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Abstract: With the developments in nanotechnology, nanofibrous materials attract great 

attention as possible platforms for fluidic engineering. This requires an understanding of 

droplet interactions with fibers when gravity plays no significant role. This work aims to 

classify all possible axisymmetric configurations of droplets on fibers. The contact angle 

that the drop makes with the fiber surface is allowed to change from 0° to 180°. Nodoidal 
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apple-like droplets with inverted menisci cusped toward the droplet center and 

unduloidal droplets with menisci cusped away from the droplet center were introduced 

and fully analyzed. The existing theory describing axisymmetric droplets on fibers is 

significantly enriched introducing new morphological configurations of droplets. It is 

experimentally shown that the barreled droplets could be formed on nonwettable fibers 

offering contact angles greater than 90°. The theory was quantitatively confirmed with 

hemispherical droplets formed at the end of a capillary tube and satisfying all the 

boundary conditions of the model. It is expected that the developed theory could be used 

for design of nanofiber-based fluidic devices and for drop-on-demand technologies. 

 

1 Introduction 

Since childhood, droplets of water or glue on spider webs[1-3] and needle-like 

leaves[4-6] have captured people's attention. These observations make us wonder how a 

drop could find its perfect symmetric shape and stay unperturbed for a long time. These 

shapes are not only aesthetically attractive but practically important. Droplets on fibers 

are of great interest for inspiration and development of novel fiber-based microfluidics 

ranging from fiber-based liquid collectors and fabric-based filters to the fluid delivery 

devices[2, 7-10].  

The drop shape significantly depends on the wetting properties of materials. In 

everyday life, one would think about a flat substrate as wettable by the given liquid if a 
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drop would make contact angle less than 90° with it. Otherwise, a flat substrate would 

be considered non-wettable, implying that the drop could be easily shaded off from it. 

This 90°  contact angle criterion for wettable surfaces is practically attractive but not 

necessarily correct as it comes to the condition of drop detachment[11, 12].  

Therefore, the analyses of conditions of wetting and dewetting of flat surfaces 

received the deserved attention from physicists and materials scientists, and the 90° 

contact angle criterion was corrected to include different physicochemical characteristics 

of substrates [11, 13, 14].  

One cannot say the same about fibers. Wetting of fibers remained poorly understood 

and offers many surprises calling for a special approach in the classification of fiber 

wettability [8, 15-20].  

Take, for example, a low surface tension oil, which would readily wet a flat surface 

and spread over it, forming a puddle, Fig. 1(a) [11]. However, oil would not form a sheath 

analogous to a 2D puddle on a fiber made of the same material. When the drop volume 

is small, the drop may form an asymmetric clamshell, Fig. 1(b), (d). And when the volume 

is large, the drop forms an axisymmetric barrel-like drop, Fig. 1(c), (e). The analysis of this 

clamshell-barrel transformation has been rigorously studied, yet a clear picture of the 

mechanism of this transformation has yet to emerge [8, 17-19, 21-26].  

Surprisingly, unlike flat substrates, where a spherical cap is the basic drop 

configuration in the absence of gravity, only one spherical drop could meet the fiber at 

the given contact angle, Fig. 1 (f-g). For this spherical drop, the radius   𝑅∅ =
𝑅𝑓

𝑐𝑜𝑠 𝜃
 is fully 
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determined by the contact angle 𝜃 and the fiber radius 𝑅𝑓. To allow the change of the 

drop volume, one has to consider some other droplet shapes. This makes the problem of 

surface characterization of fibers very difficult as one has first to determine the drop 

shape and only after that calculate the contact angle.   

 

Fig. 1. (a) A drop of a wetting liquid spreads on a flat surface. On a fiber made of the same material, 

the same drop may form either a clamshell drop (b) or a barreled drop (c). The shape of the 

(a) (b) (c) 

(f) (g) 

  

200 µm 
  

(d) (e) 
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barreled drop with its maximum radius 𝑅𝑑 is controlled by the contact angle (𝜃), the fiber radius 

𝑅𝑓 and the droplet volume. (d) Side view of clamshell and (e) barreled water drops sitting on a 

nylon fiber with a diameter of 2𝑅𝑓 = 100 𝜇𝑚.   (f) The drop may form a sphere if and only if the 

contact angle (𝜃), the fiber radius 𝑅𝑓 and the drop radius are related as 𝑅∅ =
𝑅𝑓

𝑐𝑜𝑠 𝜃
  . All these 

parameters are defined in (g).  

Joseph Plateau was, probably, the first to rigorously study the spontaneous formation 

of the barreled droplets on fibers; his research inspired Lord Rayleigh, who studied 

dynamic phenomena associated with this process[27, 28]. The phenomenon of the 

inherent instability of cylindrical liquid bodies has been named after Plateau and is known 

as the Plateau instability. D'Arcy Wentworth Thompson found very many applications of 

this fundamental work to biology[29]. Since then, the spontaneous formation of droplets 

by fibrous materials has attracted attention of biologists and engineers[1, 15-17, 30-32].  

While the Plateau instability received great attention from fluid mechanicians and 

materials scientists [33, 34], a rigorous classification of axisymmetric shapes of droplets 

on fibers is lacking. Yet, it is in high demand  [8, 18-20, 23, 24]. Carroll[35] postulated that 

the profiles of the barreled drops must be described by unduloids[36, 37], a family of 

constant mean curvature surfaces.  

Surprisingly, to the best of our knowledge, the other family of constant mean 

curvature surfaces, nodoids[36, 37], has never been investigated. This family of solutions 

becomes important as the fiber size decreases to micrometers and below micrometers, 

and the effects of droplet weight diminish. For example, one can think about aerosol 
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droplets captured by a nanofiber in a filter and question whether a non-wettable fiber 

could capture and hold such a drop. To answer this question, consider a drop with the 

surface tension 𝜎  resting on a fiber. The energy (per unit surface area of the fiber ) 

required to detach the droplet from the fiber is equal to the work of adhesion 𝑊𝑎𝑑ℎ =

𝜎(1 + cos 𝜃). This energy is always finite unless 𝜃 = 180°. Thus, the droplet is always 

attracted to the fiber, and one can assume that the large droplets would be able to wrap 

up the non-wettable fiber with 𝜃 > 90° . These arguments motivated us to study all 

possible shapes of axisymmetric droplets on fibers, assuming that gravity is unimportant.  

We investigated nodoidal and unduloidal droplets and determined the transition from 

one family to another. The critical radius 𝑅∅  serves as a characteristic scale for the 

problem as it naturally couples the fiber radius with the contact angle characterizing the 

wetting properties of fibers. We use this characteristic radius in our analysis by scaling the 

drop sizes. It is shown that the Carroll choice of unduloidal droplets has its limitations. To 

describe all possible wetting scenarios, one needs to include nodoidal droplets. Nodoidal 

droplets significantly enrich the family of barreled axisymmetric droplets. The fibers could 

be completely wrapped up by these droplets even if the droplets make contact angles 

greater than 90°. We attempted to validate the theory experimentally and confirmed that 

the nodoidal apple-looking droplets with inverted menisci could be observed in 

experiments at predictable conditions.  
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2 Equilibrium shapes of droplets on fibers 

2.1 Laplace law for axisymmetric droplets 

The equilibrium droplets have constant pressure 𝑃−  everywhere inside the liquid 

body. The difference between 𝑃− and pressure 𝑃+ in the surrounding fluid is defined by 

the Laplace law of capillarity as[36-39]:  

𝑃−  −  𝑃+   =    (
1

𝑅𝑟
+

1

𝑅𝑔
 )   (1) 

where 𝑅𝑟 and 𝑅𝑔 are the two principal radii of curvature, and 𝜎 is the interfacial tension 

between phases. In applications to axisymmetric droplets on fibers, the two principal radii 

of curvature at an arbitrary point 𝐴 on the drop surface are introduced in Fig. 2. 

Fig. 2. Schematic illustrating the principal radii of curvature calculated at point A on the droplet 

surface. The first principal radius of curvature 𝑅𝑔 = 𝐴C  in Fig. 2(a) is merely the curvature of the 

plane curve 𝐴𝐴′. The center of curvature 𝐶 lies on the ray 𝐴𝐵 passing through the outward 

normal vector n. The curvature of the plane curve 𝐴𝐴′is found as  1/𝑅𝑔 = 𝑑𝛾/𝑑𝑠, where angle 

𝛾 is defined as the angle that the ray 𝐴𝐵 makes with the axis of symmetry x; 𝑠 is the arc length 

along the generator curve 𝐴𝐴′. The relation between the incremental change of 𝑑𝛾 and ds as the 
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observer moves from point A to point M along the generator 𝐴𝐴′is derived using the schematic 

in Fig. 2(b). The second principal radius of curvature 𝑅𝑟  is obtained by continuing the ray 𝐴𝐵  

along the normal vector n until it intersects the fiber axis at point 𝐵 in Fig. 2(a). Noticing that the 

angle 𝐷𝐵𝐴̂ = 𝛾 of the right triangle 𝐴𝐷𝐵 is related to the inclination angle 𝜋/2 − 𝛾 formed by 

the tangent at point 𝐴 with the 𝑥 −axis, one can relate |𝐴𝐵| = 𝑅𝑟 with the drop radius 𝑦 at point 

𝐴 as 𝑅𝑟 = 𝑦/ 𝑠𝑖𝑛 𝛾. For point 𝐴, pinned to an egg-like surface patch, both centers of principal 

curvatures, C and B, are found inside the drop; the curvatures are defined as positive. For point 

A’ pinned to a saddle-like surface patch, the centers of curvatures C’ and B’ are separated by the 

generator 𝐴𝐴′; therefore, one curvature is positive, and the other is negative with respect to the 

n direction. For example, when the drop wets the fiber completely, making zero contact angle, an 

infinitesimally small patch on the meniscus near the fiber looks like a saddle, and the curvature 

1/𝑅𝑟, |𝑅𝑟| = |𝐵′𝐴′|, is positive. Another curvature, 1/𝑅𝑔 , |𝑅𝑔| = |𝐴′𝐶′|,  is negative. 

 

The drop is obtained by rotating the generator, a plane curve 𝐴𝐴′, 𝑦 = 𝑦(𝑥), in Fig. 

2, around the 𝑥-axis. Taking an arbitrary point 𝐴 at the droplet surface and drawing the 

outward normal vector 𝒏, we define the two principal radii of curvature, 𝑅𝑟 and 𝑅𝑔 by 

continuing the ray shown as the dashed line along the normal vector, Fig. 2. As explained 

in the figure caption, the two principal radii of curvature are defined as 

𝑅𝑔 = |AC| =
𝑑𝑠

𝑑𝛾
   , (2) 

𝑅𝑟 =
𝑦

sin 𝛾
   .            (3) 
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Turning to the right triangle 𝐴𝑀𝐿 and noticing that the angle  𝐴𝑀𝐿̂ in Fig. 2 (b) is equal 

to 𝛾, and the side 𝑀𝐿 of this triangle is equal | 𝑀𝐿 | = 𝑑𝑦, we have  

𝑑𝑠 =
𝑑𝑦

𝑐𝑜𝑠 𝛾
, ⟹

1

𝑅𝑔
=

𝑑𝛾

𝑑𝑠
=

𝑑𝛾

𝑑𝑦

𝑑𝑦

𝑑𝑠
=

𝑑𝛾

𝑑𝑦
𝑐𝑜𝑠 𝛾.    (4) 

it is convenient to introduce dimensionless variables and new notations as 

 𝑋 = 𝑥∆𝑃/𝜎, 𝑌 = 𝑦∆𝑃/𝜎, 𝑆 = 𝑠∆𝑃/𝜎, where  𝑃/σ = (P−  −  P+ ) /σ.           (5) 

Substituting Eqs. (3) and (4) into the Laplace equation Eq. (1) and using normalization 

(5), we obtain 1 =
𝑑𝛾

𝑑𝑌
cos 𝛾 +

1

𝑌
sin 𝛾,  or   

𝑌 = Y
𝑑𝛾

𝑑𝑌
cos 𝛾 + sin 𝛾.                       (6) 

2.2 Two families of the constant mean curvature surfaces and how to distinguish one 

from the other 

 Equation (6) can be integrated as follows. First, we notice the following identity

( )sin cos sind Y Y d dY   = + . Therefore, by dividing this differential by dY, one obtains  

( )sin
cos sin ,

d Yd
Y

dY dY


 = −            (7) 

Substituting Eq.(7) in Eq. (6),  we have  

 
𝑌 =

𝑑(𝑌 sin 𝛾)

𝑑𝑌
− sin 𝛾 + sin 𝛾,                 (8) 

After simplification, Eq.(8) is represented as 𝑌 =
𝑑(𝑌 sin 𝛾)

𝑑𝑌
,  or 
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𝑌𝑑𝑌 = 𝑑(𝑌 sin 𝛾).                                   (9) 

Integrating Eq.(9) , one obtains the explicit solution  

 

21
sin ,   

2
Y Y C = +

                                                                                            (10) 

                 

Where C is an integration constant. Equation (10) is quadratic with respect to 𝑌. Hence it 

has two different solutions for a given 𝛾. The real-valued solutions are determined by 

analyzing the discriminant 2sin 2D C= − . This straightforward analysis, Fig. 3(a), leads 

to the following conclusions.  

All solutions of  Eq. (10) are divided into two families, Fig 3 (b). When constant 𝐶 

varies between 0 ≤ 𝐶 ≤ 1/2, the surfaces of this family correspond to unduloids, Fig. 3 

(c). When the constant 𝐶  is negative 𝐶 < 0, the surfaces of this family correspond to 

nodoids, Fig. 3 (e). These two families of constant mean curvature surfaces [37, 40] will 

be used to describe the drop configurations on fibers. We will distinguish these families 

by the integration constant C. 

To plot these surfaces, the Laplace equation (1) is parameterized by the arclength 

S and rewritten as a set of the following first-order differential equations: 

𝑑𝑋

𝑑𝑆
= 𝑠𝑖𝑛 𝛾 ,

𝑑𝑌

𝑑𝑆
= 𝑐𝑜𝑠 𝛾 ,

𝑑𝛾

𝑑𝑆
= 1 −

𝑠𝑖𝑛 𝛾

𝑌
. For plotting these surfaces, we used the following 

initial conditions: 𝑋(0) =  0, 𝛾(0) = 𝜋/2  and to find the initial condition for Y(0), we 

solved Eq.(10), Y(0) = [𝑌(0)]2/2 + 𝐶 for the given C. Some examples of the 2D sections 

of these surfaces are shown in Fig. 3 (c, e) by first plotting the numerical solution 
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(𝑋(𝑆), 𝑌(𝑆))  and then using its mirror-symmetric image (𝑋(𝑆), −𝑌(𝑆))  to show the 

boundaries of the enclosed area.  

 

Fig. 3. (a) The behavior of discriminant
2sin 2D C= −  as a function of 𝛾 when the constant C 

is positive. The dashed blue curve corresponds to 𝐶 = 0; the green curve, 𝐶 = 0.1; the red curve, 

𝐶 = 0.3;  the black curve, 𝐶 = 0.45 . In contrast to the other curves, the magenta curve 
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corresponding to 𝐶 = 0.5 touches the 𝛾  axis only at one point, 𝛾𝑠 = 𝜋/2. (b) The two different 

types of solutions to Eq.(10). The continuous curves propagating from negative to positive infinity 

without loops correspond to one family of solutions, the nodoids. The closed loops correspond to 

the other family of solutions, the unduloids. The dashed blue curve corresponds to 𝐶 = 0; the 

green curve, 𝐶 = 0.1; the red curve, 𝐶 = 0.3; the black curve, 𝐶 = 0.45; the discrete magenta 

dots correspond to, 𝐶 = 0.5; the purple curve, 𝐶 = −0.1, the Alice blue curve, 𝐶 = −0.3; the 

light green curve, 𝐶 = −0.5 . (c) Unduloids are plotted for 𝑌(0) =  0, 0.105, 0.225, 0.367, 

corresponding to C = 0, 0.1, 0.2, 0.3, respectively. Only one limiting circle (C=0) is shown. Observe 

how the neck diameter changes with the variation of these parameters. (d) Application of the 

unduloidal solutions for the description of droplets on fibers. In an unduloidal drop on a fiber of 

radius 𝑅𝑓 , the neck of radius 𝑅𝑚𝑖𝑛 is “hidden” inside the fiber. One can introduce the droplet 

radius as the maximum height of the unduloid bulge,  𝑅𝑚𝑎𝑥 , and the contact angle 𝜃  at the 

contact line, point C. (e) Nodoids are plotted for 𝑌(0)= 0, -0.0954, -0.1832, -0.2649 corresponding 

to C = 0, -0.1, -0.2, -0.3, respectively. Observe how non-physical knots form as one varies these 

parameters. (f) Application of the nodoidal solutions for the description of droplets on fibers. In a 

nodoidal drop on a fiber of radius 𝑅𝑓 , the knot and the neck of radius 𝑅𝑚𝑖𝑛 must be “hidden” 

inside the fiber. One can introduce the droplet radius as the maximum height of the nodoid bulge,  

𝑅𝑚𝑎𝑥 and the contact angle 𝜃 at the contact line, point C. 

2.3 Unduloidal droplets 

We assume that there is a unduloidal drop sitting on a fiber with radius 𝑅𝑓, and the 

drop forms contact angle 𝜃 with the fiber surface,  Fig. 3 (d).  
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At the neck of the unduloid (point 𝐴 in Fig. 3(d)), we have 𝛾 =
𝜋

2
  and 𝑦 =  𝑅𝑚𝑖𝑛  . 

Therefore, Eq. (10) is written as 

𝑅𝑚𝑖𝑛 =
Δ𝑃

2𝜎
𝑅𝑚𝑖𝑛

2 +
𝜎

𝛥𝑃
𝐶.     (11) 

At the bulge of the unduloid (point 𝐵  in Fig. 3(d)), we have 𝛾 =
𝜋

2
 at 𝑦 =  𝑅𝑚𝑎𝑥 . 

Therefore, 

𝑅𝑚𝑎𝑥 =
Δ𝑃

2𝜎
𝑅𝑚𝑎𝑥

2 +
𝜎

𝛥𝑃
𝐶.     (12) 

Solving these two equations (11) − (12)  for the pressure drop, we immediately 

obtain  

Δ𝑃 =
2𝜎

𝑅𝑚𝑎𝑥 + 𝑅𝑚𝑖𝑛
.               (13) 

Solving for constant C, we have  

𝐶 =
Δ𝑃𝑅𝑚𝑖𝑛

𝜎
−

1

2
(

Δ𝑃

𝜎
)

2

𝑅𝑚𝑖𝑛 
2 =

2𝑅𝑚𝑎𝑥𝑅𝑚𝑖𝑛

(𝑅𝑚𝑎𝑥 + 𝑅𝑚𝑖𝑛)2
.     (14) 

 Since 𝑅𝑚𝑎𝑥 > 𝑅𝑚𝑖𝑛 > 0 in Eq. (13), the pressure drop in the unduloid is always 

positive suggesting that the pressure inside unduloid is always greater than the pressure 

in the surrounding fluid. Moreover, investigating Eq. (14), we confirm that the constant 

varies between 0 ≤ 𝐶 ≤ 1/2. As 𝑅𝑚𝑖𝑛 → 0, the unduloid transforms into a sphere, and 

the constant 𝐶  goes to zero; as 𝑅𝑚𝑖𝑛 → 𝑅𝑚𝑎𝑥 , the unduloid transforms into a circular 

cylinder, and the constant C goes to 1/2. Thus, Eq. (10) contains all possible unduloidal 

solutions. 



14 

 

2.4 Profile of unduloidal drop 

We can apply the unduloidal solution (10) to describe the profile of the drop on fiber. 

In the general case of unduloidal solution, the neck of the unduloid describing the drop is 

invisible, Fig. 3(d). Therefore, to use Eq. (13) − (14)  the neck radius has to be 

determined. We apply Eq. (10) to find it at the fiber surface where the drop meets the 

fiber at contact angle 𝜃. 

At the contact line between the unduloidal drop and fiber (point 𝐶 in Fig. 3 (d)), we 

have 𝛾 =
𝜋

2
− 𝜃 at 𝑦 = 𝑅𝑓. Therefore, 

𝑅𝑓 sin (
𝜋

2
− 𝜃) =

Δ𝑃

2𝜎
𝑅𝑓

2 +
σ

ΔP
C.     (15) 

Solving Eq. (12) and Eq. (15) for pressure drop Δ𝑃, we find the following expression  

Δ𝑃 = 2σ
𝑅𝑚𝑎𝑥 − 𝑅𝑓 cos 𝜃

𝑅max
2 − 𝑅𝑓

2 
              (16) 

Substituting Eq. (16) in Eq. (13), the neck radius of the unduloid can be rewritten in 

terms of observable parameters  

𝑅min =
𝑅max

2 − 𝑅𝑓
2

𝑅𝑚𝑎𝑥 − 𝑅𝑓 cos 𝜃
− 𝑅max   .   (17) 

Similarly, 𝐶 can be rewritten as, 

𝐶 =
2𝑅𝑚𝑎𝑥𝑅𝑓(𝑅𝑚𝑎𝑥 − 𝑅𝑓 cos 𝜃)(𝑅𝑚𝑎𝑥 cos 𝜃 − 𝑅𝑓)

(𝑅𝑓
2 − 𝑅𝑚𝑎𝑥

2 )
2   .  (18) 

In order to ensure the existence of an unduloidal drop on fiber, we have to guarantee 

that the following conditions are met: 
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1) The neck radius of the unduloid must be positive and smaller than the fiber radius. 

0 ≤ 𝑅min ≤ 𝑅𝑓 , ⟹ 0 ≤
𝑅max

2 − 𝑅𝑓
2

𝑅𝑚𝑎𝑥 − 𝑅𝑓 cos 𝜃
− 𝑅max ≤ 𝑅𝑓           (19) 

2) The bulge of the unduloid must be above the surface of the fiber, 𝑅𝑓 < 𝑅𝑚𝑎𝑥. 

3) In conditions 1-2, the contact angle 𝜃  is allowed to change from 0 ° to 90° ; 

therefore, 0 ≤ cos 𝜃 ≤ 1. 

Solving the left-hand side of the inequality (19) for 𝑅𝑚𝑎𝑥  with constraints 𝑅𝑓 <

𝑅𝑚𝑎𝑥 & 0 ≤ cos 𝜃 ≤ 1, we have  

𝑅𝑓

cos 𝜃
≤ 𝑅𝑚𝑎𝑥    .     (20) 

Solving the left-hand side of the inequality (19) for 𝑅𝑚𝑎𝑥, we have cos 𝜃 ≤ 1, which 

holds. Thus, 𝑅𝑓 ≤ 
𝑅𝑓

cos 𝜃
 holds. Thus, for the given contact angle 𝜃 that varies from 0° to 

90°, we can always find an unduloidal drop. The maximum radius of this drop must be 

greater than the radius of the limiting sphere, 
𝑅𝑓

cos 𝜃
 .  
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2.5 Relation between the capillary pressure and the size of unduloidal droplets on 

fibers 

The unduloidal drop of limiting radius 𝑅𝑚𝑎𝑥 =
𝑅𝑓

cos 𝜃
 has a very special geometrical 

meaning. Substituting 𝑅𝑚𝑎𝑥 =
𝑅𝑓

cos 𝜃
 in Eq. (18), we find 𝐶 = 0 . This constant C=0 

corresponds to the case when the unduloid turns into a sphere. Since 𝑅𝑚𝑎𝑥 =
𝑅𝑓

cos 𝜃
 

specifies the smallest possible radius of unduloidal drop, Eq. (20), this radius 
𝑅𝑓

cos 𝜃
  sets up 

the boundary of the existence of unduloidal droplets on fibers. Below the curve 𝑛 =
1

cos 𝜃
   

shown in Fig. 4 (b), no unduloidal droplets can exist.  
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Fig. 4. (a) The dependence of constant C on the ratio 𝑅𝑚𝑎𝑥/𝑅𝑓 at different contact angles. 

The hollow triangles label the maximum values of C. The asterisks correspond to the spherical 

droplets of radius 𝑅𝑚𝑎𝑥 =
𝑅𝑓

𝑐𝑜𝑠 𝜃
 meeting the fiber surface at the given contact angle 𝜃. (b) The 

dashed curve specifies the boundary 𝐶𝑚𝑎𝑥 where the maximum values of integration constant  𝐶, 

the hollow triangles in (a), have been reached. The critical ratio 
𝑅𝑚𝑎𝑥

𝑅𝑓
=

1

𝑐𝑜𝑠 𝜃
 specified by the dash-

dotted curve corresponds to the boundary where the unduloidal drop becomes spherical. Below 

this curve, no unduloidal droplets can exist. The insert shows the dependence of 𝐶𝑚𝑎𝑥 on the 

contact angle as follows from Eq. (23). (c) Dimensionless capillary pressure 
𝛥𝑃𝑅𝑓

𝜎
 versus 

dimensionless radius of unduloidal drop 
𝑅𝑚𝑎𝑥

𝑅𝑓
. (d) The constant C versus dimensionless capillary 

pressure  
𝛥𝑃𝑅𝑓

𝜎
 . The contact angles are the same as those in (c). The hollow triangles correspond 

to the maximums of C-curves. The asterisks correspond to the spherical droplets with the radius 

𝑅𝑚𝑎𝑥 =
𝑅𝑓

𝑐𝑜𝑠 𝜃
 and capillary pressure  𝛥𝑃 = 2 𝜎𝑐𝑜𝑠 𝜃/ 𝑅𝑓.  

As discussed earlier, the constant C fully specifies the shape of an unduloid. For an 

unduloidal drop on fiber, this constant is fixed by 𝑅𝑚𝑎𝑥 , see Eq. (18). Therefore, we are 

able to investigate the dependence of 𝐶 on 𝑅𝑚𝑎𝑥 . 

In Fig. 4(a), we plot 𝐶 versus dimensionless drop radius 𝑅𝑚𝑎𝑥/𝑅𝑓 at different contact 

angles. Owing to constraint (20), each curve has a unique beginning point 𝑅𝑚𝑎𝑥 =

𝑅𝑓/ cos 𝜃, asterisked in Fig. 4(a). Surprisingly, the plots show that constant 𝐶  changes 

with the size of the unduloidal drop non-monotonously. Moreover, the maximum value 
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of 𝐶 is not necessarily ½. The hollow triangles in Fig. 4(a) label the maximum peaks on 

each curve. This non-monotonous dependence suggests that each C selects not a single 

unduloid but two different unduloids with different 𝑅𝑚𝑎𝑥.  

When 𝑅𝑚𝑎𝑥  goes to infinity, 𝐶  approaches zero as 𝐶 ≈
2𝑅𝑚𝑎𝑥𝑅𝑓(𝑅𝑚𝑎𝑥)(𝑅𝑚𝑎𝑥 cos 𝜃)

(𝑅𝑚𝑎𝑥
2 )

2 =

𝑅𝑓 cos 𝜃 /𝑅𝑚𝑎𝑥 → 0 . Again, this constant 𝐶 = 0  corresponds to the case when the 

unduloid turns into a sphere. Thus, we have two limiting spheres, one has a finite radius 

𝑅𝑓

cos 𝜃
, and another has an infinite radius.  

The non-monotonicity of constant C on the maximum radius of unduloidal droplet 

calls for establishing a selection principle for the given unduloid as a possible model of a 

droplet resting on a fiber. Taking the partial derivative of 𝐶, Eq. (18), with respect to 𝑅𝑚𝑎𝑥, 

we analyze the dependence of the drop radius 𝑅𝑚𝑎𝑥 corresponding to the maximum of C 

as a function of contact angle 𝜃: 

𝜕𝐶

𝜕𝑅𝑚𝑎𝑥
=

2𝑅𝑓[𝑐𝑜𝑠 𝜃 (𝑅𝑓
4 + 6𝑅𝑓

2𝑅𝑚𝑎𝑥
2 + 𝑅𝑚𝑎𝑥

4 ) − 𝑅𝑓𝑅𝑚𝑎𝑥(𝑐𝑜𝑠 2𝜃 + 3)(𝑅𝑓
2 + 𝑅𝑚𝑎𝑥

2 )]

(𝑅𝑓
2 − 𝑅𝑚𝑎𝑥

2 )
3

= 0, 

Or 

𝑐𝑜𝑠 𝜃 (1 + 6𝑛2 + 𝑛4) − 𝑛(𝑐𝑜𝑠 2𝜃 + 3)(1 + 𝑛2) = 0, where  𝑛 = 𝑅𝑚𝑎𝑥/𝑅𝑓. 

 (21) 

Equation (21)  has to be solved with constraints 0 < 𝑅𝑓 < 𝑅𝑚𝑎𝑥 & 0 < 𝜃 <
𝜋

2
. As 

shown in Supplementary materials, Eq.(21) has a unique solution: 
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𝑛 =
1 + sin 𝜃

cos 𝜃
⇒ 𝑅𝑚𝑎𝑥 =

𝑅𝑓(1 + sin 𝜃)

cos 𝜃
  .               (22) 

Substituting Eq. (22) back into Eq. (18), we find a relation between contact angle 𝜃 

and the maximum value of 𝐶,  

𝐶𝑚𝑎𝑥 =
cos2 𝜃

2
.     (23) 

The relations expressed by Eq. (22) is plotted in Fig. 4 (b), and Eq. (23) is plotted in the 

insert of Fig. 4 (b).  

We notice that Eq. (22) specifies the radius of unduloidal drop having the contact 

angle with the fiber equal to the inflection angle of an unduloid[41, 42]. In other words, 

when 𝐶 = 𝐶𝑚𝑎𝑥, the fiber radius 𝑅𝑓 and the radius 𝑅𝑖𝑛𝑓 of the point where the curvature 

of the generator changes its sign coincide. Carrol conjectured that when 𝑅𝑓 = 𝑅𝑖𝑛𝑓, an 

unduloidal drop should be unstable and would turn into a clamshell[22]. The relation 

between 𝑅𝑖𝑛𝑓 and 𝜃 was later corrected by McHale’s group[23, 43].  

Thus, the area bounded by the dashed and dash-dotted curves in Fig. 4(b), 

corresponds to the unduloidal droplets with ascending C in Fig. 4(a). The unduloidal 

droplets with larger radii, including the infinitely large spherical droplet, sit above the 

dashed curve. Moreover, the dashed curve is the inflection point condition for an 

unduloidal drop: the droplets with radii greater than the dashed boundary will always 

contain a meniscus where the curvature changes its sign. The sign of the curvature of 

smaller droplets sitting below the dashed curve remains the same.   
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We further plot the dimensionless capillary pressure 
𝛥𝑃𝑅𝑓

𝜎
 as a function of the ratio 

𝑅𝑚𝑎𝑥

𝑅𝑓
, Fig. 4(c). This dependence appears monotonous. Therefore, we can re-parametrize 

𝐶 as a function of dimensionless capillary pressure  
𝛥𝑃𝑅𝑓

𝜎
 . This dependence 𝐶 (

𝛥𝑃𝑅𝑓

𝜎
) is 

shown in Fig. 4(d). In both graphs, Fig. 4(c) - (d), the capillary pressure approaches zero 

when 𝑅𝑚𝑎𝑥 goes to infinity. 

2.6 Profile and volume of unduloidal drop  

To find the unduloid profile, we rewrite Eq. (6) in the form 

𝑑𝑦

𝑑𝑥
= cot 𝛾 ⇒

𝑑𝑥

𝑑𝑦
= tan 𝛾 = − sin 𝛾 (1 − sin2 𝛾)−

1

2    .     (24) 

Using the first integral, 𝑠𝑖𝑛 𝛾 =
𝛥𝑃

2𝜎
y +

𝐶𝜎

𝛥𝑃

1

𝑦
  , we then obtain  

𝑑𝑥

𝑑𝑦
= − (

𝛥𝑃

2𝜎
𝑦 +

𝐶

𝜎
∙

1

𝑦
 ) [1 − ((

𝛥𝑃

2𝜎
𝑦 +

𝐶

𝜎
∙

1

𝑦
 ))

2

]

−
1

2

   . (25) 

where 𝐶 is defined by Eq. (18) and Δ𝑃 is defined by Eq. (16). The differential equation (25) 

can be numerically integrated from 𝑅𝑓  to 𝑅𝑚𝑎𝑥  using MATLAB ODE45 to provide the 

droplet shape, Fig. 5(a). 

Hence, we can use MATLAB to integrate the function 𝑥(𝑦) of the unduloid and to get 

its volume. 

𝑉 = 2𝜋 ∫ 𝑦2
𝑑𝑥

𝑑𝑦

𝑅𝑚𝑎𝑥 

𝑅𝑓

𝑑𝑦 − 2𝜋𝑅𝑓
2(𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡) , (26) 

where 𝑥𝑙𝑒𝑓𝑡 and 𝑥𝑟𝑖𝑔ℎ𝑡 are positions of the left and right contact lines.  
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Thus, by varying the drop size 𝑅𝑚𝑎𝑥 from 
𝑅𝑓

cos 𝜃
 to infinity, we can calculate the volume 

of unduloidal drops at any specific contact angle 𝜃. Figure 5 (b) shows how the volume of 

an unduloidal drop changes. Again, the hollow triangles label the points where C reaches 

its maximum peak value corresponding to the inflection point criterion, and the asterisks 

correspond to the spherical drop forming the given contact angle with the fiber.  

Using the algorithm explained in the Supplementary material, we numerically 

obtained a series of unduloids of fixed volume with different contact angles, Fig. 5(c).  

The relation between the capillary pressure and unduloid volume is plotted in Fig. 5 

(c). The smallest unduloid is a spherical drop (see asterisks in Fig. 5), with a maximum 

capillary pressure 2𝜎 cos 𝜃 /𝑅𝑓. The capillary pressure decreases monotonously with an 

increase in the drop size. 

Fig. 5. (a) Unduloidal droplets of constant volume 
√𝑉0
3

𝑅𝑓
= 0.0144 making different contact angles 

with the fiber. (b) The dimensionless volume of an unduloidal drop plotted as a function of 

dimensionless drop radius. The insert shows this dependence for smaller 𝑅𝑚𝑎𝑥/𝑅𝑓  ratios. No 
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unduloidal drops of volume
√𝑉0
3

𝑅𝑓
>  40 making 85° with the fiber exist. (c) Dimensionless capillary 

pressure versus dimensionless drop volume.  

2.7 Nodoidal droplets 

Consider a nodoidal drop sitting on a fiber of radius 𝑅𝑓. The drop forms a contact angle 

𝜃 with the fiber surface, Fig. 3(f).  

At the neck of the nodoid (point 𝐴  in Fig. 3(f)), we have 𝛾 = −
𝜋

2
 and 𝑦 =  𝑅𝑚𝑖𝑛 . 

Therefore, Eq. (10) is written as 

−𝑅𝑚𝑖𝑛 =
Δ𝑃

2𝜎
𝑅𝑚𝑖𝑛

2 +
𝜎

𝛥𝑃
𝐶.    (27) 

At the bulge of the nodoid (point 𝐵 in Fig. 3(f)), we have 𝛾 =
𝜋

2
 and 𝑦 =  𝑅𝑚𝑎𝑥. Then, 

𝑅𝑚𝑎𝑥 =
Δ𝑃

2𝜎
𝑅𝑚𝑎𝑥

2 +
𝜎

𝛥𝑃
𝐶.    (28) 

Solving these two equations (27) − (28) for the pressure drop Δ𝑃 and 𝐶 separately, 

we obtain  

Δ𝑃 =
2𝜎

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
.             (29) 

𝐶 = −
2𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛

(𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)2 
.     (30) 

Comparing (13) with (29), one observes that the unduloidal drop of radius 𝑅𝑚𝑎𝑥 will 

always have smaller capillary pressure than that of a nodoidal drop of the same 𝑅𝑚𝑎𝑥. 

The capillary pressure in nodoidal drop is still positive, i.e. the pressure in the nodoidal 

drop is greater than the pressure in the surrounding fluid. 
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2.8 Parameters of nodoidal drop on a fiber 

To specify the nodoidal droplet, we must relate 𝑅𝑚𝑖𝑛 with the fiber radius and droplet 

contact angle 𝜃. At the contact line between nodoidal drop and the fiber (point 𝐶 in Fig. 

3(f)), we have 𝛾 =
𝜋

2
− 𝜃 at 𝑦 = 𝑅𝑓. Therefore, 

𝑅𝑓 sin (
𝜋

2
− 𝜃) =

Δ𝑃

2𝜎
𝑅𝑓

2 +
𝜎

𝛥𝑃
𝐶.     (31) 

Using (28) to eliminate C, we obtain from (31): 

Δ𝑃 = 2σ
𝑅𝑚𝑎𝑥 − 𝑅𝑓 cos 𝜃

𝑅max
2 − 𝑅𝑓

2 
     .        (32) 

Then, using the pair of equations (27) and  (31)  to eliminate 𝐶 , and Eq. (32)  to 

express Δ𝑃 via 𝑅𝑚𝑎𝑥 , we find 

𝑅min =
𝑅𝑓(𝑅𝑚𝑎𝑥 cos 𝜃 − 𝑅𝑓)

𝑅𝑓 cos 𝜃 − 𝑅𝑚𝑎𝑥
 .      (33) 

Similarly, 𝐶 is found as, 

𝐶 =
𝑅𝑚𝑎𝑥𝑅𝑓(𝑅𝑓 cos 𝜃 − 𝑅𝑚𝑎𝑥)(𝑅𝑓 − 𝑅𝑚𝑎𝑥 cos 𝜃)

(𝑅𝑓
2 − 𝑅𝑚𝑎𝑥

2 )
2   .     (34) 

2.9 Parametric analysis of the nodoidal droplets 

In order to ensure the existence of a nodoidal drop on a fiber, we have to satisfy the 

following conditions:  

1) The neck radius of the nodoid must be positive and smaller than the fiber radius.     

2)The bulge of nodoid must be located above the fiber's surface.  

3) The contact angle 𝜃 is allowed to change from 0° degrees to 180°, −1 ≤ cos 𝜃 ≤ 1. 
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As proved in Supplementary material, for the given contact angle 𝜃 that varies from 

0°  to 90°  degrees, a nodoidal drop could have its maximum radius 𝑅𝑚𝑎𝑥  within the 

boundaries 𝑅𝑓 < 𝑅𝑚𝑎𝑥 ≤
𝑅𝑓

cos 𝜃
. For contact angles within the range 90° < 𝜃 ≤ 180°, no 

restriction on 𝑅𝑚𝑎𝑥  exists. In contrast to the unduloidal droplets, the constant C of 

nodoidal droplets is a monotonous function of 𝑛  (see the proof in Supplementary 

material and the insert in Fig. 6 (c)). 

Substituting 𝐶 , Eq. (34), and Δ𝑃, Eq. (32), into differential equation (25), the profile 

of nodoidal droplet 𝑥(𝑦) is obtained numerically by integrating this differential equation 

from 𝑅𝑓  to 𝑅𝑚𝑎𝑥  using MATLAB ODE45, Fig. 6 (a-b); the volume of nodoidal drop is 

calculated using Eq. (26). Following the same algorithm for finding the droplets of equal 

volume (Supplementary materials, S2), we plot the profiles of nodoidal droplets forming 

different contact angles with the fiber, Fig. 6(a). This set of nodoidoidal droplets is 

obtained by first searching for a spherical drop with the radius 
𝑅𝑓

𝑐𝑜𝑠 𝜃
 and contact 

angles 𝜃 < 90°  . For example, when 𝜃 = 61.75° , the corresponding dimensionless 

volume is equal to 3 and this limiting droplet is shown by the dashed line in Fig. 6 (a). 
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Fig. 6. (a) Nodoidal droplets of the same volume cannot make arbitrarily chosen contact 

angles with the fibers. In this example of droplets of dimensionless volume equal to 3, no nodoidal 

droplets making 30° or 50° with the fiber exist. The black dashed line shows the profile of a 

nodoidal drop having the smallest possible contact angle 61.75° among the drops of the same 

volume. (b) A series of nodoidal and unduloidal droplets with different volumes having constant 

𝑅𝑚𝑎𝑥/𝑅𝑓 and making different contact angles with the fiber. The dashed curves show nodoidal 

droplets, while the solid curves show the unduloidal drops of the same dimensionless radius 

making 30° and 50° degrees contact angle with the fiber when no nodoidal droplets exist. (c) 



26 

 

Dimensionless capillary pressure 
𝛥𝑃𝑅𝑓

𝜎
 versus dimensionless radius of nodoidal drop 

𝑅𝑚𝑎𝑥

𝑅𝑓
. The 

asterisks in this series of graphs correspond to 𝑅𝑚𝑎𝑥 = |
𝑅𝑓

𝑐𝑜𝑠 𝜃
|. Notice that though the ratio |

𝑅𝑓

𝑐𝑜𝑠 𝜃
|  

for 𝜃 = 30°  and 150°  is the same, the capillary pressure 𝛥𝑃 = 2𝜎
𝑅𝑚𝑎𝑥−𝑅𝑓 𝑐𝑜𝑠 𝜃

𝑅𝑚𝑎𝑥
2 −𝑅𝑓

2 
 is different 

because of the different signs of cosine. The insert shows the dependence of constant C on 

𝑅𝑚𝑎𝑥/𝑅𝑓  for nodoidal droplets making different contact angles with the fiber. In contrast to 

unduloidal droplets, this dependence is always monotonous. The asterisks correspond to 𝑅𝑚𝑎𝑥 =

|
𝑅𝑓

𝑐𝑜𝑠 𝜃
|. (d) Dimensionless volume of nodoidal droplets as a function of 𝑅𝑚𝑎𝑥/𝑅𝑓 . The asterisk 

corresponding to the spherical drop having the 85° contact angle is out of range (
𝑉

1
3

𝑅𝑓
> 8). (e) 

Dimensionless capillary pressure 
𝛥𝑃𝑅𝑓

𝜎
 versus dimensionless volume 𝑉

1

3/𝑅𝑓 . The asterisk 

corresponding to the spherical drop having the 85° contact angle is out of range (
𝑉

1
3

𝑅𝑓
> 8). 

The dimensionless capillary pressure of nodoidal drop 
Δ𝑃𝑅𝑓

𝜎
 decreases monotonously 

from infinity to 2 cos 𝜃 when 𝑅𝑚𝑎𝑥 increases from 𝑅𝑓 to infinity, Fig. 6(c). 

The volume of nodoidal droplets as a function of the dimensionless radius of the drop 

is shown in Fig. 6(d).  

The relation between the capillary pressure and volume of nodoidal droplet is plotted 

in Fig. 6 (e). The asterisks correspond to the droplets with 𝑅𝑚𝑎𝑥 = |
𝑅𝑓

𝑐𝑜𝑠 𝜃
| with capillary 

pressure 
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 Δ𝑃 = {

2𝜎 𝑐𝑜𝑠 𝜃

𝑅𝑓
                        (0° < 𝜃 < 90°)

2σ
𝑅𝑚𝑎𝑥−𝑅𝑓 cos 𝜃

𝑅max
2 −𝑅𝑓

2 
               (90° < 𝜃 < 180°)

.     (35) 

 

The capillary pressure decreases monotonously with the drop size. 

 

2.9 Transition between unduloids and nodoids 

As shown, nodoidal and unduloidal droplets represent two families of axisymmetric 

droplets that could potentially rest on the fibers. Figure 7 (a) shows the relations between 

the dimensionless capillary pressure and dimensionless drop volumes for these solutions 

at the fixed contact angles specified by different colors. The solid curves represent 

unduloidal droplets, and the dashed curves represent nodoidal droplets. In unduloidal 

droplets, two markers indicate two limiting cases. The asterisks mark limiting spherical 

drops; the hollow triangles correspond to the drop with an inflection point at the contact 

line, i.e., the point where the unduloidal drop has a maximum value of 𝐶.  

As expected, the curves for unduloidal and nodoidal droplets merge when these two 

solutions approach their shared spherical drop with radius 𝑅𝑚𝑎𝑥 = 𝑅∅ = 𝑅𝑓/ cos 𝜃. The 

continuity of curves in Fig. 7(a) indicates that the nodoidal droplets could spontaneously 

transform into the unduloidal droplet when the droplet volume increases above the 

limiting volume corresponding to the volume of the limiting spherical droplet. 
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Accordingly, the capillary pressure of smaller nodoidal droplets is always greater than that 

of the larger unduloidal droplets.  

We further analyze the surface energy of unduloids and nodoids. The surface energy, 

𝑊, of a drop on the fiber includes two parts: 1) interfacial energy between the drop and 

surrounding fluid, 𝑊1 = 𝜎𝐴𝑑𝑟𝑜𝑝, where 𝐴𝑑𝑟𝑜𝑝 is the surface area of the drop. 2) The work 

of adhesion between drop and fiber, 𝑊2 = 𝜎(1 + cos 𝜃)𝐴𝑓𝑖𝑏𝑒𝑟 , where 𝐴𝑓𝑖𝑏𝑒𝑟  is the 

wetted area of the fiber under the drop. 

The surface area 𝐴𝑑𝑟𝑜𝑝 is determined by integrating the following equation, 

𝐴𝑑𝑟𝑜𝑝 = 4𝜋 ∫ 𝑦
𝑑𝑠

𝑑𝑦

𝑅𝑚𝑎𝑥 

𝑅𝑓

𝑑𝑦     (36) 

The wetted area of the fiber under the drop is calculated as 

𝐴𝑓𝑖𝑏𝑒𝑟 = 2𝜋𝑅𝑓𝐿         (37) 

Where the wetted length L is obtained by integration of Eq. (25): 𝐿 = 2(𝑥1 − 𝑥0) where 

𝑥 = {
𝑥0(𝑦 = 𝑅𝑓)

𝑥1(𝑦 = 𝑅𝑚𝑎𝑥)
. 

Thus, the surface energy of droplets is calculated as 

𝑊 = 𝑊1 + 𝑊2 = 4𝜎𝜋 ∫ 𝑦
𝑑𝑠

𝑑𝑦

𝑅𝑚𝑎𝑥 

𝑅𝑓

𝑑𝑦 + 2𝜎𝜋𝑅𝑓𝐿(1 + cos 𝜃)      (38) 
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Fig. 7. (a) Dimensionless capillary pressure 
𝛥𝑃𝑅𝑓

𝜎
 of unduloidal and nodoidal droplets versus 

dimensionless volume 𝑉
1

3/𝑅𝑓. (b)  Dimensionless surface energy  
𝑊

𝑅𝑓
2𝜎

 of unduloidal and nodoidal 

droplets versus dimensionless volume 𝑉
1

3/𝑅𝑓. 

 

In Fig. 7(b), we plot the dimensionless surface energy 
𝑊

𝑅𝑓
2𝜎

 of unduloidal and nodoidal 

droplets as a function of their dimensionless volume 
𝑉

1
3

𝑅𝑓
. The comparison of this energy 

makes sense only for the wetting case when the contact angle is less than 90°. The dashed 

lines always appear before the solid lines, meaning that the surface energy of the 

nodoidal droplet is always smaller. Therefore, the smaller droplets are always nodoidal. 

Then, increasing the drop volume, the nodoidal drop transforms into an unduloidal drop. 

The energies of these two configurations with the same volume are equal only for limiting 

spherical droplets.  
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3 Experimental validation of the existence of nodoidal droplets  

These experiments aim to confirm the existence of an equilibrium nodoidal drop 

with an inverted meniscus making a contact angle greater than 90o with a fiber. 

Experiments on hundred-micrometer fibers show that an unsupported barreled drop is 

unstable at large contact angles: it transforms into a clamshell drop[8, 18, 19, 21-26]. In 

experiments, the observed barreled droplets were unduloidal, and their transformation 

to clamshells followed the inflection point criterion. Thus, the inflection point criterion 

serves as an indicator for the barrel-clamshell transition. In these experiments, the 

clamshells were small, and the fibers were large enough to support them. We question: 

"What will happen when tens or hundreds of micrometers aerosol drops hit 

submicrometer fibers?" Will non-wettable fiber support axisymmetric drops? To the best 

of our knowledge, no systematic analysis of this scenario when the drop is supposed to 

take on a nodoidal shape has been done so far. It is unclear whether any experimental 

limitation on the fiber diameter and drop size exists to observe these droplets. Therefore, 

it is too early to state that the clamshells are the only stable configuration for large 

contact angles.   

To illustrate the challenges associated with analyses of interactions of droplets 

with fine fibers, we used hydrophobic Basalt fibers (FibreCoat GmbH) of 21 microns in 

diameter. As shown in the Supplementary material, the advancing contact angle that 

water makes with the fiber is greater than 90° and the receding contact angle is 56°. 
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Fig. 8. (a) Water droplets sprayed on the Basalt fiber. Notice that the barreled droplets are 

not axisymmetric. (b) To confirm that gravity is insignificant, the fiber was 180° rotated around 

the fiber axis to flip the top and bottom sides of the drops in (a). Neither barreled droplets nor 

clamshell droplets fall: the bigger bulge from the bottom was safely moved to the top, confirming 

that gravity is insignificant. (c)-(e) An axisymmetric unduloidal drop was increased in size by 

spraying more water droplets on it. It eventually turned into a nonsymmetric drop. (f)-(h) The 

profiles of the upper and lower parts of the droplets extracted with an edge detection LabView 

program "IMAQ Extract Contour VI".  

On these fibers, the water droplets could take on barreled and clamshell shapes, Fig. 

8 (a)-(b). The droplet weight is insignificant: this is proved by rotating the fiber by180° 

about its axis and confirming that the droplets do not change their shape. The noticeable 

asymmetry of the barreled droplets is, probably, caused by the contact angle hysteresis, 
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as explained below. To probe the droplet shape when the contact lines advance over dry 

parts of the fiber, we prepared an unduloidal droplet shown in Fig. 8(c). The upper and 

lower parts of the extracted profile are best fitted with two surface patches of unduloidal 

drops, the upper making 𝜃 = 76.7° and the lower making 𝜃 = 76.2° contact angles with 

the fiber. Within the acceptable experimental error, these angles are very close one to 

the other, confirming that the drop has an unduloidal shape.  

After spraying more water on it, this unduloidal droplet kept its unduloidal shape, Fig. 

8(d): the upper and lower unduloidal surface patches meet the fiber at almost the same 

contact angles, the upper making 82.8°, and the lower making 82.5° contact angles with 

the fiber. A noticeable increase in the advancing contact angle suggests that the end 

menisci meet the drier parts of the fiber relative to those in Fig. 8(c).  

The drop suddenly lost its symmetry after spraying more water on it, Fig. 8(e). The 

upper side of the drop bulges stronger than the lower side. The upper and lower parts of 

the extracted profile cannot be fitted with two surface patches of unduloidal drops. The 

best trial function for fitting the upper part appeared to be nodoidal patch making 𝜃 =

92.3° contact angle with the fiber and the best trial function for fitting the lower part 

appeared to be unduloidal patch making 𝜃 = 62.9° contact angle with the fiber. It is 

understandable that nonsymmetric drop cannot be described by nodoidal or unduloidal 

shapes, but this fitting indicates a trend toward achieving a shape resembling a nodoidal 

drop when the drop volume increases. We were not able to obtain axisymmetric nodoidal 
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droplets by spraying more water: the upper part remained larger until the drop fell down 

under its own weight.  

These experiments illustrate the difficulty of working with micrometer-sized fibers 

and droplets: at this scale, the contact angle hysteresis significantly affects the droplet 

shape[44]. We, therefore, turned to another experimental setup that mimics the drop 

behavior at smaller scales and, at the same time, allows us to work with available fibers.  

Instead of spraying droplets on fibers, we “pierced” a hemispherical droplet 

resting at the end of a capillary tube. These experimental conditions fully satisfy the 

boundary conditions of the model.  

As schematically illustrated in Fig. 9, a drop of water is slowly formed at the end 

of a capillary tube. The fiber was coaligned with the tube axis, and when the drop was 

released, the fiber remained partly inserted inside the tube. When the drop diameter 

becomes equal to the tube diameter, the drop approaches the end of the capillary tube 

horizontally with the slope parallel to the tube axis. This drop mimics one-half of a free-

standing drop on a fiber with the same boundary condition at the equator. According to 

the model and results presented in Fig. 6(d), changing the contact angle at fixed Rmax/Rf , 

one changes the drop volume. 
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Fig. 9. Experimental setup allowing to validate the models of axisymmetric droplets on fibers. A 

syringe pump allowing the user to control the drop volume is connected to a capillary tube. A fiber 

coaligned with the tube axis by a 3D stage is partially inserted in the tube. The tube-fiber system 

is placed under the microscope, and the process of drop release and its evaporation is filmed with 

a camera. The drop profiles at different time moments are shown as dashed lines. The solid line 

selects a hemispherical drop of interest.   

As a capillary tube, we used a 20G medical needle with an outer diameter of 2𝑅 =

 1.27 𝑚𝑚. A stainless-steel rod of 2𝑅𝑓 = 0.170𝑚𝑚 in diameter was used as a fiber. The 

tip of the needle was cut and polished. Thus  𝑅𝑚𝑎𝑥 = 𝑅 = 0.635 𝑚𝑚, and 𝑅𝑚𝑎𝑥/𝑅𝑓 =

7.47 . The rod was coated with a thin layer of microcrystalline wax (Cosmoloid H80, 

Kremer Pigmente GmbH). The measured static contact angle of DI water on the wax was 
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𝜃 = 103° ± 2°. The effect of gravity on the drop shape was negligible as proved by the 

estimated Bond number 𝐵𝑜 =
𝑅𝑚𝑎𝑥

2 𝑔


= 0.028 ≪ 1. All the experiments were performed 

under ambient conditions (22°𝐶– 25°𝐶). 

The advancing contact angles were studied by extruding/withdrawing DI water at 

a controlled rate. Extruding water at the rate 0.014mm3/s and tracking the contact line 

movement, its velocity U=0.0076 mm/s was estimated at the moment when the droplet 

radius reached the needle radius 𝑅 = 𝑅𝑚𝑎𝑥 . This velocity was repeatable from one 

experiment to the other. The receding contact angle was also investigated by tracing the 

movement of the evaporating meniscus. During evaporation, the same condition 𝑅 =

𝑅𝑚𝑎𝑥 was achieved at different velocities ranging from 0.00017 to 0.00045 mm/s. In all 

cases, the capillary number 𝐶𝑎 =
𝑈

𝜎
~𝑂(10−9) − 𝑂(10−7),  ( is the water viscosity), 

was very much smaller than 1, indicating that the capillary forces control the drop shaping. 

Therefore, we consider the droplets to be in a quasi-equilibrium state.  

The photographs of the drops and the results of their fitted profiles are presented 

in Fig. 10. We confirmed that the water drop on the hydrophobic rod takes on an apple-

like shape with the inverted meniscus forming the contact angle =100.5±1.4o (average ± 

standard deviation based on five experiments). Therefore, within experimental error, the 

best-fit profile recovers the measured contact angle. The droplet is nodoidal, indeed. 

When water was slowly withdrawn from the droplet, the nodoidal droplet was 

transformed into an unduloidal droplet with the =56.2o contact angle.  
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The above experiments confirm the existence of a nodoidal drop on a fiber. They 

also demonstrate the possibility of changing the droplet shape by moving the fiber in and 

out from the drop.  

 

Fig. 10. (a-c) A quasi-equilibrium configuration of the droplet: (a) Illustration of the output of the 

fitting algorithm. The drop profile was normalized by the maximum radius of the drop, Rmax. The 
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open dots mark the experimental profile (only every other experimental point is shown, and the 

last fitted point is asterisked); the red horizontal line is the rod surface; the green area is filled 

with the set of theoretical profiles used for searching the best fit by changing contact angles; the 

blue line is the best-fit nodoidal profile ( = 101.9° ). The inset: the goodness of fit (gof, 

Supplementary materials, S4) versus contact angle; the smallest gof is achieved when a nodoidal 

function describes the drop profile with =101.9°. (b) The top view of a water drop with the 

overlaid best-fit nodoidal profile (the yellow line). (c) The photograph was taken at the 80o angle 

with respect to the rod axis to make the inverted meniscus visible. (d-f) A dynamic configuration 

of the droplet: the contact line recedes with the 0.00017mm/s velocity due to the drop 

evaporation; the best-fit unduloidal profile makes the =56.2° contact angle with the rod.   

 

4 Conclusions 

The complete classification of axisymmetric shapes of droplets on fibers has been 

provided for the no-gravity case. In our theory, the wetting properties of fibers were 

varied to cover the entire range of contact angles, from 0° to  180° . The shapes of these 

droplets are described by the Laplace equation of capillarity, a non-linear second-order 

differential equation with very special boundary conditions. This problem can be analyzed 

using the phase portrait shown in Fig. 3(a-b). It is shown that the droplets could take on 

only two possible shapes described by unduloidal or nodoidal surface patches of the two 

constant-mean curvature surfaces.  
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When the contact angle 𝜃 that the drop makes with the fiber of radius 𝑅𝑓 is less 

than 90°, the axisymmetric droplet could be either unduloidal or nodoidal. A nodoidal 

drop could have its maximum radius 𝑅𝑚𝑎𝑥 within the boundaries 𝑅𝑓 < 𝑅𝑚𝑎𝑥 ≤
𝑅𝑓

cos 𝜃
. In 

contrast, unduloidal droplets with the same contact angle should have larger maximum 

radius varying within the range 
𝑅𝑓

cos 𝜃
< 𝑅𝑚𝑎𝑥 < ∞. A spherical droplet of radius 𝑅𝑚𝑎𝑥 =

𝑅∅ =
𝑅𝑓

cos 𝜃
 separates these two configurations. The transition from one configuration to 

the other is monotonous with respect to the drop volume and capillary pressure.  

Unduloidal droplets of maximum radius 𝑅𝑚𝑎𝑥 =
𝑅𝑓(1+sin 𝜃)

cos 𝜃
 have very special 

geometrical meaning: these droplets meet the fiber at the inflection points on their 

profile[23]. This special property directly follows from the parametric analysis of 

unduloidal solutions, Eqs(21)-(23), and is illustrated in Fig. 4.  

An analysis of the free energy of these two types of droplets reveals that the 

surface energy of the nodoidal droplet is always smaller than the energy of unduloidal 

droplets. Thus, the smaller axisymmetrical droplets are always nodoidal, which 

transforms into unduloidal droplets with an increase in the drop volume. The energies of 

these two configurations with the same volume are equal only for limiting spherical 

droplets of radius 𝑅∅ =
𝑅𝑓

cos 𝜃
. 

When the contact angle 𝜃  is greater than 90° , only nodoidal axisymmetric 

droplets could exist.  
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A series of experiments with free-standing droplets obtained by spraying water on 

fibers showed that the barreled droplets with a contact angle greater than 90°could be 

formed on these fibers. However, we could not obtain axisymmetric droplets: most likely, 

the contact angle hysteresis significantly influences the drop formation process. We, 

therefore, turned to a setup where only one contact angle determines the droplet shape. 

By forming a hemispherical drop at the end of a capillary tube and piercing the drop with 

fiber, we were able to satisfy all the boundary conditions required by the Laplace model. 

It was confirmed that the nodoidal apple-like droplets could be repeatably formed. Fixing 

the ratio 𝑅𝑚𝑎𝑥/𝑅𝑓, and withdrawing the fiber from the nodoidal drop, we confirmed that 

an unduloidal drop could be formed and its receding contact angle satisfies the 

theoretically derived condition: cos 𝜃 <
𝑅𝑓

𝑅𝑚𝑎𝑥
.  

The obtained results complete the classification of morphological configurations 

of axisymmetric droplets on fibers and could be used in many applications in fiber science 

and biology [1-6, 45, 46], where one needs to evaluate the possibility of obtaining 

axisymmetric droplets on fibers. The developed theory significantly enriches the existing 

scenario of the formation of drops on fibers by introducing nodoidal solutions of the 

Laplace equation of capillarity. We believe that with the developments in nanotechnology 

and nanofluidics [47-49], where gravity is not significant, or in space exploration 

applications, this theory will be helpful for the design of fluidic devices and fluid 

management with fibrous materials [17, 50-53].  
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Supplementary material 

This material includes the details on the solution of Eq.(21), an explanation of the numeric 

algorithm for calculating unduloidal and nodoidal droplets of the same volume with more 

examples, derivation and analyses of conditions for the existence of nodoidal droplets, 

and protocol for fitting the drop profile. 
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