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DENSITY OF COMPRESSIBLE TYPES AND SOME
CONSEQUENCES

MARTIN BAYS, ITAY KAPLAN, AND PIERRE SIMON

ABSTRACT. We study compressible types in the context of (local and global)
NIP. By extending a result in machine learning theory (the existence of a bound
on the recursive teaching dimension), we prove density of compressible types.
Using this, we obtain explicit uniform honest definitions for NIP formulas
(answering a question of Eshel and the second author), and build compressible
models in countable NIP theories.

1. INTRODUCTION

By the Sauer-Shelah lemma, if a formula ¢(z;y) is NIP, then the number of
¢-types over a finite set A is bounded by a polynomial in the cardinality of A. For
a stable formula, this is a consequence of definability of types: one only needs to
specify the parameters involved in the definition. In dense linear orders, the reason
for this phenomenon is different: for any finite set A and element b, the <-type of
b over A is implied by its restriction to some subset Ag of size 2: the information
of the full type can be compressed down to this subset of bounded size. A <-type
over an infinite set cannot in general be compressed down to a finite set, however
finite parts of it can be uniformly compressed; following [Sim20], we call such a type
compressible (Definition 2.11). We expect NIP formulas to exhibit a combination
of those two behaviours.

For NIP theories one manifestation of this philosophy is the result from [Sim20)]
that an arbitrary type has a generically stable part up to which it is compressible.
Distal structures are (NIP) structures in which every type is compressible and
hence this decomposition is trivial. For stable theories, compressible types turn
out (Lemma 4.8) to be precisely types which are l-isolated, that is, isolated formula
by formula. These play a role in Shelah’s classification theory; one key property
is that in a countable stable theory, an l-atomic model exists over any set [She90,
1V.2.18(4),3.1(5),3.2(1)]. In this paper, we think of compressibility as an isolation
notion and investigate its properties by analogy with the stable case. In order to
obtain similar model-construction results, we need two basic properties: density of
compressible types and transitivity of compressibility.

Density of compressible types over a set A means that every formula over A
extends to a complete compressible type over A. We prove this for countable NIP
theories (Corollary 3.21) by first considering the local setting of a single NIP formula
¢, and showing that any finite partial ¢-type extends to a complete compressible ¢-
type (Corollary 3.9). This is a combinatorial argument based on the proof by Chen,
Cheng, and Tang [CCT16] of a bound on the “recursive teaching dimension” of a
finite set system in terms of its VC-dimension. The existence of such a bound was
used in [EK20] to prove uniform definability of types over finite sets (UDTFS) for
an NIP formula in an arbitrary theory. We generalise this result (answering [EK20,
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Question 28]) by showing uniformity of honest definitions for NIP formulas, which
was previously known only assuming NIP for the whole theory [CS15, Theorem 11].
For this, we first show that an arbitrary ¢-type p is a rounded average of finitely
many compressible types (Theorem 5.17). The rounded average of the compression
schemes of these types gives an honest definition for p.

In fact, it turns out that full consistency of p is not required here: for large
enough k£ we get uniform honest definitions for k-consistent families of instances of ¢,
which we dub k-hypes (Corollary 5.30). Using this, we also obtain in Theorem 5.36
uniform definability of ¢-types which are pseudofinite in the sense that their positive
and negative parts are pseudofinite (Definition 5.34).

In order to prove transitivity, namely that tp(AB/C) is compressible when
tp(A/BC) and tp(B/C) are, we return to the global setting of an NIP theory and
use the type-decomposition theorem from [Sim20]. We show in Proposition 6.23
that compressibility can be rescoped to an arbitrary subset of the domain: if
tp(a/B) is compressible and C' C B, then tp(a/C) is compressible in the language
with constants for elements of B. We deduce transitivity in Proposition 6.25.

Finally, we conclude that for countable NIP theories (or even countable theories
naming any set of constants) one can construct models which are compressible over
arbitrary sets (Propositions 6.29 and 6.30). We give several applications:

e Given a definable unary set X whose induced structure is stable, and any
model N of the theory of the induced structure, there is a model M of T" such that
X (M) = N and moreover, if N’ = N then there is M’ > M such that X (M') = N'.
This is Corollary 6.33.

e If the theory is not stable, we can extend models without realising any non-
algebraic generically stable type (Corollary 6.39 and Remark 6.40).

e We analyse compressiblity in ACVF, showing that then any model M contain-
ing A whose residue field is algebraic over A is compressible over A (Example 6.41).
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2. PRELIMINARIES

2.1. Languages, formulas and types. Our notation is standard. We use L to
denote a first order language and ¢(z,y) to denote a formula ¢ with a partition
of (perhaps a superset of) its free variables. When z is a (possibly infinite) tuple
of variables and A is a set contained in some structure (perhaps in a collection
of sorts), we write A% to denote the tuples of the sort of z (and of length |z|) of
elements from A; alternatively, one may think of A® as the set of assignments of
the variables x to A. When M is a structure and A C M?*, b € MY, we define
P(A,b) ={a€ A| ME ¢(a,b)}.

T will denote a complete theory in £ (we do not really need T to be complete,
but it is more convenient), and ¢ F T will be a monster model (a sufficiently large
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saturated model'). The word small means “of cardinality < [U|”. As usual, we will
assume that all models, tuples and sets of parameters are small and are contained
in (perhaps a collection of sorts from) U unless stated otherwise. Some results,
such as Theorem 5.17, hold for any set, by considering a bigger monster model and
applying the result there.

When B C U, L(B) is the language £ augmented with constants for elements
from B, and Up is the natural expansion of U to L(B). A partial type in variables x
(perhaps infinite, perhaps from different sorts) over B C U is a set of £(B)-formulas
in « consistent with Th(Up) (i.e., formulas over B). For a partial type 7 over B and
C C B, we use the notation 7|c for the restriction of w to C, namely all formulas
¢(x) € L(C) implied by 7 (i.e., 7 b ¢(x)). Similarly, if 2’ is a sub-tuple of x, the
restriction of 7 to 2’ is the partial type consisting of all formulas in 2’ implied by
.

A (complete) type over B is a maximal partial type over B. We denote the space
of types over B in z by S¥(B). It is a compact Hausdorff topological space in the
logic topology (a basic open set has the form {p € S*(B) | ¢(x) € p}). For a € U*,
write tp(a/B) for the type of a over B. S(B) is the union of all types over B.

For an L-formula ¢(x,y), an instance of ¢ over B C U is a formula ¢(x,b) where
b € BY, and a (complete) ¢-type over B is a maximal partial type consisting of
instances and negations of instances of ¢ over B. We write S,(B) for the space of
¢-types over B in z (in this notation we keep in mind the partition (z,y), and x
is the first tuple there). As above, it is a compact Hausdorff topological space in
the logic topology. For a € U”, we write tpy(a/B) € Sy(B) for its ¢-type over B.
We also use the notation ¢! = ¢ and ¢° = —¢. When p(z) € S(B) is a type, we
write p [ ¢ € S4(B) for the complete ¢-type over B implied by p. If A is a set of
partitioned formulas ¢(z,y), we define Sa(B) and the restriction p [ A € SA(B)
similarly.

We will also consider the case where B C UY and (abusing notation) define
S¢(B) similarly — this should never cause a confusion.

If w(x) is a small partial type (over some small set contained in U), we write
S%(B) for the closed subspace of S§(B) consisting of the ¢-types which are consis-
tent with .

Generally we do not limit our discussion to finite tuples of variables (but in the
context of ¢-types for a formula ¢ this does not matter).

We write A Cgn B to mean that A is a finite subset of B.

2.2. Global and invariant types. For A C U/, an A-invariant type is a global
type, i.e., a type over U, which is invariant under the action of Aut(U//A), the group
of automorphisms fixing A pointwise.

For a sequence (z;);er and j € I, we write z; for (z;);<;, and similarly for z<;.

Definition 2.1. If ¢(x) and r(y) are A-invariant global types, then the type (¢ ®
r)(z,y) is defined to be tp(a,b/U) (in a bigger monster model) for any b E r and
a E qlup (here we understand ¢ to mean its unique A-invariant extension to a bigger
model). (This can also be defined without stepping outside of the monster model,
see [Sim15a, Chapter 2].)

We define ¢(™) (x.,,) for n < w by induction: ¢ (xg) = q(z0),

1
q(n+ )($§n) = Q(wn) ® q(n) ($<n)a
a'nd q(W) ($<w) = Un<w q(n)
IThere are set theoretic issues in assuming that such a model exists, but these are overcome by
standard techniques from set theory that ensure the generalised continuum hypothesis from some

point on while fixing a fragment of the universe. The reader can just accept this or alternatively
assume that U/ is merely k-saturated and x-strongly homogeneous for large enough «.
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For any linear order (X, <), we can define ¢(X) (z; | i € X) similarly, as the union
of ¢X0)(x; | i € Xp) for every finite Xy C X.

Fact 2.2. [Sim15a, Chapter 2] Given a global A-invariant type q and a linear
order (X, <), ¢ is an A-invariant global type. In addition, it is the type of an
indiscernible sequence over U.

For any small set B D A, ¢ |p is given by tp((a; | i € X)/B) where a; F
q|Ba.,. This is a Morley sequence of ¢ over B (indezed by X ).

2.3. VC-dimension and NIP.

Definition 2.3 (VC-dimension). Let X be a set and F C P(X). The pair (X, F)
is called a set system. We say that A C X is shattered by F if for every S C A
there is F' € F such that FNA=S5. A family F is said to be a VC-class on X if
there is some n < w such that no subset of X of size n is shattered by F. In this
case the VC-dimension of F, denoted by ve(F), is the smallest integer n such
that no subset of X of size n + 1 is shattered by F.

If no such n exists, we write ve(F) = oo.

Definition 2.4. Suppose T is an L-theory and ¢(z,y) is a formula. Say ¢(x,y) is
NIP if for some/every M E T, the family {¢(M*,a) | a € MY} is a VC-class.
The theory T is NIP if all formulas are NIP.

Definition 2.5. Suppose T is an L-theory and ¢(z,y) is an NIP formula. Let
ve(¢) be the VC-dimension of {¢p(M?*,a) | a € MY}, where M is any (some) model
of T'. Note that this definition depends on the partition of variables.

Let ¢°PP be the partitioned formula ¢(y,x) (it is the same formula with the
partition reversed). Let vc*(¢) = ve(¢°PP) be the dual VC-dimension of ¢.

Fact 2.6. [Sim15a, Lemma 6.3] Suppose F is a VC-class on X. Let F* = {{s €
Flaxest|xze X} CP(F) be the dual of F. Then F is a VC-class iff F* is,
and moreover vc*(F) := ve(F*) < 2veF)+1,

Remark 2.7. By Fact 2.6, ¢ is NIP iff ¢°PP is NIP, and ve(¢PP) = vc*(¢) < 2ve(@)+1,

By [Siml5a, Lemma 2.9], a Boolean combination of NIP formulas is NIP. In
particular, if ¢;(z,y;) is NIP for i < k then so is A, #i(v,y;). We end this
subsection by giving an explicit bound on its VC-dimension; see also [DKL84,
Theorem 9.2.6]. (This will be used only in Section 5.3.).

Definition 2.8. Let (2,) = >, (5), and let Bye(n, k) = max{s € N | (<sk)n 2
25} - B )

Remark 2.9. For all 1 <n,k € N, By.(n,k) > n,k.

Indeed, (<"k) > 2, 50 (<"k)n > 2™, Hence Byc(n, k) > n. Similarly, to show that

Byc(n, k) > k, note that (fk)n = 2kn > ok,

Lemma 2.10. Let k € N, and let ¢1(x;y0), - - -, dn(x; yn—1) be partitioned formulas
with ve(ps) < k. Let 0(x;90,- - Yn—1) = Nijcp, @i(2,y:). Then ve(0) < Bye(n, k).

Proof. Let s > Byc(n, k), and let Ay C U* with |Ag| = s. For each i, by Sauer-
Shelah [Sim15a, Lemma 6.4], at most ( 2 k) subsets of Ag are defined by instances of

¢;; hence at most ( jk)" are defined by instances of . It follows from the definition
of Byc(n, k) that 6 does not shatter Ag. O

2.4. Compressible types. Here we will review the basic properties of compress-
ible types.
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Definition 2.11. A type p(x) € S(A) is compressible if for any formula ¢(z,y)
there is a formula ¢ (z, z) such that for every finite set Ag C A, there is some ¢ € A*
such that

e Y(x,c) € pand
o Y(xz,c) F (p | @)|a, (e, it implies the set {p(x,a) | ¢(z,a) € p, a €
Ag} U{~¢(x,a) | d(x,a) & p, a € Ag}).

Suppose A C U. Given a € U* any tuple, we let (A4, a) be the structure with
universe A and the induced structure coming from a-definable sets. In other words,
for every formula ¢(x,y), there is a relation Ry4(y) interpreted by Ry(c) iff U E
¢(a,c) for any ¢ € AY. Note that if M = (A,a) then M = (A, a) for some A’ CU,
and moreover if M > (A, a) then there is such an A’ C U/ such that M and (A4’,a)
are isomorphic over A. Thus, whenever we have such a structure, we will always
assume it has the form (A4’, a) for some A" C U.

This construction preserves useful information on the type tp(a/A). For example,
recall that a type p(x) € S(A) is definable if for every formula ¢(x,y), the set
{a € AY | ¢(x,a) € p} is definable over A. Tt is easy to see that if tp(a/A)
is definable and (A’,a’) = (4, a) then tp(a’/A’) is also definable (with the same
definition scheme). Moreover, we have:

Fact 2.12. [Sim20, Lemma 8.2] If tp(a/A) is compressible and (A',a") = (A, a),
then so is tp(a’/A").

Compactness gives the following equivalent definition of compressibility:

Fact 2.13. The type p = tp(a/A) is compressible iff for any (some) |A|T-saturated
elementary extension (A',a) = (A4,a) and any formula ¢(x,y), there is some for-
mula ¥(x,z) and d € (A’)* such that (a,d) holds and Y(x,d)F (p | ¢)|a-

In fact, this was the original definition of compressibility in [Sim20, Defini-
tion 3.1].

We give another useful characterisation of compressible types. Recall that two
types p(x), q(y) over A are weakly orthogonal if p U ¢ implies a complete type in
x,y over A.

A type q is finitely satisfiable in some set A if every formula from ¢ is realised
in A. We write S% . (B) € S*(B) for the subspace consisting of those types in
x which are finitely satisfiable in A. Recall that such types can be extended to
global types in S% ¢ (U) (using ultrafilters). Note that S% ;(B) is a closed (and
hence compact) subspace of S*(B). As usual, omitting the z means taking all
types (allowing infinite (small) tuples).

Fact 2.14. [Sim20, Lemma 8.3] (T arbitrary) The following are equivalent for
a, A and an |A|T -saturated extension (A',a) = (A, a):
(1) tp(a/A) is compressible.
(2) For all q(y) € Sa-fs(A"), tp(a/A’) (as a type in x) and q(y) are weakly
orthogonal.
(8) Forallq(y) € Sass(A'), tp(a/A’) (as a type inx) and q(y) imply a complete
type in zy over .

Corollary 2.15. (T arbitrary) A type p(x) = tp(a/A) is compressible if and only
if there is some (possibly infinite) d CU of length |d| < |T'| such that
e tp(d/Aa) is finitely satisfiable in A, and
o for every g € Saps(U),
qlad - qlaa-
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Proof. Suppose tp(a/A) is compressible. Let ¢(x,y,w) be an L-formula. Then
there is ((z,2) such that {\/._,Vz({(z,2) = ¢(z,c',c)) | ¢ € AY,c € AV} U
{¢(a, 2)} is finitely satisfiable in A, so let e, realise a completion in S% ¢ (A). If
q € S%U) and ¢ € AV, then qlac,(y) F V.o V2({(z,e4) — o(z,y,¢)°) by
finite satisfiability, and F ((a,eg), so q|ac,(y) F ¢(a,y,c)® for some € < 2. So
d := (€$) p(z,y,w)ec is as required.

The other direction follows from Fact 2.14(3=-1), since by saturation we can
assume d C A’. O

3. DENSITY OF (LOCAL) COMPRESSIBILITY

Here we will prove that (local) compressible types are dense. In Section 3.1 we
prove an abstract version of this dealing with set systems of finite VC-dimension
(generalising [CCT16, Lemma 4] to infinite sets). Then in Section 3.2 we deduce
that locally compressible types are dense for NIP formulas, and in Section 3.3 we
deduce that compressible types are dense in countable NIP theories.

3.1. Compressibility for set systems of finite VC-dimension. Let A be a
(possibly infinite) set. As usual, 24 is the (Hausdorff compact) space of functions
A — 2 = {0, 1} equipped with the product topology. Any C C 24 naturally induces
a set system on A (those sets whose characteristic functions are in C) and as such
has a VC-dimension vc(C). For C € 24 and B C A, let C|p := {c|p | ¢ € C}, the
set, of restrictions to B.

Let C C 24

Definition 3.1. e For B C A and ¢ € C|p, define the relativisation C. :=
{celClclp=cd}={celC|cD}.
e For c € C and B,C C A, write ¢|p ¢ ¢|c to mean that ¢|¢ = ¢|¢ for any
¢ € C with ¢|p = ¢|B.
e For k < w, say ¢ € C is k-compressible in C if for any finite Ay C A there
exists A1 C A with |A;| < k such that ¢|a, Fc c|a,-
e Say c is compressible in C if it is k-compressible for some k < w.

Remark 3.2. This terminology is originally inspired by, but does not precisely agree
with, the terminology around compression schemes in the statistical learning liter-
ature.

Remark 3.3. Suppose (P, <) is a directed partial order, and ¢ : P — r < w is some
colouring. Then there is some subset X C P which is monochromatic (X C ¢=1(4)
for some ¢ < r) and cofinal (for all p € P there is some ¢ € X such that ¢ > p).

Indeed, if not, then for every ¢ < r there is some p; € P such that ¢(q) # i for
all ¢ > p;. Let p > p; for all i < r. Then ¢(p) # i for all i < r, contradiction.

The proof of the following theorem is an adaptation to the case of infinite A of
the proof of [CCT16, Lemma 4], which proves it for finite A with the same bound
on k.

Theorem 3.4. For any d < w, let keomp(d) := 29T1(d —2) + d+4. For any set A,
if C C 24 is closed, non-empty, and has VC-dimension < d, then there exists ¢ € C
which is koomp (d)-compressible in C.

Proof. The proof is by induction on d.
If ve(C) = 0, then C is a singleton {c}, and ¢ is clearly 0-compressible in C.
Suppose that ve(C) =d+1 > 0.

Claim 3.5. Let ko := 29*'d + 1. There is D C A and ¢ € C|p which is ko-
compressible in C|p such that ve(Cer) < d.
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Proof. We may assume |A| > ko, as otherwise the result is immediate (take D = A
and any ¢’ € C).

Let S :={c € Clp | D C A, ¢ is kgp-compressible in C|p}. Equip S with the
partial order of inclusion, i.e., C|p, 3 ¢} < ¢4 € C|p, iff D1 C Dy and ¢4|p, = ).

Then S is closed under unions of chains. Indeed, if (¢});er is a chain with
¢; € C|p,, then the sets of extensions to C, {¢ € C : ¢|p, = ¢}, form a chain
F of closed non-empty subsets of C; but C is closed in 24 hence compact, so F
has non-empty intersection. Hence (;c;¢; € Cly,_, ;- Meanwhile, (¢, ¢; is ko-
compressible since each ¢ is.

So by Zorn’s lemma, S has a maximal element ¢’ € Cp.

We conclude by showing that ve(Cer) < d.

Otherwise, 2P C C. for some B C A with |B| = d + 1. Note that BN D = 0.
We claim that there is e € 28 such that ¢/ Ue € S, contradicting maximality of ¢’.

Indeed, let Ay Cgn D U B and let Dy := Ag N D. Then there is D; C D with
|D1| < ko such that ¢'|p, Fe, ¢|p,- In fact we may take Dy with |D;| = ko, since
|D| > ko by maximality and the assumption that |A| > ko. Since ve(C) < d+1 = |B|
and 28 C Cu, for each a € D; there is e, € 25 such that e, Fe |1a}- By the choice
of kg = 291d+1 and the pigeonhole principle, there exist e € 28 and E C D, such
that |E| = d+ 1 ande I_C CI|E. Let A1 = (D1 UB) \E, SO |A1| = |D1| = 1{30. Then
(1) (' Ue)la, ke (cUe)la,-

In this way we obtain a 2P-colouring of the partial order of finite subsets of
D U B, where each finite Ag C D U B is coloured with an e € 28 such that (1)

holds for some Ay C D U B with |4;] = kg. By Remark 3.3 there is a cofinal
monochromatic subset, yielding e € 28 which is as required. ([

Now by the induction hypothesis there is ¢ € Co» which is kcomp(d)-compressible
in C. We conclude by showing that ¢ is (kcomp(d) + ko)-compressible in C; this
gives the stated bound, since (2¢+1(d — 2) 4+ d 4 4) + (2¢T1d + 1) = 2(d+D+1((d +
1) —2)+ (d+1) +4.

So suppose Ag Can A and let A; C A be such that [A;] < kcomp(d) and c|a, Fc,,
¢|la,- By compactness of C it follows that there is a finite subset Dy C D such that
cla, Fcc/‘DO clag-

Let Dy be such that |D;| < ko and ¢'|p, ¢, ¢'|p, (which exists as ¢’ € S).
Then ¢|a,up, Fe ¢|a,, as required. O

Remark 3.6. For finite A, the exponential dependency of kcomp(d) on d obtained
in [CCT16] was improved to a quadratic dependency in [HWLW17]. Conjecturally
it is even linear (see the introduction to [HWLW17]). The proof of this quadratic
bound does not adapt so readily to the infinite case, and it would be interesting
to find the best bound, and in particular to see whether Theorem 3.4 holds with a
quadratic bound.

3.2. Density of compressible local types. In the following definition, we use
the notation p -, ¢q for p U F ¢, where p, w are small partial types and ¢ a finite
partial type (this is compatible with the notation in Definition 3.1 when p, ¢ are
complete ¢-types, and C is the set of ¢-types consistent with 7). As usual, we work
in a complete L-theory T.

Definition 3.7. Fix a formula ¢(z,y), a parameter set A C UY and a small partial
type m(z). Recall the notation S7(A) from Section 2.1.
e pE€E S’g(A) is k-compressible modulo 7 if it is compressible in Sg(A)

considered as a (closed) subspace of 24 as in Definition 3.1: for any finite
Ap C A there is A; C A with |A;| < k such that p|a, (z) Fr p|a, (2).
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e p € S7(A) is x-compressible modulo 7 if it is k-compressible modulo =
for some k < w.

o p € S4(A) is k- resp. x-compressible if it is k- resp. x-compressible modulo
T =x.

o 57,(A) C SF(A) (respectively ST, (A)) is the space of k-compressible
(respectively x-compressible) ¢-types modulo 7. When A C U, S31k (A) =
Sk (AY).

Remark 3.8. In terms of Borel complexity, if A is countable then S7 , (A) is a X9-
subset of S7(A): it is a countable union (going over all k) of countable intersections
(going over all finite subsets of A) of countable unions (going over all subsets of A
of size < k) of clopen sets (the implication).

Corollary 3.9. Let ¢(x,y) be a formula, d € N, A CUY and w(x) a small partial
type. Suppose that ¢(x,y) is NIP and that vc*(¢) < d. Let k = keomp(d) be as in
Theorem 3.4.

(i) S3x(A) #0.

(i) If A" C A, then any p’ € S |,(A") extends to some p € SF| 4 (A).

(i) SF,,(A) is dense in ST(A).

Proof. (i) This is immediate from Theorem 3.4 by identifying C with S} (A).

(ii) By (i), there is some p € ng,f/(A). Then if Ag Cgn A, there is A1 C A
with |A1]| < k such that p’ U pla, Fr pla,. By compactness, there is a finite
Ap € A" such that p'[4; Upla, Fr pla,, and then by [-compressibility modulo
7 of p' we have p'|a; Fr p'|a, for some A7 C A" with |A}| < [. Then
plajua, ='|a; Upla, Fx pla,. So pis (I + k)-compressible modulo 7.

(iii) A basic open subset of S7(A) is of the form SQUP/(A) where p’ € SF(A’) and
A" Coan A Clearly p’ € S| 4/ (A"), so by (ii) there is p € SF| (| 4141 (A)
extending p’.

O

Corollary 3.10. The following are equivalent for a formula ¢(x,y) and a partial
type m(x).

(1) For some ¢ (x) such that w1, ¥(x) A ¢(x,y) is NIP.

(2) There exists k < w such that for any set A CUY, ST, (A) # 0.

(8) For any set A CUY, there exists k < w such that ST, (A) # 0.

Proof. (1) implies (2) is Corollary 3.9(i) (any type in ST, (A) naturally induces
one in S7;(A4)) and (2) implies (3) is clear.

—(1) implies =(3). By —(1), UY is infinite. By compactness there is A := {a; |
1 < w} CUY such that for any A’ C A, there is some bs E 7 such that ¢(bas,a)
holds iff a € A’ for any a € A. Suppose p € Soik (A) for some k < w. Then for some
Ay C A of size < k, p|lay Fr Dlac,- But setting A’ :={a € Ay : ¢(z,a) e p}U{a €
A\ Ag : ~p(z,a) € p}, we have bas E p|a,; but ba 7 pl, for any a € A\ A, and
a<k € Ap since |Ao| < k. O

This gives a new characterisation of NIP types.

Definition 3.11. We say that a partial type w(z) has IP if there is a formula
¢(z,y) € £ which has IP as witnessed by realisations of =, i.e., if ve({¢p(7(U), a) :
a €UY}) = oo. A formula or a partial type is NIP if it does not have IP.

By compactness we have that:

Remark 3.12. A partial type w(z) is NIP iff for every formula ¢(z,y) there is a
formula v (z) implied by 7 such that ¢¥(z) A ¢(x,y) is NIP (as a formula over ).
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By Corollary 3.10 and Remark 3.12 we have:

Corollary 3.13. A partial type 7w(x) is NIP iff for every formula ¢(x,y) and A C
UY there is k < w such that SF, (A) # 0.

3.3. Density of compressible types in countable NIP theories. Now we turn
from local types to types.

Definition 3.14. Let w(z) C n'(z) be partial types over a parameter set A C U
(perhaps contained in a collection of sorts).

e A formula {(x, z) compresses 7 within 7’ with respect to A if for any
finite Ag C A there exists a € A% such that

7' (x) F (2, a) - 7], ().

If 7’ is clear from the context we omit it.

e 7 is compressible within 7/ with respect to A if some ¢ compresses T
within 7/ with respect to A.

e 7 is t-compressible? with respect to A if 7 is compressible within = with
respect to A.

Let p(z) € S(A).

(1) pis compressible if for each formula ¢(z,y), the restriction p [ ¢ € S, (A)
of p to a ¢-type is compressible within p with respect to A.

(2) p is strongly compressible if for each formula ¢ there exists a finite set
of formulas A 3 ¢ such that p [ A is t-compressible with respect to A.

Remark 3.15. Note that the definition above of a compressible type is the same as
Definition 2.11.

Remark 3.16. The reason we say “with respect to A” in the definition is because a
partial type over A is also a partial type over any set containing A. In the future
we will usually omit this since A will be clear from the context.

Remark 3.17. As we said in Section 2.1, we do not restrict ourselves to finitary
types. Note that p € S*(A) is compressible iff all of its restrictions to finite tuples
of variables are compressible.

Remark 3.18. The relations between these definitions and the definitions for ¢-
types in Definition 3.7 are slightly subtle. In particular, for A C U¥Y and a ¢-type
p € Se(A), the condition that p is x-compressible (i.e., k-compressible for some k)
is strictly stronger than the condition that p is t-compressible. For example, in
Th(N; <), the non-realised (x = y)-type in Sy=,(N) is t-compressed by z > z, but
is not k-compressible for any k < w.

Remark 3.19. Note that for a model M and p € S(M), p is (strongly) compress-
ible iff its unique extension p° to M is (strongly) compressible (by translating
formulas in £°9 to formulas in £, see [Pil96, Lemma 1.1.4]).

Lemma 3.20. Let w(x) be a t-compressible partial type over a set A C UY, and
let ¢(x,y) be an NIP formula. Then there exists py € S¢(A) such that m U py is
consistent and t-compressible.

Moreover, there is a formula &(x,w) which is a Boolean combination (depending
only on vc*(¢)) of instances of ¢ and equality such that if ((x,w') t-compresses ©
(i.e., compresses m within itself) then {(x,w') A &(x,w) t-compresses mU pg.

2The letter 't’ stands for totally, thoroughly, or typewise.
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Proof. We may assume |A| > 1, as otherwise the result is clear.

By Corollary 3.9(i), there is py € Sguc(A) for some k < w depending only
on vc*(¢). By a coding of finitely many formulas as one as in the proofs of e.g.
[She90, Theorem I1.2.12(1)] and [Guil2, Lemma 2.5], we obtain a formula &(z, w)
such that for any finite Ay C A, there is a € A™ such that pg(z) - {(x,a) and
mU{&(x,a)} - pgla,. Explicitly, we may take &(x,w) with w = (w?)i<3 j<k to be
Ajer(o(z,w)) < wi = w3). Then, for any finite Ay, there is some (¢;)j<x € 2
and (c;)j<x € AF such that Nj<r ®(@,¢j)9 F pla,. Let do # di € A. For j <k, let

a? = ¢y, al = dy, and let a? = dp if ¢, = 1 and otherwise let a? = d;. Finally, let

J i 4
a = (aj)i<s,j<k-

Now assume that ¢(z,w’) is as in the lemma and fix some finite set Ag C A. Let
a € A" be as above. By compactness there is a finite Aj C A such that Ay C Aj
and 7|4, U {&(z,a)} F pela,, and so (by the assumption on () there is o € A

such that (7 Upg)(z) F (C(z,a") AN&(z,a)) F (T Upg)|a,- 0

Corollary 3.21. (T countable NIP) Suppose A CU is a set of parameters and x
is a countable tuple of variables. Then, compressible types are dense in S*(A):

If 6(x) is a consistent formula over A, then there exists a compressible type
p(z) € S(A) with p(z) - 0(z).

More generally, if m(x) is a t-compressible partial type over A, then there exists
a strongly compressible p € S(A) with m C p.

Proof. Clearly it is enough to prove the “more generally” part, so assume 7 is
t-compressible and ¢ compresses m within .

Enumerate the formulas ¢(z,y) as (¢i(z,y;))i<w (Where the y;’s are finite), with
¢o=¢. Fori<w,let A; ={¢; | j<i}U{z =y} Letm = m. Recursively apply-
ing Lemma 3.20, let py, € Sy, (A) be such that m;11 := m; U py, is t-compressible,
and moreover is compressed by a Boolean combination of formulas from A; 1. Then
each 7; [ A; is t-compressible, and so p := (J,_,, 7; is strongly compressible. ([

For an example showing the necessity of the countability assumption, see Remark 4.11
below.

Remark 3.22. Tt follows from Corollary 3.10 that Lemma 3.20 characterises ¢ being
NIP (letting 7 be the empty type). However, Corollary 3.21 does not characterise
NIP for countable theories. An easy example is Th(N, +, ), and in fact any theory
with IP in which dcl(A) is a model for any set A (given a consistent formula 6(x)
over a set A, let ¢ E 0 be in dcl(A), then tp(c/A) is compressible and even isolated).

Question 3.23. We could consider an apparently weaker notion of compressibility
of a type: say p € S(A) is weakly compressible if for any formula ¢(z,y) there
is some formula ((z, z) such that for any finite Ay C A there is some d € U* such
that p F {(x,d) and ((z,d) F (p | ¢)|4,- Note that if the base A is a model, then
weak compressibility is equivalent to compressibility, but for general sets it is less
clear. In Example 6.26 below we will see that if T is the theory of atomless Boolean
algebras, this can fail. Is it true that if T is NIP then p is weakly compressible iff
p is compressible?

4. COMPRESSIBILITY AND STABILITY

Here we discuss compressibility in the context of stability, in both the local and
global senses, and point out that compressibility is equivalent to l-isolation (see
Definition 4.6) in these contexts. The main results are:

e For stable formulas, k-compressibility is equivalent to k-isolation (Lemma 4.3).
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e For stable types, compressibility is equivalent to l-isolation (Lemma 4.8),
and in particular when T is stable these two notions are the same.
e For generically stable types, compressibility is equivalent to l-isolation (Proposition 4.14).

4.1. Stable formulas. Recall that a formula ¢(z,y) is stable if it does not have
the order property: there are no (a;, b;)i<w such that ¢(a;,b;) holds iff ¢ < j, and
¢ has the strict order property (SOP) if there is a sequence (b;);<, such that
(p(U*,b;))i<w forms a strictly decreasing sequence of definable sets (with respect to
containment). A theory T is stable if no formula has the order property. Clearly
if ¢ is stable, it is NIP.

Definition 4.1. Suppose k < w and p € S4(A) for some A C UY. Then p is

k-isolated if for some Ay C A such that |Ag| < k, p|a, F p. p is isolated if it is
k-isolated for some k& (this coincides with the usual topological definition).

Remark 4.2. Note that if p € S,(A) is k-isolated then it is k-compressible. Also, if
p is k-compressible and isolated, then p is k-isolated.

The following says in particular that under stability, k-compressibility and k-
isolation are the same.

Lemma 4.3. Let ¢(x,y) be NIP. Then the following are equivalent:
(i) ¢ is stable.
(i) For any B CUY and p € Sy(B) and k € N, if p is k-compressible then p is
isolated (and hence k-isolated by Remark 4.2).
(iii) For all k < w and € € {0,1}*,
Oc(2,7) =\ b(z,y,)7
j<k
does not have the strict order property.

Proof. (i) implies (iii) as a Boolean combination of stable formulas is stable (see
e.g., [Pil96, Lemma 2.1]) and the strict order property implies the order property.

—(i) implies —(iii) by the proof of [Sim15a, Theorem 2.67] and the subsequent
remark.

—(ii) implies —(iii): let p € Sy (B) be k-compressible but not k-isolated.

Inductively we find b € B* and Eil € {0,1}* for 4 < w such that we have
p(x) I_'Ggi(.r,gz) for all 4, and 6-i(z,b') F 9@(90,5]) iff i > j. (Given i, since
0zi(2,5') i/ p, there is b € B such that 6z (2,5 ) I ply. Let Ozia (2,0 ) F plgs, be
from p.) But then some € occurs infinitely often, and then 0¢(z,%) has SOP.

—(iii) implies —(ii): suppose b € UY for i < w and eg(SC,El‘) b Oz(x, ) iff i > j.
Let B = {b} | i <w, j <k} CUY, and note that {0c(x,b") | j < w} implies a
complete type p € Sy(B). Then p is k-compressible but not isolated. O

4.2. Stable types and theories.

Definition 4.4. A partial type 7(z) over A is stable if every extension p € S(B),
over every B D A, is definable.

It is well-known that T is stable if and only if every type is definable (see e.g.,
[TZ12, Corollary 8.3.2]), so T is stable if and only if every partial type is stable.
For more on stable types (including equivalent definitions), see [ACP14, EK21]. We
will use the following equivalence:

Fact 4.5. [EK21, Remark 2.6] The following are equivalent for a partial type 7w(x):
(1) m is stable.
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(2) For every formula ¢(x,y) there is a formula ¥ (x) implied by 7 such that
oz, y) Np(z) is stable (as a formula over U ).

Under stability, the analogue of compressibility of a type is l-isolation.

Definition 4.6. A type p(x) € S(A) is l-isolated if for each formula ¢(z,y) there
isCepwith(Fpl o

Clearly, an l-isolated type is compressible. By considering the formula x # y, we
easily obtain:

Remark 4.7. Any l-isolated type over a model is realised.
The following is analogous to (but not actually comparable with) Lemma 4.3.

Lemma 4.8. (i) Suppose p € S(A) is compressible but not l-isolated. Then:
(a) There are tuples a;,b; in A which witness the order property for some
L-formula.

(b) p is not stable.
In particular, if T is stable then any compressible type is l-isolated.

(i) (T countable NIP) T is stable iff any compressible type is l-isolated, iff there
18 some w-saturated model M such that every strongly compressible type over
M is l-isolated.

Proof. For both (i.a) and (i.b), suppose ¢(z,y) witnesses that p is not l-isolated
and ((z, z) compresses p | ¢.

(i.a) Let 0(y, z) = V..o V2({(2, 2) = é(z,y)). We recursively construct a; € AY
and b; € A* for i < w, such that F 6(a;,b;) < @ < j: if ac; and be; are already
defined, let b; be such that p 3 ¢(z,b;) F (p | ¢)|a.,(x), and let a; be such that
C(@,b5) i/ (p T #)la; () for all j <4, which exists since A\, ((z,b;) ¥ (p [ ¢)(2).

(i.b) For ¢(z) € p, we show that 0(z, z) := ((x,2) A (z) has the order prop-
erty by recursively constructing (a;, i, ¢;)i<w such that F 6(a;,b;) iff ¢ > j and
Nj<i0(x,b5) € p and F ¢(ai, ¢;) < ¢(x,¢;) ¢ p. This is enough by Fact 4.5. Sup-
pose we found (a;, bj,¢;);<i. Let b; be such that p > ((z,b;) F (p | ¢)|c.,(x). Since
/\jgi 0(z,b;) does not isolate p | ¢, there are some a;, ¢; such that F /\jgi 0(a;, bj),
d(z, ;)¢ € p for some € < 2, and —¢(a;, ¢;)¢ holds.

(ii) The implications from left to right follow by (i) and trivially, respectively.
For the other direction, assume that T is not stable. By [Sim15a, Theorem 2.67],
T has the SOP. So say < is an (-definable (strict) preorder on an @-definable set D
with infinite chains.

Let M be an w-saturated model. So M contains an infinite chain C' which we
may assume is maximal. Since C' is infinite, we can write C' = C; + Cy where either
(1 has no last element or C5 has no first element (one of them may be empty).

Let m(x) be the unique type in < over C corresponding to the cut (Cp,Cb)
(i.e., m(x) is determined by {¢1 < x| 1 € C1} U{x < ¢2 | ca € Ca}). Now, 7
is t-compressible (e.g., if both C7,Cy are nonempty, then z < x < w compresses
7 within 7 and if C7 is empty then z < z compresses 7 within 7). Hence by
Corollary 3.21, 7 has a strongly compressible completion ¢ € S(M). By maximality
of C, 7 is not realised in M, so neither is q. So by Remark 4.7, ¢ is not l-isolated.

(Note that we could have worked with a partial order instead of a preorder by
passing to eq and using Remark 3.19.) O

Remark 4.9. From the proof of Lemma 4.8(ii) it follows that if M F T contains an
infinite chain in an M-definable preorder D then there is ¢ € D such that tp(c/M)
is compressible but not l-isolated.
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Remark 4.10. From Corollary 3.21, it follows that l-isolated types are dense in
stable theories, but this was well-known and follows easily by 2-rank considerations,
see [She90, Lemma IV.2.18(4)].

Remark 4.11. The following example demonstrates the necessity of the countability
assumption on 7" in Corollary 3.21 even for stable theories.

Let x be a cardinal, and consider s colourings on a set X, with each colouring
using the same colours, such that no point gets the same colour according to two
different colourings, but apart from this restriction all possibilities are realised. We
can formalise this in the language with a sort X, a sort C for the colours, and for
each ¢ € k a function f; : X — C giving the colour of an element according to
the i-th colouring. The theory is axiomatised by saying there are infinitely many
colours and, for each finite set {i1,...,i,} C k enumerated without repetitions and
each m > 0, an axiom

Vcl,...,cnGCVxl,...,xmGX(El:cGX(/\fij(:c):cj/\/\x#zj)

J=1 Jj=1

“ /\ cj # ck)
ik

This axiomatises a complete consistent theory 7" with quantifier elimination in
the given language. Indeed, restricting to any finite sublanguage L containing X, C
and finitely many function symbols f;, T' | Ly is the Fraissé limit of the class of
finite structures (Xo, Cy) where for every f;, f; € Lo and all z € Xy, if f;(z) = f;(x)
then i = j. It follows that T is stable; indeed, |S1(A)| < A\* for |A] < A, so T is
2r-stable.

Now suppose k > Ry and let Cy C C with |Cy| = Rg. We claim that the formula
2 € X has no compressible (equivalently, by Lemma 4.8(i), l-isolated) completion
p € S*(Ch). Indeed, it is easy to see that p would have to include for each i a
formula f;(z) = ¢; for some ¢; € Cy, but then ¢; # ¢; for ¢ # j, contradicting
K > |Co|

Other (hints for) examples are given in [She90, Exercise IV.2.13] where Shelah
also gives a superstable® counterexample, which we will describe briefly. Let £ =
{E,,Ps | v € w,s € w<¥} where the P,’s are unary predicates and the E,’s
are binary relation symbols. Let M be the L-structure whose universe is w* x w
where PM = {(n,n) € w* x w | s<an} and EM is an equivalence relation where
(m,n1), (n2,n2) are equivalent iff (y; = n9 or for somen < w, m [n=mn [n=v]
n and n1(n) = n2(n) # v(n)). Essentially, each class is infinite and two branches
in the tree w* are v-equivalent if they divert from v at the same point and in the
same direction (starting the same cone), and v is v-equivalent only to itself. Let
T = Th(M). It is not too hard to see that T has quantifier elimination. We leave it
as exercise to check that for any set 4, S1(A4) < |A|+2%, and thus T is superstable.

Finally, working in ¢/°? and letting A = {(n,n)/E, | n # v,n < w}, there is no
l-isolated type p € S1(A) (in the home sort). Indeed, if p(x) is such a type, then for
every v € w® there is some 1 # v such that z/F, = (n,0)/E, is in p. It follows that
for some v € w*, p must contain {Ps(z) | s<v}. But then p - z/E, # (n,0)/E,
for all  # v, contradiction.

4.3. Generically stable types. Generically stable types are invariant types that
exhibit stability-like behavior “generically” i.e., when considering their Morley se-
quences. This notion was first studied in the NIP context by Shelah [She04] (under
the name “stable types”) and then by Hrushovski and Pillay [HP11] and inde-
pendently Usvyatsov [Usv09]. See also [Siml5a, Section 2.2.2]. It was defined in

3Recall that T is superstable if it is stable in all cardinals > 2171,
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general in [PT11] by Pillay and Tanovié. See also [CG20] for more on generic
stability outside of the NIP context.

Definition 4.12. We say that a global type p is generically stable over A if it
is A-invariant and for every ordinal «, every ¢(z) with parameters in Y and every
Morley sequence (a;)i<q of p over A, the set {i < o | U F ¢(a;)} is finite or cofinite.

Fact 4.13. Suppose p is generically stable over A. Then:

(1) [PT11, Proposition 2.1] p is A-definable and finitely satisfiable in every
model containing A.

(2) [PT11, Proposition 2.1] If I is a Morley sequence of p over A then I is an
indiscernible set (i.e., totally indiscernible).

(8) [CG20, Proposition 3.2] p = lim(a;)i<. for any Morley sequence (a;)i<w
of p over A, i.e., p is the limit type of any of its Morley sequences over
A: 0(x) € p iff 6(a;) holds for all but finitely many i < w. (In [CG20,
Proposition 3.2] it is stated over models, but it is also true over sets and
follows directly from the definition; we leave this to the reader.)

Moreover, by [Sim15a, Theorem 2.29] if T is NIP then each one of these con-
clusions is equivalent to gemeric stability for an A-invariant type.

Proposition 4.14. Let p € S(U) be generically stable over A C U, and suppose
pla is compressible. Then p|a is l-isolated.

For the proof we will need the following observation. Recall the notations from
Section 2.4.

Remark 4.15. Suppose tp(a/A) is l-isolated, and (A, a) = (A’,a’). Then tp(a’/A’)
is l-isolated. Indeed, if {(x,d) € p isolates p | ¢, then

(A,a) F 3d € A*(C(a,d) AVy(/\ (d(a,y)” = Va(l(z,d) = d(z,y)))))-

e<2

Thus, the same is true in (A4’ a’), which suffices.

Proof of Proposition 4.14. Suppose p € S(U) is generically stable over A and p|4 is
compressible. Let a E p|4, and let M be a model containing Aa. Let (M’, A, a) »
(M, A,a) be an |M|*-saturated extension (in a language with a predicate P for A
and constant symbols a), and let (M”, A" a) = (M’, A’,a) be an |M'|*-saturated
extension (with M” C U). Since p is definable over A by Fact 4.13(1), it follows
that p|a» = tp(a/A”).

Let ¢(x,y) be any formula. Note that (A”,a) = (A’,a) = (A, a) and that (A", a)
is |A'|*-saturated, so by Facts 2.12 and 2.13, there is some d € (A”)? and some
formula ¢(z,z) such that ((a,d) holds (so {(z,d) € p) and {(z,d) F (p | ¢)|a’.
By Fact 4.13(3) and compactness there is some N < w such that for every Morley
sequence (a;);<n of p over A, ((a;,d) holds for some ¢ < N, and hence a; F (p |
)lar-

Let (ai)i<n be a Morley sequence of p over A of maximal length such that
a; 7 (p | ¢)|a for all i < n. For i < n, let ¢; € (A")Y and ¢; < 2 be such that
@(ai, ¢;) holds but —¢(z, ¢;)% € p. Then the following set of formulas over M’ is
inconsistent:

P (@o, -y a)a U{@(@i, e) i < n}U—0(z,)

where 0(x) = Vy € P(é(a,y) < ¢(x,y)). By compactness (and saturation of M’),
there is some formula ¥(zq, . .., 2,) € p" 1|4 such that ¢ U {¢(z;,c;) | i < n}F
0(xy,).
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Let x(z) = 3zo...2n-1(N;c,, @(@i, i) A Y(20,...,20-1,2)). Since M’ is a
model, x(z) F (p | #)|ar. Also, since ¥(ag,...,an_1,z) € p, it follows that x(z) €

plar
Since ¢ was arbitrary, this means that p|4- is l-isolated, and hence by Remark 4.15,
we are done. O

It is convenient to use the following definition.

Definition 4.16. Suppose M E T. A type p € S(M) is generically stable if it
has a global M-invariant extension which is generically stable over M.

Remark 4.17. If p € S(M) is generically stable then it has a unique M-invariant
extension by [PT11, Proposition 2.1(iii)].

Note that if p € S(M) then it has a global M-invariant extension (e.g., a coheir).
Thus, together with [CG20, Proposition 3.4], we get the following fact.

Fact 4.18. If M is a model and p € S(M) is stable then p is generically stable.

It follows that when the base is a model, Lemma 4.8(i.b) is implied by Proposition 4.14.

5. ROUNDED AVERAGES OF COMPRESSIBLE TYPES AND APPLICATIONS

Let Maj be the majority rule Boolean operator, i.e., for truth values Py, ..., P,_1,
let
Maj,_, Pi= \/ A P
I,Cn i€l
[Io|>n/2

We just write Maj, if n is clear.
More generally, for « € (0,1), let Maj® be the “greater than an a-fraction”

Boolean operator, i.e.,
Maj, Pi= \/ A P

IoCn i€y
[ Io|>an

Definition 5.1. Suppose ¢(z,y) is a formula, B C UY and po(x),...,pn-1(z) €

Sy(B).
The rounded average of po(x),...,pn—1(x) € Sg(B) is the following (possibly
inconsistent) collection of formulas

rAvg(p; | i <n):={¢(x,b)° | be B,e <2,Maj,,(¢(x,b) € pi(x))}.
More generally, for a € [%, 1), the a-rounded average is the set

rAvg,(pi | i <n) :={¢(x,b) | b e B,e <2,Maji, (¢(x,b)° € p;(z))}.
The main result of this section is:

Theorem 5.2. Let ¢(x,y) be an NIP formula and suppose o € [1/2,1). Then
there exist n and k depending only on vc(¢) and « such that for A C UY, any
P € Sgorr (A) is the a-rounded average of n types in Sgporv i (A).

(We give a more precise and general statement in Theorem 5.17, allowing a
partial type 7(x).)
We give some applications:
e Uniformity of honest definitions for NIP formulas, see Definition 5.22. This
is Corollary 5.23.
e Uniform definability of pseudofinite types, see Theorem 5.36.
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5.1. Superdensity. In this section we isolate a sufficient condition for proving
Theorem 5.2, which uses the (p, g)-theorem (see Fact 5.4). We then apply it to
retrieve UDTFS in Corollary 5.14, as a prelude to the proof of the uniformity of
honest definitions in Corollary 5.23.

Definition 5.3. Suppose ¢ < p < w. A set system (X, F) has the (p, ¢)-property
if for any S C F such that |S| > p, there exists Sy C S of size |Sg| > ¢ such that

N So # 0.

Fact 5.4. [Mat04] (The (p,q)-theorem) There exists a function Npq : N> — N such
that for any q < p < w, if (X, F) is a finite set system with the (p,q)-property
such that every s € F is nonempty and vc*(F) < q, then there is Xo C X of size
| Xo| = Npq(p,q) such that XoNs #0 for all s € F.

We isolate from the proof of [Sim15a, Corollary 6.11] the following immediate
generalisation of the (p, ¢)-theorem to infinite set systems.

Lemma 5.5. Let ¢(x,y) be NIP. Let p > q > vc*(¢) be integers, and let N =
Npq(p,q). Let ACU* and B CUY. Suppose that (A, b) # O for every b € B, and
that for every By C B with |By| = p there exists By C By with |Bi| = q such that
for some a € A we have F N\, p ¢(a,b).

Then {\/,cn ¢(x4,b) | b € B} is finitely satisfiable in A.

Proof. By the definition of finite satisfiability, it suffices to see this in the case that
B is finite; but this case is a direct consequence of the (p, ¢)-theorem (Fact 5.4). O

Suppose ¢(z,y) is a formula, A CU* and N € N. For variables Z = (z; | i < N)
of the same sort of z, we denote by Sf;f’ Ags(UY) the space of A-types in T over
UY which are finitely satisfiable in A, where A = {¢(z;,y) | ¢ < N}. If p(y) €
Sgorv (A) then for any q € S 4 ¢ (UY), the product ¢(z) ® p(y) is the partial type
q(Z)Up(y)U{d(xs,y)% | i < N} where ¢; < 2 is the truth value of ¢(a;, b) for some
(any) bE p and (a; | i < N) F ¢lp. Note that this is well-defined.

Forbe U¥, N € Nand S C Sgorr(A), we consider the following condition:

For every q(Z) € S§ 4 ¢(UY) where T = (z; | i < N), thereisp € S
such that

(Ho,v,s () @ ply) - /\ (¢(wi, y) < ¢(4,b)).

<N

Definition 5.6. Suppose ¢(z,y) is a formula and A C U*. A set S C Sgorr (A) is
superdense in Syorr (A) if ()p,n,s holds for every b € UY and N € N.

Remark 5.7. By considering realised types in A, it follows that any superdense set
S C Syerr (A) is also dense.

Lemma 5.8. Let o € [1/2,1) and let d € N. Let n € N be such that (1 — a)n >
241 — 1, and let N = Npqy(n,2¢%Y). Fiz some formula ¢(x,y) such that ve(¢) < d.
Suppose A CU*, b e UY and S C Syoro (A) satisfy ()s,n,s-

Then 1 := tp gopp (b/A) is the a-rounded average of n elements of S.

Proof. Since o« > 1/2, r = rAvg, (p; | i <n) iff for all a € A, [{i < n | ¢(a,y) €
r < ¢(a,y) € pit| > an. Let ¢ (x,y) = é(z,y) + ¢(x,b) (as a formula over U).
In this notation, we must prove that for some pg,...,pn—1 € S, for all a € A,
{i <nlpi(y) - ¢'(a,y)} > an.
Note that ve(¢') = ve(¢) < d; indeed, ¢’ and ¢ shatter the same subsets of U*.
Now assume the conclusion fails. In particular, » ¢ S (else it is the rounded
average of n copies of itself). Let B C UY be a set of realisations of the types in S.
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By assumption, for every By C B with |By| = n, there exists a« € A and By C By
with |B| > (1 — a)n > 29+ — 1 > vc*(¢') such that —¢'(a, c) holds for all ¢ € By
(the last inequality follows from Remark 2.7).

Note that for b’ € B we have tp jopp (b'/A) 7# tpgops (b/A) since tpyops (b/A) ¢ S5,
so —¢' (A, V') # 0.

So Lemma 5.5 applies to —¢' (with p = n, ¢ = 29! note that vc*(¢') =
ve*(—¢')) and hence 7(z) := {\/,. 5 ¢ (zi,¢) | ¢ € B} is finitely satisfiable in A,
where T = (z; | i < N).

Extend 7 to ¢(Z) € Sf;f’ Ags(UY) (formally, first extend 7 to a global type finitely
satisfiable in A, and then restrict to a global {¢(z;,y) | ¢ < N}-type ¢. Then note
that ¢ implies 7). Then for all p € S, we have ¢(Z) ® p(y) = V,cn —¢ (zi,y).
However, (f)s,n,s implies that for some p € S, ¢(Z) ® p(y) F \;cy ¢’ (2, 3), con-
tradiction. (|

Remark 5.9. When a = 1/2, n := 2V(9)+2 — 1 and N := N,q(n, 2V work in
Lemma 5.8.

Remark 5.10. From the proof of Lemma 5.8, we get something slightly stronger
(under the same assumptions): either r € S, or r is an a-rounded average of
distinct types in S.

Remark 5.11. Lemma 5.8 admits a partial converse, for an arbitrary formula ¢(z, y)
and any n and any N: letting = (z; | i < N), if tp,(b/A) is the rounded average
of n elements from S C S¥,,, (A), then for every ¢(z) € SF 4 4 (UY) thereis p(y) € S
such that
q(7) @ p(y) = Maj;n (6(zi,y) < ¢wi,b))-
Indeed, suppose tpgops (b/A) = rAvg(tp(c;/A) | i < n) where tp(c;/A) € S for
j <nand q(z) € S§ 4 (UY). If the conclusion fails, we get that for each j < n

gt ~Maj; oy (¢(zi, ¢j) <> ¢(z4,D)).
By finite satisfiability, there is (ao,...,an—_1) € AV satisfying this for every
j < n. Hence [{(i,j) € N xn | ¢(ai,c;) < ¢(a;,b)}| < inN. Then by the
pigeonhole principle, for some ¢ < N we have

E - Majj<n(¢(a’i7 Cj) Ane ¢(aia b))v
contradicting tp sops (b/A) being the rounded average of the tp(c;/A).

In Section 5.3 we will prove that Sgorr|.(A) is superdense in Sgorr (4) and even
in a uniform way, as in the proof of Corollary 3.9(iii), which will imply Theorem 5.2
by Lemma 5.8. In the finite case we can already conclude the following, basically
because superdensity is the same as density when A is finite.

Corollary 5.12. Fiz a € [1/2,1) and some d € N. Then there are k,n € N
(depending only on d,«) such that if ¢(x,y) is a formula with ve(p) < d, then for

any finite A C U", every r(y) € Sgoer(A) is the a-rounded average of n types in
Sgporpk(A).

Proof. Let n, N be as in Lemma 5.8, and let k = kcomp(d) + N. Fix some b € UY.
By Lemma 5.8, to show the conclusion for tp gops (b/A), it is enough to show (f)s .5
with S = Sgoee |1 (A). But every q(z) € S% 44, (UY) is realised in A (since A is finite),
so it boils down to showing that for every @ € AN there is some p(y) € Sgorr 1 (A)
such that p(y) F A, o n(@(as,y) <+ ¢(a;,b)). This follows from the choice of & and
Corollary 3.9(ii) applied to ¢°PP. O

As a corollary we retrieve UDTFS. First recall the definition.
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Definition 5.13 (UDTFS). We say that ¢(z,y) has uniform definability of
types over finite sets (UDTFS) if there exists a formula 1) (x, z) such that for
every finite set A C U* with |A| > 2 the following holds: for every b € UY there
exist ¢ € A% such that (A4, c) = ¢(A4,b).

Every formula with UDTFS is easily NIP (see e.g., the proof of Theorem 14
in [EK20]). The proof of UDTFS for NIP formulas in [EK20] roughly goes by
showing Corollary 5.12 with o = 1/2, and deducing UDTFS from that (this is not
stated explicitly in this language, see the proof of Theorem 14, (1) implies (2), (3)
there). We omit the details here since we will prove uniformity of honest definitions
in Corollary 5.23 below. In Theorem 5.36 we will extend UDTFS to pseudofinite
types (see Definition 5.34).

Corollary 5.14. The formula ¢(x,y) is NIP iff it has UDTFS.

We do point out that the proof here is, at least conceptually, simpler than the
proof in [EK20]: both proofs use the finite version of Corollary 3.21, but here the
only other ingredient is the (p, ¢)-theorem, while there both the VC-theorem and
von Neumann’s minimax theorem are used.

5.2. A variant of Ramsey’s theorem for finite subsets. Here we will prove a
variant of Ramsey’s theorem for finite subsets of a cardinal. This result generalises
Remark 3.3 for (Pfin(k), C) in the same way that Ramsey’s theorem generalises the
pigeonhole principle. It will be used in the proof of Theorem 5.2.

For a partial order (X, <) and n € N, let X2 = {(20,...,2n-1) € X" | 29 <
... < Zp_1} be the set of ordered chains of size n (in short, n-chains).

For & a cardinal, let (k) be the set of finite subsets of x, partially ordered by
inclusion.

Say f : Pin(k) — Pf%(k) is strictly increasing if s C t = f(s) C f(t) for all
s,t € Pin(k), and say f is cofinal if for all s € Pfin(k) there is t € Pi?(k) such
that f(t) 2 s. Note that the image of an n-chain under a strictly increasing map
is an n-chain.

Proposition 5.15. Let k be an infinite cardinal, 0 <n € N and let ¢ : Pﬁ“(m)z —
r < w be a finite colouring of the n-chains. Then there is a strictly increasing
cofinal map f : P (k) — P(k) such that the image of all n-chains f(P(k)2)
is monochromatic, i.e., |(co f)(Pi(k)2)| = 1.

Proof. Denote by M the structure (P8 (k), C, (Py)k<,) where P, = ¢~ (k) € M2
for k < r. Let N = M be an |M|*-saturated extension. Let 7 = {z 2 s | s €
M}, As w is finitely satisfiable in M, there is ¢ € Sprg(IN) extending 7. Let
(an—1,-..,a0) F q(”)|M and let @ = (ao,...,an—1). Note that a € N2 (because for
all a F q|pr and all b € M, b C a), and hence for some k < r, a € PY¥. We claim
that this colour k& works.

For m < w, let S,, = {s € Pin(k) | |s| = m}. By recursion on m < w we define
f | Sm such that for any s € Sy,:

(i) forany 1 <i <nandi-chainsg C ... C ;-1 =35, (f(s0),-.-, f(Si-1),ai,...,an_1) €

PN.
(ii)) f(s) 2 sand f(s) 2 f(¢) for all t C s.

The construction is possible because ¢ is finitely satisfiable in M and since there
only finitely many conditions to fulfill for each s € Pf"(k) (and because of the
choice of @): given s € S, and a chain as in (i), by induction we have ¢(z) +
Pi(f(s0),.--, f(si—2),2,a;,...,an—1); since there are only finitely many such chains
to consider and also ¢(z) F z 2 f(t) U s for any t C s, we can find f(s) by finite
satisfiability.
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Now the i = n case of (i) implies that the image under f of any n-chain has colour
k. Meanwhile (ii) implies that f is cofinal, and that f is strictly increasing. (]

5.3. The proofs of superdensity and of Theorem 5.2. In this section we will
prove Theorem 5.2, by proving superdensity of compressible types in a uniform way.

Proposition 5.16 (Superdensity of x-compressible types). Define ksq : N> — N
by ksa(1,d) := keomp(d) +2d+2, and ksa(n,d) :=n-kea(1, 2Bvc(n724+1)+1) forn #1
(see Definition 2.8).

Let ¢(x,y) be a formula, d € N, and assume that ve(p) < d. Let A C U*.
Let w(y) be a (small) partial type. Let b € w(U). For 0 < n € N, let S =
Sgopplksd(nvd)(A)'

Then (1)pn,s holds.

Proof. Let T = (z; | i <n) and let ¢(%) € ST 44 UY).
We first reduce to the case

@) n=1and g+ ¢(z,b).

For i < n, let ¢; < 2 be such that ¢ = ¢(z;,0). Let ¢'(Z,y) = A\, ., &(zi,y),
and consider the global ¢'-type ¢'(T) € Sg, (UY) implied by ¢, which is finitely
satisfiable in A.

Now vc*(—¢) = ve*(¢), and so by Lemma 2.10, and Remark 2.7, we have ve(¢') <
2vc*(¢>')+1 < QBVC(n,vc*(¢))+1 < 2Bvc(n,2vc(¢)+l)+1 < QBvc(n,2d+1)+1 — d. (Note that
By, is increasing in the second variable.) Note that ¢’ - ¢'(Z, b).

Let k = ksa(1,d’). Assuming the proposition in the (*) case, we obtain p’ €
STyryoms i (A™) such that ¢'(Z) @ p'(y) - ¢' (T, ).

Claim. p’ implies a complete type p € Sgoppiksd(n d)(A) (which implies p’).

Proof. We first show that if a € A then p/(y) F ¢(a,y)c for some e.

Since ¢'(T) ® p'(y) F ¢'(T,y) and since ¢’ is finitely satisfiable in A, there is
some (ag,...,an—1) € A™ with p'(y) - ¢/(ao,...,an-1,y) (take some ¢ E p’, then
since ¢'(T,c) € ¢'(T), there is some @ := (ag,...,an—1) € A™ such that ¢'(a,c)
holds, but as p’ is complete, the same is true for any such ¢). Now, if p'(y) F
¢ (a,a1,...,an-1,y) then p'(y) F ¢(a,y)°. If p'(y) - =¢'(a,a1,...,an-1,y) then
by the choice of (ag, ..., a,_1), necessarily p’(y) F ¢(a,y)! <.

So p’ implies a complete type p € SZopp(A). Let Ag C A be a finite subset.
Then for some finite Ay C A", p’|a; b pla,. By k-compressibility of p’ modulo
7, there is some A7 C A™ of size k such that p'[a; Fr p'la;. Let A1 = {a € A |
a appears in some a € Aj}. Then |[A;] < nk and pla, = p'la; Fr pla,, s0 p is
nk-compressible modulo 7. Since nk = ksq(n, d), we are done. O

Now, ¢(Z) ® p(y) F ¢'(T) ® p'(y) and ¢'(Z) @ p'(y) & ¢' (@, y) = \; ¢(wi, y) so p
is as required in (f)pn,s-

It remains to prove the proposition assuming (*), so assume that n = 1 and
a(z) - d(z,b).

If A is finite then ¢ is realised in A, and we conclude (as in Corollary 5.12) by
Corollary 3.9(ii) applied to ¢°PP (note that kcomp(d) +2d+ 2 > keomp(d) + 1 which
would be enough in this case). So suppose k = |A4| > Ny.

Let Ffi"(k) be the filter on Pfi"(k) generated by {X, | s € Pi%(k)} where
Xs={tePin(k) |t D s}

By [Sim15b, Lemma 2.9], ¢ is the limit of a sequence of types realised in A:

qg=lim (tpy(as/U"))

s—Ffin(g)
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where a; € A. (Note that in [Sim15b, Lemma 2.9], the type is over a model, but
the same statement, with the same proof, works also over a set.)

This means that for any ¢ € UY, ¢(z,c) € q iff {s | ¢(as,c)} € Fin(x) iff
for some s € Pin(k), ¢(as,c) holds for all £ D s. (Since ¢ is complete, in fact
the left-to-right implication suffices: ¢ = lim,_, yen () (tp(as/UY)) iff we have that
{s] ¢(as,c)} € Fir(x) whenever ¢(z,c) € q.)

Since g F ¢(x,b), we may assume that F ¢(as,b) for all s (indeed, if sg is such
that ¢(as,b) for all s D sg, then we can ensure this by replacing as with asys,)-

Let m = 2vc(p) + 3. Let ¢f, be the 22" -colouring of m-chains in Pfi*(k) in-
dicating which Boolean combinations of the corresponding m instances of ¢ are
consistent with 7, i.e., ¢ (s0,. .., 8m—1) = {(€)icm € 2™ | N\jcm @(as;,y) Vr L}
By Proposition 5.15, we may assume that ¢}, is constant; indeed, if f is as in
Proposition 5.15, we may replace as with ay(y), and then ¢ will still be the limit since
f is cofinal. We will refer to the property that ¢, is constant as c];,-homogeneity.

Identify i € Nwith {0,...,i—1} € Pi(k). Take a ¢°PP-type po(y) € SFopp ((@s)i<m)
which first strictly alternates maximally and then is constantly true; i.e., po(y) b
d(ai,y) < ~plai+1,y) for ¢ < 1 and po(y) b é(ai,y) for i € [I,m), and I < m is
maximal such that such a type exists. Note that tp(b/(a;)i<m ) is of this form with
[ =0, so some such py exists (here we use the fact that b F 7). By ¢7 -homogeneity
(in fact Cle(¢)+1~homogeneity is enough) and the usual argument for bounding al-
ternation number (see [Siml5a, Lemma 2.7]), we have [ < 2ve(¢) < m — 2.

Define

pl(y) :p0(y>|{ao,...,al} U {¢(asay) | l g s € ,Pﬁn(n)}a
and let A’ = {ao,...,a;} U{as |1 C s € Pin(k)} be the domain of p;.

Claim. p; € Sfopp |, 1(A") and in particular is consistent with .

Proof. Suppose Aj Can A’. Let s1 € Phin(k) strictly contain all sets of the form
lUs € Pi(k) such that as € A). Let s1 C ... € S;mu_i—2 be an m — [ — 2-chain
starting with s;. Let

Po(y) = pl(y)|{ai|i6[o,l]u{sl,...,sm,l,Q}}~
Then by ¢7 -homogeneity, pj is consistent with 7 since py is.
Suppose | C so € s1. We claim that pj Fr ¢(as,, y).
Otherwise, by ¢ -homogeneity,

pl(y)|{ai\iE[O,l]U[lJrQ,m)} U {ﬁ¢(al+1, y)}

is consistent with m. Since [ + 2 < m, this contradicts the maximality of .
In particular, py Fr p1(y)|a; and the latter is consistent with . O

Now by Corollary 3.9(ii) applied to ¢°PP, p; extends to p € Sgi(mfl)Jrkmmp(d) (A).
Since m—1+keomp(d) < ksa(1, d), to conclude it is enough to show that ¢(z)®@p(y)
é(z,y). But this holds since ¢ = lim,_, zrin(,.)(tp,(as/UY)) and p(y) = d(as,y) for
all s D 1. O

We can now deduce Theorem 5.2.

Theorem 5.17. Let d € N and « € (1/2,1]. Then there exist n and k depending
only on d,a such that the following holds. If ¢(x,y) is a formula such that ve(d) <
d, then for any A C U and a (small) partial type (y), any p € Sfops(A) is the
a-rounded average of n types in Sgoppik(A).

Namely, we may take n := min{m € N | (1 — a)m > 291 — 1} and k =
Esa(Npq(n, 2971, d).
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Proof. By Lemma 5.8 it is enough to show (1), 5,5 where N = Npq(n,29+1) and
S = 5%mn ka(N d)(A), which follows by Proposition 5.16. O

Remark 5.18. By Remark 5.10, in the context of Theorem 5.17, if p is not k-
compressible then it is an a-rounded average of n distinct types in Sfopp | (A).

We give some immediate corollaries.

Corollary 5.19. If ¢(x,y) is NIP and A C UY then |Sgporp 1+ (A)|+Ro = | Sgpore (A)|+
Xo.

Moreover, |Sgoro k(A)| + Ro = |Sgorr (A)| + Vo for k from Theorem 5.17 and
Sd)””’ik (A) 5 ﬁmte ’Lﬁ Sd)t)pp (A) 18.

We can also improve Lemma 4.3 to add another equivalence:

Corollary 5.20. The following are equivalent for an NIP formula ¢(x,y):

(i) ¢ is stable.
(i) For any model M ET and any k € N, any p € Sy (M) is isolated.

Proof. (i) implies (ii) follows from Lemma 4.3.

—(i) implies —(ii): since ¢ is not stable, there is some (infinite) model M such
that [Sg(M)| > | M| (see e.g., [TZ12, Theorem 8.2.3]). By Corollary 5.19 (applied
to ¢°PP) Sy 5 (MY)| > |M| for some k € N. We conclude, since there are at most
| M| isolated ¢-types over M. O

Remark 5.21. Suppose ¢(z,y) is stable. Then we can replace kyq in Proposition 5.16
by a linear (as opposed to exponential, see Remark 2.9) bound in terms of n with
a simpler proof.

Let 7 = (z; | i < n), q() € S§ 44UY), 7(y) and b € 7(U) be as there. For
1 < mn, let ¢i(z;) = q | {o(xi,y)}. As ¢; is finitely satisfiable in A, by [TZ12,
Exercise 8.3.6], ¢; is definable by a Boolean combination of instances of ¢°PP over
A (the exercise assumes that T is stable but this is not necessary). The size of
this Boolean combination depends only on ¢ (really only on the size of a maximal
witness for the order property). Hence there is I depending only on ¢, and a; ; € A,
€i,j < 2 for j <, such that for some formula 6;(y) of the form A;_; ¢(ai,;,y)"7,
6;(b) holds and if b' F 0;(y) then ¢(z;,b) € q iff ¢(x;,b") € q. Let 0(y) = A, ., bs-
Note that 6(b) holds, so that 6 is consistent with .

By Corollary 3.9(ii) applied to ¢°PP (here we could use also the stable coun-
terpart, using the 2-rank), there is some p(y) € Sgoppiwrkcomp(vc((b))(A) such that

p(y) - 0(y). Thus,
9(@) @p(y) - N\ (@(xi,y) & $(@i,b)).
i<n
Since ¢ was arbitrary, we get (f)p.n,s for S := SgoppunJrkcomp(vc((b))(A).

5.4. Local uniform honest definitions. In this section we will prove uniformity
of honest definitions for NIP formulas.

Definition 5.22. [Sim15a, Definition 3.16 and Remark 3.14] Suppose ¢(x,y) is
a formula, A C M?® is some set and b € UY. Say that a formula (z,z) over 0
(with z a tuple of variables each of the same sort as ) is an honest definition of
tDPgore (b/A) if for every finite Ag C A there is some ¢ € A* such

$(Ao,b) S Y(A,¢) € ¢(4,b).

In other words, for all a € A, if ¥(a, ¢) holds then so does ¢(a,b) and for all a € Ay
the other direction holds: if ¢(a, ) holds then ¥(a, ¢) holds.
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It is proved in [Sim15a, Theorem 6.16], [CS15, Theorem 11] that if 7' is NIP
then for every ¢(x,y) there is a formula ¢ (y, z) that serves as an honest definition
for any type in S4(A) provided that |A| > 2 (by [CS15, Remark 16] only some
NIP is required of ¢ and formulas expressing consistency of Boolean combinations
of ve(¢) + 1 instances of ¢). In this section we improve this by proving this result
assuming only that ¢ is NIP.

Corollary 5.23. Let ¢(x,y) be NIP. Then there exists ¢ (x, z) such that if A CU*
with Al > 1 and b € UY, then ¢ (x,2) is an honest definition of tpep (b/A).
Namely,

¢(9€a (E, 2/’2”)) = Maji<n Vy /\ (¢(Zi7ja y) < (Zz/',j = Z;:J)) — ¢($, y) )

i<k
where n and k are as in Theorem 5.17 with d = ve(¢) and o = 1/2.

Proof. By Theorem 5.17, tpgops (b/A) is the rounded average of k-compressible
types Do, - - - s Pn—1 € Sgere (A).

Now we proceed as in the proof of Lemma 3.20: if Ay Cg, A, there are D; =
(dij)j<k € Afor 1 <i < nsuch that p;|p, F pi|la,. Let co,c1 € A be distinct, let
d; ; = co, and let d} ; = cq if pi(y) b ¢(di j,y) and d} ; = ¢1 otherwise, so pi|p, (y) is
equivalent to A;_,(¢(dij,y) > (d; ; = di;)). Then d := ((di;)ij, (d; ;)ij, (7 ;)i;)
is as required:

For each a € A, ¢(a,d) holds iff |{i < n | pi(y)|p, & #(a,y)}| > in. Thus, if
a € Ay and ¢(a,b) holds, then |{i < n | ¢(a,y) € p;}| > in, and for each such
i < mn, pilp, b ¢(a,y) (by choice of D;), so ¥(a,d) holds. On the other hand, if
¥(a,d) holds, then clearly |{i < n | ¢(a,y) € p;}| > 37, hence ¢(a,b) holds. O

Remark 5.24. In fact, by a Lowenheim-Skolem argument, to prove Corollary 5.23
we require Theorem 5.17 only in the case that A is countable. The proof of this
case of Theorem 5.17 is slightly simpler, in that we can use w in place of Pfi"(k)
(using [Sim15b, Lemma 2.8] instead of [Sim15b, Lemma 2.9]), and the usual Ramsey
theorem in place of Proposition 5.15.

Remark 5.25. If ¢(x,y) is stable, one can use Theorem 5.17 similarly to get a new
way to see definability of ¢-types over arbitrary sets (since k-isolated types are
definable).

5.5. Hypes.

Definition 5.26. Suppose ¢(z,y) is a formula and A C Y. For k € N, a k-hype!
in ¢ over A is a collection I' of instances of ¢ and —¢ over A such that:

(1) Tt is k-consistent: if S CT'is of size < k, then S is consistent.
(2) For any a € A, either ¢(x,a) € T or =¢(x,a) € T', but not both.

Suppose 7(x) is a (small) partial type. We say that I is k-consistent with 7 if
in (1) we ask that S U is consistent.

Let Sg ; (A) be the set of k-hypes in ¢ over A, and S7; (A) the set of k-hypes
which are k-consistent with .

As with types, if I is a k-hype, we use the notation I'| 4 for the restriction of I'
to A € A with the obvious meaning.

4The term “k-hype” stands for k-hypotype.
5As in Section 2.1, in this notation we have the partition in mind and z is the first tuple in
the partition, so we do not specify z.
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Suppose ¢(z,y) is a formula, 7(y) a small partial type and A C U*. Let M be
a small model containing A and the domain of 7. We will consider the following
auxiliary 2-sorted structure

A= (A, 8% x(A),R)
where A and SZopp. x(A) are in distinct sorts P, Q respectively and R(z, z) is inter-
preted as R(a,T") < ¢(a,y) €T (so R C P x Q). Let ¢(x,2) = R(z, 2).

Lemma 5.27. Suppose N = A and e € QN. Then:
(1) If ¢ is NIP and vc(¢) < k, then ¢ is NIP and ve(¢) < ve(g).
(2) Let T = {¢(a,y)N"@9) | g € A}. Then T, € S 1 (A)-
(3) If tpyorn(e/A) € Syorw k(A), then T'e € SFopp (A), i.e., T'e is consistent
with m and moreover k-compressible modulo .

Proof. (1) Suppose C' Cgy, A is of size |C| = ve(d) + 1, and suppose that for any
subset C" C C there is some I'cr € ST ;(A) such that for all ¢ € C, R(c,T'cr)
holds iff ¢ € C". As k > |C|, for any C' C C, {¢(c,y)™Te) | ¢ € C} is consistent;
let e realise it. Then we get that M E ¢(c,ec) iff R(¢,T¢r) iff ¢ € C’. Thus C'is
shattered by ¢(z,y) and has size vc(¢) + 1, contradiction

(2) Clearly (2) in Definition 5.26 holds. For (1), suppose S = I'c|4, has size k.
Then, as N is an elementary extension of A, there is some I' € Sgoppyk(A) such

that for all a € Ay, N E R(a,e) iff AE R(a,T). In particular, S C T'. Since I is
k-consistent, S is consistent.

For (3), suppose Ag Cgn A. Let A; C A be of size k such that tDyorr (e/A)|a, F
tPyorn (€/A). Since Ag is arbitrary, it is enough to show (a) that there exists d
Tela, Um (in U) and (b) that any such d satisfies T'c|a,. (a) follows from (2).
For (b), let ¢ = tpyor»(d/A), so in particular, ¢ € Sfopp (A). Note that in A,
q b tPyorn (€/A)] 4, . Hence q b tpopp (€/A)| 4,. Hence we have that ¢(a, y) ¢ € ¢
for any a € Ag, or in other words, d E T'c|4, U . O

Remark 5.28. Suppose ¢(z,y) is NIP and k > vc(¢). Then by the (p, ¢)-theorem
(Fact 5.4) and compactness, for any k-hype I', there are N := Npq(k, k) types
po, .-, pN—1 such that T' C |J; _ v pi-

The following extends Remark 5.28: not only are hypes covered by types, they
are the rounded average of (compressible) types. It also generalises Theorem 5.17
to hypes.

Theorem 5.29. Let d € N and « € (1/2,1]. Then there exist n and k depending
only on d,a such that the following holds. If ¢(x,y) is a formula such that ve(d) <
d, then for any A CU® and a (small) partial type 7(y), any k-hype I' € STop, 1. (A)
is the a-rounded average of n types in Sfopp |y (A).

In fact, k and n can be taken to be the numbers from Theorem 5.17.

Proof. Let k and n be as in Theorem 5.17, and note that by Remark 2.9, we have
that k > d. Let ¢(z,y) be such that ve(¢p) < d < k. Let I be a k-hype in ¢°PP over
A.

Consider the structure A as above, and let ¢(z, z) = R(x, z). By Lemma 5.27(1),
as ve(p) < k, ¥(x,z) is NIP and ve(¢)) < ve(¢). By Theorem 5.17, any )°PP-
type is the a-rounded average of m types in Syorryi(A). In particular, this is
true for tpyees (I'/A); let ro,..., 7,1 witness this. Let e; F r; for i < n (in an
elementary extension N > /1), and let I'; = I'¢, be the corresponding k-hypes as in
Lemma 5.27(2). By Lemma 5.27(3), we get that I'; is a type in S7op, 1 (A).

Finally, since tp,eps (I'/A) is the a-rounded average of ro, ...7r,_1, it follows by
definition that I' is the a-rounded average of I'g, ..., ', —1. (I
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We deduce the existence of honest definitions for k-hypes.

Corollary 5.30. Let ¢(x,y) be NIP and let k be as in Theorem 5.29 for d = vc(o)
and o = 1/2. Then there exists (x,z) such that if A C U* with |A| > 1 and
I' € Syporr 1 (A) is a k-hype, then (z,z) is an honest definition of T in the sense
that if Ag Can A, then there is some d € A® such that:

(1) If a € Ag and ¢(a,y) € T then v(a,d) holds.

(2) For all a € A, if ¥(a,d) holds, then ¢(a,y) € T.

Namely,

Uz, (2,7,7") = Maj,., Yy | N\ (6(zi5,9) < (2], = 2/,)) = d(z,v) | |

i<k
where n and k are as in Theorem 5.29.

Proof. The proof is the same as the one of Corollary 5.23, using Theorem 5.29. O

We relate hypes to the Shelah expansion which we now recall.

Definition 5.31. For a structure M, the Shelah expansion MS" of M is given by:
for any formula ¢(x,y) and any b € UY, add a new relation Ry, ) (z) interpreted
as ¢(M,Db).

Fact 5.32. [She09] If T is NIP then for any M = T, M*S" is NIP.

Corollary 5.33. Suppose T is NIP, and let M ET. For each formula ¢(x,y), let
ky be as in Theorem 5.29 for d = ve(¢) and o = 1/2.

Consider the expansion M"™" of M given by naming for each partitioned L-
formula ¢ and each ky-hype I' € Sgovv 1, (M®) the set Rr := {a € M* | ¢(a,y) €
I'}. Then M"™" is interdefinable with M5 and in particular is NIP.

Proof. Since every ¢°PP-type is in particular a kg-hype, every Ry, p) (M) is defin-
able in MhSh,

For the other direction, fix some formula ¢(z, y) and some kg-hype I' € Sgoor 1 (M).
By Theorem 5.29 (applied with d = ve(¢) and o = 1/2), there are rg,...,7—1 €
Sgore (M) such that I is the rounded average of rg, ..., 7p—1. Let ag E 7o, ..., an-1 F
Tn—1. Then Rp(M) = Maj, ., (Rg(z,0,)(M)), and thus is definable in M5". O

5.6. UDTFS for pseudofinite types. Here we extend UDTFS to pseudofinite
types: every pseudofinite ¢-type (Definition 5.34) is definable, and uniformly so.

Definition 5.34. Let £’ = LU{P,Q} where P, Q are predicates for subsets of U".

Suppose ¢(z,y) is an L-formula, M ET, D C M?, and p € Sgere (D). For € < 2,
let D¢ ={a € D | ¢(a,y)° € p}. Then p is pseudofinite if for every L'-sentence ¢,
if (M, D°, D) E ¢ then there is an £'-structure N such that N F ¢ and PV, QY
are finite.

Remark 5.35. In the notation of Definition 5.34, a type p € Sgorr (D) is pseudofinite
iff there is a model (N, E°, E') = (M, D°, D') which is an ultraproduct [],.; N;/U
such that (E€)Vi is finite for each i € I and € < 2 (essentially the same proof as in
[Vaa03, Lemma 1] works).

Theorem 5.36. Suppose ¢(x,y) is NIP. Then there is a formula ¢ (x,z) such that
whenever M E T, D C M7 is of size > 1 and p € Sgorn (D) is pseudofinite, p is
definable by an instance of ¥ over D?.

Moreover, if T has Skolem functions, then we can choose ¥(x,z) to be NIP.
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Proof. For the first part, let k and ¢ (z, z) be as in Corollary 5.30. Suppose that
p(y) is not definable by an instance of i) over D*. Working in the expansion
(M, D° D') as in Definition 5.34, we get that in some L'-structure (N, E°, E1),
letting E = E° U E', the following hold:

e F is finite of size > 1.

e The formula ¢(z,y) is NIP in N and its VC-dimension equals ve(¢).

e The set of formulas I' = {¢(a,y) | a € E'} U{-¢(a,y) | a € E°} is a

k-hype.

e E! is not definable in N by any instance of 1 over EZ.
However, by the choice of i) and as E is finite, there is some d € E* such that
Y(E,d) = E', contradiction.

For the second part, assuming that 7" has Skolem functions, we let
¢($a (Ea Elazu)) = Maj;,, (Qﬁ(l‘, f(zi,E;,E’i'))) )

where n is as in Theorem 5.29 and f is a (-definable function such that T thinks
that if 3y A, (¢(zi5,y) < (21; = 2{;)) then f(Z:,7,Z]) F N;joi(6(2i5,y) <
(#f; = 2i;)) (whose existence we assumed).

Note that i (z, z) is NIP, since ¢(z, f(z)) is NIP; see also [EK20, Proof of Propo-
sition 26]. To see that it works, assume not. Then using the same argument as
above, we get an £'-structure N with the same properties as above. Now, review
the proof of Corollary 5.23. When the domain D of the k-compressible types p;
(for i < m) is finite, then p; is in fact isolated by a conjunction of k instances of
@°PP or its negation, thus, putting the isolating parameters for z; and coding the
negations using z/, 2/ and two elements from DY, we are done. O

1) 71

Remark 5.37. Note that if p is realised in M, then Theorem 5.36 follows directly
from UDTFS: in that case, in the proof one can replace the demand about I' being
a hype by it being a type.

Remark 5.38. Clearly Theorem 5.36 implies UDTFS (Corollary 5.14), and hence its
conclusion implies that ¢(z,y) is NIP (see e.g. the proof of Theorem 14 in [EK20]).

6. COMPRESSIBILITY AS AN ISOLATION NOTION

In this section we study properties of compressibility seen as an isolation notion
(mostly) under NIP, and in particular as a way to construct models analogous to
constructible models in totally transcendental theories. Towards that we prove
a transitivity result for compressibility in Proposition 6.25, which uses the type
decomposition theorem from [Sim20].

As an application, we will show that if 7" is unstable and M F T is w-saturated,
then there are arbitrarily large elementary extensions N of M such that every
generically stable type over M (see Definition 4.16) realised in N is realised in M
(this is Corollary 6.39 and Remark 6.40).

6.1. Monotonicity.

Lemma 6.1. Suppose b, c are finite tuples. If tp(cb/A) is compressible then so are
tp(c/Ab) and tp(b/A).

Proof. We start by showing that tp(c/Ab) is compressible. Suppose z is a tuple of
variables such that b € U*. Given a formula ¢(z,y), let ® be the set of all formulas
of the form 9 (x, z,y) we get from substituting variables from y by variables from
yz in ¢. Fix some formula ¢ (z,z,y) € ®. By assumption, there is some formula
Gy (22, w) that compresses tp,,(cb/A) (with the partition (22, y)). This means that
for any Ay Cgn A there is some ay, 4, € A" such that tp(cb/A) F Cp(z2,ayp,4,) F

tpy(ch/Ap).
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Then we have that tp(c/Ab) = A cqe G (2, bay, a,) b tp4(c/Aob), and this shows
that tp(c/Ab) is compressible.

Now we show that tp(b/A) is compressible. Fix some formula ¢(z,y). Sup-
pose ((rz,w) compresses tp,(cb/A). Fix some Ay Cpn A and suppose a € AY is
such that tp(cb/A) F ((zy,a) - tp,(cb/Ap). Note that if ag € Af is such that
E Vz,2(¢(z,z,a) = ¢(z,a0)°) for € < 2, then E Vz(Fz((x,z,a) = &(z,a0)°), so
tp(b/A) F 3x((x, 2,a) F tpy(b/Ao). O

Remark 6.2. We cannot hope for Lemma 6.1 to hold when b is infinite: every type
over () is compressible trivially, so if tp(a/B) is not compressible and b enumerates
B, then tp(ab) is compressible while tp(a/b) is not.

However, the converse to Lemma 6.1 holds for infinite tuples as well (see Remark 6.27
below). For finite tuples this can be seen by a direct argument of this kind, but for
infinite tuples we will need stronger tools which we will develop in the next section
under NIP.

Definition 6.3. Suppose B, A are sets. We say B is compressible over A if
tp(b/A) is compressible where b is some (any) tuple enumerating B.

Remark 6.4. The set B is compressible over B (even isolated).

Remark 6.5. By Remark 3.17 B is compressible over A iff for every finite tuple b
from B, tp(b/A) is compressible over A.

Lemma 6.6. Given a set B and a tuple a, the set Ba is compressible over B if
and only if tp(a/B) is compressible.

Proof. Left to right follows from Lemma 6.1, so suppose that tp(a/B) is compress-
ible. Let b be a tuple enumerating B. We must show that tp(ab/B) is compressible.
By Remark 3.17, it is enough to prove that tp(ab’/B) is compressible where b’ is a
finite sub-tuple of b. Let y be a tuple of variables in the sort of b’. Let ¢(z,y, z) be
a formula and let ¢(x, s) compress tpy(, ,.)(a/B). Then ¢(z,s) Ay =t compresses

tp¢(my,z) (a’b//B) U

6.2. Type decomposition and rescoping compressibility. Here we use the
results from [Sim20] to prove that compressibility can be rescoped to an arbitrary
subset of the domain (see Propositions 6.18 and 6.23).

For the remainder of Section 6 we assume that 7 is NIP unless otherwise
specified.

We first recall the definition of a generically stable partial type. As opposed to
previous sections, here a partial type does not have to be small, i.e., it is over U.
We call such partial types global partial types. As for global types, a global
partial type 7 is A-invariant if it is invariant under automorphisms of U fixing A.

Remark 6.7. Suppose m(x) is a global partial type. Then for any small set A, if
a E 7|4, then w(z) Utp(a/A) is consistent, and hence for any B there is some
a’ =4 a such that o F 7|p.

Definition 6.8. We say that a global partial type « is ind-definable over A if
for every ¢(z,y), the set {b € UY | ¢(z,b) € 7} is ind-definable over A, i.e., it is a
union of A-definable sets.

Remark 6.9. [Sim20, Discussion after Definition 2.1] Note that 7(x) is ind-definable
iff {¢(x,c) | m+ ¢(x,c)} is ind-definable.

Fact 6.10. [Sim20, Lemma 2.2] Let w(z) be an A-invariant global partial type.
Then w is ind-definable over A if and only if the set X = {(a,b) | b€ U¥, a E 7|45}
is type-definable over A.
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Definition 6.11. Let m(x) be a global partial type. We say that 7 is generically
stable over A if 7 is ind-definable over A and the following holds:

(GS) if (ax | kK < w) is such that ay F m|aq_, and 7 ¢(x,b), then for all but
finitely many values of k we have U E ¢(ag, b).

Remark 6.12. Note that a global type p(z) € S*(U) is generically stable over A as
in Definition 4.12 iff it is generically stable over A as a partial type (note that it is
A-definable by Fact 4.13).

Remark 6.13. Much like in Remark 3.17, a global partial type 7 (x) is generically
stable iff its restriction to any finite sub-tuple 2’ of x is generically stable. (Note
that we do not assume that 7 is ind-definable.)

Why? Clearly if the restrictions are all generically stable then 7 is, so we show
the converse. Assume that 7 is generically stable and fix some finite ' C z. First
note that = [ 2’ is ind-definable, so we show (GS). Assume that (a}, | £ < w) is
such that aj, & (7 [ 2’)[aa, and 7 F ¢(2’,b). By induction on n < w we construct
sequences (a; | i < n) such that a; [ 2’ = a; and a; F 7|a,_, for all i < n. Suppose
we found such a sequence (a; | i <n). Since aj, ¥ (7 | 2')[aq._,, as in Remark 6.7
there is some aj, F 7| aq_, such that (aj, | ) =44, aj,. Let o be an automorphism
fixing Aa’_,, such that o(a | ') = a),. Then (o(a;) | i < n)o(al) is a sequence
of length n + 1 which is as required. By compactness and Fact 6.10, there is some
sequence (a; | ¢ < w) such that a; [ 2’ = a] and a; F 7|44, for all i <w. By (GS)
for 7, for all but finitely many values of k£ we have F ¢(aj,,b), as required.

Definition 6.14. We say that a global partial type 7 () is finitely satisfiable in
A C U if any formula implied by 7 has a realisation in A.

Fact 6.15. Let w(x) be a global partial type generically stable over A. Then:
(FS) 7 is finitely satisfiable in every model containing A.
(NF) Let ¢(x,b) be such that mF ¢(x,b) and take a F 7|4 such that E —¢(a,b).
Then both tp(b/Aa) and tp(a/Ab) fork over A.

We now state [Sim20, Theorem 4.1] in the form we will use it below. Our formu-
lation follows from the proof (rather than the statement) of [Sim20, Theorem 4.1],
in particular from [Sim20, Proposition 4.7].

Fact 6.16. [Sim20, Proposition 4.7] Given a type tp(a/A) and g € Sa-g(U), there
exists a global partial type 7(x) generically stable over A with a E w|a such that
if (X, <) is an infinite linear order, I £ ¢X)|aq, b E qla; and a E w|an, then
bE qlaa-

Remark 6.17. (i) In [Sim20, Proposition 4.7] the generically stable type con-
structed depends on g. Call it m,. However, in the paragraph after [Sim20,
Proposition 4.7], it is remarked that taking 7 to be the union of all the
works for all q.

(ii) Tt is not assumed in [Sim20] that the the tuple a above is finite.

(iii) Throughout the proof of [Sim20, Theorem 4.1], the sequences are assumed to
be densely ordered without endpoints. In particular, that is the case for I
above. However, the result is true for any infinite 7. Indeed, suppose I,a, A, b
are as in Fact 6.16. By Ramsey and compactness (and as [ is infinite) there
is an Aab-indiscernible sequence I’ = (a;);eq realising the EM-type of I over
Aab. Since I is Aa-indiscernible, it follows that I’ £ ¢@|4,, and since g
is A-invariant, b E gla;. Also, by Fact 6.10, a E 7|aps. So I’ satisfies all
the requirements of Fact 6.16 and is densely ordered with no endpoints, so
bt q|laa as required.

(iv) Inthe context of Fact 6.16, it follows (by applying an automorphism; note that
both ¢ and 7 are A-invariant) that if a’ E w|ar U tp(a/AI), then b F g|aq.
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Proposition 6.18. Let (X, <) be any (small) infinite linearly ordered set. A type
tp(a/A) is compressible if and only if for every q € Sa.r(U), if I E )| Aa, then

qlar - qlaq-
Moreover, if X has no first element then qlar b qlara.

Proof. That this condition implies compressibility follows from Fact 2.14(3=1),
since I can be taken from A’ (where (A’,a) is saturated enough).

For the converse, assume compressibility and let ¢, I be as in the proposition. Let
d be given by Corollary 2.15 so that ¢|aq I ¢|laa and tp(d/Aa) is finitely satisfiable
in A. By perhaps changing d (by applying an automorphism fixing Aa), we may
assume that I F q(X)|Aad.

Let b E g|ar. We want to show that b E ¢|aq.

Applying Fact 6.16 (and Remark 6.17(ii),(iv)) to tp(d/A), we obtain a generi-
cally stable over A global partial type = with d E 7|4 such that b E ¢|aq for any
d' E mlamn Utp(d/AI).

Now tp(d/Aa) is finitely satisfiable in, and hence does not fork over, A. Similarly,
tp(I/Aad) is finitely satisfiable in A and so does not fork over Aa. By applying
(NF) twice, it follows that d E 7| azq-

Hence 7’ := mUtp(d/Ala) is consistent by Remark 6.7. Let x := |L(AIb)|T, and
let (d;)i<w be a Morley sequence in 7’ over Alq, i.e., d; F 7'|arqa_,. By (GS) and
the choice of k, for some i < k we have d; FE w|ar,. Then d; E 7|a5 U tp(d/AI), so
bE qlaag,- But d; =44 d, s0 qlad; - qlaa. So bE q|aa, as required.

We conclude the “moreover” part. Suppose that X has no first element and that
TE ¢¥)) a4, bE glar. By compactness we can find some I’ of order type w x (X +1)
(where X + 1 is adding one more element in the end of X and the product is
ordered lexicographically), such that I’ 4+ I is indiscernible over Aa and over Ab.
Thus, partitioning I’ into (X 4 1)-sequences, we have that I’  (¢(X+1))«)| 4, and
(I +b)E ¢X*tD|4p. Applying the first part to ¢X+1), we have that (I +b) F
q(X+1)|Aa. It follows that b E ¢|ara as required. O

The following corollary will not be used in this paper.

Corollary 6.19. A type p = tp(a/A) € S(A) is compressible iff for any q €
Sa-;sU) and any Morley sequence I :== I + (b) + I2 of q over A where Iy has no
first element, if Iy + I is a Morley sequence of q over Aa then so is I.

Proof. Right to left is clear by Proposition 6.18, so suppose that p is compressible,
and we are given I as above. Let (b; | 1 < ¢ < n) be some finite subsequence
from I and let by = b. Then by applying the “moreover” part of Proposition 6.18
inductively, b; F gl ar,b_;q. Since this is true for any n < w, I is Aa-indiscernible. O

Remark 6.20. One might call the condition in Corollary 6.19 generic co-distality:
it is co-distality in a generic sense. For a definition of distal and co-distal types and
a short discussion, see [EK21, Definition 4.21 and Remark 4.22].

Definition 6.21. Suppose B, A C U are (small) sets. Say that a type p € S(A)
is compressible up to B if p is compressible in Up (in the language £(B)): in
Definition 3.14, all the formulas are over B.

Remark 6.22. Suppose that A C B, p € S(A) and p is compressible up to B. Then
p is compressible up to C' := B\ A: given a formula ¢(z,y) over C, there is an
L-formula ¥ (z, 2, w,t) and a € A¥,c € C* such that v(x, z,ac) compresses p | ¢.
But then ¢ (x, z, w, ¢) compresses p | ¢.

Proposition 6.23. If a type tp(a/B) is compressible and A C B, then tp(a/A) is
compressible up to B.
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Proof. We use Proposition 6.18, so we are given ¢ € Sa.g(Up), and we need to
show that if T & q(“’)|Aa then g|ar F q|aaq, all working in Up. So suppose that in
Up, bF glar and we need to show that b F ¢|a,.

Taking the reduct to £ (and identifying ¢ | £ with q), ¢ € SaU), I E
¢“)|Ba, b F ¢|pr and we need to show that b F ¢|p.. As tp(a/B) is compress-
ible, Proposition 6.18 implies exactly that, and we are done. (I

We can now generalise Corollary 3.21 to uncountable theories induced by adding
constants to countable NIP theories (except that in the final clause we not obtain
strength of the compressibility).

Corollary 6.24. Suppose T is countable and let B CU.

Suppose A C U is a set of parameters and x is a countable tuple of variables.
Then, compressible types are dense in S*(A) in Th(Up):

Working in Up, if 0(x) is a consistent (Lp-)formula over A, then there exists a
compressible type p(x) € S(A) with p(x) F 6(x).

More generally, if, working in Up, T is a t-compressible partial type over A, then
there exists a compressible p € S(A) with © C p.

Proof. Clearly it is enough to prove the “more generally” part.

Note first that 7 is t-compressible in & with respect to AB: if ((x,z,w) is
such that ((z, z,b) compresses 7w within 7 in Up (with respect to A) and b € BY,
then ((x,z,w) compresses 7 within 7 with respect to AB. Indeed, given any
ApBy Cgin AB there is some d € A* such that (working in U)

7k ¢(x,d,b) - wla,B F Ta.B,-

By Corollary 3.21, there is a compressible type p € S(AB) containing 7. By
Proposition 6.23, p is compressible up to AB, which implies (by Remark 6.22) that
p is compressible up to B, meaning that in Upg, p|a € S(A) (which equals p) is
compressible. O

6.3. Transitivity. We continue to assume that 7" is NIP.

Proposition 6.25. Suppose A C B C C, C is compressible over B, and B is
compressible over A. Then C' is compressible over A (recall Definition 6.3).

Proof. By Remark 3.17, it is enough to show that tp(c/A) is compressible for any
finite tuple ¢ from C.

By Proposition 6.23, tp(c/A) is compressible up to B.

So given ¢(z,y) € L (where c is of the sort of =), we get ((w,z,2) € L, b€ B*
such that for Ag Cgn A there is a € A% such that

tp(c/B) F ((b,x,a) F tpy(, 4 (¢/Ao).
Since tp(b/A) is compressible, for each € < 2 there are & (w, z¢) and a. € A* such
that
tp(b/A) F €e(w, ae) F tPya(c(w,z,2)— b(a,y)e) (b/Aoa).
Then
tp(e/A) F (Fw({(w,z,a) A &o(w, ag) A& (w,a1))) F tp¢(xyy)(c/A0).
Hence tp(c/A) is compressible. O

Example 6.26. Proposition 6.25 is false without NIP. For example, let T' be the
theory of the countable atomless Boolean algebra. Let A be a countable set of
pairwise disjoint elements {a; | ¢« < w}. For i < w, let b; = [Ja«;, and let B =
AU{b; | i <w}. Let ¢ # 1 € U contain all the elements from A. Let C = Be. Then
C is compressible over B, B is compressible over A, but C' is not compressible over

A.
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Indeed, to show the first statement, it is enough to see that p := tp(¢/B) is
compressible by Lemma 6.6. This is true since {(z,2) := (z < ) A (z # 1) com-
presses it: for every finite By C B, let ¢ < w be such that |JBy < b;. Then
pk (b <x)A(x#1)F p|g, by quantifier elimination.

Since every tuple from B is in the definable closure of A, B is compressible over
A (every finite tuple is isolated).

Finally, C' is not compressible over A, since compressibility is monotonic (Lemma 6.1)
and ¢ is not compressible over A. Why? Suppose ¢(x, z) compresses tp,,(c/A).
Let Ag = ac|; 42 € A, and assume d € A% is such that 1(c, d) holds and ¢ (z,d) -
bizj42 < x. Let i < w be such that a; ¢ d. Then (Ud < x) A (z # 1) F (x,d)
(since this implies tp(c/d)), so (JdUa;) F (x,d) but —(b.|+2 < (UdUa;)) holds,
contradiction.

Note that this example shows that in 7', weak compressibility is different from
compressibility (see Question 3.23 for the definition). Namely, tp(c/A) is weakly
compressible (as witnessed by ((x, z)) but not compressible.

Remark 6.27. The following rephrasing of Proposition 6.25 is worth mentioning
explicitly: given (perhaps infinite) tuples ¢, b and a set A, if tp(c/Ab) and tp(b/A)
are compressible, then tp(cb/A) is compressible. In this phrasing, this is a converse
to Lemma 6.1 (see Remark 6.2).

This follows from Proposition 6.25 and Lemma 6.6. Note that Proposition 6.23
where B\ A is finite can be seen with a direct argument (not using NIP), so for
finite tuples ¢, b, the above can be easily proven and does not require NIP.

6.4. Compressible models and applications. In this section, 77 is a countable
NIP theory with monster model U in the language L', F' C U is some small subset,
and T = Th(Ur) in the language £ := L'(F). In other words, T is a complete
theory we get by naming constants in a countable NIP theory (whose monster
model is still denoted by U, abusing notation).

Definition 6.28. Say B is compressibly constructible over A if B can be
enumerated as B = (b;);<q for some ordinal «, such that tp(b; /Ab<;) is compressible
for all i < a.

As with other isolation notions, the existence of compressibly constructible mod-
els follows straightforwardly from density. In fact this is an instance of the abstract
result [She90, Theorem IV.3.1(5)], but we give the proof.

Proposition 6.29. For any set A, there exists a model M O A which is compress-
ibly constructible over A and of cardinality < |A| + |T|.

Moreover, if B is compressibly constructible over A then there is some model
M D B which is compressibly constructible over A and of cardinality < |B| + |T|.

Proof. Since A is compressibly constructible over A, it is enough to prove the
“moreover” part.

Let A = |B|+|T|. Construct an increasing chain (B;);<. as follows. Let By = B,
and given B;, let (9§)j< A enumerate all consistent formulas over B;. Construct
a sequence (b%)j<x inductively by letting b% £ 6% be such that tp(bj/Bsbl ;) is
compressible, using Corollary 6.24 (with B = F). Let Bjy1 = B; U{b} | j < A}.
Finally, M := J,_,, B; is as required, by Tarski-Vaught. (]

Thanks to Proposition 6.25, we also have the following instance of [She90, The-
orem IV.3.2(1)].

Proposition 6.30. If B is compressibly constructible over A, then B is compress-
ible over A.
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Proof. Suppose B = {b; | i < a} is an enumeration witnessing that B is com-
pressibly constructible. Prove by induction on § < « that B<g = {b; | i < S} is
compressible over A. For the successor steps use Proposition 6.25 and Lemma 6.6,
and for the limit steps use Remark 6.5. (I

So compressible models exist over arbitrary sets. We give some applications.

6.4.1. Realising models of a stable part. Suppose A is some small set. Recall that
the induced structure on A is the structure A;,q whose universe is A with the

language consisting of a relation Ry, for each L-formula ¢(z), where Rg(i;‘)‘ ={ac€

A* |UE ¢(a)}.

Lemma 6.31. Suppose A is such that Th(Aina) is stable (or just has stable quantifier-
free formulas). Then there exists an l-atomic model M over A: for every finite tuple

b from M, tp(b/A) is l-isolated.

Proof. By Lemma 4.8(i.a), a compressible model over A is l-atomic over A, so this
follows directly from Propositions 6.29 and 6.30. O

The next corollary deduces that the reduct map to a stable sort is surjective,
and moreover elementary embeddings in the reduct theory can be lifted. Thanks
to Anand Pillay and Martin Hils for suggesting that we consider this problem.

Remark 6.32. Suppose X is a (-definable set, and let Tx := Th(X (U)ina). If T'x
is stable then X is (uniformly) stably embedded by [Sim15a, Proposition 3.19]. It
follows that stability of T'x is equivalent to assuming that X is stable as a partial
type in the sense of Definition 4.4.

Corollary 6.33. Suppose X is a (-definable subset of a sort of U, and let Tx =
Th(X U)ina). Suppose Tx is stable. Let N & Tx. Then there exists M E T such
that N = X(M)ind-

Moreover, if Ny < No E Tx, and My E T is such that X (M) = N, then there
is My = My such that X(Ms) = Na.

Proof. Since X (U) is a saturated model of Tx, we may assume that N < X (i)
and hence N = A;pq where A C X (U) is the universe of N. By Lemma 6.31, there
exists M < U which is l-atomic over A. In particular, X (M )inq is l-atomic over A,
and so X (M) = A by Remark 4.7.

Now for the “moreover” part. Work in the language £(M;) (adding constants for
Mi). Then N7 can be enriched to a model N{ < X (Uns, )ina of T% := Th(X (Uns, )ind)-
By Remark 6.32, X () is stably embedded, and since M; < U this expansion of Ny
is conservative: all new relations are already definable with parameters from Nj.
Using these definitions, we can enrich Ny to N3 in such a way that N|{ < N, and
in particular, Nj F T%.

Now, T% is still stable, so we may apply the first part (recall that we allow
naming any number of constants in T') and get some MJ E Th(Uy, ) such that
X (M}) = Nj. Letting My be the reduct to £ (forgetting the constants for M), we
get that X (My) = Ny and M; < Ms as required (this is a bit subtle, since what
we really get is that there is an elementary embedding from M; to Ms, but then
we can change Ms, fixing Na, so that this embedding becomes the identity). O

Remark 6.34. The assumption that X is a subset of a sort of I/ is needed to make
sense of the statement (otherwise, if X is e.g., a set of pairs and Ny is not, then
it is impossible that X (M7) = N;p). This can be solved by instead asking for an
isomorphism between X (M;) and N; for i = 1,2 such that the diagram commutes.
This holds, since if X is contained in some product of sorts, then X could be
replaced by its image in one sort of &/°? under the canonical bijection.
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Ezample 6.35. Let M = (Aut(Q, <),Q, <) in the language £ which includes a
predicate @ for Q, a predicate G for the group of automorphisms Aut(Q, <) with
the group operation - and the group action e : (GxQ) — Q. Let T'= Th(M). Then,
the induced structure on @ is just the order, because given two increasing tuples
a:=ag,...,an-1,b:=bg,...,byh_1, there is an automorphism o of M mapping a to
b (there is some automorphism g € Aut(Q, <) mapping a to b; let o be g on @ and
conjugation by g on G). Hence, the theory Th(Qing) is a conservative extension of
DLO = Th(Q, <): all the relations are definable from the order.

However, T says that any two intervals have the same cardinality (because there
is a bijection between them), and there are models of DLO in which this is not the
case, and hence Corollary 6.33 does not hold in this case. This is not a surprise,
since @ is not stably embedded (as the graph of any non-trivial automorphism is not
definable using just the order, since dcl is trivial there), and moreover the theory
is not NIP (for any finite tuple, there is an automorphism fixing any sub-tuple and
moving the rest).

Example 6.35 raises the following question.

Question 6.36. Suppose that T is NIP and that X C U is ()-definable and stably
embedded. Is it true that every model M of Th(X (U)ina) of the form X (M) for
some M F 17

This question is related to Gaifman’s categoricity conjecture, see Hodges [Hod11,
GaiT4].

6.4.2. Extensions preserving a stable part.

Corollary 6.37. Suppose A is a set such that if M is a model containing A, then
M contains an infinite chain in some M -definable preorder.
Then there are arbitrarily large models which are compressible over A.

Proof. There exists a compressible model over A by Propositions 6.29 and 6.30. It is
enough to show that any such model M can be strictly extended to a compressible
model over A. By assumption M contains an infinite chain in some definable
preorder. By Remark 4.9, there is some ¢ such that tp(c/M) is compressible but
not l-isolated, so ¢ ¢ M. Apply (the “moreover” part of) Proposition 6.29 to
get some compressibly constructible model N over M containing Mec. Then N is
compressible over M by Proposition 6.30. By transitivity (Proposition 6.25), N is
compressible over A. O

Ezxample 6.38. The following example shows that Corollary 6.37 requires the as-
sumption that every model containing A contains an infinite chain; mere instability
does not suffice. Let £ = {<} where < is a binary relation symbol. Let T say that
< is a partial order, that comparability is an equivalence relation having exactly
one class of size n for each 0 < n < w, and that each class has maximal and mini-
mal elements and is discretely ordered (every non-maximal element has a successor
and every non-minimal element has a predecessor). Let M be the L-structure with
universe {(i,7) | i € N,j < i} and with <M= {(4,51), (i,j2) € M? | i € N, j; < j2}.
Then M E T, and in fact every model of T is a disjoint union of (a copy of) M and
infinite chains, each discretely ordered with a minimal and maximal element. Hence
any two saturated models of T" are isomorphic and thus T is complete. Moreover,
T has quantifier elimination after adding the predecessor and successor functions
by a back-and-forth argument. It follows that T is NIP (by e.g. showing that < y
is NIP as there is a polynomial bound on every (z < y)-type over a finite subset of
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Suppose ¢ € U. Then tp(c/M) is generically stable (see Definition 4.16). Indeed,
suppose ¢ ¢ M and let p be a global coheir extending tp(c/M). Then any Morley
sequence I := (a;)i<w of p over M must be such that a;,a; are incomparable for
i # j. Thus I is an indiscernible set by quantifier elimination, and hence p is
generically stable by NIP and the “moreover” part of Fact 4.13.

Thus, if tp(e¢/M) is compressible then it is l-isolated by Proposition 4.14 and
hence realised by Remark 4.7. Hence M is the only model compressible over M
and the conclusion of Corollary 6.37 does not hold.

Corollary 6.39. Let M E T, and suppose that < is an M -definable preorder on an
M -definable set D and suppose that there is an infinite <-chain in D(M). Then:
(i) There exists N = M with D(N) 2 D(M) such that if a € N and tp(a/M) is
generically stable, then a € M. (See Definition 4.16.)
(i) For any cardinal A there is N = M with |D(N)| > X such that if a € N and
tp(a/M) is generically stable, then a € M.
In particular, there are arbitrarily large elementary extensions N of M such
that if S is M-definable and stable (see Definition 4.4), then S(M) = S(N).

Proof. (ii) follows from (i) by taking the union of a suitably long elementary chain.
We prove (i).

By Remark 4.9 there is some ¢ € D(U) such that tp(c/M) is compressible but not
l-isolated. In particular ¢ ¢ M. Apply (the “moreover” part of) Proposition 6.29
to get some compressibly constructible model N >~ M over M containing Mc. By
Proposition 4.14, if a € N and tp(a/M) is generically stable, then it is l-isolated
and hence by Remark 4.7, it is realised.

The “in particular” part follows since for any a € S(U), tp(a/M) is stable and
hence generically stable by Fact 4.18. ([

Remark 6.40. Note that the condition in Corollary 6.39 holds whenever T is unsta-
ble and M is w-saturated, since in this case T has the SOP ([Sim15a, Theorem 2.67])
and hence any w-saturated model contains an infinite chain in some definable pre-
order.

6.4.3. Compressible types in ACVF.

Example 6.41. If Y E ACVF and A C U°Y, then any model M containing A whose
residue field is algebraic over A is compressible over A; i.e., if M < U, A C M*9,
and k(M) = acl®(A) Nk, where k = k(U) denotes the residue field, then M is
compressible over A.

To see this, consider first a 1-type tp(a/B) over an acl®-closed set B = acl®d(B) C
U1, where a € U. We show that tp(a/B) is compressible iff dcl®d(Ba) Nk = BNk.
By unique Swiss cheese decompositions [Hol95, Theorem 3.26], tp(a/B) is deter-
mined by knowing which of the balls defined over B contain a, i.e., tp(a/B) is
implied by tpe(a/B) where « € y is the element relation between the valued field
and the sort of balls (closed and open). One sees directly that this €-type is com-
pressible unless tp(a/B) is the generic type of a closed ball « over B which contains
infinitely many open balls over B of radius 7 := radius(a). In that case, let 51 # [o
be distinct open subballs of « over B of radius v (the existence of these two balls
is our only use of our assumption that there are infinitely many such), and con-

sider the map 5 — res([i:%ll) for B an open subball of a of radius . This is a
well-defined injective map to k defined over B, so genericity of tp(a/B) (and the
fact that B = acl®d(B)) implies that the image under this map of the open ball
around a of radius v is not in BNk, so we have dcl®d(Ba) Nk 2 BNk. Conversely,
if tp(a/B) is compressible, then since the residue field is a pure stably embedded
algebraically closed field, we must have dcl®d(Ba) Nk = BNk.
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The compressibility of M over A if k(M) = acl®d(A) N k now follows by first
taking a compressible construction sequence which alternates taking acl®d-closure
and adding a single new element of M, and then applying Proposition 6.30.

If ANk is infinite then conversely k(M) = acl®d(A) N k is necessary for com-
pressibility of M over A, but this fails in general; for example, if A is finite, then
any model containing A is of course compressible over A.

Remark 6.42. The argument in Example 6.41 is based on ideas from [BM21], and
combining it with [BM21, Remark 3.12] actually yields an alternative proof of
[BM21, Theorem 5.6]. Indeed, suppose K is a valued subfield of U/ with res(K)
finite. Taking an elementary extension we may assume that (U, K) is sufficiently
saturated. Let A C K. Then k(K?®#) = acl®®(A) Nk is the algebraic closure of the
prime field, so by Example 6.41, K*2, and in particular K, is compressible over
A. By [BM21, Remark 3.12], it follows that K is distal in &/ in the sense defined
in that paper. The same argument applies to K, defined in [BM21, Theorem 5.6].
However, this proof does not yield bounds on the exponents of the resulting distal
cell decompositions, whereas such bounds are obtained in [BM21, Remark 6.2] as
a consequence of the more elementary methods of that paper.
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