.; Simplaceanu, V.; Yuan, Y.; Bax, A;
Ho, C. Quaternary structure of hemoglobin in solution. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 517—520.

(30) Ingram, V. Gene Mutations in Human Hamoglobin: the
Chemical Difference Between Normal and Sickle Cell Hemoglobin.
Nature 1957, 180, 326—328.

(31) Maity, D.; Pal, D. Molecular Dynamics of Hemoglobin Reveals
Structural Alterations and Explains the Interactions Driving Sickle
Cell Fibrillation. J. Phys. Chem. B 2021, 125, 9921—9933.

(32) Henry, E. R;; Bettati, S.; Hofrichter, J.; Eaton, W. A. A tertiary
two-state allosteric model for hemoglobin. Biophys. Chem. 2002, 98,
149—-164.

(33) de Souza, V. C.; Goliatt, L.; Capriles Goliatt, P. V. Z. Clustering
algorithms applied on analysis of protein molecular dynamics. 2017
IEEE Latin American Conference on Computational Intelligence (LA-
CCI); 1EEE, 2017; Vol. 1—6.

(34) Peng, J.-h.; Wang, W.; Yu, Y.-q.; Gu, H.-L; Huang, X. Clustering
algorithms to analyze molecular dynamics simulation trajectories for
complex chemical and biological systems. Chin. J. Chem. Phys. 2018,
31, 404—420.

(35) Kufareva, I; Abagyan, R. Methods of protein structure
comparison. Methods Mol. Biol. 2012, 857, 231-257.

(36) De Paris, R;; Quevedo, C. V.; Ruiz, D. D. A,; Norberto de
Souza, O. An Effective Approach for Clustering InhA Molecular
Dynamics Trajectory Using Substrate-Binding Cavity Features. PLoS
One 20185, 10, No. e0133172.

(37) Ezerski, J. C.; Cheung, M. S. CATS: A Tool for Clustering the
Ensemble of Intrinsically Disordered Peptides on a Flat Energy
Landscape. J. Phys. Chem. B 2018, 122, 11807—11816.

(38) Yuan, Y.; Deng, J.; Cui, Q. Molecular Dynamics Simulations
Establish the Molecular Basis for the Broad Allostery Hotspot
Distributions in the Tetracycline Repressor. J. Am. Chem. Soc. 2022,
144, 10870—10887.

(39) Janson, G.; Valdes-Garcia, G.; Heo, L.; Feig, M. Direct
generation of protein conformational ensembles via machine learning.
Nat. Commun. 2023, 14, 774.

(40) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E.; Berendsen, H. J. C. GROMACS:Fast, flexible and free. J.
Comput. Chem. 2008, 26, 1701—1718.

(41) Hess, B; Kutzner, C; van der Spoel, D.; Lindahl, E.
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and
Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4,
435—437.

(42) Abraham, M.; Murtola, T.; Schulz, R.; P4ll, S.; Smith, J.; Hess,
B.; Lindahl, E. GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers.
SoftwareX 2018, 1-2, 19-25.

(43) Weerasinghe, S.; Smith, P. E. A Kirkwood-Buff derived force
field for sodium chloride in water. J. Chem. Phys. 2003, 119, 11342—
11349.

(44) Larini, L.; Shea, J.-E. Double resolution model for studying
TMAO /water effective interactions. J. Phys. Chem. B 2013, 117,
13268—13277.

(45) Kaminski, G. A.; Stern, H. A.; Berne, B.; Friesner, R. A.; Cao, Y.
X.; Murphy, R. B; Zhou, R; Halgren, T. A. Development of a
polarizable force field for proteins via ab initio quantum chemistry:
First generation model and gas phase tests. J. Comput. Chem. 2002,
23, 1515—1531.

(46) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.,; Klein, M. L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 1983, 79, 926—935.

(47) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis,
J. L; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials
for the Amber ff99SB protein force field. Proteins: Struct, Funct,
Bioinf. 2010, 78, 1950—1958.

https://doi.org/10.1021/acs.jcim.3c01511
J. Chem. Inf. Model. 2024, 64, 470—482


https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1016/j.jmb.2021.167208
https://doi.org/10.1016/j.jmb.2021.167208
https://doi.org/10.1016/j.jmb.2020.02.017
https://doi.org/10.2174/138920312799277901
https://doi.org/10.2174/138920312799277901
https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
https://doi.org/10.1006/jmbi.1999.3110
https://doi.org/10.1006/jmbi.1999.3110
https://doi.org/10.1021/cr400525m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.sbi.2016.11.006
https://doi.org/10.1016/j.sbi.2016.11.006
https://doi.org/10.1016/j.ijbiomac.2019.04.120
https://doi.org/10.1016/j.ijbiomac.2019.04.120
https://doi.org/10.1021/acs.jpcb.5b08092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.5b08092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1418155112
https://doi.org/10.1111/j.1742-4658.2005.05021.x
https://doi.org/10.1073/pnas.83.13.4913
https://doi.org/10.1073/pnas.83.13.4913
https://doi.org/10.1002/prot.24544
https://doi.org/10.1002/prot.24544
https://doi.org/10.1002/prot.24544
https://doi.org/10.1021/acs.jpcb.2c05288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c05288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/jbc.ra117.001215
https://doi.org/10.1074/jbc.ra117.001215
https://doi.org/10.1016/j.jmb.2009.11.034
https://doi.org/10.1016/j.jmb.2009.11.034
https://doi.org/10.1073/pnas.0911675107
https://doi.org/10.1073/pnas.0911675107
https://doi.org/10.1021/acs.jctc.0c01186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.232715799
https://doi.org/10.1038/180326a0
https://doi.org/10.1038/180326a0
https://doi.org/10.1021/acs.jpcb.1c01684?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c01684?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c01684?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0301-4622(02)00091-1
https://doi.org/10.1016/S0301-4622(02)00091-1
https://doi.org/10.1063/1674-0068/31/cjcp1806147
https://doi.org/10.1063/1674-0068/31/cjcp1806147
https://doi.org/10.1063/1674-0068/31/cjcp1806147
https://doi.org/10.1007/978-1-61779-588-6_10
https://doi.org/10.1007/978-1-61779-588-6_10
https://doi.org/10.1371/journal.pone.0133172
https://doi.org/10.1371/journal.pone.0133172
https://doi.org/10.1021/acs.jpcb.8b08852?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b08852?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b08852?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-023-36443-x
https://doi.org/10.1038/s41467-023-36443-x
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1063/1.1622372
https://doi.org/10.1063/1.1622372
https://doi.org/10.1021/jp403635g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp403635g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.10125
https://doi.org/10.1002/jcc.10125
https://doi.org/10.1002/jcc.10125
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

(48) Webb, B.; Sali, A. Comparative protein structure modeling
using MODELLER. Curr. Protoc. Bioinf. 2016, 54, 5—6.

(49) Pettersen, E. F.; Goddard, T. D.; Huang, C. C; Meng, E. C;
Couch, G. S; Croll, T. I; Morris, J. H; Ferrin, T. E. UCSF
ChimeraX: Structure visualization for researchers, educators, and
developers. Protein Sci. 2021, 30, 70—82.

(50) Brotzakis, Z. F.; Lindstedt, P. R;; Taylor, R. J; Rinauro, D. J;
Gallagher, N. C.; Bernardes, G. J; Vendruscolo, M. A structural
ensemble of a tau-microtubule complex reveals regulatory tau
phosphorylation and acetylation mechanisms. ACS Cent. Sci. 2021,
7, 1986—1995.

(51) Berendsen, H. J.; Postma, J. P.; van Gunsteren, W. F.; Hermans,
J. Interaction models for water in relation to protein hydration.
Intermolecular Forces: Proceedings of the Fourteenth Jerusalem
Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem,
israel, April 13—16, 1981; 1981; pp 331—342.

(52) Verlet, L. Computer "Experiments” on Classical Fluids. L
Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.
1967, 159, 98—103.

(53) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.

(54) Parrinello, M; Rahman, A. Polymorphic transitions in single
crystals: A new molecular dynamics method. J. Appl. Phys. 1981, S2,
7182—7190.

(55) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N
log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089—10092.

(56) Damre, M.; Dayananda, A.; Varikoti, R. A.; Stan, G.; Dima, R. L.
Factors underlying asymmetric pore dynamics of disaggregase and
microtubule-severing AAA+ machines. Biophys. J. 2021, 120, 3437—
3454.

(57) Schmid, N.; Eichenberger, A. P.; Choutko, A.; Riniker, S.;
Winger, M.; Mark, A. E.; van Gunsteren, W. F. Definition and testing
of the GROMOS force-field versions S4A7 and S4B7. Eur. Biophys. J.
2011, 40, 843—8536.

(58) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
Hermans, J. Intermolecular Forces; Springer Netherlands, 1981; pp
331-342.

(59) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.
LINCS: A linear constraint solver for molecular simulations. J.
Comput. Chem. 1997, 18, 1463—1472.

(60) Eswar, N.; Eramian, D.; Webb, B.; Shen, M.-Y.; Sali, A. Protein
Structure Modeling with MODELLER; Humana Press, 2008.

(61) Malde, A. K; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair,
P. C,; Oostenbrink, C.; Mark, A. E. An Automated Force Field
Topology Builder (ATB) and Repository: Version 1.0. J. Chem.
Theory Comput. 2011, 7, 4026—4037.

(62) Daura, X;; Conchillo-Sol¢, O. On Quality Thresholds for the
Clustering of Molecular Structures. J. Chem. Inf. Model. 2022, 62,
5738—5745.

(63) Hovméller, S.; Zhou, T.; Ohlson, T. Conformations of amino
acids in proteins. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2002, S8,
768—776.

(64) Srinivasan, R; Rose, G. The T-to-R transformation in
hemoglobin: a reevaluation. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
11113—-11117.

(65) Pedregosa, F.; Varoquaux, G.; Gramfort, A; Michel, V,;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M;
Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 2011, 12, 2825—2830.

(66) Virtanen, P.; Gommers, R; Oliphant, T. E.; Haberland, M.;
Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J;
Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R; Larson, E.; Carey,
C.J; Polat, I; Feng, Y.; Moore, E. W,; VanderPlas, J.; Laxalde, D.;
Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C.
R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.;

482

et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 2020, 17, 261-272.

(67) Pauling, L.; Corey, R. B.; Branson, H. R. The structure of
proteins: Two hydrogen-bonded helical configurations of the
polypeptide chain. Proc. Natl. Acad. Sci. US.A. 1951, 37, 205—211.

(68) Pauling, L.; Corey, R. B. Two Rippled-Sheet Configurations of
Polypeptide Chains, and a Note about the Pleated Sheets. Proc. Natl.
Acad. Sci. US.A. 1953, 39, 253—-256.

(69) Mannige, R. V.; Kundu, J.; Whitelam, S. The Ramachandran
Number: An Order Parameter for Protein Geometry. PLoS One 2016,
11, No. e0160023.

(70) Calinski, T.; Harabasz, J. A dendrite method for cluster analysis.
Commun. Stat.-Theory Methods 1974, 3, 1-27.

(71) Rousseeuw, P. J. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. J. Comput. Appl.
Math. 1987, 20, 53—65.

(72) Shahapure, K. R., Nicholas, C. Cluster Quality Analysis Using
Silhouette Score. IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA); IEEE, 2020; pp 747—748.

(73) Ceriotti, M. Unsupervised machine learning in atomistic
simulations, between predictions and understanding. J. Chem. Phys.
2019, 150, 150901.

(74) Tribello, G. A.; Gasparotto, P. Using Dimensionality Reduction
to Analyze Protein Trajectories. Front. Mol. Biosci. 2019, 6, 46.

(75) Capelli, R;; Bochicchio, A.; Piccini, G.; Casasnovas, R.; Carloni,
P.; Parrinello, M. Chasing the Full Free Energy Landscape of
Neuroreceptor/Ligand Unbinding by Metadynamics Simulations. J.
Chem. Theory Comput. 2019, 15, 3354—3361.

(76) Leander, M.; Yuan, Y, Meger, A.; Cui, Q; Raman, S.
Functional plasticity and evolutionary adaptation of allosteric
regulation. Proc. Natl. Acad. Sci. 2020, 117, 25445—25454.

(77) Krishnan, K; Kassab, R.; Agajanian, S.; Verkhivker, G.
Interpretable Machine Learning Models for Molecular Design of
Tyrosine Kinase Inhibitors Using Variational Autoencoders and
Perturbation-Based Approach of Chemical Space Exploration. Int. J.
Mol. Sci. 2022, 23, 11262.

(78) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular
dynamics. ]. Mol. Graphics 1996, 14, 33—38.

(79) Saxena, A.; Prasad, M; Gupta, A.; Bharill, N.; Patel, O. P,;
Tiwari, A,; Er, M. J; Ding, W,; Lin, C.-T. A Review of Clustering
Techniques and Developments. Neurocomputing 2017, 267, 664—681.

(80) Teletin, M.; Czibula, G.; Albert, S.; Bocicor, I. Using
unsupervised learning methods for enhancing protein structure
insight. Procedia Comput. Sci. 2018, 126, 19—28.

(81) Karamzadeh, R.; Karimi-Jafari M. H.; Sharifi-Zarchi, A.;
Chitsaz, H.; Salekdeh, G. H.; Moosavi-Movahedi, A. A. Machine
Learning and Network Analysis of Molecular Dynamics Trajectories
Reveal Two Chains of Red/Ox-specific Residue Interactions in
Human Protein Disulfide Isomerase. Sci. Rep. 2017, 7, 3666.

(82) Oruganti, B.; Lindahl, E;; Yang, J.; Amiri, W.; Rahimullah, R;
Friedman, R. Allosteric enhancement of the BCR-Abll kinase
inhibition activity of nilotinib by cobinding of asciminib. J. Biol.
Chem. 2022, 298, 102238.

https://doi.org/10.1021/acs.jcim.3c01511
J. Chem. Inf. Model. 2024, 64, 470—482


https://doi.org/10.1002/cpbi.3
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1002/pro.3943
https://doi.org/10.1002/pro.3943
https://doi.org/10.1002/pro.3943
https://doi.org/10.1021/acscentsci.1c00585?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.1c00585?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.1c00585?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
https://doi.org/10.1016/j.bpj.2021.05.027
https://doi.org/10.1016/j.bpj.2021.05.027
https://doi.org/10.1007/s00249-011-0700-9
https://doi.org/10.1007/s00249-011-0700-9
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1021/ct200196m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200196m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1107/S0907444902003359
https://doi.org/10.1107/S0907444902003359
https://doi.org/10.1073/pnas.91.23.11113
https://doi.org/10.1073/pnas.91.23.11113
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.39.4.253
https://doi.org/10.1073/pnas.39.4.253
https://doi.org/10.1371/journal.pone.0160023
https://doi.org/10.1371/journal.pone.0160023
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1063/1.5091842
https://doi.org/10.1063/1.5091842
https://doi.org/10.3389/fmolb.2019.00046
https://doi.org/10.3389/fmolb.2019.00046
https://doi.org/10.1021/acs.jctc.9b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.2002613117
https://doi.org/10.1073/pnas.2002613117
https://doi.org/10.3390/ijms231911262
https://doi.org/10.3390/ijms231911262
https://doi.org/10.3390/ijms231911262
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/j.neucom.2017.06.053
https://doi.org/10.1016/j.neucom.2017.06.053
https://doi.org/10.1016/j.procs.2018.07.205
https://doi.org/10.1016/j.procs.2018.07.205
https://doi.org/10.1016/j.procs.2018.07.205
https://doi.org/10.1038/s41598-017-03966-5
https://doi.org/10.1038/s41598-017-03966-5
https://doi.org/10.1038/s41598-017-03966-5
https://doi.org/10.1038/s41598-017-03966-5
https://doi.org/10.1016/j.jbc.2022.102238
https://doi.org/10.1016/j.jbc.2022.102238
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

