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Schizophrenia is a severe mental disorder that distorts patients’ percep-
tion of reality, and its treatment with antipsychotics can lead to significant
side effects. Despite the heterogeneity in patient responses to treatments,
most existing studies on individualized treatment regimes only focus on op-
timizing treatment efficacy, disregarding potential negative effects. To fill
this gap, we propose a restricted outcome weighted learning method that
optimizes efficacy outcomes while adhering to individual-level negative ef-
fect constraints. Our method is developed for multistage treatment decision
problems that include single-stage decision as a special case. We propose an
efficient learning algorithm that utilizes the difference-of-convex algorithm
and the Lagrange multiplier to solve nonconvex optimization with noncon-
vex risk constraints. We also establish theoretical properties, including Fisher
consistency and strong duality results, for the proposed method. We apply
our method to a clinical study to design effective schizophrenia treatment
[Stroup et al. (Schizophr. Bull. 29 (2003) 15–31)] and find that our approach
reduces side-effect risk by at least 22.5% and improves efficacy by at least
26.3% compared to competing methods. In addition, we discover that certain
covariates, such as the PANSS score, clinician global impressions severity
score, and BMI, have a significant impact on controlling side effects and de-
termining optimal treatment recommendations. These results are valuable in
identifying subgroups of patients who need special attention when prescrib-
ing more aggressive treatment plans.

1. Introduction.

1.1. Background. Schizophrenia is a severe mental disorder that causes people to in-
terpret reality abnormally. Antipsychotics are the primary treatments for this condition, but
some can cause significant side effects such as weight gain, diabetes, and metabolic syn-
drome (Mcgurk et al. (1997), Popli et al. (1997), Stroup and Gray (2018)). A recent Clinical
Antipsychotic Trials of Intervention Effectiveness (CATIE) study for schizophrenia found
that 55% of patients assigned to atypical antipsychotics experienced weight gain and 20% of
them gained at least 15 pounds. This side effect was particularly severe for patients assigned
to Olanzapine, which caused an average weight gain of 10.1 pounds. Excess weight gain can
lead to a range of health issues, including diabetes, heart disease, and cancer, making it crucial
to control weight gain when selecting treatment choices for schizophrenia patients. However,
patient heterogeneity poses a significant challenge to achieving this goal. Models that only
consider the efficacy of antipsychotics are likely to recommend aggressive treatments that
could result in severe side effects. Meanwhile, avoiding the most effective antipsychotics for
all patients would mean that some patients, who are unlikely to develop severe side effects,
would benefit less. Moreover, different patients could have different levels of tolerance to
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side effects. Therefore, it is more desirable to control side effects at the subject level while
maximizing the overall treatment benefits.

To address the challenges discussed above, our paper proposes a new individualized treat-
ment regime (ITR) that recommends antipsychotic treatments by optimizing overall efficacy
while controlling weight gain for individual patients. Besides its application to the CATIE
study, our proposal is applicable to other medical studies where there is a need to control in-
dividual level side effects of treatments, such as complications, drug safety risks, and costs of
treatments (Gewandter et al. (2021), Moreau and Wiebels (2021), Read and Williams (2019),
Shaw (2018)). Certain medications can pose serious or even life-threatening risks to individ-
uals. For instance, in 2004, the U.S. Food and Drug Administration (FDA) issued a Black
Box warning on antidepressants, highlighting an increased risk of suicidal thinking, feelings,
and behaviors in children and adolescents based on placebo-controlled trials of these medi-
cations. This decision sparked controversy, as there were concerns that it might discourage
the appropriate use of antidepressants for depressed patients when clinically indicated. Nu-
merous studies have been conducted to investigate and probe this issue (Fornaro et al. (2019),
Friedman (2014), Spielmans, Spence-Sing and Parry (2020)). Another notable example is a
study conducted by Watanabe et al. (2021), which revealed that long-term use of drugs com-
monly prescribed to treat high-blood pressure and heart failure could potentially contribute
to kidney damage. While these medications are life-saving for many patients, the study em-
phasizes the importance of continuing to take them as prescribed. However, it also calls for
additional research to better understand the extent of the drugs’ long-term effects on the kid-
neys. These examples underscore the critical need for thorough examination and monitoring
of medication side effects, especially those with potentially severe consequences. Balancing
the risks and benefits of medications is crucial for ensuring patient safety and optimizing
treatment outcomes.

1.2. Literature review. Individualized treatment regimes (ITRs) are critical in addressing
patients’ varying responses to treatments in health studies. The key idea of individualized
treatment is to improve health outcomes by tailoring treatments to individual patients based
on their information, including genes, health histories, environments, and lifestyles (Gillman
and Hammond (2016), Hodson (2016), Kosorok and Laber (2019)). Existing literature pri-
marily focuses on maximizing the expected efficacy of treatments across populations. These
methods can be categorized into indirect and direct methods. Indirect methods estimate op-
timal ITRs by modeling the conditional mean outcomes or their differences among different
treatment groups, such as Q-learning (Clifton and Laber (2020), Murphy (2005), Watkins
(1989)), G-estimation (Lavori and Dawson (2004), Thall, Sung and Estey (2002)), and regret-
based methods (A-learning, regret regression) (Murphy (2003), Robins (2004)). In contrast,
direct methods model treatment regimes directly, including the inverse probability weighting
estimator (IPW) (Robins, Hernan and Brumback (2000)), augmented inverse probability of
treatment weighting (AIPW) (Zhang et al. (2012)), and outcome weighted learning (OWL)
(Zhao et al. (2012), Zhao et al. (2015)).

Recent studies have taken side effects into consideration for ITR estimation. For example,
Lee et al. (2015) defined a joint utility function, based on binary efficacy and binary toxi-
city outcomes, and proposed a Bayesian hierarchical latent variable model to find the best
dosing for two-cycle treatment based on the utility function. Luckett et al. (2021) and Butler
et al. (2018) considered a composite-outcome problem by taking a weighted combination of
outcomes. Lakkaraju and Rudin (2017) constructed a decision list using a sequence of if-then-
else rules to maximize outcomes and minimize overall costs for populations simultaneously.
Wang, Fu and Zeng (2018) proposed to maximize population benefit under a population level
risk constraint using regression-model-based learning and an outcome weighted learning al-
gorithm. However, these methods are not directly applicable under our motivating problem
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since they only control side effects at the population level, that is, requiring the average side
effect to be less than a predefined threshold or balancing between the expected weighted aver-
age of efficacy and side effect; however, there is no risk control at the individual level. Several
other studies have also pointed out that considering the population-level efficacy alone is not
sufficient and proposed alternative solutions. For example, Fang, Wang and Wang (2023), Qi
et al. (2019), and Qi, Pang and Liu (2023) proposed ITRs that maximize the average effi-
cacy while controlling the average outcome from the less predominated subjects. Still, these
approaches only consider a single outcome and the constraint targeting the average efficacy
from a subpopulation instead of each individual. Liu and Kennedy (2021) suggested utilizing
the median of the efficacy, instead of the mean in the optimization process, to add robustness
to the decision rule.

Besides patient heterogeneity and the need for controlling individual-level side effects,
multistage decision points impose additional challenges for ITR estimation since multiple
experimental phases are involved. This is often called multistage ITR or dynamic treatment
regimes (DTRs), which commonly arise in chronic disease studies with sequential decision
points. Dynamic programming is a prevalent approach for solving multistage ITR problems.
For instance, backward Q-learning and backward outcome weighted learning are quite suc-
cessful in integrating dynamic programming with Q-learning and outcome weighted learning
for multistage decision problems (Murphy (2005), Watkins (1989), Zhao et al. (2015)). Al-
ternatively, Zhao et al. (2015) estimate the optimal decision rules in multiple stages simulta-
neously using a surrogate loss function.

1.3. Contribution and key findings. We present a novel approach for developing optimal
multistage individualized treatment regimes (ITRs) that satisfy individual-level hard con-
straints on negative effects. Unlike existing methods that aim to optimize overall benefit for
populations while only controlling the average negative effect, our approach considers the
maximum negative effect threshold for each subject. To achieve this, we incorporate the
individual-level constraint into the outcome weighted learning framework and propose an
efficient algorithm that approximates the indicator functions in the objective function and
constraints. We employ several computational techniques, such as the Difference of Con-
vex (DC) functions algorithm, Lagrange multiplier, and quadratic programming to solve the
optimization problem.

Our work is innovative as follows. First, to the best of our knowledge, we are among the
first to consider and solve the ITR learning problem with individual level negative effect con-
straints. Our method is developed under a multistage treatment decision framework, where
a single-stage problem is our special case. Second, we provide theoretical justification for
our method by establishing Fisher consistency and strong duality properties under regularity
conditions. These developments shed light on addressing individual-level constraints in OWL
optimization problems.

We highlight two major findings when applying our method to the CATIE study for
schizophrenia treatment. In terms of individual risk control, our method yields a remark-
able reduction of at least 22.5% on the side-effect of weight gain, while still achieving at
least 26.3% improvement in treatment efficacy compared to other competing methods. Ad-
ditionally, we observe that specific covariates, such as the PANSS score, Clinician Global
Impressions Severity Score, and BMI, have significant influences on controlling side effects
and determining optimal treatment recommendations. These findings are valuable in iden-
tifying patient subgroups that require special attention when considering more aggressive
treatment plans. Our findings offer promising avenues for enhancing schizophrenia treatment
strategies and ultimately improving patient outcomes.
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2. Methodology.

2.1. Background and notations. Consider a T -stage decision problem where the num-
ber of decision points T is finite and T ≥ 1. For t = 1,2, . . . , T , let At be the treatment
assignment at stage t , where At ∈ {−1,1}, and Xt are the covariates observed between stage
t − 1 and t . Without loss of generality, we consider two potential outcomes, where Yt is the
efficacy, benefit, or reward received after receiving treatment At , and Zt is the side effect,
risk, adverse event, or cost incurred after receiving treatment At . In the CATIE study, there
are T = 2 stages and two treatment groups. The efficacy is defined as the difference in total
scores of positive and negative symptoms between the start and end point at each stage, and
the side effect here is weight gain.

We use subscript i to denote patient i and let τi,t be the threshold for the side effect at
stage t , where τi,t can be prespecified. Here (Y,Z,A,X) follow a nondegenerate distribution
P . We use Ht to denote the patients’ history information up to point t , where H1 = X1,
and Ht = (X1,A1, Y1,Z1, . . . ,At−1, Yt−1,Zt−1,Xt) for t = 2,3, . . . , T . For the single-stage
problem with T = 1, the subscript t can be dropped for convenience.

For the multistage decision problem, it is common to combine the efficacy and side-effect
outcomes over different stages by considering, for example, the endpoint efficacy YT , the
total efficacy

∑T
t=1 Yt , and a weighted average of the efficacy

∑T
t=1 WtYt , where Wt is a

weighting function for stage t . Here we focus on the total efficacy
∑T

t=1 Yt and the total side
effect

∑T
t=1 Zt , although our proposed method can be extended to address other forms of

outcomes. We also define τi = ∑T
t=1 τi,t as the summation of the side-effect threshold for

subject i.
A dynamic treatment regime (DTR) for a multistage decision problem is a sequence of

decision rules, D = (D1, . . . ,DT ), where Dt is a map from subject’s history information Ht

to treatment At . The value function under a decision rule D is defined as an expected efficacy,

V D = ED
[

T∑
t=1

Yt

]
=

∫ T∑
t=1

Yt dPD,(1)

where ED(·) is the conditional expectation under probability measure PD for (H,A,Y,Z),
given A = D(H).

Assume that P(A = a|H) > 0 for a ∈ {−1,1}. It is obvious that PD is absolutely contin-
uous with respect to P . Since dPD/dP = I (a = D(h))/P (A = a|h), the expected benefit
under a treatment rule D is

V D =
∫ T∑

t=1

Yt dPD =
∫ T∑

t=1

Yt

dPD

dP
dP = E

[∑T
t=1 Yt

∏T
t=1 I (At = dt (Ht))∏T

t=1 P(At |Ht)

]
.(2)

2.2. Single-stage restricted outcome weighted learning (ROWL). We first consider a
single-stage decision problem, and extend a single-stage decision idea to a multistage prob-
lem in the next section. Our goal is to develop an individualized treatment regime (ITR),
which maximizes the expected benefit of the population under the constraint that the ex-
pected risk for each individual is no greater than a given threshold. Specifically, by the value
function presented in (2) and that

E

[
I (A =D(H))

P (A|H)
Y

]
= E

[
Y

P (A|H)

]
− E

[
I (A �= D(H))

P (A|H)
Y

]
,
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we target the optimal treatment rule D∗ that solves the following optimization:

max
D

ED(Y ) = max
D

E

[
I (A = D(H))

P (A|H)
Y

]
= min

D
E

[
I (A �= D(H))

P (A|H)
Y

]

s.t. rD(Hi) ≤ τi for any i,

(3)

where ED(·) is the conditional expectation under probability measure PD for (H,A,Y,Z),
given A = D(H), rD(Hi) is the expected risk of individual i under decision rule D, and τi is
the risk tolerance threshold for i. Here the threshold τi can differ for different subjects.

A key component that distinguishes our method from the existing literature is that the
risk under our framework can be controlled at different levels. In particular, the existing
methods (Wang, Fu and Zeng (2018), Zhao et al. (2012), Zhou et al. (2017)) only control
the overall risk at the population level, while our method targets controlling individual risk
by allowing rD(Hi) ≤ τi . Individual risk control is indeed more challenging; however, it
is practically more sensible, especially under scenarios when the side effect could be life-
threatening or when there is a hard budget constraint from treatment cost. To deal with the
challenges induced by the large number of subject-level risk constraints, we introduce a new
restricted outcome weighted learning (ROWL) method.

In the following we first reformulate the objective function to address issues of the objec-
tive function in the original outcome weighted learning method raised by Zhou et al. (2017)
and Wang, Fu and Zeng (2018): (1) the optimal decision rule for the objective function is not
invariant for a simple shift, namely, adding or subtracting a positive constant on the efficacy,
and (2) the efficacy in the objective function must be positive.

To solve (1), we use residuals Y −M(H) instead of relying on the original efficacy Y as
outcomes, where M(H) is a regression function of Y on H . This is because, if the residual
is positive, that is, using the current treatment yields efficacy better than expected, then the
decision rule should align with the current treatment assignment and vice versa. To solve (2),
we define Y ∗ = |Y −M(H)|, and A∗ = sign{Y −M(H)}A, and replace (Y,A) by (Y ∗,A∗)
in the original optimization problem. The proposed strategy is valid since

argmax
D

E

[
I (A = D(H))

P (A|H)
Y

]

= argmax
D

E

[
I (A =D(H))

P (A|H)
Y+ − I (A = D(H))

P (A|H)
Y−

]

= argmax
D

E

[
I (A =D(H))

P (A|H)
Y+ −

(
Y−

P(A|H)
− I (A �=D(H))

P (A|H)
Y−

)]

= argmax
D

E

[
I (A =D(H))

P (A|H)
Y+ + I (A �= D(H))

P (A|H)
Y−

]

= argmax
D

E

[
I (A × sign(Y ) = D(H))

P (A|H)
|Y |

]
,

where Y+ = max(Y,0) is the positive part of Y and Y− = max(−Y,0) is the negative part.
Thus, the optimization in (3) can be written as

min
D

E

[
I (A∗ �= D(H))

P (A|H)
Y ∗

]

s.t. rD(Hi) ≤ τi for any i.

(4)

For binary treatment problems, the treatment regime D(H) is usually defined as the
sign of a decision function, that is, D(H) = sign(f (H)), where f (·) can be either lin-
ear or nonlinear. To ensure the expected risk rD(Hi) satisfying these constraints, we let
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rD(Hi) = mi + siI (D(Hi) = 1), where mi and si are functions of Hi , corresponding to
the main effect and the treatment effect on the risk, respectively. Moreover, we replace the
expectation by its empirical version in the objective function, which leads to an equivalent
optimization problem in (4) as follows:

min
f

n−1
n∑

i=1

Y ∗
i

P (Ai |Hi)
I
(
A∗

i f (Hi) < 0
)

s.t. mi + siIf (Hi)>0 ≤ τi, i = 1,2, . . . , n.

(5)

There are indicator functions in both the objective function and the constraints in (5).
However, the nonconvexity in (5) leads to an NP-hard problem. In order to handle the non-
convexity, a natural way is to approximate the indicator functions (0–1 loss) by surrogate loss
functions. Instead, for the indicator function in the objective function, we consider a hinge
loss (1 − A∗

i f (Hi))
+ (Cortes and Vapnik (1995), Zhao et al. (2012)). For handling the indi-

cator functions in constraints, we approximate them with a shifted ψ-loss (Huang, Shi and
Suykens (2014), Wang, Fu and Zeng (2018)), where a shifted ψ-loss is defined as

ψ(δ, x) = q1(δ, x) − q2(δ, x) = δ−1(x + δ)+ − δ−1(x)+,

where δ is a small positive number (see Figure S1 in Supplementary Material Section 1 for il-
lustration (Zhu et al. (2024))). There are two main purposes for employing the shifted ψ-loss.
The first one is to replace the treatment term siIf (Hi)>0 with an upper bound to guarantee that
the expected risk will be under a threshold. The second one is for computational convenience.
Since shifted ψ-loss is the difference between two convex functions, we can utilize the DC
algorithm to remove the nonconvexity, as shown in Supplementary Material Section 2.

Let f (Hi |β) = β0 +∑n
j=1 βjK(Hi,Hj ), where K(·, ·) is a kernel function. Here the func-

tion f (Hi |β) is quite flexible, which can either be a linear function of Hi , by setting the kernel
function K to be a linear kernel, or can be nonlinear, by using nonlinear kernel functions such
as Gaussian kernels. To avoid overfitting, we add penalization on the parameters to the ob-
jective function. After plugging in the surrogate functions and adding the penalization, the
optimization problem (5) is converted to

min
β0,β(0),ξi

C

n∑
i=1

Y ∗
i

P (Ai |Hi)
ξi + 1

2
βT

(0)Kβ(0)

s.t. A∗
i f (Hi) ≥ 1 − ξi, ξi ≥ 0,

mi + siδ
−1[(

f (Hi) + δ
)+ − (

f (Hi)
)+] ≤ τi, i = 1,2, . . . , n,

(6)

where C is a hyperparameter playing a trade-off between the “fitting error” and the regular-
ization. The penalty term 1

2βT
(0)Kβ(0) is the norm of the reproducing kernel Hilbert space,

with K as a kernel matrix, and β(0) = {β1, . . . , βn}T .
The optimization problem in (6) can be solved by applying the DC algorithm (Tao and

An (1997)) to iteratively update the estimation. Specifically, at each iteration we employ
the Lagrange multiplier to convert the primary problem to a dual problem and then utilize
quadratic programming to solve the dual problem. We will discuss more details regarding the
computational algorithm in Section 6 of the Supplementary Material.

2.3. Multistage restricted outcome weighted learning. In this subsection we extend the
single-stage ROWL to multistage treatment decision problems, where the total efficacy∑T

t=1 Yt is the primary outcome of interest and cumulative toxicity
∑T

t=1 Zt is the constraint



RESTRICTED OUTCOME WEIGHTED LEARNING 1325

with threshold τi for subject i. Dynamic programming is a natural approach for solving mul-
tistage optimization problems. However, dynamic programming cannot handle the optimiza-
tion problem with a total constraint for all stages. To solve this issue, we consider estimating
the optimal decision rules for all stages simultaneously (Zhao et al. (2015)).

In particular, under the multistage decision setting, the optimization problem is

max
D

ED
(

T∑
t=1

Yt

)
= max

D
E

[∑T
t=1 Yt

∏T
t=1 I (At = dt (Ht))∏T

t=1 P(At |Ht)

]
,

s.t.
T∑

t=1

rDt (Hi,t ) ≤ τi for any i.

(7)

The above optimization problem is also an NP-hard problem due to the nonconvexity
of the indicator functions from the objective function and the constraints. Similar to the
single-stage optimization, we let rDt (Hi,t ) = mi,t + si,t If (Hi,t )>0 and apply a shifted ψ-loss
function to substitute the indicator functions in the constraints. Consequently, the objective
function involves the product of indicator functions

∏T
t=1 I (At = dt (Ht)) = min{I (A1 =

d1(H1)), . . . , I (AT = dT (HT ))}. In a single-stage treatment, the corresponding hinge loss is
optimized by forcing Af (H) − 1 ≥ ξ, and ξ ≥ 0. Similarly, in a multistage process, we let
Atf (Ht) − 1 ≥ ξ, for t = 1,2, . . . , T , and ξ ≥ 0 for optimizing the multi-dimension hinge
loss. This is equivalent to approximating the product of indicator functions

∏T
t=1 I (At =

dt (Ht)) by min(A1f (H1), . . . ,AT f (HT ),1).
Similar to (6) for the single-stage problem, the empirical form of the optimization problem

for the multistage decision problem after plugging in the corresponding surrogate functions
becomes

min
βt0,βt(0),ξi

C

n∑
i=1

∑T
t=1 Y ∗

i∏T
t=1 Pt(Ai,t |Hi,t )

ξi + 1

2

T∑
t=1

βT
t(0)Kβt(0),

s.t. A∗
i,tf (Hi,t ) ≥ 1 − ξi, ξi ≥ 0, for t = 1, . . . , T ,

T∑
t=1

[
mi,t + si,t δ

−1{(
f (Hi,t ) + δ

)+ − (
f (Hi,t )

)+}] ≤ τi, i = 1,2, . . . , n,

(8)

where C is a hyperparameter, K is a kernel matrix of the history information, and βt(0) =
{βt,1, . . . , βt,n}T . This optimization problem can be solved by using similar techniques as in
the single-stage ROWL.

The multistage ROWL requires a key assumption in that the individual risk process
{Zit }Tt=1 can be predicted by {mit + sit1(Ait > 0)}Tt=1 so that {mit + sit1(a∗

it > 0)}Tt=1 cor-
responds to the counterfactual risks under the treatment {a∗

it }Tt=1. This assumption does not
necessarily hold when time-varying effect moderation on the risk process exists (Almirall,
Ten Have and Murphy (2010)). However, the assumption still holds if the treatment effect on
risk is “instantaneous.” That is, At only affects Zt , and not Zt+1, . . . ,ZT via any other time-
varying variables. For example, in our simulation setting 2, X2,1 is considered an efficacy
moderator, and there is a relationship of A1 → X2,1 → Y2. Such a moderation effect does not
apply to the risk variable Z2.

3. Theoretical results.

3.1. Fisher consistency. We first establish the Fisher consistency property of our method,
and show that the obtained optimizer of the proposed method (ROWL) is indeed the optimal
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decision rule. Specifically, we show that the decision rule learned by maximizing the objective
function in (7) with the 0–1 loss substituted by the surrogate loss function is equivalent to the
optimal decision rule in theory. Here we only consider relaxation of the indicators in efficacy,
while treating the risk as known; that is, the DC relaxation of indicators in the risk constraints
does not need to be considered.

The following assumptions are made to establish our theorems:

(A1) Stable unit treatment value assumption (SUTVA): A subject’s potential outcome is
not affected by the treatment assignment of other subjects.

(A2) No unmeasured confounders: All sources of confounding are measured.
(A3) Positivity assumption: For a feasible regime d , the probability of treatment regime

d
∏T

t=1 Pt(d(Ht) = At |Ht = ht ) > 0 for any At and ht ∈ Ht , where Ht is the support of ht .

Assumptions (A1)–(A3) are standard and commonly used in the causal inference literature
(Robins (1997), Rubin (1980)). Note that the objective function in our proposed method is
developed under the outcome weighted learning framework. We denote

V (f1, . . . , fT ) = E

[∑T
t=1 Ytmin(A1f1(H1), . . . ,AT fT (HT ),1)∏T

t=1 Pt(At |Ht)

]
,

where ft ∈ Ft is a function defined as ft (Hi,t ) = βt,0 + ∑n
j=1 βt,jK(Ht,i,Ht,j ), K(·, ·)

is a kernel function defined in the Section 2.2, and Ft is the support of ft . Hence,
V (f1, . . . , fT ) is the expected total benefit for all T stages if the sequence of decisions
{sign(f1), . . . , sign(fT )} is implemented at each stage. We also define d∗

t as the optimal deci-
sion rule at stage t and let f̃t be the function learned by the proposed model at stage t , where
t ∈ {1,2, . . . , T }. Then we have the following theorem.

THEOREM 1. If (f̃1, . . . , f̃T ) ∈ F1 ×· · ·×FT , maximize V (f1, . . . , fT ) over F1 ×· · ·×
FT under the constraint that the expected side effect does not exceed the corresponding
threshold, then for ht ∈ Ht , d∗

t (ht ) = sign(f̃t (ht )), t = 1, . . . , T .

Theorem 1 states that the proposed optimizer is sign consistent with the optimal decision
rule. In Zhao et al. (2015), they propose a simultaneous outcome weighted learning (SOWL)
method, which optimizes the efficacy and establishes its Fisher consistency property. How-
ever, their method does not impose any constraints on the side effect. Our Theorem 1 can
be viewed as a generalization of their method satisfying the side effect constraint. A detailed
proof is given in Supplementary Material Section 3.

3.2. Duality and optimality. In our algorithm we propose to solve the primal optimiza-
tion problem by transforming to a dual problem. In this section we provide a theoretical
justification for our algorithm and establish its strong duality and optimality property. For
simplicity, we focus on a single stage problem, although our theorem and the corresponding
proof can also be directly extended for the multistage problem.

As discussed in Section 2.2, we approximate the indicator functions with surrogate func-
tions in both the objective function and the constraints and then apply the DC algorithm to
iteratively update the estimate. As shown in Supplementary Material Section 2, the primal
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problem at the (l + 1)th step is

min
β

1

2
βT

(0)Kβ(0) + C

n∑
i=1

(
Y ∗

i

P (Ai |Hi)
ξi + ϕi

n
+ ζi

n

)

s.t. A∗
i f (Hi) ≥ 1 − ξi, ξi ≥ 0,

ϕi ≥ f (Hi |β) + δ,ϕi ≥ 0,

ζi ≥ f (Hi |β), ζi ≥ 0,

δmi + si
(
ϕi − ν̂i

(
β,β(l)))Isi>0 − si

(
ζi − υ̂i

(
β,β(l)))Isi≤0 ≤ δτi,

(9)

for i = 1,2, . . . , n, where β(0) = {β1, . . . , βn}T , f (Hi |β) = β0 + ∑n
j=1 βjK(Hi,Hj ), K

is a kernel function, Y ∗
i = |Yi |,A∗

i = sign(Yi) × Ai , ν̂(β,β(l)) = f (Hi |β)I
(l)
i , I

(l)
i =

I{f (Hi |β(l))>0}, υ̂i(β,β(l)) = (f (Hi |β) + δ)I
′(l)
i , I

′(l)
i = If (Hi |β(l))+δ>0, and C is a hyper-

parameter which balances the misclassification error and regularization penalty. The first
three inequalities in the constraints in (9) are alternative ways to present the hinge losses
(1 − A∗

i f (Hi))
+, (f (Hi |β) + δ)+, and f (Hi |β)+ such that their positive part functions can

be removed from the optimization problem and thus to be solved more easily. We use Cj ≥ 0
to represent each constraint.

However, the prime optimization problem (9) is still hard to solve directly since it contains
many constraints. Therefore, we propose to transform the prime problem to a dual problem
through a Lagrange multiplier and then solve the dual problem to obtain an equivalent solu-
tion for the prime problem.

THEOREM 2. Assume K in (9) is a linear or Gaussian kernel function, and let β̂ be a so-
lution to the corresponding dual problem of (9). If the primal optimization problem in (9) has
at least one feasible solution, then β̂ must be an optimal solution to the primal optimization
problem.

Theorem 2 implies the equivalence between solving the primal problem and its dual prob-
lem and further ensures that the estimated β̂ is optimal for the primal optimization problem
under regularity conditions. To prove the optimality of the solution obtained from the dual
problem, it suffices to prove the strong duality and the differentiability of Cj with respect
to (β, ξ, ϕ, ζ ), where Cj ≥ 0 represents each constraint, as well as the fulfillment of the
Karush–Kuhn–Tucker (KKT) conditions, where strong duality means the optimal objective
of the primal problem is equivalent to the optimal objective of the dual problem (Boyd and
Vandenberghe (2004)). A detailed proof is provided in Supplementary Material Section 4.
Theorem 2 still holds if K takes other kernel functions, in addition to linear or Gaussian
functions, as long as the strong duality holds, that is, the second derivative of the penalty
term with respect to any βj is greater than 0.

4. Simulation. In this section we investigate the numerical performance of the proposed
method in multistage decision problems. We consider four competitive methods for compari-
son, including the backward outcome weighted learning method (OWL) (Zhao et al. (2015)),
the backward Q-learning method (QL) (Murphy (2005)), the benefit and risk personalized
treatment rules (BRITR) (Wang, Fu and Zeng (2018)), and the oracle method. Among them
OWL and QL are the most popular methods for learning individualized treatment rules with-
out considering side-effect constraints. The BRITR method is a competitive method for max-
imizing the benefit under the population-level side-effect constraint. In our numerical studies,
since we set up a threshold for the summation of the expected risk over all stages for each
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TABLE 1
Simulation results under setting 1: Average efficacy (Y-avg), median efficacy (Y-med), average side effect (Z-avg),

90th percentile of side effect (Z-90), maximum side effect (Z-max), percentage of subjects over the threshold
(Z-pct), and their associated standard deviation (sd) for the proposed method (ROWL) and four competing

methods under different thresholds τ . Bold indicates the best performer among all methods, except for the oracle

τ Method Y-avg (sd) Y-med (sd) Z-avg (sd) Z-90 (sd) Z-max (sd) Z-pct (sd)

3.5 Oracle 3.31 (0.02) 3.22 (0.03) 1.77 (0.06) 3.22 (0.02) 3.88 (0.05) 2.05 (0.34)
OWL 3.14 (0.14) 3.18 (0.14) 2.46 (0.18) 4.38 (0.27) 6.56 (0.41) 29.06 (5.22)
QL 1.53 (0.53) 1.44 (0.59) 2.94 (0.36) 5.03 (0.77) 7.79 (0.54) 34.07 (8.54)
BRITR 2.74 (0.32) 2.78 (0.33) 2.00 (0.69) 3.43 (0.76) 5.46 (0.98) 14.99 (13.99)
ROWL 2.99 (0.19) 3.05 (0.17) 1.51 (0.11) 2.95 (0.15) 4.34 (0.25) 2.10 (1.31)

4.0 Oracle 3.41 (0.02) 3.40 (0.03) 1.98 (0.07) 3.65 (0.03) 4.36 (0.05) 1.50 (0.31)
OWL 3.14 (0.14) 3.18 (0.14) 2.46 (0.18) 4.38 (0.27) 6.56 (0.41) 15.81 (4.26)
QL 1.53 (0.53) 1.44 (0.59) 2.94 (0.36) 5.03 (0.77) 7.79 (0.54) 19.88 (8.65)
BRITR 2.78 (0.34) 2.82 (0.35) 2.18 (0.83) 3.60 (0.89) 5.60 (1.10) 8.59 (9.66)
ROWL 3.12 (0.14) 3.20 (0.11) 1.71 (0.14) 3.37 (0.18) 4.78 (0.24) 1.76 (1.13)

4.5 Oracle 3.46 (0.02) 3.49 (0.03) 2.14 (0.08) 4.01 (0.05) 4.84 (0.06) 1.06 (0.21)
OWL 3.14 (0.14) 3.18 (0.14) 2.46 (0.18) 4.38 (0.27) 6.56 (0.41) 8.70 (3.24)
QL 1.53 (0.53) 1.44 (0.59) 2.94 (0.36) 5.03 (0.77) 7.79 (0.54) 14.77 (7.61)
BRITR 2.77 (0.35) 2.80 (0.35) 2.28 (0.91) 3.69 (0.99) 5.65 (1.14) 5.63 (7.78)
ROWL 3.27 (0.09) 3.34 (0.08) 1.93 (0.16) 3.75 (0.18) 5.31 (0.29) 1.41 (0.95)

subject, we split the threshold equally at each stage and use it as the population-level con-
straint when implementing BRITR. For the oracle method, we assume the model structures
for the efficacy and risk are known, but the model parameters still need to be estimated from
the simulated data. To implement OWL and QL models, we employ the “bowl” and “qLearn”
functions in R package “DynTxRegime.” The BRITR, the oracle and the proposed method
are implemented in R.

Since the CATIE study has two stages with 634 patients and eight covariates, we adopt
a similar setting for our simulations. We consider a two-stage setting for illustration. In the
following, if not specified, the sample sizes for the training and test sets are 100 and 10,000,
respectively. We let the tuning parameter C take values in {0.05,0.1,0.5,1,10,100}, and δ

in {0.01,0.05,0.1,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}. All the simulation results are
based on 100 Monte-Carlo replications. We consider four data generation settings.

For setting 1 and in the first stage, we generate covariates X1,1, . . . ,X1,10, followed
by an identical and independent Unif(0,1) distribution, and randomly generate the treat-
ment assignment A1 from {−1,1} with equal probability. The outcome Y1 ∼ N(μ1,0.52),
where μ1 = 0.3 − X1,1 + X1,2 + X1,3 + 5(1 − X1,1 − X1,2)A1, and the negative effect
Z1 ∼ N(uz1,0.12), where uz1 = 1 + X1,1 + (X1,1 + X1,2)A1. For the second stage, we
randomly generate the treatment assignment A2 from {−1,1} with equal probability. The
outcome Y2 ∼ N(μ2,0.52), where μ2 = 0.2 − X1,1 + X1,2 + X1,3 + (1 − X1,1 − X1,2)A2,
and the negative effect Z2 ∼ N(uz2,0.12), where uz2 = 1 + X1,1 + (X1,1 + X1,2)A2.

Table 1 and Figure 1 summarize the results for our method and four competing methods.
The tuning parameters for our method are chosen as C = 10, δ = 3.5, and we use the linear
kernel. The proposed method (ROWL) achieves a very satisfactory performance, as its effi-
cacy and side-effect risks are very close to those obtained by the oracle method. Specifically,
the estimated average efficacy obtained by the proposed method is 90.3% ∼ 94.5% of the
oracle, and the median efficacy is 94.7% ∼ 95.7% of the oracle. The percentage of subjects
exceeding the threshold is also at the same level for the proposed method and the oracle
method, and the average side effect as well as the 90th percentile of the side effect of the
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FIG. 1. Simulation results under setting 1: Boxplots of average efficacy (upper left), median efficacy (upper
right), average side effect (middle left), 90th percentile of side effect (middle right), maximum side effect (bot-
tom left), and percentage of subjects over threshold (bottom right) for the proposed method (ROWL) and four
competing methods.

proposed method are smaller compared to those of the oracles. Compared to the other three
competing methods, the proposed method achieves a much lower risk and smaller standard
deviations at various thresholds τ . This advantage is particularly noticeable in terms of the
percentage of subjects exceeding the thresholds, which is reduced by at least 74% for our
method compared to competing method. This is expected, since neither the OWL nor the QL
methods take risk into consideration; and the BRITR method only considers the population-
level risk constraint, which inevitably allows a higher portion of subjects’ risk to enable a
higher overall efficacy.

We discuss the differences between our method and BRITR as follows. Both methods have
the same objective function, that is, to maximize the expected efficacy. However, there are two
major differences. The first one is that BRITR only applies to single stage ITRs, which is not
applicable to our motivating data study since it consists of more than one stage. Second, the
constraints are different. BRITR only requires that the expected population risk not exceed
a threshold, while our algorithm requires the expected individual risk to be below a required
threshold. Therefore, it is not surprising to observe that, in numerical studies, BRITR tends to
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TABLE 2
Simulation results under setting 1 for different training size N : Average efficacy (Y-avg), median efficacy
(Y-med), average side effect (Z-avg), 90th percentile of side effect (Z-90), maximum side effect (Z-max),

percentage of subjects over the threshold (Z-pct), and their associated standard deviation (sd) for different
threshold τ . Bold indicates the best performer among all methods, except for the oracle

N Method Y-avg (sd) Y-med (sd) Z-avg (sd) Z-90 (sd) Z-max (sd) Z-pct (sd)

50 Oracle 3.40 (0.02) 3.39 (0.03) 2.00 (0.10) 3.65 (0.04) 4.37 (0.06) 1.55 (0.43)
OWL 2.86 (0.23) 2.90 (0.24) 2.56 (0.28) 4.39 (0.43) 6.93 (0.54) 15.27 (5.91)
QL 1.59 (0.57) 1.53 (0.65) 2.88 (0.37) 4.94 (0.80) 7.79 (0.45) 18.64 (8.51)
BRITR 2.34 (0.40) 2.36 (0.44) 2.27 (0.87) 3.84 (1.10) 6.11 (1.34) 10.04 (12.11)
ROWL 3.00 (0.13) 3.09 (0.13) 1.89 (0.23) 3.45 (0.22) 4.94 (0.37) 2.48 (1.68)

100 Oracle 3.41 (0.02) 3.40 (0.03) 1.98 (0.07) 3.65 (0.03) 4.36 (0.05) 1.50 (0.31)
OWL 3.14 (0.14) 3.18 (0.14) 2.46 (0.18) 4.38 (0.27) 6.56 (0.41) 15.81 (4.26)
QL 1.53 (0.53) 1.44 (0.59) 2.94 (0.36) 5.03 (0.77) 7.79 (0.54) 19.88 (8.65)
BRITR 2.78 (0.34) 2.82 (0.35) 2.18 (0.83) 3.60 (0.89) 5.60 (1.10) 8.59 (9.66)
ROWL 3.12 (0.14) 3.20 (0.11) 1.71 (0.14) 3.37 (0.18) 4.78 (0.24) 1.76 (1.13)

200 Oracle 3.41 (0.02) 3.40 (0.03) 1.97 (0.05) 3.65 (0.03) 4.37 (0.06) 1.51 (0.25)
OWL 3.30 (0.08) 3.32 (0.08) 2.41 (0.14) 4.41 (0.20) 6.34 (0.30) 16.72 (3.20)
QL 1.71 (0.55) 1.60 (0.63) 2.81 (0.36) 4.61 (0.64) 7.46 (0.54) 16.65 (7.81)
BRITR 3.04 (0.20) 3.05 (0.18) 2.15 (0.70) 3.61 (0.72) 5.37 (0.95) 7.39 (7.75)
ROWL 3.16 (0.15) 3.19 (0.10) 1.64 (0.12) 3.24 (0.14) 4.51 (0.19) 0.70 (0.64)

sacrifice a significant portion of subjects in terms of having their risk above the threshold to
achieve a higher overall efficacy. This is also reflected in our CATIE data study, where over
19% of patients exceed their risk threshold based on the decision rule from BRITR, which is
the highest among all four competing methods.

As τ decreases, the percentage of subjects exceeding the threshold for other nonoracle
methods increases, while our method retains a low percentage consistently. The above nu-
merical findings confirm the advantage of our method in terms of controlling individual risk
while maintaining a high level of efficacy for multistage treatment decision problems.

We also investigate the impact of the training sample size under this setting and summarize
the results in Table 2 and Figure 2. We use the same tuning parameters (C = 10, δ = 3.5) and
linear kernel K for implementation. From Table 2 we observe that, as the training size N

increases, the performance becomes better, that is, the efficacy increases and the side effect
decreases. Compared to the oracle, our proposed method achieves a similar level of efficacy
and risk, for example, the average efficacy for the proposed method is around 90% of the
oracle’s. The risk for the proposed method is lower than or comparable to the oracle’s under
different training sample sizes. Compared to other nonoracle methods, the proposed method
has much lower side-effect risks while maintaining competitive efficacy levels.

The computational complexity of our method is O(n3L), where n is the sample size, and
L is the bit-length of matrix W in equation (1) provided in the Supplementary Material File.
Here bit-length is defined as L = ∑

i

∑
j
log2(|wi,j |+1)+1�, where wi,j is the entry of ma-

trix W . The above rate is derived based on the fact that our method mainly uses the interior-
point method in each iteration, and the complexity of the interior point is O(n3) according
to Potra and Wright (2000). We further evaluate the computational time of our method and
other competing approaches under simulation setting 1 when the training sample size is 100
and τ is 4.0. The comparison results are summarized in Table 3. Specifically, the OWL and
QL methods take the least amount of time, followed by BRITR, and the oracle and our pro-
posed method. This is expected, since the OWL and QL methods only consider the average
efficacy among the entire population, while BRITR also considers the average risk constraint.
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FIG. 2. Simulation results under setting 1 for different training size N : Boxplots of average efficacy (upper
left), median efficacy (upper right), average side effect (middle left), 90th percentile of side effect (middle right),
maximum side effect (bottom left), and percentage of subjects over threshold (bottom right).

In contrast, both the oracle and our method impose individual-level risk constraints, which
significantly increases the computational cost.

We further evaluate the robustness of the proposed method under treatment mislabeling,
where treatment assignment is labeled incorrectly, and summarize the results in Table 4. Both
efficacy and side effect do not change much, as the mislabeling rate increases up to 10%.
The side-effect risks are more sensitive to treatment mislabeling than efficacy since they
are directly related to the accuracy of the individual side-effect prediction. Nevertheless, the
risk for the proposed method with 10% mislabeled treatment is still much lower than those

TABLE 3
The average running time (in seconds) of the methods in simulation setting 1 when training sample size is 100

and τ = 4.0

Model Oracle OWL QL BRITR ROWL

Time (s) 76.58 0.83 0.69 2.78 99.46
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TABLE 4
Simulation results for ROWL under setting 1 with treatment label mislabeling rates of {0,2,5,10}%: Average
efficacy (Y-avg), median efficacy (Y-med), average side effect (Z-avg), 90th percentile of side effect (Z-90),

maximum side effect (Z-max), percentage of subjects over the threshold (Z-pct), and their associated standard
deviation (sd) for different threshold τ

Rate Y-avg (sd) Y-med (sd) Z-avg (sd) Z-90 (sd) Z-max (sd) Z-pct (sd)

0% 3.12 (0.14) 3.20 (0.11) 1.71 (0.14) 3.37 (0.18) 4.78 (0.24) 1.76 (1.13)
2% 3.14 (0.13) 3.21 (0.11) 1.75 (0.20) 3.40 (0.20) 4.83 (0.24) 2.07 (1.37)
5% 3.13 (0.14) 3.21 (0.13) 1.78 (0.19) 3.44 (0.21) 4.89 (0.25) 2.50 (1.78)
10% 3.11 (0.15) 3.19 (0.13) 1.84 (0.23) 3.51 (0.24) 5.05 (0.32) 3.52 (2.26)

obtained from the other nonoracle methods without mislabeling. We have also conducted
three more simulation studies under more complex settings and observed a similar pattern as
in Simulation 1. More details can be found in Section 5 in the Supplementary Material.

5. Real data analysis. We apply the proposed method to analyze the data collected from
the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study for schizophre-
nia. The data is obtained from the NIMH Repository and Genomics Resource, available upon
request at https://www.nimhgenetics.org/download-tool/SZ under study 17. A detailed study
description can be found in Stroup et al. (2003). The CATIE study is an 18-month sequen-
tial randomized trial which has a maximum of four phases. Subjects started at Phase 1 upon
entering the study, and they were randomly assigned to five treatment groups: (Quetiapine
(QUET), Olanzapine (OLZ), Risperidone (RIS), Ziprasidone (ZIP), and Perphenazine (PER).
Among these treatments PER is a conventional antipsychotic, and the others are new atypical
antipsychotics. During Phase 1 subjects could choose to discontinue their current phase (due
to tolerance failure or lack of treatment efficacy) and enter the next phase to receive a new
treatment. In Phase 2 the patients who discontinued their treatment in Phase 1, due to toler-
ance failure, were randomly assigned to a double-blind treatment with a 50% probability of
receiving one of the newer atypical antipsychotics (OLZ, RIS, QUET), which they had not
previously received, and 50% probability of receiving Ziprasidone (ZIP). Similarly, the pa-
tients who discontinued treatment in Phase 1, due to efficacy failure, were randomly assigned
to a double-blind treatment with a 50% probability of receiving one of OLZ, RIS, and QUET,
which they had not previously taken, and a 50% probability of receiving open-label clozapine
(CLO). Since the number of subjects in Phase 3 drops dramatically, we only consider Phase
1 and 2 in our study and treat them as two main stages.

In our analysis we consider the difference in total scores of positive and negative symptoms
(PANSSTOT) between the start and end point at each stage as the efficacy outcomes. Let the
change of weight at each stage be the side effect. We use the same threshold of 15 pounds for
each subject. The covariates include baseline BMI, age, gender, baseline weight, B1_PANSS
(baseline PANSS), CGI_SEV (Clinician Global Impressions: Severity), EXACER (hospital-
ization), and TD (tardive dyskinesia). The total number of subjects is 634.

Based on the previous results in Stroup et al. (2003), we focus on two groups of treatments.
One includes OLZ, RIS, QUET, and CLO, which are atypical antipsychotics and are expected
to have a higher efficacy and a higher risk of gaining weight, and the other includes PER
and ZIP (treatments that are expected to have a lower efficacy and a lower weight gain). For
subjects who did not change their treatments, that is, they never entered Phase 2, we split their
Phase 1 observations at the middle time point to create two-stage data for further analysis.

For implementation we randomly select 100 subjects as a training set and the rest of the
data as a test set. This process is repeated 100 times to obtain the average efficacy and side-
effect estimates. The tuning parameters are chosen as C = 1, δ = 0.2, and the linear kernel

https://www.nimhgenetics.org/download-tool/SZ
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TABLE 5
CATIE data analysis results: Estimated average efficacy (Y-avg), median efficacy (Y-med), average side effect

(Z-avg), 90th percentile of side effect (Z-90), maximum side effect (Z-max), percentage of subjects over the
threshold (Z-pct), and their associated standard deviation (sd)

Method Y-avg (sd) Y-med (sd) Z-avg (sd) Z-90 (sd) Z-max (sd) Z-pct (sd)

OWL 8.75 (2.44) 7.53 (1.95) 1.48 (2.86) 23.91 (4.76) 86.08 (14.74) 17.71 (3.87)
QL 7.95 (2.30) 7.69 (1.90) 1.48 (2.45) 24.60 (4.37) 85.87 (13.53) 18.62 (4.16)
BRITR 9.92 (3.54) 7.60 (1.87) 2.79 (4.10) 24.76 (4.87) 83.11 (14.77) 19.76 (5.57)
ROWL 12.53 (4.98) 7.91 (1.91) −2.18 (4.05) 20.03 (4.93) 68.73 (16.53) 13.73 (4.98)

is used. For treatment assignment probability at phase 1, P(A1|H1), we use the assignment
probability directly since treatments were randomly assigned to the subjects at stage 1. At
phase 2 we use logistic regression to predict the probability P(A2|H2) with history informa-
tion. Since we have split the treatment trajectory of patients who only participated in Phase 1
at these two stages. This makes the treatment in the second stage dependent to the first one.
In the analysis we standardize the covariates and add their interactions for predicting the side
effect (weight gain).

We summarize the results of our method and three competing approaches (OWL, QL, and
BRITR) in Table 5 and display their corresponding boxplots in Figure 3. We observe that the
proposed method achieves the lowest risk, that is, the average weight gain is, in fact, −2.18
pounds while all other methods have at least 1.48 pounds of weight gain on average. The
maximum weight gain for our method is 68.73 pounds compared to at least 83.11 pounds

FIG. 3. CATIE data analysis results: Boxplots of average efficacy (upper left), median efficacy (upper middle),
average side effect (upper right), 90th percentile of side effect (bottom left), maximum of side effect (bottom
middle), and percentage of subjects over threshold (bottom right).
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from the competing methods. Notably, our method also achieves the highest efficacy. Specif-
ically, the change in PANSSTOT score is 12.53 for our method compared to at most 9.92
from the competing methods. In terms of the percentages of subjects over the threshold, our
method reduces the side-effect risk by 22.5%, 26.3%, and 30.5% compared to OWL, QL and
BRITR, respectively. In terms of average efficacy, our method significantly increases efficacy
by 43.2%, 57.6%, and 26.3% compared to OWL, QL and BRITR. The improvement in side
effect is not surprising since we explicitly take individual risk control into consideration in
our model. The improvement in the efficacy is likely due to the fact that our method simul-
taneously learns the model parameters at different stages. In addition, the proposed method
has addressed the two issues, that is, the shift invariance and the requirement that the effi-
cacy in the objective function must be positive, which arise in the original outcome weighted
learning framework discussed in Section 2.2. These findings illustrate the effectiveness and
significant advantages of the proposed individualized risk-control outcome weighted learning
method over existing approaches. We have also implemented other values for the side-effect
thresholds, and similar results are observed.

In our analysis we have also identified several covariates which have a higher impact than
others. When making treatment decisions, it is crucial to consider covariates, such as base-
line PANSS score, baseline clinician global impressions severity score (CGI), and BMI, as
they are among the most important variables in our model. When predicting side effects, we
find that the baseline PANSS score, the weight in phase 2, and the interaction effect between
weight and PANSS in both phases are the most important covariates. These results are useful
in determining patient subgroups, which may require additional attention when recommend-
ing more aggressive treatment plans.

6. Discussion. In this paper we propose a risk-constrained outcome weighted learning
method to optimize efficacy while controlling negative effects individually. The proposed
method is developed for multistage decision problems, based on the simultaneous outcome
weighted learning framework, with the single-stage setting as a special case. Numerical re-
sults have confirmed the excellent utility of our method in terms of achieving risk control and
treatment efficacy simultaneously.

In the CATIE data analysis, we opt for a linear risk predictive model, as it strikes a good
balance between ease of interpretation and predictive accuracy. Our simulation study, specif-
ically Setting 3 as presented in Section 5 of the Supplementary Material, demonstrates the
desired robustness of our method against linear model misspecification. Selecting an appro-
priate risk model and evaluating assumptions, for example, the absence of time-varying mod-
eration on risk as discussed in Section 2, are critical aspects in model building. In practical
scenarios if there is prior knowledge available regarding which covariates (or their interac-
tions) should be included or what transformations are needed, then we can utilize this infor-
mation in constructing a risk predictive model. Otherwise, one can consider fitting several
different models (e.g., linear vs. nonlinear) and selecting the most appropriate one based on
their performance.

Several research directions remain open for future investigation. First, we focus on pre-
dicting and controlling the mean of side effects (over different stages) in this paper. Other
statistics, such as percentiles and maxima, can also be used. Second, our proposed method
is geared toward binary treatment problems, but it can be extended to solving multitreatment
decision problems. For example, one can transform the multitreatment problems to multiple
binary treatment problems and then combine pairwise comparisons between treatments using
the proposed method. Another approach is to implement comparison between one treatment
vs. the others. By sequentially applying our method for binary comparison, an optimal treat-
ment can be obtained. Another future direction is to consider multiple side effects. This can
be achieved by adding more constraints to the optimization or using a weighted average of
the side effects instead, then applying the proposed procedure to solve the problem.
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SUPPLEMENTARY MATERIAL

Examples and algorithms (DOI: 10.1214/23-AOAS1836SUPPA; .pdf). Additional nu-
merical results and the algorithm description are provided.

Sample code (DOI: 10.1214/23-AOAS1836SUPPB; .pdf). Computational codes are pro-
vided.
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