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Abstract

We show that every unstable NIP theory admits a \/-definable linear quasi-order,
over a finite set of parameters. In particular, if the theory is w-categorical, then
it interprets an infinite linear order. This partially answers a longstanding open
question.

1 Introduction

A first order structure is NIP if every family of uniformly definable sets has finite VC-
dimension. We like to think of NIP structures as being geometric, indeed the classical
examples comprise algebraically closed fields (the domain of algebraic geometry), real
closed fields (semi-algebraic geometry), the field Q, of p-adic numbers and algebraically
closed valued fields (non-archimedean geometry). This class contains that of stable
structures, for which we now have an extremely rich theory (see [She90], [Pil96]).

In his paper [She71], Shelah introduced NIP theories and proved that any unstable
NIP theory is SOP, that is admits a definable partial order with infinite chains. A
longstanding open question asks whether this can be strengthened to an interpretable
infinite linear order!. In this paper, we give a positive answer to a weaker form of
this question: we find a \/-definable equivalence relation such that the quotient by it is
infinite and linearly ordered: see Theorem 5.8. In the case of w-categorical theories, we
obtain a bona fide interpretable linear order.

In fact, we show slightly more. Following [GH15], we define the op-dimension
of a type as a variation on the dp-rank which only sees order-like dimensions. This
dimension precisely gives the number of independent linear orders that one can define
on a type. In the last section, we then define stable dimension as a counterpart to
op-dimension, but this is not used elsewhere in the paper.

There is an important difference between our result and Shelah’s theorem, giving
a partial order. The existence of a partial order is a non-structure result. Since partial
orders can be arbitrarily complicated, it gives no positive information on the models
of the theory. A linear order however is a much more constrained object. In fact, we
hope that this theorem could open up a new perspective on NIP theories. It shows that
NIP is a more structured world than was thought before and makes it reasonable to
expect classification statements and analyses similar to those for stable (or superstable)
theories, where linear orders would be explicitly present. Indeed we would like the
linear orders to have similar role in NIP theories (or subclasses of it) as for instance
strongly minimal sets play in the study of w-stable structures. Isomorphism types of
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linear orders could replace dimensions of regular types (or rather complement them,
since an NIP theory can have stable components). Of course, this still seems far away. A
natural special case to initiate this program is the case of w-categorical structures. This
will be studied in future works, starting with [Sim18] which deals with w-categorical
structures of thorn rank 1 and completely classifies the primitive ones.

2 Preliminaries

Throughout this paper, T is a complete first order theory in a language L. We let U be
a monster model, which is &-saturated and &-strongly homogeneous for some large
enough k. All sets of parameters considered have size smaller that .

We use the notation ¢° to mean —¢ and ¢! to mean ¢.

Letters such as 4, b, c usually denote finite tuples of variables, whereas A, B, C denote
small subsets of /.

The concatenation of two sequences I and | will be denoted I + J or I ]. The first
notation is used for indiscernible sequences and the second one for concatenation of
tuples or families of any kind.

Assumption: Throughout this paper, we assume that T is NIP.

2.1 Invariant types

By an A-invariant type, we mean a global type p which is invariant under automor-
phisms fixing A pointwise. If p(x) and 4(y) are both A-invariant, we can define the
type p(x) ® q(y) whose restriction to any set B O A is tp(a,b/B), where b |= g|B and
a |= p|Bb. Itis also an A-invariant type. A Morley sequence of p over A is a sequence
I = (a;:i€Z)suchthatforeachi € Z, a; = p|Aa~;. A Morley sequence of p over A is
indiscernible over A and all Morley sequences of p over A indexed by the same order
have the same type over A.
Two invariant types p(x) and q(y) commute if p(x) ® q(y) = q(y) ® p(x).

2.2 Indiscernible sequences

We set here some terminology concerning indiscernible sequences that we copy from
[Sim20].

Sequences (I; : i < w) are mutually indiscernible if each I; is indiscernible over Iz;.

The EM-type of an indiscernible sequence I is the set {p, : n < w}, where p, =
tp(ay,...,a,) for some/any elements a; <j --- < a, of .

If I is an indiscernible sequence, we let op(I) denote the sequence I indexed in
the opposite order. If I is an endless indiscernible sequence and T is NIP, let lim(I)
denote the limit type of I: the global I-invariant type defined by ¢(x) € lim(I) if ¢(I) is
cofinal in I. Observe that if op(I;) is a Morley sequence of lim(I) over I, then I + I; is
indiscernible.

A cut ¢ = (Ip, ) of I is a pair of subsequences of I such that Ij is an initial segment
of I and I; the complementary final segment, i.e., I = Iy + I;. If ] is a sequence such that
Ip + ] + I is indiscernible, we say that ] fills the cut ¢. To such a cut, we can associate
two limit types: lim(Ip) and lim(op(I1)) (which are defined respectively if I and op(I;)
have no last element). The cut (Ip, I;) is Dedekind if both Iy and op(I;) have infinite
confinalities, in particular are not empty.



We now recall the important theorem about shrinking of indiscernibles and intro-
duce a notation related to it (see e.g. [Sim15, Chapter 3]).

Definition 2.1. A finite convex equivalence relation on 7 is an equivalence relation ~
on Z which has finitely many classes, all of which are convex subsets of 7.

Proposition 2.2 (Shrinking of indiscernibles). Let (a;);cz be an indiscernible sequence. Let
d be any tuple and ¢(yo, .., yu—1;d) a formula. There is a finite convex equivalence relation ~
on L such that given:

-ty <...<ty,1inZ;

-850 < ...<sy_1inZL withty ~y sy for all k;
we have ¢(ay,, .., a, ;d) <> $(asy, ..., as, ;d).

Furthermore, there is a coarsest such equivalence relation.

Given A, I = (a)tez, $(Yo, - - -, Yn—1,d) as above, we let T(I, ¢) denote the number
of equivalence classes in the coarsest ~, given by the proposition. By compactness, the
number T(I, ¢) is bounded by an integer depending only on ¢ (vo, - .., yn—1;2).

If I C J are indiscernible sequences and A is any set of parameters, we write I <4 |
if for every ¢(yo,...,Yyn—1;d) € L(A), we have T(I,¢) = T(], ¢). Intuitively, formulas
with parameters in A do not alternate more on | than they do on I.

Note the following special cases:

e If I is indiscernible over A, then I <4 | simply means that | is A-indiscernible and
contains I.

e If ] is without endpoints, I <4 Iy + I + I; is equivalent to the statement that Ij is a
Morley sequence in lim(op(I)) over IA and op(I;) is a Morley sequence in lim(I)
over All.

The following will be used repeatedly without mention.

Lemma 2.3. If I = (a; : i € T) is indiscernible, where the indexing order T is dense without
endpoints, then given any T C J and any set A of parameters, we can find | = (a; :i € J)
extending I such that I 1, J.

Proof. We give two arguments for this. For the first one, let M be a model containing I
and A. Assume that I is a sequence of k-tuples. Expand M by adding a k-ary predicate
P(x) to name the sequence I and a 2k-ary predicate <p for the order on that sequence.
Let Mp be the resulting structure. Let Np be a |J| *-saturated elementary extension of
Mp. Then P(x) names a sequence K, ordered by <p which extends I. We then have,
in the original language, I <4 K since the fact that a formula has a certain number of
alternations is first order expressible in Lp. By saturation, we can find a subsequence |
of K with the right order type.

We can also build | explicitly as follows: for every cut ¢ = (I, I) of I, by density
of I either Iy has no last element or I; has no first element. Assume for example the
latter. Let J. be a Morley sequence of lim(op(I;)) over everything constructed so far
which is indexed by the subsequence of 7 which lies in the cut of Z corresponding to c.
Doing this iteratively for all cuts of I and adding all those sequences to I, we obtain | as
required. O



2.3 Dp-rank

The dp-rank will not be used in this paper, but we will define variations of it and hence
it seems useful to recall its definition and some of its properties.

Definition 2.4. Let 77 be a partial type over a set A, and let x be a (finite or infinite) car-
dinal. We say dp-rk(m, A) < « if for every family (I; : t < x) of mutually indiscernible
sequences over A and b |= 71, there is t < k such that I; is indiscernible over Ab.

If b € U, then dp-rk(b/ A) stands for dp-rk(tp(b/A), A).

A theory T is NIP if and only if we have dp-rk(7r, A) < |T|™ for every finitary type
7t ([Sim15, Observation 4.13]).

The term rank used for dp-rank is misleading as the dp-rank is a cardinal and not an
ordinal. (Strictly speaking, it is not a cardinal, since we only defined dp-rk(7r, A) < x
and not dp-rk(7r, A) = «. This is due to a problem at limit cardinals: we can have say
dp-rk(7r, A) < Rp and yet dp-rk(7r, A) > n for each n < w. Some authors write this as
dp-rk(mr, A) = X;".) The reason for it is historical: Shelah gave a more general definition
of dp-ranks in [Shel4], which were indeed ordinals. The definition we use now was
extracted from that paper in [Usv09] and the name stayed. In the following sections, we
will define two variations on the dp-rank, one from [GH15] which sees only the order
component, and a new one which sees only the stable component. We will call them
dimensions instead of ranks.

Some properties of dp-rank in NIP theories (of unequal difficulties):
e If A C Band misover A, then dp-rk(7r, A) = dp-rk(m, B).

e Given 7t a partial type over A and let « be any cardinal. Then we have dp-rk(7, A) <
« if and only if for any family (I; : t € X) of sequences, mutually indiscernible
over A and any b |= 7, there is Xy C X of size < x such that (I; : t € X \ Xp) are
mutually indiscernible over Ab.

o (Additivity) Leta, b € U, A a small set of parameters and «1, k, be two cardinals
such that dp-rk(b/A) < x; and dp-rk(a/Ab) < x», then

dp-rk(a,b/A) <x1+12— 1.

The first bullet is relatively straightforward. The second one is from [KOU13], as
well as the third, which follows from it. Proofs can be also found in [Sim15, Section 4].

3 Indiscernible sequences stable over a set

Recall that we assume T to be NIP.

In [Sim13] we introduced the idea that there are two minimal ways in which an
indiscernible sequence I can fail to be indiscernible over a tuple a: either some formula
¢(x;a) changes truth value at one cut of the sequence I, or there is an element b € |
such that some formula takes a different truth value on b, but removing b from I yields
an indiscernible sequence over a. Distal theories are exactly those for which the second
behavior never happens. The following fact from [Sim13] says that this second behavior
cannot happen on a large subset of I.

Fact 3.1 ([Sim13], Theorem 3.30, Corollary 3.32). Let I; + I, + I3 be indiscernible, with
L1, Iz infinite without endpoints. Write I, = (b; : i € I). Assume that I + I3 is indiscernible
over A, then:



1. if¢(x;a) € L(A), then {i € T :}= ¢(b;;a)} is finite or co-finite in I,

2. thereis J C T of size < |A| + |T| such that I + (a; : i € T\ J) + I3 is indiscernible
over A.

Proposition 3.2. Let I be an endless densely ordered indiscernible sequence and A a set of
parameters. The following are equivalent:

1. there are infinite endless sequences Iy, I such that Iy + I + I is indiscernible and In + I
is indiscernible over A;

2. if Iy is a Morley sequence in lim(op(I) /IA) and op(I1) a Morley sequence in lim(I1/11pA)
(equivalently, I 14 Iy + I + 11), then Iy + Iy is indiscernible over A;

3. if I <4 ], then ]\ I is indiscernible over A;

4. for every formula ¢(x1,...,x,) € L(A), there is a finite set I, C I and a truth value t
such that for every oy < --- < an in I\ Iy, |= ¢*(as, ..., a,).

Proof. The implications (4)—(3)—(2)—(1) are straightforward: (4) implies (3) as limit
types are unaffected by removing finitely many points from a sequence, (2) is a special
case of (3) and (1) follows directly from (2). The implication (1)—(4) is proved as in
[Sim13, Corollary 3.32]. O

Definition 3.3. If the conditions of the proposition are satisfied, we say that I is stable
over A.

If I is any infinite indiscernible sequence (not necessarily densely ordered), we say
that it is stable over A if condition (1) above is satisfied. This implies that (4) also holds.
If I has no endpoints, then (2) also holds.

Note that if I C | are two endless indiscernible sequences, I coinitial and cofinal in
J, then I is stable over some set A if and only if | is stable over A. This follows from (2)
above since the limit types of I and | (from both sides) are the same.

Also, it follows from Fact 3.1 that if I is stable over A, then thereis I' C I, |I'| <
|T| + | A| such that I \ I’ is indiscernible over A.

Finally, we note that this definition first appeared in [GH15] under the name almost
indiscernible sequence. We use a different terminology, mainly because the next definition
of mutually stable sequences does not coincide with almost mutually indiscernible
sequences from [GH15].

Proposition 3.4. Let (I; : i < a) be a family of endless densely ordered indiscernible sequences
and A a set of parameters. The following are equivalent:

1. there are infinite endless sequences | ?, ]1-1, i < w, such that the sequences ]IQ +L+] 11 are
indiscernible and ]Z-O + ]l.1 are mutually indiscernible over A;

2. ifforeachi < w, J realizes lim(op(I;)/ <o AJ%,JL;) and op(J}) realizes im(I/ 1<, AJ2,JL;),

then the sequences (J° + J! : i < a) are mutually indiscernible over A;

3. if we construct inductively I; Qay_,j_, Ji, then the sequences (J; \ I; : i < a) are mutually
indiscernible over A;



4. for every formula ¢(xi, .., X3 ; X3, .., x5 .. Sk, x’flk) € L(A) and indices iy > -+ - >
ix there is a truth value t, a finite set I' C I, such that for any aj < --- <a), € I \ I',
there is a finite set 1> C I;, such that for any a3 < --- < a3, € I, \ I?, there is
a finite set 1> C I, such that ...... for any at < - < € I, \ I¥, we have

ay,
= ¢t(al, .., a%l;a%,..,ai; .. .;a'l‘,..,aﬁk).

k

Proof. The implications (4)—(3)—(2)—(1) are as above. We show (1)—(4). Assume
(1) and take the sequences ]ZQ, J 11 to be countable. Assume that (4) fails, as witnessed
by some formula ¢ and indices iy > --- > ir. For simplicity of notations, assume
k=2, (i1,i2) = (1,0) and ¢ = ¢(x!,xY) (we changed the variable name from x? to x° to
improve readability). The general case is similar. Let t be the truth value of ¢(a!, a®) for
some/any a' € ]9,4° € JJ. Then we can find an infinite I' C I; such that foralla € I',
there is an infinite 12 C Iy such that forall b € 12, we have

_'(Pt(a/ b)

By compactness, we can increase the sequences I; and Iy and assume that I' and each 10
have size > |T|". As the sequence J? + ]} is indiscernible over JJ + J} and the latter is
countable, by Fact 3.1, there is a subset I! C I; of size < |T| such that J? + (I; \ I!) + J}
is indiscernible over J§ + J}. Leta € (I'\ I!). Then J{ + (a) + J{ is indiscernible
over ]8 + ]6, and hence those two sequences are mutually indiscernible. Next, we
can similarly find I C I of size < |T| such that J§ + (Ip \ I?) + J} is indiscernible
over J? + (a) + Ji. So there is some b € I?\ I%. Then the sequences J{ + (a) + J{ and
J8 + (b) + J} are mutually indiscernible. But this contradicts the construction of I. [

When the conditions in the last proposition are satisfied, we say that the family
(L : i < w) is mutually stable over A. Condition (1) shows that this notion does not
depend on the ordering of the family. As previously, we extend this definition to
arbitrary indexing orders using condition (1). This implies that condition (4) holds and,
if the sequences (I;) are endless, condition (2) holds.

The following lemmas will be used repeatedly.

Lemma 3.5. Let Iy, ..., I, be infinite sequences, mutually indiscernible over some A. Assume
that the sequence Iy 4 - - - 4 I, is indiscernible and stable over A. Then I + --- + 1, is
indiscernible over A.

Proof. Fix a formula ¢(x1,...,x,) over A. By Proposition 3.2(4), there is a finite set
Ip € I1 +---+ Iy and a truth value t such that for every a; < --- < a, in I} +
e I \ Iy, ¢t(ay,...,a,). Now take an arbitrary ay,...,a, € I + - - - + I,. Since
the sequences I, ..., I;; are infinite and mutually indiscernible over A, we can find
ay,...,a, € I +--- + I, having the same type as a3, ..., a, over A and disjoint from
Iy. We know that ¢*(a}, ..., a},) holds, so also ¢*(ay, ..., a,) is true. Hence the sequence
I + - - -+ I, is indiscernible over A. O

Lemma 3.6. Let (J; : i < &) be sequences, mutually stable over some A, where each J; can be
written as J; = I} + - - + I and the sequences (I : i < a,j < k) are infinite and mutually
indiscernible over A. Then the sequences (J; : i < a) are mutually indiscernible over A.

Proof. The proof is the same as that of the previous lemma using Proposition 3.4(4)
instead of Proposition 3.2(4). O



4 Op-dimension

Op-dimension was introduced by Guingona and Hill in [GH15]. It measures the number
of independent orderings that one can define on an infinite subset of a (partial) type.
We give a self-contained exposition, slightly different from, but equivalent to, the one in
[GH15] (in the case of finite cardinals, see the remarks below).

Definition 4.1. Let A be any set of parameters, 7t a partial type over A and «x a cardinal.
We say that opD(7, A) < « if we cannot find:

oa =71 .

e a family (I; : i < «) of sequences mutually indiscernible over A, where I; = (b; :
jeIy); ,

o for each i < x, a formula ¢i(x;y;) € L(A) (with |x| = [a] and |y;| = [b}]), such that
{j € T; :}= ¢i(a; b;)} is infinite and co-infinite in Z;.

It follows at once from the definition that opD(7r, A) < dp-rk(7, A). In particular, if
T is NIP and 7t is a partial type in finitely many variables, then opD(7r, A) < |T|".

Lemma 4.2. If A C B and 7t(x) is a partial type over A, then opD(m, A) = opD(r, B).

Proof. If a, (I; : i < «x) is a witness to opD(7t,B) > «, thena, (I/ : i < k) witnesses
opD(m, A) > x, where I is obtained from I; by concatenating a fixed enumeration of B
to the end of every element of it.

Conversely, if (I; : i < k) are A-mutually indiscernible and witness opD(7t, A) > &,
then there is B’ =4 B such that those sequences are mutually indiscernible over B’. We
then have opD(7t, B) = opD(7t, B’) > x. Hence opD(7, B) > opD(7, A). O

Hence it makes sense to write opD(77) to stand for opD(7t, A) for any A over which
7t is defined.

This definition of op-dimension does not appear in this form in [GH15], but it is
easily seen by Ramsey compactness to be equivalent to the one using IRD-patterns
given as Lemma 1.23 in that paper. (The only difference is that we allow it to take
infinite cardinal values, whereas the definition as stated in [GH15] only allows integers
or 00.)

Proposition 4.3. Let 7t(x) be a partial type and x a cardinal. The following are equivalent:
1. opD(7) < x;

2. for every A over which 7t is defined, for every family (I; : i < x) of endless sequences
mutually stable over A and a |= 7, there is i < «x such that I; is stable over Aa;

3. for every A over which 7 is defined, for every family (I; : i < A) of endless sequences
mutually stable over A and a |= 7, thereis X C A, |X| < x such that (I; : i € A\ X)
are mutually stable over Aa.

Proof. (1) = (2): Assume we are given a family (I; : i < «x) of endless sequences
mutually stable over A such that no I; is stable over Aa. Using the second bullet after
Proposition 2.2, build inductively dense endless sequences J;, so that

LA+ 14},

over everything constructed so far. Then the sequences (J? + J! : i < k) are mutually
indiscernible over A, but no ]Z-O + ]l-l is indiscernible over Aa. Since the sequences (]?, ] 11 :
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i < k) are mutually indiscernible over Aa, we can find a formula ¢(x;y) € L(AJP]])
such that ¢(a; b) holds for all b in some end segment of J?, whereas —¢(a;b’) holds for
all b’ in some initial segment of J!. Adding the parameters of ¢ to the base and trimming
the sequences gives a witness of opD(71) > «.

(2) = (3): Assume that opD(7r, A) < «. Let (I; : i < A) be mutually stable over A
and let a = 7. Using the second bullet after Proposition 2.2, build inductively dense
endless sequences ]}‘, i <A,k <4,sothat

LR+ + L+ T2+ T3

over everything constructed so far. Let A’ = AJ% 3, The sequences (J! + J? : i < A)
are mutually stable (indeed mutually indiscernible) over A’. Let X C A be the set of
indices i for which J! + J? is not indiscernible over A’a. Since the sequences (J}, J? : i <
A) are mutually indiscernible over A’a, Lemma 3.5 implies that for i € X, J! + J? is not
stable over A’a. Hence by (2), |X| < x. Now since (J° + J}, J2+ J? : i < A) are mutually
indiscernible over Aa, each sequence J? + J1 + J? + J? for i ¢ X is indiscernible over
Aa] ;. Hence the sequences (J? + J1, J? + J? : i € A\ X) are mutually indiscernible over
Aa and the sequences (I; : i € A\ X) are mutually stable over Aa.

(3) = (1) is immediate. O

The following is [GH15, Theorem 2.2]. The proof we give is very similar to the one
by Guingona and Hill, except that we use mutually stable sequences instead of almost
mutually indiscernible, which is a stronger notion.

Proposition 4.4. Let A be any set of parameters and a, b two tuples. If opD(a/A) < k1 and
opD(b/Aa) < Ky, then opD(a,b/A) < x1 + 1 — 1.

Proof. Let (I; : i < A) be mutually stable over A. We can find X; C A, | X;| < k1 such
that the sequences (I; : i € A\ X;) are mutually stable over Aa. We then find X, C A,
|X»| < 7 such that the sequences (I; : i € A\ (X U X3)) are mutually stable over Aab.
This proves opD(a,b/A) < k1 + k2 — 1. O

5 Constructing linear orders

Assumption: All indiscernible sequences in this section are assumed to be indexed by Q.
This will be recalled at times. The density of the indexing order is only for convenience
and could be removed it most places, however having no endpoints is often essential
for the arguments to go through, as we want to be able to extend sequences on both
sides by realizing limit types.
Definition 5.1. A quintuple u = (7t(x), I, ], ¢; A) is good if:

ol =(a;:i€Q)and ] = (b : j € Q) are sequences of tuples, A is a small set of
parameters and 7t(x) is a partial type over AIJ;

e the sequence I + | is indiscernible over A;

® ¢ = ¢(x;y) € L(A) with x the same variable as that of 77(x) and |y| = |a;| = |bj|;

e there is a = 71(x) such that for each i € Q, we have |= ¢(a;4;) and for each j € Q,
we have = —=¢(a; b;).
We will sometimes omit A from the notation if it is irrelevant.
We write (a,1,],¢; A) for (tp(a/Al]), 1, ],¢; A).

Ifu=(al] ¢;A)andv = (d,I',],¢'; A") are good, write u < v to mean:
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cp=¢

e ACA;

etp(a/A)=tp(a'/A);

e [+ Jand I’ 4+ J' have the same EM-type over A.

Definition 5.2. Letu = (4,1, ], $; A) be good and set p(u) = tp(a/AIJ). We define the
following binary relations on realizations of p(u):

e (a,b) € E(u) if for any sequence K such that I + K + ] is A-indiscernible, if ¢(a;d)
(resp. —¢(a;d)) holds for all d € K, then ¢(b;d) (resp. —¢(b;d)) holds for almost all
d € K (all but finitely many).

e (a,b) € R(u) if we cannot find a sequence K such that both (4,1 + K, ], $; A) and
(b,I,K+],¢; A) are good.

Lemma 5.3. Let u be good, then E(u) and R(u) are \/-definable relations on p(u). The
relation E(u) is an equivalence relation and R(u) is reflexive, transitive and E(u)-equivariant.
Furthermore (a,b) € E(u) if and only if both (a,b) and (b, a) are in R(u).

Proof. Only transitivity of R(u) is not immediate from the definition. Let a,b,¢ |=
p(u) and assume that (a,c) ¢ R(u) as witnessed by K: thatis (a,I + K, ], ¢; A) and
(¢, 1, K+ ], ¢; A) are good. Replacing K by a Morley sequence of its limit type, we may
assume that K is indiscernible over Ab. If ¢(b;d) holds for d € K, then (b, + K, ], ¢; A)
is good. This implies that (b,c) ¢ R(u). Similarly, if —¢(b;d) holds for d € K, then
(b,I,K+],¢;A)is good and (a,b) ¢ R(u). O

Definition 5.4. We say that u is linear if it is good and any two realizations of p(u) are
R(u)-comparable.

In other words, u = (4,1, ], ¢; A) is linear if it is good and we cannot find 4, b |= p(u)
and K, L two endless indiscernible sequences such that both (a,I,K + J,$; A) and
(b,I+K,],¢; A) are good aswellas (a, I+ L, ], ¢; A) and (b, I, L+ ], $; A).

If u is linear, then R(u) induces a linear order on the quotient of p(u) by E(u). It
is usually easier to consider the type-definable relation =R (u) which induces a strict
linear order on that quotient.

Lemma 5.5. Let u, = (a,10, ]2, pu; A), & < 17, be good, where the sequences (19 + ]9 : a < 17)
are mutually indiscernible over A. There is y with y < y < opD(a/A) and a family
(Lns Jar Pu)a<p SUch that:

o) each (a, I, Ju, ¢u; A) is good;
] fOT’ a <1, uy g (a/ Lo, Ja, (Poc;A)/

o, the sequences (I + J, : « < p) are mutually indiscernible over A;

o3 whenever Kg, K}C, a < p are sequences and A’ O A are such that the sequences (I, + Ju :

a < p) are mutually indiscernible over A’ and (a, I, + KO, KL + Ju, pu; A) are good, then
the sequences in the family (I, + KO : a < )™ (KL + Ju : & < ) are mutually stable
over A'a;

o, if L is indiscernible over Al ], and the sequences (I, + Jx : & < p) are mutually
indiscernible over AL, then L is stable over AlcyJ<ya;

o5 the sequences in the family (I, : &« < pu)~ (Ja : & < p), are mutually indiscernible over
Aa.



Proof. Call a family (¢, : @ < u) good if each ¥, = o (x;y4) € L(A), with |x| = |a]
and there are sequences (I, + J, : @ < p) mutually indiscernible over A such that each
(a, In, Ja, Pu; A) is good and for « < 1, I + ], has same EM-type as ID? + ]2 over A. Any
good family has length y < opD(a/A) < |T|*. Also by compactness, an increasing
union of good families is again good. Hence there is a maximal good family (¢, : & < pt)
extending (¢, : & < 17). Let its goodness be witnessed by (I, + ], : &« < ). Properties
oo and e; are immediate by construction. We will prove that this family satisfies 3 and
e,. We can then enforce o5 by building I, < I, + I} and J, <], + ], over everything and
replacing each (I, Jx) by (I}, ] ). The new family still witnesses goodness and therefore
also satisfies e1_.4.

Assume that e4 does not hold. So there is some L such that the sequences (I; + J; :
i < p) along with L are mutually indiscernible over A, but L is not stable over Al ;] ,a.
Without loss, L has no endpoints. Let L <,4;_ WJ<ua Lo+ L+ L;. Then Ly, L are mutually
indiscernible over Al J-,abut Lo + L1 is not indiscernible over that same set. There is
a formula ¢, (a,y;d), d € Al J<yLoLy, which holds on an end segment of Lo, whereas
its negation holds on an initial segment of L;. Take L{, an end segment of Ly, L} an initial
segment of L, such that L{, L] contain no element from d. Take also end segments I, of
I, and initial segments ], of J, for @ < u such that those also do not contain any element
from d. Finally let L}/, L} be the sequences L}, L] respectively, with d concatenated
to every element of the sequence. Then the sequences I, + J;, « < p and L{ + LY
are mutually indiscernible over A. Each (a, I}, ]}, ¢o; A) is good as is (a, L[, L}, ¢’; A),
where ¢! (x;1'2) = ¢.(x,y;2Z). Also the EM-type over A of each I}, + J; is the same as
that of I, + J,. This contradicts maximality of the initial family.

From e4, we can deduce two seemingly stronger statements:

o, If A C A, Lis indiscernible over A'l. ], and the sequences (I + J, : & < p)
are mutually indiscernible over A’L, then L is stable over A'I, ] ,a.

o/ If A C A, (L : i < B)is a family of sequences mutually indiscernible over
A'l ] <, such that (I + J, : @ < p) are mutually indiscernible over A'L_ g, then
(L; : 1 < B) are mutually stable over A'I ;] ,a.

To see that ), follows, consider the sequence L’ obtained from L by concatenating A’
to each of its elements. Then o4 applied to L’ gives o). To deduce o}, let (L; : i < §) be
given as above. Construct inductively oni < g, L; I M; + L; + N; over everything built
so far, including all of the L;’s. Then by e}, M; + N; is stable over A'I.,J<;,M_;N_a. It
follows from Lemma 3.5 that M; + N; is indiscernible over that set. Thus the sequences
(M;+ Nj : i < B) are mutually indiscernible over A’ I<yJ<ya as required.

We now show that e3 holds. So let Kg, K}C, a < pu,and A’ O A be given such that
(Iy + Ju : @ < p) are mutually indiscernible over A" and (a, I + K3, KL + Ju, a; A) are
good. Build inductively on & < p,

I+ K S M + (I, + K3) + NJ + I,

and
Ki+ oS+ Ny + (K3 + Jo) + My,

each < being understood to hold over everything built so far (including a). Then the
tuples (a, I, ], ¢a; A’) are good. Furthermore as the sequences (I, + K + K} + J, 1 a <
i) are mutually stable over A’ (as witnessed by I, + J.), the sequences

(MY 4+ NO+ I 4 T+ N+ ML < )
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are mutually indiscernible over A’ (property (3) of Proposition 3.4). The family (I, + J}).
also witnesses maximality of the family (¢« )u<y, hence we can apply o to it. We deduce
that the sequences (MY + N : & < u)"(N! + M} : « < p) are mutually stable over
A'IL, ] a. By Lemma 3.6, they are mutually indiscernible over that set. Therefore

(Iy + KO : o < u) " (KL + J, : @ < p) are mutually stable over A’a. O

Remark 5.6. If opD(a/A) > 1, then there is a family (I, Ja, Pu)a<y satisfying g and
®) 4 with 2 > 1.

We now come to the main technical point of the construction.

Proposition 5.7. Let uy = (a, Iy, Jo, $o; A), & < y be a family satisfying ey and ey_,5 of
Lemma 5.5. Then there is A’ O A such that each vy := (a, Iy, |, ¢u; A") is linear.

Proof. During the proof we will often replace a sequence K say by a sequence K’ so
that K < K + K’ over everything that we have built so far. Thus the new sequence
K’ is indiscernible over all parameters considered. This will never affect previous
assumptions: for instance if K was indiscernible over some B, then K’ has the same type
as K over it. If some (b, K, L, ; B) was good, then so is (b, K’, L, ¢; B). If K was stable
over some B, then K’ is also stable over B. In particular, note that by e5, doing this to
the original sequences I, J, does not change their type over Aa (and over each other),
hence at the cost of applying automorphisms, we can assume that they do not change
during the construction.
Let A, = Al J<, and set po(x) = tp(a/Ay).

Step 0: Note that if some (b, I, ], ; B) is linear, then so is (b, I, ], ¢; B') forany B’ O B
for which this quintuple is good. To prove the proposition it suffices then to find
A’ D A such that the sequences (I, + J, : « < p) are mutually indiscernible over A’
and (a, I, Jo, $o; A’) is linear. Indeed, having done this, properties oy and e;_,4 still
hold for A’ replacing A (for ey, this is given by e)) and we can enforce 5 as in the
beginning of the proof of Lemma 5.5. We can then inductively increase A’ to make each
(a, Iy, Ju, ¢u; A”) linear one after the other.

Step 1: Set ¢ = ¢pp and u = (a, Iy, Jo, ¢; A). Let n be larger than the VC-dimension of
the formula ¢(x;y). We show that one cannot find tuples a; |= po, k < n and sequences
KX, & < u, k < n—1such that:

Xo the sequences (I, + K9 + -+ K""2 + ], : &« < u) are mutually indiscernible over
A;

X each (ag, I + KZ%, KZX + ], ¢a; A) is good;
X, foreachk # k' < n, the tuples ay and ay are R(u)-incomparable.

Assume for a contradiction that we are given such tuples and sequences. We show that
for any ¢ permutation of n, we can find sequences K’é - k < n —1such that:

X3, the sequence Iy + Kg,a 4+ Kg;z + Jo is indiscernible over A;
Xy, each (a, Iy + K;g(k),KOZ;(k) + Jo, ¢) is good.
Why is this enough? Fix any ¢ a permutation of , i < n and let e be an element of Ké,a

(or Joif i = n —1). Then we have |= ¢(aj,e) <= 0o(j) > i. This shows that the set
{ap,...,a,-1} is shattered by ¢ and contradicts the choice of n.
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We now turn to the construction of K . For ¢ the identity, we can take K = = K&.
Assume that we have built those sequencés for some value of 0. Let i < n — 1 and set
T = (i,i+1) oo. We show how to build the sequences Ké,r- Since the sequences (I, + o :
a < p) are mutually indiscernible over A, the sequences I, + Kg + -+ Kﬁ‘z + Ja,
0<a<pandly+ Kg,a +o 4t Kg/;z + Jo are mutually stable over A. Replacing each of

the sequences I, J,, K§ and K’éla by a Morley sequence of their limit types and applying
Lemma 3.6, we obtain:

s, the sequences I + K+ -+ +Ki 2+ ],,0 <a < pand [y +K) . +--- +Kj >+ Jo
are mutually indiscernible over A.

Setu =c"'(i),v =c"'(i+1)and let b = a, and c = a,. Assume u < v (the case u > v
is similar). The main thing to prove is:

BB The two sequences Iy + K0<,é and Kg, ! + Jo are mutually indiscernible over Abc.

To prove this, let us first consider the situation over the base Ab. For 0 < a < y,
the tuple (b, I, + K;“,Kf” + Ju, pa; A) is good, and so is (b, Iy + Kofff, KOZ:T + Jo,$; A).
Hence by e3, the sequences I, + K3*, KZ" 4 Jo, Ip + Ko<,é and Koz,ff + Jo, where « ranges
in 0 < & < p, are mutually stable over Ab. Similarly, the sequences I, + K, KZ¥ + J,,
Ip + K0<,f7+1 and KOZI;H + Jo are mutually stable over Ac. Replacing all the sequences K,
and Ké, » by Morley sequences of their limit types over everything and applying Lemma

3.6, we can replace “mutually stable” by “mutually indiscernible” in the two previous
sentences and obtain:

X6, The sequences I, + K3, KZ" + Jo, I + KO<; and Kosz + Jo, where a ranges over
0 < & < p, are mutually indiscernible over Ab.

X7, The sequences I, + K57, KZ0 + Jou, Ip + K0<,;+1 and Kozlffl + Jo where a ranges over
0 < & < p, are mutually indiscernible over Ac

By X o, the family
(Lo + K" K00 < < )~ (I + K5, Kby )

has the same type as
(LI Ju : 0 < < )~ (Io, Jo)

over Ab. In particular, each of (b, I, + K5", K%, ¢pa; A), & > 0,and (b, Iy + K0<,f7, K(i),g, ¢, A)
is good and together they have the same type as (b, Iy, Ju, pa; A), @ > 0,and (b, Iy, Jo, p; A).
In particular, they satisfy properties e>_5. '

The sequences I, + K3" + K¥, Iy + K0<,; + Kf)/a are mutually indiscernible over
AKg, i Joc (we are using u < v here). Then applying e; (where the K’s there are empty),
we get that the sequences (I, + K3", K% : 0 < a < p) along with Iy + KO<,1§ and K{ , are
mutually indiscernible over AKO>, ;]obc. In particular:

Iy + K0<,(i7 is indiscernible over AKg, é[obc.
By a symmetric reasoning, interchanging the roles of b and ¢, we get that (K31, Kz¥ +

Jo:0 < a < p) along with K(i),a and K0>, f, + Jo are mutually indiscernible over AIOKoiibc,
and in particular:
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Ky, fT + Jp is indiscernible over AIOKOfébc.

Thus H follows from those two statements. ‘ ‘
We can now finish the construction. By B, (I + KO<,(;, Ko>, © 4 Jo) and (Io, Jo) have the

same type over Abc. As b, ¢ are not R(u)-comparable, there is a sequence KB,T such that
each of (b, Ip + K5 + Kb ., K5t + Jo, ¢) and (c, I + K5, Kiy . + Kg'i + Jo, ¢) are good.

Set K{) ;= K{) , for j # i. We claim that X3 ; and X, ; are satisfied. The construction
immeaiately ,gives X3, along with Xy where k there is either u or v. Take now k
different from u and v. Assume that o (k) < i (the case o (k) > i+ 1 is similar). Then
X, . will follow for this value of k if we know that —¢(ay, b) holds for all b € K{ ... By the

argument that lead to X, taking a; instead of b, we have that the sequence Ké}l + Jo
is indiscernible over Ab. We also know that —¢(ay, b) holds for b in that sequence. It
follows that Kf)}l + Kf),T + Jo is stable over Ab and by Lemma 3.5 it is indiscernible over
it. Hence Xy . follows.

Step 2: Let n be maximal such that there are a;, k < n, and sequences Kﬁ, n <
i, k < n—1, such that Xy_, above hold and let such elements and sequences be
given. If n = 1,setb = a, A’ = AlgJsoand I} = Ip. Ifn > 1, setb = a,_4,
A = AL oK) JooloK§" 2acy—1 and 1) = K72 Let v = (b, I, Jo, ¢; A’). We show
that v is linear. Assume not, then we can find some ¢ =,/ b such that b and ¢
are R(v)-incomparable. This means that there are sequences Ly, L; such that all of
(b, I}, Lo+ Jo,¢; A”), (¢, I) + Lo, Jo, p; A"), (b, I} + L1, Jo, p; A") and (c, I}, L1 + Jo, ¢; A)
are good. Then c also satisfies pyg. Note that Iy 4+ Lo + Jo is indiscernible over A: if n =1
this is clear, if n > 1, then I} + Lo + Jo is indiscernible over A’, in particular over Al
and the results follows from the fact that I + I} + Jo is indiscernible over A. The same
is true for Iy + Ly + Jo. Therefore c is R(u)-incomparable with b, as witnessed by Ly, L.
Since ¢ has the same type as b over A'ly]y, it is also R(u)-incomparable to all the a;’s,
k<n-—1.

Construct, for 0 < a < u, sequences K’ ~! which are Morley sequences of lim(op(J,))
over everything built so far and each other.

We prove by induction on k that for k < n — 1:

(Pe) (KZ* + Ju : & < p), are mutually indiscernible over AI<HK§”2a§k.
First, by the argument of X, for each k we have:
X The sequences (I, + ka, K,xzk + Ju : @ < p) are mutually indiscernible over Aay.

Taking k = 0, we obtain (Py). Assume (P;_;) and we show (P;). The argument is
the same as that used to show B above. The tuples (ay, K{ffl, ka + o, s A), e < p
have the same type all together as (4, I, J«, ¢a; A) and hence satisfy o,_,5. By induction
hypothesis, the sequences KK=1 + K4 T, 0 < pu, are mutually indiscernible over
Aacy_q1. By e3, the sequences (I, + Kk, KZF + Jo : @« < p) are mutually stable over
Aa<y_1ar. By Lemma 3.6, those sequences are mutually indiscernible over Aa<; and
(Py) holds.

It follows that the sequences KZ_Z + 1(2—1 +Ju, 0 <a < pand Kg_l + Lo + Jo are
mutually stable over AI<},K§Z’2a<n (if n = 1, take I, instead of KZ*Z and remove I
from the base.) Replacing those sequences by Morley sequences of their limit types if
necessary and applying Lemma 3.6, we obtain:

B’ The sequences K2+ K1 +],,0 < a < pand K~ ! + Lo + Jo are mutually
indiscernible over AI<yK§Z’2a<n.
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Decompose in an arbitrary non-trivial way Lg as Ly = L’ + L”. Then by &', there
is a point d |= p(v) such that (d, I, + K", Jo, ¢; A) is good for all 0 < a < y, as is
(d,Iy+L,L" + Jo,¢; A). Then neither (d,b) nor (c,d) are in R(u), as witnessed by
L’ and L” respectively. There is an infinite subsequence L| C L; such that either
(d,Iy+ LY, Jo,¢; A) or (d,I), L} + Jo, ¢; A) is good. In the first case, (d,c) is not in R(u)
and d is R (u)-incomparable with c. In this case, set (a/, ;,a,) = (c,d) and K ! = L{. In
the second case, (b,d) is not in R(u). Thus d is R(u)-incomparable with b. In that case,
set (a’_,a,) = (b,d) and Ki ! = L. Since d satisfies p(v) it is also R(u)-incomparable
with each a;, k < n — 1. In both cases, the sequence (ay, ..., a,-2,4),_,a,) along with
K2} contradicts the maximality of 7.

Step 3: We have shown that v = (b, I}, Jo, ¢; A’) is linear. If n = 1, then we are done.
Otherwise, for 0 < a < y, build inductively sequences K" =2 IK" "2+ I’ and J, < J. + Ja,
over everything constructed so far. Let also Jj = Jo. Then the tuple (b, (I}, J;)a<u, A)
has the same type as (4, (Iz, Ja)a<u, A). Let 0 be an automorphism sending the first
tuple to the second. Then we can take 0(A’) as the A’ we need to finish the proof. [

In the following theorem, by a linear quasi-order, we mean a reflexive and transitive
relation for which any two points are comparable.

Theorem 5.8. Let T be NIP, p(x) any type with opD(p) > u. Then there is an extension
q 2 p over some set A, relations Ry(x,y), \/-definable over A, such that each R, defines a
linear quasi-order <, with infinite chains on the set of realizations of q(x). Furthermore, those
orders are dense and independent in the sense that if a, <, b, are given for o < y, then there is
¢ |=qsuchthat ay, <, c <q by forall a < p.

Proof. Let a |= p. By the assumption that opD(p) > p, we can find some u, =
(a,In, Ju, @u; A) which are good and such that the sequences I, + ], are mutually indis-
cernible over A. Using then Lemma 5.5 and Proposition 5.7 and replacing A by A’ there,
we can assume that all the u, are linear. Let then g = tp(a/Al-,]<,) and Ry = R(uy).

To see that the independence condition holds, let a,, b, = qbe given with =R, (b,, a,)
(that is a, <, by). For each a < p, let K, be such that both (ag, I, Ky + Ju, ¢; A)
and (b, Iy + Ky, Ju, ¢; A) are good. The sequences (I, + J, : « < p) are mutually
indiscernible over A, hence the sequences (I, + Ky + J. : &« < p) are mutually stable
over A. Replacing the sequences K, by Morley sequences of their limit types, we
can assume that the sequences (I, + Ky + Jo : @ < ) are mutually indiscernible
over A. Decompose each K, into two infinite pieces as K, = K + K!. By mutual
indiscernability, there is ¢ |= g such that all (c, I, + K%, K} + J,, ¢; A) are good. We then
have a, <, ¢ <4 b,. This proves both density and independence.

Note that if we carry out this construction without b,, we get ¢ such that a, <, c
for each a. This proves that for each order <, there are two realizations of 4 which are
strictly comparable. Then by density, each order <, has infinite chains on realizations
of g(x). O

In the case where y in the above theorem is finite, then we can modify this result to
have A be finite, at the cost of weakening independence. This boils down to a simple
compactness argument. However, we first need to change slightly the notion of linearity.
The reason is that with the previous definitions, we considered sequences K with a
certain type over AIJ, hence the base contains I and | and is thus always infinite. In
order to be able to have the base be finite, we need to remove I and | from it. To this
end, we introduce the following definitions.
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Definition 5.9. Let u = (7r(x),I,],¢; A) be good. We define the following binary
relations on realizations of 7t(x):

e (a,b) € Ep(u) if for any infinite sequence L of same EM-type as I over A, if ¢(a;e)
holds for all e € L, then ¢(b; e) holds for almost all e € L and symmetrically if —¢(a;e)
holds for all e € L, then —¢(b; e) holds for almostall e € L;

e (a,b) € Ry(u) if we cannot find an infinite sequence L of same EM-type as I over
A such that both ¢(a;¢) and —¢(b; ¢) holds for all e € L.

We have as previously that Eg(u) is a \/-definable equivalence relation on real-
izations of 71(x), that Ro(u) is a \/-definable reflexive, transitive, Ey(u)-equivariant,
relation. Furthermore we have Eg(a,b) <= Ro(a,b) A Ro(b,a).

We say that u is lineary if any two realizations of p(u) are Ro(u)-comparable.

The following properties follow at once from the definitions.

Lemma 5.10. Let u = (a,1,],¢; A) be good and build w' = (a, I, ', ¢; AIJ). where I 4y,
I+1"and [ <amrp ]+ ]
Then:

1. u’ is good;
2. E(u) = Eop(u’) and R(u) = Ro(u’) on realizations of p(u’);
3. if wis linear, then u’ is linear.

The following lemma is true with linear instead of lineary, but is truly useful only in
the latter case.

Lemma 5.11. Ifu = (7t(x), I, ], ¢; A) is lineary then there is a finite Ay C A and a formula
0(x) € mt(x) such that (6(x), 1, ], ¢; Ao) is linear.

Proof. Saying that (7t(x),I, ], ¢; A) is lineary is saying that it is good and that one cannot
find two infinite sequences L = (¢; : i < w) and K = (d; : i < w), both having the same
EM-type as I over A such that fori < w,

= ¢la;ci) N—g(a’sci) A—=p(a;di) Np(a'; d;).

By compactness, one can find a finite Ag C A and formula 6(x) € 7t(x) such that
this also holds with A replaced by Ay and 71(x) replaced by 6(x). Then (6(x), I, ], ¢; Ao)
is also good and is lineary. O

Note that the goodness hypothesis is not needed for the compactness argument, but
is necessary to ensure that the order we construct is not trivial.

We now state our main theorem. We only state the result with finite bases for
one order, to simplify the statement. The n-order version is below, stated under the
w-categorical assumption.

Theorem 5.12. Let T be NIP, unstable. Then there is a finite set A, a formula 6(x) over A and
a relation R(x,y) \/-definable over A which defines a dense linear quasi-order on 6(x) with an
infinite chain.

Proof. As T is unstable, the op-dimension of x = x is at least 1 and we can find some
good quintuple u = (4,1, ], $; A). By Proposition 5.7, up to increasing A, we can take u
to be linear. By Lemma 5.10, increasing A some more, we can assume that u is lineary.
Then by Lemma 5.11, we get some ug = (0(x), I, ], ¢; Ag) which is lineary, with Ay finite.
Then R = Ry (uyp) is as required. O
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Theorem 5.13. If the theory T is w-categorical, NIP, opD(x = x) > n > 0, then there is a
finite set A, an A.-definable set X and n A.-definable linear quasi-orders <4,...,<,onp,
such that the structure (X; <y, ..., <,) contains an isomorphic copy of every finite structure
(Xo; <1, ..., <y) equipped with n linear orders.

Proof. This is similar to Theorem 5.12 except that we start with n good quintuples
ue = (a,I, Jx, ¢; A), where (It + Jx : k < n) are mutually indiscernible over A. By
Proposition 5.7, we can assume that they are linear. By the same argument as in the
proof of Theorem 5.8, the order R(uy) are independent.

As in Lemma 5.10, we can successively construct Iy < Iy + I} and [, < J| + Ji, each
time over everything constructed so far. Then replacing I by I}, Ji by J; and A by
Al J<n we can assume that the quintuples are lineary. Note that after having done
this substitution, the sequence (I + Ji : k < n) are still mutually indiscernible over A.
Lemma 5.11 then gives us lineary quintuples ug = (6k(x), It, Jx, ; Ax), with Ay finite.
Let A, = U, Arand 6(x) = Ay, 6k(x). Then each u} := (6(x), I, Jx, ¢; A.) is linearg
and we define the order <j to be given by the relation Ro(u}).

Note that if (b,a) ¢ R(uy), then also (b,a) ¢ Ro(u}) witnessed by the same se-
quences, and thus a <; b. The statement about universality therefore follows from the
independence of the orders R(uy). O

5.1 Theories with no interpretable linear order

Having found a linear order, the natural next step would be to understand the induced
structure on it. When the order is interpretable, this becomes an instance of the classical
problem of studying NIP ordered structures. The dp-minimal case in particular has
received some attention (see e.g. [Goo10], [Sim11]), though most results assume an
ordered-group structure. The w-categorical case is considered in [Sim18]. However, we
expect that more often than not, the order we constructed will be strictly \/-definable. It
seems likely that one could actually take advantage of it as the non-definability limits
the possibilities for the induced structure. We give an example of that here and leave
further studies for later. We show that if the theory does not interpret any infinite linear
order, then in some precise sense, the induced structure on the \/-definable quotient is
weakly o-minimal.

We work in a general context not relying on the previous notations. Let D be a
definable set over some A and S(x,y) a A\-definable relation over A such that S(x,y) —
D(x) A D(y) and S(x,y) is a strict linear quasi-order with infinite chains on D that is:

— S is transiitve and anti-reflexive;

- E(x,y) := =S(x,y) A =S(y, x) is (a \/-definable) equivalence relation such that S is
E-equivariant;

— S induces an infinite strict linear order on the quotient D/E.

Assume also that S is type-definable by a countable conjunction of formulas. (Note that
we can always ensure this in our construction since we end up with a finite A and we
can work in a reduct to a countable sublanguage.)

We can then write S(x,y) = i<, Si(x,y) such that:

e So(x,y) — D(x) AD(y);

 ~(3x,y)So(x,y) A So(y, );

* (Vo y)Sin(xy) = Si(xy);
o (V)11 (x,) A Siga (4,2) = Silx,2).
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Note that for all i < w, we have:

(Y, y) [(S(x,y) ASi(y,2)) = S(x,2)].

Why? Assume that —=S(x,z) and S(x,y) hold. Then as S is linear, we must have
S(z,y), hence Sy(z,y) holds. By the second bullet above, this implies =Sy(y, z) and
hence —S;(y, z).

In particular:

@) (Vx,y) [(S(xy) ASiy,2)) = Si(x,2)].
Now for i < w, define x <; y as:
a<;b < (Vce D)Si(b,c)— Sia,c).
Then <; is a transitive, reflexive relation and by (), for a,b € D we have
S(a,b) - a <;b— —S(b,a).

We also definea <; b <= (a <; b) A—(b <; a). This is a transitive, irreflexive
relation.

Proposition 5.14. Assume that there is a definable subset X C D whose projection on D/ E is
not a finite union of convex sets. Then there is an infinite interpretable linear order.

Proof. Let B be such that X is defined over B. The assumption implies that for all n < w,
we can find aq, by, ...,4,,b, € D such that:

e if 2} is E-equivalent to a;, then a! ¢ X;

eb;, c Xforalli <

e we have S(ay,b1) AS(by,a) AS(az, by) A--+ A S(ay, by).

Consider the definable set F = {x € D : (Vy € X)x <oy Vy <o x}, that is the set of
points strictly <o-comparable to all points in X. Note that if x € D is not E-equivalent
to any point in X, then x € F, since it will even be S-comparable to all points in X. For
a€F,letX(a)={xeX:a<px}.

Claim: The sets X(a), a € F are linearly ordered by inclusion.

Proof: Assume that a,b € F are such that X(a) ¢ X(b) and let x € X(a) \ X(b). We
then have 2 < x and —(b <o x). Since b is in F, we must have x < b. If there is
y € X(b)\ X(a), thenwe havea <o x <o b <oy <o aand a < a by transitivity of <y,
which is absurd. We conclude that X(b) C X(a).

On F we can define the equivalence relation
Ex(a,b) < X(a) = X(b).
By the assumptions on X, the quotient F/Ex is infinite. It is also linearly ordered by
a<b <= X(a) C X(b), which finishes the proof. O
6 Stable dimension

This section is independent of the rest of the paper. We define the natural counterpart
to op-dimension. We only show basic properties and leave its in depth study for later.
Throughout this section, we assume that T is NIP.
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Definition 6.1. Let A be a set of parameters and 77(x) a partial type over A. We say that
st-dim(7r, A) < « if we cannot find the following:

e atuplea = 7;

e infinite sequences (I; : i < «) and (J; : i < «) such that (I; +]; : i < k) are
mutually indiscernible over Ag;

e tuples (b; : i < x) such that (I; + b; + J; : i < k) are mutually indiscernible over A,
but for each i < «, I; + b; + J; is not indiscernible over Aa.

Note that if we have such a witness to st-dim(7r, A) < «, then we can build one
where the sequences have any given order type, by replacing them by Morley sequences
of one of their limit types. In particular, we can ask for them to be indexed by Q.

The following follows at once from the definitions.

Lemma 6.2. If dp-rk(m, A) < «, then st-dim(7, A) < . In particular, if T is NIP, then
st-dim(7r, A) < |T|".

The base change lemma is slightly harder to prove than for dp-rank. We start with a
basic lemma about NIP.

Lemma 6.3. Fori < a, let I; = (a;; : j < B) be an indiscernible sequence. Assume that
the sequences (I; : i < w) and mutually indiscernible over @ and the sequence of columns
((aij :i < w):j < B)isindiscernible over A. Then the sequences (I; : i < w) are mutually
indiscernible over A.

Proof. To simplify notations, let us assume that « = 2. The general case is similar.
Start by increasing the sequence of columns to one indexed by Q of same EM-type
over A. If the sequences Iy, I; are not mutually indiscernible over A, then there is
a formula ¢(x1,..., X0 ¥1,.-.,Ym) € L(A) and four increasing tuples of elements of
Q:i:= (in,... in), 7 = (iy,...,05), ] := (j,...,jm) and J/ := (j},..., i) such that
= ¢lags ar;) A —¢(agp, ay 7). o o

Now construct two sequences iy < 71 < --- and jo < j; < --- of increasing tuples of
elements of Q so that for k even (i, jr) has same order-type as (7, j) and for k odd, (i, j)
has same order-type as (7, j'). Then the sequence of 1 + m-tuples (aq; 1,7, : k < w) is
indiscernible and the formula ¢ alternates infinitely on it. This contradicts NIP. O

Lemma 6.4. If A C Band 7t(x) is a partial type over A, then st-dim(7t, A) = st-dim(7, B).

Proof. If (a,I;, J;, b; : i < x) is a witness to st-dim(7t, B) > «, then (a, I/, J/,b} : i < «)
witnesses st-dim(71, A) > «, where I is obtained from I; by concatenating a fixed
enumeration of B to the end of every element of it, and same for ]/ and b/.

Conversely, assume that (a,[;, J;, b; : i < k) is a witness to st-dim(7r, A) > k. By
Ramsey and compactness, we can find sequences IZ-/ , ]Z-/ of same EM-type as I;, J; over Aa
such that (I! 4+ J/ : i < x) are mutually indiscernible over Ba. Replacing I;, J; by I/, ]/,
we can assume that (I; + J; : i < k) are mutually indiscernible over Ba. Without loss,
all sequences are indexed by Q. Increase each sequence to I; + J; + Kio + Kij1 + - - -,
preserving mutual indiscernibility over Ba. Then for each n < w, the family of pairs
((L + Ji + Kj <n, Ki >y) : i < x) has the same type as ((I;, ];) : i < ) over Ba. For each
such n, let b; , be such that

L, b, Ji = a0 Li + Ji + Ki <, bin, Ki >0
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Thinking of the sequences (I; + J; + Kj ,, : i < k) as rows of an array, the sequence of
columns is indiscernible. Applying [Sim13, Lemma 2.8] to this sequence of columns,
there is an automorphism ¢ fixing A, I;, J;, K; <., such that for each 1, the sequence of
columns of the array (I; + J; + K; <, + 0(b; ;) + Ki >, : i < k) is indiscernible over B.
By Lemma 6.3, for each #, the sequences (I; + J; + K <, + 0(bi ) + Ki >, 1 i < k) are
mutually indiscernible over B. Given a finite set X C «, a finite set A of formulas and a
finite By C B, by shrinking of indiscernibles in NIP (e.g. [Sim15, Proposition 3.32]), there
is n = n(A) such that the sequences (K; -, + K >, : i € X) are mutually A-indiscernible
over Byo(a). By compactness, we can find (@', I/, J/, b : i < ) so that

! ! ! !
a,l,b;,Ji =aal,b,];

and (I] +b;+ ]! : i < k) are mutually indiscernible over B. This witnesses st-dim(7t, B) >
K. ]

We can now define st-dim(7r) as being equal to st-dim(7t, A) for some/any A over
which 77 is defined. As usual, we define st-dim(a/A) as st-dim(tp(a/A)).

Proposition 6.5. Let 7t(x) be any partial type and « a cardinal. Then the following are
equivalent:

1. st-dim(7) < «;

2. given A over which 1t is defined, a |= 7t and dense endless sequences (I; : i < «) which
are mutually indiscernible over A and mutually stable over Aa, there is i < x such that I;
is indiscernible over Aa;

3. given A over which 7t is defined, a |= 1 and dense endless sequences (I; : i < A) which
are mutually indiscernible over A and mutually stable over Aa, we can find X C A,
|X| < « such that the sequences (I; : i € A\ X) are mutually indiscernible over Aa.

Proof. (1) = (2): Let A,aand (I; : i < ) be as in (2). Construct sequences J?, J! indexed
by Z so that I; <4, ]? +L+] 11 By the assumption of mutual stability, the sequences
(J+J! : i < x) are mutually indiscernible over Aa. Assume that the conclusion
of (2) fails. Then for each i < «, there is an integer n; and a subsequence a; of I; of
size n; such that ]? +a; + ]i1 is not indiscernible over Aa. If LQ = (b : i € Z), define
I = (b, ™ - - “bip,4n,—1 : k € Z). Define |’ | similarly. Having done this for all i < x,
we see that the family (]9 + (a;) + J'} : i < x) witnesses st-dim (1) > «.

(2) = (3): The argument is similar as for the analogous result for dp-rank from
[KOU13] (also presented in [Sim15, Proposition 4.17]). The case where « is infinite is
rather straightforward: If the conclusion of (3) fails, we can construct inductively a
sequence (¢; : t < k) of elements of A and a sequence (A; : t < k) of finite subsets of A
such that:

e the sequence I, is not indiscernible over Aa U U{I; : i € A;};
e thesets A} := A; U {d:}, t < «, are pairwise disjoint.

For t < x, let J; be the sequence of columns of the array whose rows are the sequences
(I; : i € A}). Since by hypothesis those rows are not mutually indiscernible over Aa,
Lemma 6.3 implies that the sequence J; is not indiscernible over Aa. Furthermore, the
sequences (J; : t < k) are mutually stable over A: take the same sequences witnessing
mutual stability of the I;’s (in the sense of Proposition 3.4 (1)). This shows that (2) fails.
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For x = n + 1 finite, we prove the result by induction on A. If A < n, then we
can take X = A. Assume that A = n + k + 1 is finite. Construct inductively endless
sequences ]?, i 11 sothat I; ] ? +L+] 1-1, each one over everything built so far. Let B =
AUU{J?, J! :i < A}. Then the sequences (I; : i < A) are mutually indiscernible over B
and mutually stable over Ba. By (2), there is i(*) < A such that Ij(+ is indiscernible over
Ba.

Claim: The sequences (I; : i # i(*)) are mutually stable over Al;,a.

Proof: It suffices to show that the sequences (J? + J! : i # i(x)) are mutually
indiscernible over AIi(*)a. If not, then there is some formula ¢(#; 7; 4) witnessing it,
where i is a tuple of elements from (J? + J} : i # i(*)), 7 a tuple of elements from I,
and a a tuple of elements from Aa. Now by mutual stability, ]?(*) + ]1.1(*) is indiscernible
over (J?+ J! : i #i(x)) U Aa. By indiscernibility, il can be taken to be any tuple of the
right order type from ;. Therefore by Fact 3.1, if we take @’ in ]1.0(*) of the same order

type, we also have ¢(i; 0; ). But this contradicts the fact that (J? + J! : i # i(x)) are
mutually indiscernible over Aa]l.o(*) ]1.1(*).

By induction hypothesis, working over the base set Al;,), there is Xo C X'\ {i(*)}
of size at most # such that the sequences (I; : i ¢ XU {i(x)}) are mutually indiscernible
over Alj,ya. If I,y is indiscernible over Aa U (I; : i ¢ Xo U {i(*)}), then we can take
X = Xp. Assume that this is not the case and we reach a contradiction as in the previous
claim. As the sequences (I; : i ¢ Xo U {i(*)}) are mutually indiscernible over Al;.,a
and the J?’s are built over all the I;’s and Aa, the parameters from (I; : i ¢ Xo U {i(*)})
needed to witness that I;(,) is not indiscernible can be taken in (JO:i ¢ XoU{i(x)})
instead. But then [, is not indiscernible over Ba: contradiction.

Finally, the case of infinite A can be deduced easily from the finite case as in [Sim15,
Proposition 4.17].

(3) = (1) is clear. O

Proposition 6.6. Let A be any set of parameters and a, b two tuples. If st-dim(a/A) < 13
and st-dim(b/ Aa) < xy, then st-dim(a,b/A) < k1 4+« — 1.

Proof. Let (I; : i < A) be mutually indiscernible over A and mutually stable over Aab.
We can find X; C A, |X;] < x1 such that the sequences (I; : i € A\ X;) are mutually
indiscernible over Aa. Next, we find X, C A, | Xa| < xp such that the sequences (I; : i €
A\ (X7 U X)) are mutually indiscernible over Aab. This shows that st-dim(a,b/A) <
K1 + 1o — 1. O]
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