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Vacuum torque, propulsive forces, and anomalous tangential forces:

Effects of nonreciprocal media out of thermal equilibrium
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From the generalized fluctuation-dissipation theorem, it is known that a body at rest made of nonreciprocal

material may experience a torque, even in vacuum, if it is not in thermal equilibrium with its environment.

However, it does not experience self-propulsion in such circumstances, except in higher order. Nevertheless,

such a body may experience both a normal torque and a lateral force when adjacent to an ordinary surface

with transverse translational symmetry. We explore how these phenomena arise, discuss what terminal velocities

might be achieved, and point out some of the limitations of applying our results to observations, including the

Lorenz-Lorentz correction and the cooling due to radiation. In spite of these limitations, the effects discussed

would seem to be observable.
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I. INTRODUCTION

There is a long history of theoretical predictions of quan-

tum or Casimir friction, where a particle or extended body

that moves parallel to a surface experiences a force opposing

its motion. The subject seems to have originated with Teodor-

ovich [1] and Levitov [2]. (For a selected bibliography on this

subject before 2016, see Ref. [3].) The friction is typically

conceived to arise because of dissipation in the surface. (For

a subset of papers on this subject, the reader is referred to

Refs. [4–9]. For a readable overview, see Ref. [10].) Quantum

friction can also result if the body itself is made of dissipative

material. However, much earlier, it was recognized that, even

in vacuum, a moving body or an atom without dissipation will

experience friction due to the surrounding radiation field—

this is the famous Einstein-Hopf effect [11].

In previous papers, we have considered quantum vacuum

friction due to field and dipole fluctuations [12,13]. For low

velocities, the condition that the atom or particle not gain or

lose energy, the nonequilibrium steady-state condition [14],

implies equal temperatures of the body and the environment,

while relativistic velocities typically imply that the body be

substantially hotter than the environment. (For other earlier

work on nonequilibrium friction, see Refs. [15–17] for ex-

ample.) The forces we considered there are true frictions, in

that they always oppose the motion, and they vanish at zero

velocity and at zero temperature.
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Here we consider forces and torques that arise in the vac-

uum, or near other bodies, when the relative velocity is zero.

This requires not only that the system be out of thermal equi-

librium, so that the temperature of the body is different from

that of its environment, but also that the electrical properties

that characterize the material constituting the bodies be exotic,

nonreciprocal, at least in lowest order. Nonreciprocity seems

not to be possible for an isolated body; the typical way it

can be achieved is through the introduction of an external

magnetic field or some other appropriate external influence.

Thus, it is something of an oxymoron to discuss nonreciprocal

vacuum torque or friction.

Of course, there is much earlier work on such nonequi-

librium phenomena, involving heat transfer, torque, and

nonreciprocal surface forces [18–22]. (Further references will

be provided as our discussion continues.) We also note that

similar behavior arises in quantum thermal rotators, where a

quantum torque is generated when the system is out of thermal

equilibrium and exhibits broken spatial symmetry (see, for

example, Ref. [23]).

The outline of this paper is as follows. In Sec. II we discuss

how the fluctuation-dissipation theorem is modified for a non-

reciprocal susceptibility. We then display in Sec. III a simple

model of such a nonreciprocal material as a simplification of

that given in Ref. [24]. The corresponding quantum vacuum

torque, first found in Refs. [25,26], is derived in Sec. IV. In

Sec. V we rederive the modified torque if the body is slowly

rotating, which was first worked out in Ref. [24]. If the body

is hotter or not too much colder than the environment, the

ordinary quantum frictional torque acts as a drag and the

body acquires a terminal angular velocity which should be

readily observable, provided this temperature difference can

be maintained. In Sec. VI the effect on the torque of an un-

derlying plate, be it a dielectric slab or a perfect conductor, is

investigated. Then we turn to the force, which can of course be
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inferred from the torque. The quantum vacuum force is shown

to vanish, in the weak-susceptibility approximation that we

use (Sec. VII), while, if an underlying surface is present, there

is a component of the force parallel to the surface, as shown

in examples of an imperfectly and a perfectly conducting

plate (Sec. VIII). Again, if the nonequilibrium temperature

difference could be maintained, a substantial terminal velocity

could be achieved. In Sec. IX we calculate the time it would

take for a body at rest to reach thermal equilibrium with the

environment, unless some mechanism were supplied to keep

it hotter or colder than the background. Possible suppression

effects due to the Lorenz-Lorentz (Clausius-Mossotti) correc-

tion are discussed in Sec. X, although the resulting torques and

forces should still be experimentally measurable. A summary

and conclusions are provided in Sec. XI.

In this paper we concentrate on first-order effects in the

susceptibility. Second-order effects, particularly important for

quantum vacuum forces, are left for future work.

Throughout, we use Heaviside-Lorentz (HL) electromag-

netic units. We also set h̄ = c = 1, except when numerical

values are given. It should be noted that many authors (in-

cluding some of us) often use Gaussian (G) units, for which

the polarizability differs by a factor of 4π .

II. GENERALIZED FLUCTUATION-DISSIPATION

THEOREM

Let x(t ) be some dynamical variable (such as an electric

dipole moment). In terms of its frequency Fourier transform,

the fluctuation-dissipation theorem (FDT) tells us the ex-

pectation value of the symmetrized quadratic product of the

frequency-transformed variables,1

〈Sx(ω)x(ν)〉 = 2πδ(ω + ν)�χ(ω) coth
βω

2
, (2.1)

where β = 1/T is the inverse temperature of the system and

χ is the generalized susceptibility. The latter is defined as the

linear response function relating the dynamical variable to a

driving force f :

x(t ) =
∫

dt ′χ(t − t ′) · f (t ′). (2.2a)

Thus, for the relevant example of the electric dipole moment

driven by an electric field, through the polarizability,

d(t ) =
∫

dt ′α(t − t ′) · E(t ′). (2.2b)

We assume causality, so χ(t − t ′) is nonzero only for

t − t ′ � 0. Alternatively, the fluctuating quantity might be

the electric field, driven by the electric polarization, and the

susceptibility would be the retarded electric Green’s function.

Typically, we regard the susceptibility tensor as diagonal,

or at least symmetric. More generally, the “imaginary part”

that occurs in the FDT is actually the anti-Hermitian part

�χ =
1

2i
(χ − χ†), (2.3)

1�χ signifies the anti-Hermitian part, defined in Eq. (2.3).

that is,

(�χ)i j (ω) =
1

2i
[χi j (ω) − χ∗

ji(ω)] =
1

2i
[χi j (ω) − χ ji(−ω)],

(2.4)

which uses the fact that χi j (ω) is the Fourier transform of a

real response function. Unusual properties emerge from this

if χ is not symmetric: This means that �χ has both real and

imaginary parts in the conventional sense. The real part is

Re(�χ)i j (ω) = 1
2
[Imχi j (ω) + Imχ ji(ω)], (2.5a)

which is symmetric in the indices but odd in ω. These are the

components that give rise to the quantum friction force and

torque. The imaginary part of �χ is

Im(�χ)i j (ω) = − 1
2
[Reχi j (ω) − Reχ ji(ω)], (2.5b)

which is antisymmetric in the indices but even in ω.

This property, as we will see, leads to unusual phenomena

for nonreciprocal bodies, spontaneous quantum torque, and

quantum propulsion. The term “nonreciprocal” seems to have

a variety of meanings in the literature; in this paper we will

take it to mean that Eq. (2.5b) is nonzero.

For an ordinary material, χi j (ω) is symmetric in the in-

dices, which means that the anti-Hermitian part coincides with

the usual imaginary part

χi j (ω) = χ ji(ω) ⇒ (�χ)i j (ω) = Imχi j (ω). (2.6)

Where a susceptibility depends on continuous coordinates as

well, such as the Green’s dyadic that describes the electric

field, reciprocity means invariance under interchange of dis-

crete indices and continuous coordinates:

�i j (r, r′; ω) = � ji(r
′, r; ω), (2.7a)

which implies

(��)i j (r, r′; ω) = Im�i j (r, r′; ω). (2.7b)

It is easy to check that this is satisfied by the Green’s dyadic

for a dielectric half space, for example, which has off-diagonal

elements, symmetric in the tensor indices. When the latter

is expressed as a two-dimensional Fourier transform, as is

convenient when the environment consists of a dielectric slab

perpendicular to the z axis,

�i j (r, r′; ω) =
∫

(dk⊥)

(2π )2
eik⊥·(r−r′ )⊥gi j (z, z′; k⊥, ω), (2.8)

the FDT is expressed in terms of

(�g)i j (z, z′; k⊥, ω) =
1

2i
[gi j (z, z′; k⊥, ω)

− g ji(z
′, z; −k⊥,−ω)]. (2.9)

III. MODEL FOR NONRECIPROCAL MATERIAL

In order to create a nonreciprocal response, one needs an

external influence, which is supplied by a magnetic field. Let

us suppose an oscillator with damping η is driven by both an

electric field and a constant magnetic field

m
d2r

dt2
+ mη

dr

dt
+ mω2

0r = e

(

E +
dr

dt
× B

)

(3.1a)
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or, equivalently, in the frequency domain

(

− ω2 − iωη + ω2
0

)

r(ω)=
e

m
[E(ω) − iωr(ω) × B]. (3.1b)

We can solve this equation for the components of r in

terms of the electric field and recognize that B can be incor-

porated into the cyclotron frequency ωc = e
m

B. We express

the result in terms of the electric susceptibility, defined by

P(ω) = ner(ω) = χ(ω) · E(ω), with n the number density of

charges. If the magnetic field lies in the z direction, this imme-

diately yields an electric susceptibility that is nonsymmetric

and nonreciprocal,

χ=ω2
p

⎛

⎜

⎜

⎜

⎝

ω2
0−ω2−iωη

(ω2
0−ω2−iωη)2−ω2ω2

c

−iωωc

(ω2
0−ω2−iωη)2−ω2ω2

c

0

iωωc

(ω2
0−ω2−iωη)2−ω2ω2

c

ω2
0−ω2−iωη

(ω2
0−ω2−iωη)2−ω2ω2

c

0

0 0 1

ω2
0−ω2−iωη

⎞

⎟

⎟

⎟

⎠

,

(3.2)

in terms of the plasma frequency ω2
p = ne2/m. For a metal,

we would set the restoring force to zero, so ω0 = 0, and

we exactly recover the form given by Guo and Fan [24]. In

particular, this provides us with a model for the anti-Hermitian

part of the susceptibility,

χxy = −χyx = −i
ω2

pωc/ω

(ω + iη)2 − ω2
c

. (3.3)

Numerically, for the charge and mass of the electron,

ωc =
eB

m
= m

B

Bc

, Bc =
m2

e
= 4.41 × 109 T, (3.4)

so for a magnetic field of strength 1 T, ωc ∼ 10−4 eV, far

smaller than the damping parameter for gold, for example,

η ≈ 3.5 × 10−2 eV. Thus, to a good approximation, we can

use for a metal

χxy − χyx ≈ −2i
ωcω

2
p

ω

1

(ω + iη)2
. (3.5)

IV. QUANTUM VACUUM TORQUE

The vacuum torque on a stationary body was discussed

in general terms in Ref. [25] and subsequently in Ref. [26].

Somewhat earlier, Ref. [20] showed that a topologically in-

sulating film in a magnetic field, out of thermal equilibrium,

experiences a torque, which seems to be an instance of this

same phenomenon. A torque on a body at rest requires that

it be composed of nonreciprocal material, which is charac-

terized by having a real part of the susceptibility which is

nonsymmetric, and that the temperature of the body, T ′, be

different from that of the environment, T .

The torque on an arbitrary body, described by electric

susceptibility χ(r; ω), is, in terms of the polarization P,

τ(t ) =
∫

(dr) r × [ρeff (r, t )E(r, t ) + jeff (r, t ) × B(r, t )]

=
∫

(dr) r ×
(

−∇ · P(r, t )E(r, t ) +
∂P(r, t )

∂t
× B(r, t )

)

.

(4.1)

Writing this in terms of Fourier transforms and eliminating B

in favor of E, we have

τ =
∫

(dr) r ×
∫

dω

2π

dν

2π
e−i(ω+ν)t

(

−∇ · P(r; ω)E(r; ν) −
ω

ν
P(r; ω) × [∇ × E(r; ν)]

)

=
∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)t r ×

[

ω

ν
{∇ · [P(r; ω)E(r; ν)] − P(r; ω) · ∇ · E(r; ν)} −

(

1 +
ω

ν

)

[∇ · P(r; ω)]E(r; ν)

]

. (4.2a)

In terms of components, the latter means

τi =
∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)tεi jkx j

[

ω

ν
{∇l [Pl (r; ω)Ek (r; ν)] − Pl (r; ω)∇kEl (r; ν)} −

(

1 +
ω

ν

)

Ek (r; ν)∇lPl (r; ω)

]

. (4.2b)

Here the source of the electric field is the electric

polarization

E(r; ν) =
∫

(dr′)�(r, r′; ν) · P(r′; ν), (4.3a)

where � is the retarded electromagnetic Green’s dyadic, while

the polarization is linearly related to the electric field

P(r; ω) =
∫

(dr′)δ(r − r′)χ(r; ω) · E(r′; ω)

= χ(r; ω) · E(r; ω), (4.3b)

where we assume that the electric susceptibility is local in

space. This means that there are two origins for the quantum

torque: field fluctuations and dipole fluctuations. We evaluate

the two contributions to the torque by use of the FDT,

〈SEi(r; ω)E j (r
′; ν)〉

= 2πδ(ω + ν)(��)i j (r, r′; ω) coth
βω

2
, (4.4a)

〈SPi(r; ω)Pj (r
′; ν)〉

= 2πδ(ω + ν)δ(r − r′)(�χ)i j (r; ω) coth
β ′ω

2
, (4.4b)

where β = 1/T , β ′ = 1/T ′, and S indicates that the sym-

metrized expectation values are used. Therefore, the last term

in Eq. (4.2) vanishes, because the sum of the two frequencies
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is zero, leaving us with2

τ =
∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)t [P(r; ω) × E(r; ν)

+ P(r; ω) · (r × ∇) · E(r; ν)]. (4.5)

Here the notation in the last term signifies that the free vector

index is on the angular momentum operator; the P and E are

dotted together.

Using Eqs. (4.3b) and (4.4a), we find for the EE contribu-

tion to the torque

τEE
i =

∫

(dr)
dω

2π
coth

βω

2
εi jk

[

χ jl (r; ω)(��)lk (r, r; ω)

+ χlm(r; ω)x j∇
′
k (��)ml (r, r′; ω)

∣

∣

∣

r−r′≡R→0

]

. (4.6)

Here � is taken to be the usual vacuum retarded Green’s

dyadic �0, the divergenceless part of which can be written as3

�0′(r, r′; ω)

= (∇∇ − 1∇2)
eiωR

4πR

=
[

R̂R̂(3 − 3iωR − ω2R2) − 1(1 − iωR − ω2R2)
] eiωR

4πR3
,

(4.7)

where R = |r − r′| and R̂ = R/R. It is evident that the second

term in Eq. (4.6) vanishes here because ImeiωR/R is an even

function of R. When (4.7) is rotationally averaged in the

coincidence limit (R → 0), we obtain

�0′(r, r′; ω) → 1

(

ω2

6πR
+ i

ω3

6π
+ O(R)

)

. (4.8)

Therefore, we are left with only a single term for the torque,

τEE
i =

∫

dω

2π
coth

βω

2
εi jkRe α jk (ω)

ω3

6π
, (4.9)

where the mean polarizability4 of the body5 is given by

α jk (ω) =
∫

(dr) χ jk (r; ω), (4.10)

the real part of which is picked out by the necessity of the

integrand being even in ω. Thus, nonreciprocity is necessary

for a vacuum torque in first order.

For the PP fluctuation part, Eq. (4.5) is written as

τPP =
∫

(dr) (dr′)
dω

2π

dν

2π
e−i(ω+ν)t [P(r; ω) × �(r, r′; ν)

· P(r′; ν) + P(r; ω) · (r × ∇) · �(r, r′; ν) · P(r′; ν)],

(4.11)

2This is made up of the internal and external torques, as given in

Ref. [27], Eqs. (4.47) and (4.46).
3The omitted term is proportional to δ(r − r′), which does not

contribute in the point-split limit.
4The nonlinear effects occurring in the Lorenz-Lorentz law relate

the polarizability to the permittivity; the polarizability is implied

thereby to be linear (see Ref. [28] and Sec. X).
5Note that there is no requirement that the body be spherical, so any

rotation would be observable.

FIG. 1. Apart from the prefactor ηωcω
2
pV/3π 2, the quantum vac-

uum torque in Eq. (4.14) or (4.15) is shown as a function of T ′/η

by the solid line for T/η = 0.714, appropriate for an environment at

room temperature, 300 K, and a gold body. The red dashed line is

the high-temperature approximation, which utilizes (A8b), while the

blue dotted line is the low-temperature approximation, which utilizes

(A10b). In both approximations, the dependence on the environmen-

tal temperature T is treated exactly.

to which the FDT (4.4b) is to be applied. Again, for vacuum,

the coincidence limit of the second term is zero, and because

of the diagonal form of the limit of the Green’s dyadic, only

the antisymmetric part of the susceptibility survives upon use

of Eq. (4.4b). Specifically, the ith component of the quantity

in square brackets in Eq. (4.11) becomes

δ(r − r′)2πδ(ω + ν)εi jk (�χ) jk (r; ω)

(

−i
ω3

6π

)

coth
β ′ω

2
.

(4.12)

Here we have recognized that the antisymmetric part of �χ

is even in ω, according to Eq. (2.5b), and therefore only the

odd part of the vacuum Green’s dyadic survives. The resulting

torque is thus of the same form as for the EE contribution,

except for the sign, and the replacement β → β ′.
The combination of the two contributions thus yields the

torque on a nonreciprocal body in vacuum, when the tem-

perature of the body, T ′, differs from that of the blackbody

radiation, T , due to PP and EE fluctuations:

τi =
∫ ∞

−∞

dω

2π

ω3

6π
εi jkRe α jk (ω)

(

coth
βω

2
− coth

β ′ω

2

)

.

(4.13)

This result exactly agrees with that of Guo and Fan [25], for

zero rotational velocity, and with that of Strekha et al. [26].

However, there is no quantum vacuum force in this static

situation, at least in first order, which we will demonstrate in

Sec. VII. (Actually, this is already evident from the vanishing

of the external torque contribution.)

Let us use the model in Eq. (3.5) to give an estimate of

the size of the torque. Inserting this into Eq. (4.13) and letting

ω = ηx gives

τz =
ηωcω

2
pV

3π2

∫ ∞

−∞
dx

x3

(x2 + 1)2

(

coth
β ′ηx

2
− coth

βηx

2

)

=
4ηωcω

2
pV

3π2
[I2(β ′η) − I2(βη)], (4.14)
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where V is the volume of the body and the integrals are de-

fined by Eq. (A5) of Appendix A. As expected, this is positive

if T ′ > T . These integrals are readily evaluated in Eq. (A6):

τz =
ηωcω

2
pV

3π2

[

π

η
(T − T ′) + 2 ln

T

T ′ + 2ψ

(

η

2πT

)

− 2ψ

(

η

2πT ′

)

+
η

2πT
ψ ′

(

η

2πT

)

−
η

2πT ′ ψ
′
(

η

2πT ′

)]

.

(4.15)

In Fig. 1 we show the torque together with the low- and high-

temperature approximations that result from the correspond-

ing approximations for I2(β ′η), presented in Appendix A. For

a gold (ωp = 9 eV and η = 0.035 eV) nanosphere of radius

100 nm, with ωc = 10−4 eV, the prefactor in Eq. (4.15) is

8 × 10−25 N m.

V. TORQUE ON A ROTATING BODY

Of course, a torque on a body will cause it to rotate. So,

what is the torque on a rotating body? Naturally, there should

be a vacuum torque on a rotating body made of ordinary

(reciprocal) material, just as there is quantum vacuum friction

on a linearly moving body [12,13]. The nonreciprocal aspect

of this torque was first treated in Ref. [25].

We consider a body rotating about the z axis passing

through its center of mass with angular velocity �. The for-

mula (4.5) should still apply, with the external torque (the

second term there) still not contributing if the background is

vacuum. However, the polarization and electric fields should

now refer to the body (rotating) frame, denoted by a prime

subsequently. For low velocities, these are related to those in

the blackbody (unprimed) frame by a rotation

E ′
x(r′, t ) = Ex(r, t ) cos �t + Ey(r, t ) sin �t, (5.1a)

E ′
y(r′, t ) = Ey(r, t ) cos �t − Ex(r, t ) sin �t, (5.1b)

which means for the frequency transforms

E ′
x(r′; ω) =

1

2
[Ex(r; ω+) + Ex(r; ω−)]

+
1

2i
[Ey(r; ω+) − Ey(r; ω−)], (5.2a)

E ′
y(r′; ω) =

1

2
[Ey(r; ω+) + Ey(r; ω−)]

−
1

2i
[Ex(r; ω+) − Ex(r; ω−)], (5.2b)

where ω± = ω ± �. The P transforms in the same way.

The strategy followed to calculate the quantum rotational

friction is the same as that used for quantum rectilinear fric-

tion [13]. There are two contributions: field fluctuations and

dipole fluctuations. For the former we use Eq. (4.3b) to replace

the polarization by the electric field but now understood in the

body frame. Then we have to transform both electric fields to

the blackbody frame. For vacuum friction we can use Eq. (4.8)

for the Green’s dyadic that appears when the FDT is employed

for the fields. We also only keep half the terms: Only those

proportional to δ(ω± + ν∓) do not average to zero in time.

The result of a straightforward calculation is

τEE
z =

∫

dω

2π

ω3

6π
[Im(αxx + αyy)(ω−)

+ Re(αxy − αyx )(ω−)] coth
βω

2
, (5.3)

where we have also noticed that under ω → −ω, ω+ → −ω−.

The procedure for the PP fluctuations is similar, except

now we replace E by P according to Eq. (4.3a). This holds

in the blackbody frame, so P must be transformed back to the

body (rotating) frame. Simplifications occur as before for the

vacuum case and we find after a bit of algebra

τ PP
z = −

∫

dω

2π

ω3

6π
[Im(αxx + αyy)(ω−)

+ Re(αxy − αyx )(ω−)] coth
β ′ω−

2
. (5.4)

Thus, when the two contributions are added, we find for the

torque on a (slowly) rotating body:

τz =
1

12π2

∫ ∞

−∞
dω ω3

+[Im(αxx + αyy)(ω)

+ Re(αxy − αyx )(ω)]

(

coth
βω+

2
− coth

β ′ω

2

)

. (5.5)

This is precisely the torque found in Ref. [25] (recall that

4παG = αHL). This result for an isotropic (reciprocal) particle

was given in Ref. [29], which further considered the effect of

a magnetic field.6 Note that if � = 0 the first term involving

the diagonal polarizabilities vanishes because the integrand is

odd and the second term reproduces Eq. (4.13).

It is illuminating to expand this expression to leading order

in the rotational velocity � (this is the adiabatic approxima-

tion):

τz =
1

12π2

∫ ∞

−∞
dω ω3

[

Re(αxy − αyx )(ω)

(

coth
βω

2
− coth

β ′ω

2

)

− �
3

ω
Im(αxx + αyy)(ω)

(

coth
β ′ω

2
− coth

βω

2

)

− �
β

2
Im(αxx + αyy)(ω)csch2 βω

2

]

. (5.6)

The first term here is the (nonreciprocal) quantum vacuum

torque (4.13), the second is the nonequilibrium contribution

to the ordinary (reciprocal) quantum vacuum frictional torque,

and the third term is the analog of the Einstein-Hopf quantum

vacuum friction. The sum of the two frictional terms is a drag

if T ′ > T . If T ′ < T , the angular velocity changes sign, so

initially the friction remains a drag, but for sufficiently low

temperatures T ′ the second term in Eq. (5.6) will dominate

and exponential growth of the angular velocity will ensue,

insofar as the low-velocity approximation remains valid.

6Earlier related works on forces and torques on bodies with various

kinds of asymmetries include Refs. [19–21,30].
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Note that if the last two terms constitute a drag, the nonre-

ciprocal torque found here will lead to the body rotating with

a constant terminal angular velocity. Writing Eq. (5.6) in the

abbreviated form7

τz = I�̇ = τ0 − �τ ′
1, (5.7)

where I is the moment of inertia of the body, we immediately

obtain

�(t ) =
τ0

τ ′
1

(1 − e−τ ′
1t/I ) (5.8)

if the body is not rotating at time t = 0. The terminal ve-

locity is �T = �(t → ∞) = τ0/τ
′
1, which might be expected

to be small. (This of course assumes that the particle and

environmental temperatures do not change. We will address

the tendency toward thermal equilibrium in Sec. IX.)

To proceed, let us again use the model (3.2), with ω0 = 0

and ωc � η. Then we have

Im(αxx + αyy)(ω) =
2ω2

pη

ω(ω2 + η2)
V. (5.9)

The result is [see Eq. (A2)] (x = ω/η)

τ ′
1 =

2ω2
pηV

3π2

(

3 + β
∂

∂β

)∫ ∞

0

dx
x

x2 + 1

(

1

eβ ′ηx − 1
−

1

eβηx − 1

)

=
ω2

pηV

3π2

[

π

η
(2T − 3T ′) + 3 ln

T

T ′ − 1 + 3ψ

(

η

2πT

)

− 3ψ

(

η

2πT ′

)

+
η

2πT
ψ ′

(

η

2πT

)]

. (5.10)

Let us write, from Eqs. (4.15) and (5.10),

τ0 =
ηωcω

2
pV

π2
f (T, T ′), τ ′

1 =
ηω2

pV

π2
g(T, T ′). (5.11)

Then the terminal angular velocity is

�T =
τ0

τ ′
1

= ωc

f (T, T ′)

g(T, T ′)
∼ ωc ∼ 10−4 eV ∼ 1011 s−1,

(5.12)

perhaps surprisingly high, but very small compared to atomic

frequencies. (The terminal circumferential speed in this case

is �T R ∼ 104 m/s for a gold nanosphere of radius R = 100

nm.) The relaxation time required to reach this velocity is

t0 =
I

τ ′
1

∼
MR2

ω2
pηV

∼ 106 s (5.13)

for the same parameters. The temperature dependence of the

terminal angular velocity �T is shown in Fig. 2. Note that if

the temperature of the body is lower than that of the environ-

ment, the terminal angular velocity is negative. Whether the

body is hotter or not too much colder than the environment,

it will reach a terminal velocity if the temperature difference

is maintained. If the temperature of the body is much colder

than that of the environment (for the example shown, about

half room temperature), the frictional torques reverse sign and

no bound to the angular velocity can be reached. A negative

τ ′
1 means exponential growth. Of course, before the angular

velocity gets too large, the nonrelativistic approximation used

here breaks down, even if the temperature difference can be

maintained by some external or internal agent. However, it

is not necessary to wait a long time to reach the terminal

velocity, because the initial angular acceleration

�̇(0) =
�T

t0
∼ 105 s−2 (5.14)

should be easily discernible.

7Specifically, τ0 = τz(� = 0) and τ ′
1 = − dτz

d�
(� = 0).

VI. TORQUE IN THE PRESENCE

OF A DIELECTRIC PLATE

What happens if the background is less trivial, say, consist-

ing of an isotropic dielectric plate filling the half space z < 0,

while the body lies a distance a above it? Then, of course,

there will be a torque on a nonspherical body as well as a

force, due to ordinary Casimir forces, even when the body is

made of ordinary reciprocal material. What would be unusual

is if there were a torque around the z axis, since the envi-

ronment possesses rotational symmetry about that direction.

For simplicity, we will assume that the entire background,

vacuum plus dielectric plate, is in equilibrium at temperature

T , while the nanoparticle has temperature T ′. In that case, the

z component of the torque coming from field fluctuations is

given by Eq. (4.6). Now both terms can contribute, but only

FIG. 2. Terminal angular velocity of the nonreciprocal body

when it is hotter or colder than its environment, which is taken to be

at room temperature. The limit of �T for high particle temperature is

universally ωc/3, independent of the background temperature. When

the temperature is lower than that of the background, the frictional

torque initially acts as a drag, but for sufficiently low temperature,

the frictional terms change sign and the angular velocity increases

exponentially without bound.
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for a nonreciprocal body, which might be irregularly shaped.

For such a body, where

χ̂i j (r; ω) = Re(χi j − χ ji )(r; ω) (6.1)

is nonzero, the normal torque component can be computed

from the explicit construction of the Green’s dyadic (as given,

for example, in Ref. [12]). Using the Fourier representation

(2.8), the integration over kx and ky will vanish except for the

gxx and gyy terms, for the first term in Eq. (4.6), while gxz,zx and

gyz,zy contribute for the second term, yielding the scattering

part of the torque

τ s
z =

∫

(dr)
dω

2π

(

coth
βω

2
− coth

β ′ω

2

)

1

4

∫

(dk⊥)

(2π )2

×

{

χ̂xy(r; ω)Im

[(

κrH +
ω2

κ
rE

)

e−2κz

]

+ [χ̂yz(r; ω)x − χ̂xz(r; ω)y] k2Im
(

rH e−2κz
)

}

, (6.2)

where κ =
√

k2 − ω2 and the transverse magnetic and electric

reflection coefficients are

rH =
κ − κ ′/ε(ω)

κ + κ ′/ε(ω)
, rE =

κ − κ ′

κ + κ ′ , κ ′ =
√

k2 − ω2ε(ω).

(6.3)

Now the torque depends on the distribution of the anisotropic

material across the body and so is not describable by simply

an effective nonreciprocal polarizability.

Note further that the last two terms in Eq. (6.2), propor-

tional to x and y, respectively, depend on the position of the

body as well as the distribution of material within the body.

If we write r = R + r′, where R locates the center of mass of

the body, we can read off the force on the center of mass of

the body from τz = XFy − Y Fx so that

Fx =
∫

(dr)

∫ ∞

0

dω

2π

(

1

eβω − 1
−

1

eβ ′ω − 1

)

χ̂xz(r; ω)

×
∫

(dk⊥)

(2π )2
k2Im

(

rH e−2κz
)

. (6.4)

We will derive this result directly in Sec. VIII.

Torque for a nanoparticle above a perfectly conducting plate

A very simple example is provided by a perfectly conduct-

ing surface lying in the z = 0 plane. This means rH,E = ±1.

Consider only the case with χ̂xy �= 0, that is, for our model,

the magnetic field lying in the z direction. The imaginary part

comes only from the region where ω2 > k2, where

Imκ = −sgn(ω)
√

ω2 − k2, (6.5)

and then the integral in Eq. (6.2) over transverse wave

numbers is (provided the body is of negligible extent, a

nanoparticle, so z = a)

1

(2π )2

∫ |ω|

0

dk k

∫ 2π

0

dθ

(

−
√

ω2 − k2 −
ω2

√
ω2 − k2

)

× cos
(

2a
√

ω2 − k2

)

= −
ω3

2π

∫ 1

0

dy(y2 + 1) cos 2ωay

FIG. 3. Torque [apart from the prefactor in Eq. (6.9)] as a func-

tion of separation of the nanoparticle a from the perfectly conducting

plate in microns, for a damping parameter of η = 0.035 eV. The

temperatures are taken to be T = 300 K and T ′ = 600 K. The torque

vanishes, as expected, close to the plate and approaches the vacuum

value far from the plate. Most interesting is the appearance of a very

weak maximum at about 14.4 µm, just before the decrease to the

vacuum torque value, as displayed in the inset.

= −
1

π (2a)2
[u cos u + (u2 − 1) sin u]. (6.6)

Here we have defined u = 2ωa. Then we write the scattering

part of the torque in the direction perpendicular to the plate as

τ s
z =

2

π2
V ωcω

2
pη

∫ ∞

0

du
u cos u + (u2 − 1) sin u

[u2 + (2ηa)2]2

×
(

1

eβu/2a − 1
−

1

eβ ′u/2a − 1

)

. (6.7)

Close to the plate, 2ηa � 1, β/2a � 1, and β ′/2a � 1,

where the integral is dominated by small values of u, for which

the numerator in the integrand approaches

u cos u + (u2 − 1) sin u ∼ 2
3
u3, (6.8)

we obtain precisely the negative of the torque coming from

the vacuum contribution (4.14). That the total normal torque

vanishes as the perfectly conducting plate is approached is

expected, because the tangential electric field must vanish

there.

The total torque is then

τ vac
z + τ s

z =
4

3π2
V ωcω

2
pη

∫ ∞

0

du
u3

[u2 + (2aη)2]2

×
(

1 −
3

2

u cos u + (u2 − 1) sin u

u3

)

×
(

1

eβ ′u/2a − 1
−

1

eβu/2a − 1

)

. (6.9)

This is plotted in Fig. 3.

VII. QUANTUM VACUUM FORCE

Let us start by writing the force on a dielectric body on

which an electric field is impressed, writing the fields in
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terms of their frequency transforms

F =
∫

(dr)

∫

dω

2π

dν

2π
e−i(ω+ν)t

[

− [∇ · P(r; ω)]E(r; ν) − iωP(r; ω) ×
(

1

iν
∇ × E(r; ν)

)]

=
∫

(dr)

∫

dω

2π

dν

2π
e−i(ω+ν)t

[

− [∇ · P(r; ω)]E(r; ν)

(

1 +
ω

ν

)

−
ω

ν
P(r; ω) · (∇) · E(r; ν)

]

, (7.1)

where in the second line we integrated spatially by parts. Unlike for the torque, the total divergence does not contribute. Now

we expand either P in terms of E, using Eq. (4.3b), or E in terms of P, using Eq. (4.3a), and then use the fluctuation-dissipation

theorem on the two parts. This yields rather immediately for the force on the body8

F EE
i + F PP

i =
∫

dω

2π
(dr)

(

χ jl (r; ω)∇′
i(��)l j (r, r′; ω)

∣

∣

∣

∣

r′=r

coth
βω

2
+ (�χ) jl (r; ω)∇i�l j (r, r′; −ω)

∣

∣

∣

∣

r′=r

coth
β ′ω

2

)

. (7.2)

However, for vacuum, Eq. (4.8) describes the vacuum Green’s

dyadic. So, again in the coincidence limit, it is then clear that

the gradient of the Green’s dyadic vanishes, and thus there is

no vacuum force. The conclusion appears to be opposite to

that of Refs. [30,31], but evidently the self-propulsion found

there arises as a second-order effect. There, nonreciprocity

is not required. The only necessary conditions are that the

system be out of thermal equilibrium and that the body be

extended and inhomogeneous.

VIII. TRANSVERSE FORCE ON A NONRECIPROCAL

NANOPARTICLE INDUCED BY A DIELECTRIC SURFACE

In contrast to the result found in the preceding section,

a nonreciprocal body does experience, in first order, a force

transverse to another ordinary body, even when both bodies

are at rest, provided they are not in thermal equilibrium with

each other. This was observed in Ref. [31] and more recently

in Refs. [21,32].

This is still described by the formula (7.2), but requires

the scattering part of the Green’s function. We will consider

the second, ordinary body to be a planar dielectric, with

permittivity ε(ω), lying in the half space z < 0, while the

nonreciprocal body lies at a distance z = a above the plane.

It is convenient then to introduce a two-dimensional Fourier

transform in the transverse coordinates x and y. Then the force

in the x direction, say, is

Fx = −
∫

(dr)
dω

2π

(dk⊥)

(2π )2
ikx

(

χ jk (r; ω)(�gs)k j (z, z; ω, k⊥)

× coth
βω

2
− (�χ) jk (r; ω)gs

k j (z, z; −ω, k⊥) coth
β ′ω

2

)

.

(8.1)

Here the s superscripts on the reduced Green’s functions rep-

resent the scattering parts, since it is evident that the bulk

(vacuum) part does not contribute, as already demonstrated

in the preceding section. Now the integration over kx and

ky will vanish except for gxz and gzx.9 Hence, unlike for the

8This general formula can be derived immediately from the torque

on the center of mass inferred from Eq. (4.6).
9For the bulk (vacuum) contribution, the force would involve the

symmetric limit limz→z′ sgn(z − z′) = 0.

torque, only the TM Green’s function contributes. Using the

properties of �χ given in Sec. II, we immediately obtain

Fx = 2

∫ ∞

0

dω

2π

∫

(dr)
(dk⊥)

(2π )2
χ̂xz(r; ω) k2

x Im
(

rH e−2κz
)

×
(

1

eβω − 1
−

1

eβ ′ω − 1

)

. (8.2)

This force is precisely that inferred from the torque in

Eq. (6.4).

As with Casimir friction, this force will vanish unless dis-

sipation occurs somewhere. This could be due to dissipation

in the dielectric slab or to radiation. We will consider these in

the following sections.

A. Dissipation in a metallic slab

We will describe the metallic substrate by a Drude model

ε(ω) = 1 −
ω2

p

ω2 + iων
, (8.3)

where ωp is the plasma frequency and ν the damping parame-

ter. For simplicity, we will consider the regime

ν � ω � ωp, ω � k, (8.4)

so that

Im ε(ω) ≈
ω2

pν

ω3
, (8.5)

and then, for low frequencies,

ImrH = Im
κ − κ ′/ε

κ + κ ′/ε
≈ Im

ε − 1

ε + 1
≈

2ων

ω2
p

. (8.6)

Thus, in this approximation, where we crudely replace κ and

κ ′ by k, the force on a nanoparticle of negligible extent is

Fx = −2
ν

ω2
p

∫

dω

2π

(dk⊥)

(2π )2
α̂xz(ω) ω k2

x e−2κa

×
(

1

eβω − 1
−

1

eβ ′ω − 1

)

≈ −
12

(2π )2

1

(2a)4

ν

ω2
p

∫ ∞

0

dω α̂xz(ω) ω

×
(

1

eβω − 1
−

1

eβ ′ω − 1

)

. (8.7)
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FIG. 4. Force, defined in Eq. (8.8), between a nonreciprocal

nanoparticle and a metal plate with finite conductivity out of

thermal equilibrium. The temperature of both the plate and the back-

ground electromagnetic field is fixed at room temperature, which

corresponds to T/η = 0.714 for gold. The polarizability of the

nanoparticle is described by the model (3.5). The temperature of the

nanoparticle, T ′, is given in units of the damping parameter for gold,

η. For comparison, the dashed straight line shows the force when

both temperatures are large, demonstrating that the high-temperature

approximation is quite good across the temperature range displayed.

Now for the nonreciprocal polarizability, let us use the

model (3.5), where we now assume that the magnetic field

(confined to the particle) lies in the y direction. This leads

directly to the formula for the force (x = ω/η)

Fx =
3V

4π2a4

ν

η
ωc f (βη, β ′η),

f (βη, β ′η) = −
∫ ∞

0

dx
x

(x2 + 1)2

(

1

eβηx − 1
−

1

eβ ′ηx − 1

)

,

(8.8)

where the integral follows from Appendix A,

∫ ∞

0

dx
x

(x2 + 1)2

1

eβηx − 1
=

1

4

[

1 +
π

βη
−

βη

2π
ψ ′

(

βη

2π

)]

.

(8.9)

The dimensionless force f is plotted in Fig. 4 and compared to

the high-temperature approximation. The prefactor, for ν = η,

a = 1 µm, and the radius of the nanosphere being 100 nm, is

5 × 10−21 N.

B. Transverse force in the presence

of a perfectly conducting plate

If the slab is a perfect conductor, with rH = 1, the formula

for the transverse force simplifies considerably. The imagi-

nary part of the Green’s function then requires that ω2 > k2,

and so the integral over the wave number is

∫

(dk⊥)

(2π )2
k2

x Im e−2κa=−
1

4π

1

(2a)4

[

6u cos u + 2(u2 − 3) sin u
]

,

(8.10)

FIG. 5. Transverse force given in Eq. (8.11) as a function of the

ratio of the temperature of the nonreciprocal nanoparticle relative to

that of the environment and the perfectly conducting plate, 300 K.

Here we take the separation a of the nanoparticle and the plate to be

100 nm and the damping to be that appropriate for gold, 0.035 eV. In

this case, the prefactor in the force in Eq. (8.11) for a gold nanosphere

of 10 nm radius is 1.2 × 10−20 N, so this would be challenging to

observe.

where u = 2ωa. Then the transverse force is

Fx =
ωcηω2

pV

2π2a
f0(ε, b, b′),

f0(ε, b, b′) =
∫ ∞

0

du
6u cos u + 2(u2 − 3) sin u

(u2 + ε2)2

×
(

1

eub − 1
−

1

eub′ − 1

)

, (8.11)

where ε = 2ηa, b = 1/2aT , and b′ = 1/2aT ′. The integral

f0 is plotted in Fig. 5 as a function of the nanoparticle tem-

perature T ′ for the environment at room temperature, for a

separation of a = 100 nm, with a damping parameter appro-

priate for gold, η = 0.035 eV. Note that the high-temperature

limit for the force is given by f0 ∼ π
8b′ for b′ � 1/ε, b, but this

limit requires very high temperatures which are not accessible

in practice. It is noteworthy that Figs. 4 and 5 are qualitatively

(but not quantitatively) similar, given that the physical mech-

anisms invoked are rather different. It is easily seen that the

lateral force rapidly vanishes as a → ∞, consistent with the

absence of a quantum vacuum force.

We expect, as we saw for the torque, that this force will be

resisted by the quantum vacuum friction in the presence of the

plate, which for low velocities will lead to a terminal velocity,

according to

m
dv

dt
= F0 − vF ′

1 ⇒ v(t ) =
F0

F ′
1

(1 − e−F ′
1 t/m). (8.12)

We require, then, the nonequilibrium frictional force in the

presence of a conducting plate, which we derive in Ap-

pendix B. Using the same model for the permittivity of the

nanoparticle, the linear term in the friction is

F ′
1 =

ω2
pηV

π2(2a)2
f1(ε, b, b′), (8.13)
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where

f1(ε, b, b′) =
∫ ∞

0

du
u3

u2 + ε2

[(

1 −
2 cos u + (u2 − 2) sin u

u3

)(

1

eb′u − 1
−

1

ebu − 1

)

+
1

12

bu

sinh2(bu/2)

(

1 + 3
u(u2 − 12) cos u − (5u2 − 12) sin u

u5

)]

. (8.14)

Indeed, f1 is always positive, corresponding to a frictional

drag, and the corresponding terminal velocity is

vT =
F0

F ′
1

= 2ωca
f0

f1

. (8.15)

The scale factor here is small compared to the speed of light:

For a particle 100 nm above the plate, 2ωca = 10−4. The

ratio of f0/ f1 is shown in Fig. 6. The apparent saturation

of the terminal velocity near 0.2 is illusory; for still larger

temperatures, the terminal velocity tends to zero, since the

frictional force rapidly increases with temperature. However,

for these nominal values, the damping time is long,

t0 =
m

F ′
1

∼ 2 × 103 s
1

f1

∼ 106 s, (8.16)

if the particle is at twice room temperature.

IX. RELAXATION TO THERMAL EQUILIBRIUM

All of the above considerations assume that the temper-

atures of the body and of the background are constant. Of

course, this will not be so unless some mechanism keeps the

system out of thermal equilibrium. Here we will calculate the

time it would take for such a body at rest to come to thermal

equilibrium with its environment. We cannot regard the body

to be a blackbody, but we can calculate the rate at which it

FIG. 6. Terminal velocity of a nonreciprocal nanoparticle near a

perfectly conducting plate in units of 2ωca. Here it is assumed that

the plate and the background are at temperature T = 300 K and that

the particle is made of gold and it is a distance a = 100 nm above

the surface of the plate. The temperature of the nanoparticle is T ′ =
1/2ab′. Thus, the highest particle temperature displayed on the graph

is 1200 K.

loses heat from the power10 (for an isotropic body) [13]

P(T, T ′) =
1

π2

∫ ∞

0

dω ω4Im α(ω)

(

1

eβω − 1
−

1

eβ ′ω − 1

)

=
dQ

dt
. (9.1)

This is related to the rate of change of temperature of the body

by its heat capacity:

dQ

dt
= CV (T ′)

dT ′

dt
. (9.2)

Thus, the time it takes for the body to cool from temperature

T ′
0 to temperature T ′

1 , where T ′
0 > T ′

1 > T , is

t =
∫ T ′

1

T ′
0

dT ′ CV (T ′)

P(T, T ′)
. (9.3)

To proceed, we need a model for the heat capacity of

the body, which is provided by the Debye model,11 which is

satisfactory for simple crystals (see Ref. [33]),

CV (T ) = 9N

(

T

�

)3 ∫ �/T

0

dx
x4ex

(ex − 1)2
, (9.4)

where N is the number of atoms constituting the body and �

is the Debye temperature. This interpolates between the low-

and high-temperature limits

CV (T ) ∼ 3N ×
{

1, T � �
4π4

5
( T
�

)3, T � �.
(9.5)

Since the Debye temperature for gold is about � = 170 K, the

high-temperature approximation would seem appropriate for

an estimate at room temperature and above.

We finally need a model for the imaginary part of the

polarizability of the body. The Lorenz-Lorentz model would

give

Im α(ω) =
V ω2

pωη
(

ω2
1 − ω2

)2 + ω2η2
≈

V ω2
pωη

ω4
1

, (9.6)

where, for a metal (Drude model), ω1 = ωp/
√

3. The ap-

proximation here is appropriate if, as expected, ω1 � ω, η.

10For the purpose of the rough calculation presented here, we will

ignore the small nonreciprocal effects.
11We consider bulk effects only, and ignore surface effects, for the

purpose of a rough estimate. Since we are considering vacuum, we

also disregard possible near-field enhancements that would occur if

the body were near another object.
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FIG. 7. Time required for a body to cool from temperature T ′
0 to temperature T ′

1 for different environmental temperatures T : (a) T = 300 K

and (b) T = 1 K. Here T ′
0 > T ′

1 > T . (a) The upper set of curves is for T ′
1 /T = 1.1 and the lower curves are for T ′

1 /T = 1.5. (b) The three

curves from top to bottom are for T ′
1 /T = 1.05, 1.1, and 1.5. The times are scaled by the prefactor t0 [Eq. (9.8)], which for a gold body

evaluates to about 104 s, for the environment at room temperature, and by t̃0 [Eq. (9.10)], which is about 1011 s, for T = 1 K.

Inserting this approximation into the formula (9.1), we obtain

P(T, T ′) ≈
8π4

7

V η

ω2
p

(T 6 − T ′6). (9.7)

Now we compute the cooling time from Eq. (9.3):

t = t0

∫ T ′
1 /T

T ′
0 /T

du
1

1 − u6
, T ′

0 > T ′
1 > T, (9.8a)

where

t0 =
21

8π4
n
ω2

p

η

1

T 5
. (9.8b)

Here n is the number density of atoms in the body. The

relaxation scale t0 is independent of the volume of the particle

and is about 104 s for gold, for an environmental temperature

of 300 K. The cooling time diverges as T ′
1 → T , but cooling

to a temperature slightly above the environmental tempera-

ture takes a finite time. The integral here is elementary, but

the resulting expression is not very illuminating. We content

ourselves by showing some representative values in Fig. 7(a).

It will be seen that if T ′
0 is appreciably larger than T , the

cooling time rapidly saturates to an asymptotic value. If we

then take T ′
0 to be large, Fig. 8 shows how long it will take to

reach a multiple of the environmental temperature. Thus, we

see that the terminal angular velocity seen in Eq. (5.12) and

the terminal linear velocity obtained in Eq. (8.15) will not be

achievable unless some mechanism maintains the thermal im-

balance, because the timescales for achieving those velocities

[Eqs. (5.13) and (8.16)] are much longer than the cooling time

found here.

If the environmental temperature is very low T � �, the

cooling time is very much longer. The analysis proceeds as

above, using the low-temperature limit in Eq. (9.5), with the

result for the cooling time being

t = t̃0

∫ (T ′
1 /T )2

(T ′
0 /T )2

dy
y

1 − y3
, t̃0 =

21

20
n
ω2

p

η

(

T

�

)3
1

T 5
. (9.9)

The integral, which has a relatively simple analytic form, is

shown in Fig. 7(b). The ratio of the timescales in the two cases

is

t̃0

t0
=

2π4

5

(

Tlow

�

)3(
Thigh

Tlow

)5

∼ 107 (9.10)

for Tlow = 1 K, Thigh = 300 K, and � = 170 K for gold, so

terminal velocities might be achievable.

X. LORENZ-LORENTZ CORRECTION

Hitherto, we have ignored the Lorenz-Lorentz correction

familiar in passing from the permittivity of a body to its

polarizability. This was because the forces and torques were

derived directly from the macroscopic susceptibilities appro-

priate for a dissipative metal body. In the case of small bodies,

we could always pass from the susceptibility to the mean

polarizability by integrating over the volume of the body.

However, as is evident from the discussion in the preceding

section [see Eq. (9.6)], the effect of the medium on the local

electric field can result in a large correction in the case of

metal bodies.

FIG. 8. Cooling time, in terms of the scale t0, for the nanoparticle

to cool from a high temperature to T ′
1 , in the regime where Eq. (9.8)

is valid. It takes an increasingly long time to get very close to the

environmental temperature.
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The difficulty is that the simple Lorenz-Lorentz model

is ordinarily derived using spherical symmetry. The relation

between the electric polarizability and the permittivity is, in

the isotropic case, in HL units,

α =
ε − 1

ε + 2
4πa3. (10.1)

This is not valid for a nonsymmetric permittivity (see, for

example, Ref. [34]). However, for ωc small, the nonsymmetric

nature is small, so, for the purpose of an estimate, we use, as

in Refs. [25,26], the matrix generalization of the above:

α = (ε − 1)(ε + 2)−14πa3. (10.2)

It is quite straightforward to compute the components of this

matrix: The term we need for the torque in Eq. (4.13) is, for

ωp � ω ∼ T ,

Re αxy ≈ 54V
ω2ωcη

ω4
p

. (10.3)

When this is inserted into Eq. (4.13), we obtain

τz =
32

7
π4V

ωcη

ω4
p

T 6

[

1 −
(

T ′

T

)6
]

. (10.4)

Putting in the numbers for a 100-nm gold nanosphere, the

coefficient of 1 − T ′6/T 6 is about 5 × 10−36 N m, some 11

orders of magnitude smaller than that found at the end of

Sec. IV.

We can also repeat the calculation of the terminal angular

velocity in Sec. V in this Lorenz-Lorentz model. Then

τ ′
1 = −

1

6π2

(

3 + β
∂

∂β

) ∫ ∞

0

dω ω2Im(αxx + αyy)(ω)

×
(

1

eβ ′ω − 1
−

1

eβω − 1

)

, (10.5)

where in our model

Im(αxx + αyy) ≈ 18V
ωη

ω2
p

, (10.6)

which implies

τ ′
1 =

2π2

5

V η

ω2
p

T 4

[

1 + 3

(

T ′

T

)4
]

. (10.7)

Note that τ ′
1 is always positive, indicating that it always

opposes the rotation. The corresponding terminal angular ve-

locity is

�T =
τ0

τ ′
1

=
80

7
π2 ωc

ω2
p

T 2 1 − (T ′/T )6

1 + 3(T ′/T )4
, (10.8)

where the prefactor, independent of T ′, implies a substantial

angular velocity for gold at room temperature: approximately

108 s−1. Although the time required to reach such a velocity is

very long, t0 = I/τ ′
1 ∼ 1013 s, the initial angular acceleration

is not so small,

�̇(0) =
�T

t0
∼ 10−5 s−2. (10.9)

While this angular acceleration is 10 orders of magnitude

smaller than that found without the Lorenz-Lorentz correction

in Eq. (5.14), the body will acquire a measurable angular

velocity after a relatively small period of observation.

However, is this correction valid or even necessary for a

metal nanoparticle? The discussion in Secs. IV–VIII is based

on describing the susceptibility of a metal by the phenomeno-

logical Drude model, which should include, approximately,

all internal effects. There is a large amount of literature on

the subject of ordinary polarizabilities of metal nanoparticles

(see, for example, Refs. [35,36]), where it is seen that both

classical and approximate quantum-mechanical treatments are

inadequate. We are unaware of comparable work in the non-

reciprocal case. So, to some extent, the issue of applying the

Lorenz-Lorentz correction remains open. In this paper we are

interested in the interaction between the electromagnetic field

and the body, the electromagnetic properties of which are

specified by a given susceptibility, so the crude models for

the latter should only be taken as illustrative.

XI. CONCLUSION

In this paper we have concentrated on analysis to first

order in the susceptibility, to better understand the effects of

nonreciprocal materials on torque and on forces for bodies out

of thermal equilibrium with their environment. Time-reversal

symmetry is broken by these materials, so spontaneous forces

and torques are possible. Of course, time-reversal symmetry is

not broken by electrodynamics, whether classical or quantum;

rather, the nonreciprocity is a consequence of an external

agent, such as a magnetic field, that is encoded in the dielectric

response of the materials.

Interestingly, potentially observable phenomena are nev-

ertheless predicted. A nonreciprocal body out of thermal

equilibrium will spontaneously start to rotate and reach a

substantial terminal angular velocity. Such a body will not feel

a net force to first order in the susceptibility. However, if the

body is placed near a translationally invariant surface, even a

perfect conductor, then a force parallel to the surface would

arise. The presence of such a surface would tend to suppress

the vacuum torque. A potentially observable terminal linear

velocity arises here as well, although the timescales are such

that it would be difficult to keep the system out of thermal

equilibrium. A possible drastic reduction in the strength of

these nonreciprocal effects, due to the Lorenz-Lorentz cor-

rection for dielectric susceptibilities, was discussed in the

penultimate section, although it seems the angular and linear

accelerations might still be amenable to observation.

We leave for future work the examination of higher-

order effects, to see how phenomena such as vacuum

self-propulsion can arise, even for a reciprocal body [30,31].
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APPENDIX A: EVALUATION AND EXPANSION

OF INTEGRALS

Here we express the integrals encountered in the text in

terms of the digamma and trigamma functions ψ (z) and

ψ ′(z), respectively, and provide corresponding low- and high-

temperature expansions. Differentiation of Binet’s second

integral representation of the logarithmic γ function imme-

diately yields the integral representation

ψ (z) = ln z −
1

2z
− 2

∫ ∞

0

dx
x

x2 + 1

1

e2πzx − 1
. (A1)

Thus,

I1(βη) ≡
∫ ∞

0

dx
x

x2 + 1

1

eβηx − 1

=
1

2

[

−
π

βη
+ ln

(

βη

2π

)

− ψ

(

βη

2π

)]

. (A2)

Since

β
∂

∂β

1

eβηx − 1
= η

∂

∂η

1

eβηx − 1
= x

∂

∂x

1

eβηx − 1
, (A3)

it follows that

β
∂

∂β
I1(βη) = η

∂

∂η
I1(βη) =

∫ ∞

0

dx
x2

x2 + 1

∂

∂x

1

eβηx − 1

= 2

∫ ∞

0

dx

(

x3

(x2 + 1)2
−

x

x2 + 1

)

1

eβηx − 1
.

(A4)

Thus,

I2(βη) ≡
∫ ∞

0

dx
x3

(x2 + 1)2

1

eβηx − 1
=

(

1 +
β

2

∂

∂β

)

I1(βη)

=
(

1 +
η

2

∂

∂η

)

I1(βη). (A5)

Hence, from Eq. (A2),

I2(βη) =
1

4

[

−
π

βη
+ 2 ln

(

βη

2π

)

+ 1 − 2ψ

(

βη

2π

)

−
βη

2π
ψ ′

(

βη

2π

)]

. (A6)

Using the series representation

ψ (z) = −
1

z
− γE + z

∞
∑

k=1

1

k(z + k)
, (A7)

where γE is the Euler-Mascheroni constant, we readily obtain

from Eqs. (A2) and (A6) the small-βη (or high-temperature)

expansions

I1(βη) ∼
1

2

[

π

βη
+ ln

(

βη

2π

)

+ γE

]

(βη → 0) (A8a)

and

I2(βη) ∼
1

4

[

π

βη
+ 2 ln

(

βη

2π

)

+ 1 + 2γE

]

(βη → 0).

(A8b)

Likewise, using the asymptotic representation

ψ (z) ∼ ln z −
1

2z
−

∞
∑

k=1

B2k

2kz2k
(z → ∞), (A9)

there follow from Eqs. (A2) and (A6) the large βη (or low-

temperature) expansions

I1(βη) ∼
π2

6β2η2
−

π4

15β4η4
(βη → ∞) (A10a)

and

I2(βη) ∼
π4

15β4η4
(βη → ∞). (A10b)

APPENDIX B: OUT-OF-EQUILIBRIUM FRICTIONAL

FORCE NEAR PERFECTLY CONDUCTING PLATE

Following the discussion in Ref. [13], it is easy to derive

the expression for the frictional force used in Sec. VIII B. The

general expression for the force is

F =
∫

dω

2π

(dk⊥)

(2π )2
(kx + ωv) tr �α(ω)�g′(ω, k⊥)

×
(

coth
βγ (ω + kxv)

2
− coth

β ′ω

2

)

. (B1)

Here g′ is the reduced Green’s function in the rest frame

of the particle. For a perfectly conducting plate, as with the

vacuum, g′ = g, the Green’s function in the frame of the plate

and vacuum. From this we can calculate both the frictional

force and the propulsive force. The latter is present at v = 0,

arises from the antisymmetric parts of the polarizability and

the Green’s dyadic, and is given in Sec. VIII. The diagonal

parts of both these tensors correspond to friction. According

to the model (3.2) with ωc neglected, the diagonal terms of the

imaginary part of the polarizability are all equal to

Im αd =
V ω2

pωη
(

ω2
0 − ω2

)2 + ω2η2
. (B2)

That leaves us with the imaginary part of the trace of g:

Im tr g = sgn(ω)

(

ω2

√
ω2−k2

−
√

ω2−k2 cos
(

2a
√

ω2−k2

)

)

× θ
(

ω2 − k2
)

. (B3)
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Now when we expand Eq. (B1) to first order in v we obtain

two terms

F = F (1) + F (2). (B4)

Here the first term comes from expanding the hyperbolic

cotangent

F (1) = −
βv

8π2

∫ ∞

0

dω Im αd (ω)
ω5

sinh2(βω/2)

×
(

2

3
−

2

u5

[

−u(u2 − 12) cos u + (5u2 − 12) sin u
]

)

,

(B5)

where u = 2ωa and we have carried out the elementary inte-

gration over k⊥. Note that the first term here corresponds to

the usual Einstein-Hopf effect. The F (2) contribution to the

force corresponds to the ωv prefactor in Eq. (B1) and is a

nonequilibrium friction contribution

F (2) =
v

2π2

∫ ∞

0

dω Im αd (ω) ω4

(

coth
βω

2
− coth

β ′ω

2

)

×
(

1 −
1

u3

[

2u cos u + (u2 − 2) sin u
]

)

, (B6)

again after carrying out the wave-number integration. The sum

of these two terms is Eq. (8.14) if we set ω0 = 0, appropriate

for a metal nanoparticle.
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