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Abstract: With the developments in nanotechnology, nanofibrous materials attract great
attention as possible platforms for fluidic engineering. This requires an understanding of
droplet interactions with fibers when gravity plays no significant role. This work aims to
classify all possible axisymmetric configurations of droplets on fibers. The contact angle

that the drop makes with the fiber surface is allowed to change from 0° to 180°. Nodoidal
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apple-like droplets with inverted menisci cusped toward the droplet center and
unduloidal droplets with menisci cusped away from the droplet center were introduced
and fully analyzed. The existing theory describing axisymmetric droplets on fibers is
significantly enriched introducing new morphological configurations of droplets. It is
experimentally shown that the barreled droplets could be formed on nonwettable fibers
offering contact angles greater than 90°. The theory was quantitatively confirmed with
hemispherical droplets formed at the end of a capillary tube and satisfying all the
boundary conditions of the model. It is expected that the developed theory could be used

for design of nanofiber-based fluidic devices and for drop-on-demand technologies.

1 Introduction

Since childhood, droplets of water or glue on spider webs[1-3] and needle-like
leaves[4-6] have captured people's attention. These observations make us wonder how a
drop could find its perfect symmetric shape and stay unperturbed for a long time. These
shapes are not only aesthetically attractive but practically important. Droplets on fibers
are of great interest for inspiration and development of novel fiber-based microfluidics
ranging from fiber-based liquid collectors and fabric-based filters to the fluid delivery
devices[2, 7-10].

The drop shape significantly depends on the wetting properties of materials. In

everyday life, one would think about a flat substrate as wettable by the given liquid if a



drop would make contact angle less than 90° with it. Otherwise, a flat substrate would
be considered non-wettable, implying that the drop could be easily shaded off from it.
This 90° contact angle criterion for wettable surfaces is practically attractive but not
necessarily correct as it comes to the condition of drop detachment[11, 12].

Therefore, the analyses of conditions of wetting and dewetting of flat surfaces
received the deserved attention from physicists and materials scientists, and the 90°
contact angle criterion was corrected to include different physicochemical characteristics
of substrates [11, 13, 14].

One cannot say the same about fibers. Wetting of fibers remained poorly understood
and offers many surprises calling for a special approach in the classification of fiber
wettability [8, 15-20].

Take, for example, a low surface tension oil, which would readily wet a flat surface
and spread over it, forming a puddle, Fig. 1(a) [11]. However, oil would not form a sheath
analogous to a 2D puddle on a fiber made of the same material. When the drop volume
is small, the drop may form an asymmetric clamshell, Fig. 1(b), (d). And when the volume
is large, the drop forms an axisymmetric barrel-like drop, Fig. 1(c), (e). The analysis of this
clamshell-barrel transformation has been rigorously studied, yet a clear picture of the
mechanism of this transformation has yet to emerge [8, 17-19, 21-26].

Surprisingly, unlike flat substrates, where a spherical cap is the basic drop

configuration in the absence of gravity, only one spherical drop could meet the fiber at

R
the given contact angle, Fig. 1 (f-g). For this spherical drop, the radius Ry = ﬁ is fully
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determined by the contact angle 6 and the fiber radius Rs. To allow the change of the
drop volume, one has to consider some other droplet shapes. This makes the problem of

surface characterization of fibers very difficult as one has first to determine the drop

shape and only after that calculate the contact angle.

(8)

Fig. 1. (a) Adrop of a wetting liquid spreads on a flat surface. On a fiber made of the same material,

the same drop may form either a clamshell drop (b) or a barreled drop (c). The shape of the



barreled drop with its maximum radius R is controlled by the contact angle (8), the fiber radius
Ry and the droplet volume. (d) Side view of clamshell and (e) barreled water drops sitting on a
nylon fiber with a diameter of 2Ry = 100 um. (f) The drop may form a sphere if and only if the
contact angle (), the fiber radius Ry and the drop radius are related as Ry = % . All these

parameters are defined in (g).

Joseph Plateau was, probably, the first to rigorously study the spontaneous formation
of the barreled droplets on fibers; his research inspired Lord Rayleigh, who studied
dynamic phenomena associated with this process[27, 28]. The phenomenon of the
inherent instability of cylindrical liquid bodies has been named after Plateau and is known
as the Plateau instability. D'Arcy Wentworth Thompson found very many applications of
this fundamental work to biology[29]. Since then, the spontaneous formation of droplets
by fibrous materials has attracted attention of biologists and engineers[1, 15-17, 30-32].

While the Plateau instability received great attention from fluid mechanicians and
materials scientists [33, 34], a rigorous classification of axisymmetric shapes of droplets
on fibers is lacking. Yet, it is in high demand [8, 18-20, 23, 24]. Carroll[35] postulated that
the profiles of the barreled drops must be described by unduloids[36, 37], a family of
constant mean curvature surfaces.

Surprisingly, to the best of our knowledge, the other family of constant mean
curvature surfaces, nodoids[36, 37], has never been investigated. This family of solutions
becomes important as the fiber size decreases to micrometers and below micrometers,

and the effects of droplet weight diminish. For example, one can think about aerosol
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droplets captured by a nanofiber in a filter and question whether a non-wettable fiber
could capture and hold such a drop. To answer this question, consider a drop with the
surface tension o resting on a fiber. The energy (per unit surface area of the fiber )
required to detach the droplet from the fiber is equal to the work of adhesion W,,; =
o(1 + cos 0). This energy is always finite unless 8 = 180°. Thus, the droplet is always
attracted to the fiber, and one can assume that the large droplets would be able to wrap
up the non-wettable fiber with 8 > 90°. These arguments motivated us to study all
possible shapes of axisymmetric droplets on fibers, assuming that gravity is unimportant.

We investigated nodoidal and unduloidal droplets and determined the transition from
one family to another. The critical radius Ry serves as a characteristic scale for the
problem as it naturally couples the fiber radius with the contact angle characterizing the
wetting properties of fibers. We use this characteristic radius in our analysis by scaling the
drop sizes. It is shown that the Carroll choice of unduloidal droplets has its limitations. To
describe all possible wetting scenarios, one needs to include nodoidal droplets. Nodoidal
droplets significantly enrich the family of barreled axisymmetric droplets. The fibers could
be completely wrapped up by these droplets even if the droplets make contact angles
greater than 90°. We attempted to validate the theory experimentally and confirmed that
the nodoidal apple-looking droplets with inverted menisci could be observed in

experiments at predictable conditions.



2 Equilibrium shapes of droplets on fibers

2.1 Laplace law for axisymmetric droplets
The equilibrium droplets have constant pressure P~ everywhere inside the liquid
body. The difference between P~ and pressure P in the surrounding fluid is defined by

the Laplace law of capillarity as[36-39]:

P~ —-Pf =o¢ i+i (D
R, ' R,

where R, and R, are the two principal radii of curvature, and o is the interfacial tension
between phases. In applications to axisymmetric droplets on fibers, the two principal radii

of curvature at an arbitrary point A on the drop surface are introduced in Fig. 2.

o

(b}

B ===

Fig. 2. Schematic illustrating the principal radii of curvature calculated at point A on the droplet
surface. The first principal radius of curvature R; = AC in Fig. 2(a) is merely the curvature of the
plane curve AA” . The center of curvature C lies on the ray AB passing through the outward
normal vector n. The curvature of the plane curve AA” is found as 1/Ry = dy/ds, where angle
y is defined as the angle that the ray AB makes with the axis of symmetry x; s is the arc length

along the generator curve AA'. The relation between the incremental change of dy and ds as the
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observer moves from point A to point M along the generator AA'is derived using the schematic
in Fig. 2(b). The second principal radius of curvature R,. is obtained by continuing the ray AB
along the normal vector n until it intersects the fiber axis at point B in Fig. 2(a). Noticing that the
angle DBA = y of the right triangle ADB is related to the inclination angle /2 — y formed by
the tangent at point A with the x —axis, one can relate |[AB| = R, with the drop radius y at point
Aas R, = y/siny. For point 4, pinned to an egg-like surface patch, both centers of principal
curvatures, C and B, are found inside the drop; the curvatures are defined as positive. For point
A’ pinned to a saddle-like surface patch, the centers of curvatures C’ and B’ are separated by the
generator AA’; therefore, one curvature is positive, and the other is negative with respect to the
n direction. For example, when the drop wets the fiber completely, making zero contact angle, an
infinitesimally small patch on the meniscus near the fiber looks like a saddle, and the curvature

1/R,, |R,| = |B'A'|, is positive. Another curvature, 1/R, , |Ry| = |A'C'|, is negative.

The drop is obtained by rotating the generator, a plane curve AA’, y = y(x), in Fig.
2, around the x-axis. Taking an arbitrary point A at the droplet surface and drawing the
outward normal vector n, we define the two principal radii of curvature, R, and R, by
continuing the ray shown as the dashed line along the normal vector, Fig. 2. As explained

in the figure caption, the two principal radii of curvature are defined as

ds

R, =|AC| =— , 2
R =2 . 3)
siny



Turning to the right triangle AML and noticing that the angle AML in Fig. 2 (b) is equal
to y, and the side ML of this triangle is equal | ML | = dy, we have

dy 1 dy dydy dy
’ﬁ —_— ==
cosy Ry, ds dyds dy

ds = 0sYy. (4)

it is convenient to introduce dimensionless variables and new notations as
X =xAP/o, Y = yAP/o,S = sAP /o, where AP/c = (P~ — P*) /o. (5)
Substituting Egs. (3) and (4) into the Laplace equation Eq. (1) and using normalization
(5), we obtain 1 = L cosy + =si
, we obtain 1 = ——-cosy +_siny, or
_ v -
Y = YdY cosy + siny. (6)

2.2 Two families of the constant mean curvature surfaces and how to distinguish one
from the other
Equation (6) can be integrated as follows. First, we notice the following identity

d(Ysiny)=Y cosydy +sinydY . Therefore, by dividing this differential by d¥, one obtains

dy d(Ysiny) _
Ycosy—=———~—siny, 7
7dY 77 /4 (7)

Substituting Eq.(7) in Eq. (6), we have

y =250 siny + siny, (8)
day
After simplification, Eq.(8) is represented as ¥ = —d(y;}i,ny), or



YdY = d(Y siny). (9)

Integrating Eq.(9) , one obtains the explicit solution
. 1.,
Ysiny==Y"+C,
2 (10)
Where Cis an integration constant. Equation (10) is quadratic with respect to Y. Hence it

has two different solutions for a given y. The real-valued solutions are determined by
analyzing the discriminant D =sin® y —2C . This straightforward analysis, Fig. 3(a), leads

to the following conclusions.

All solutions of Eq.(10) are divided into two families, Fig 3 (b). When constant C
varies between 0 < C < 1/2, the surfaces of this family correspond to unduloids, Fig. 3
(c). When the constant C is negative C < 0, the surfaces of this family correspond to
nodoids, Fig. 3 (e). These two families of constant mean curvature surfaces [37, 40] will
be used to describe the drop configurations on fibers. We will distinguish these families

by the integration constant C.

To plot these surfaces, the Laplace equation (1) is parameterized by the arclength

S and rewritten as a set of the following first-order differential equations:

ax . ay d sin . .
5 = Siny,—~ = cos y,d—)sl =1- Ty For plotting these surfaces, we used the following

initial conditions: X(0) = 0,y(0) = /2 and to find the initial condition for Y(0), we

solved Eq.(10), Y(0) = [Y(0)]?/2 + C for the given C. Some examples of the 2D sections

of these surfaces are shown in Fig. 3 (c, e) by first plotting the numerical solution
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(X(S5),Y(S)) and then using its mirror-symmetric image (X(S),—Y(S)) to show the

boundaries of the enclosed area.

@

Fig. 3. (a) The behavior of discriminant D =sin® y —2C as a function of y when the constant C

is positive. The dashed blue curve corresponds to C = 0; the green curve, C = 0.1; the red curve,

C = 0.3; the black curve, C = 0.45. In contrast to the other curves, the magenta curve
11



corresponding to C = 0.5 touches the y axis only at one point, y; = m/2. (b) The two different
types of solutions to Eq.(10). The continuous curves propagating from negative to positive infinity
without loops correspond to one family of solutions, the nodoids. The closed loops correspond to
the other family of solutions, the unduloids. The dashed blue curve corresponds to C = 0; the
green curve, C = 0.1; the red curve, C = 0.3; the black curve, C = 0.45; the discrete magenta
dots correspond to, C = 0.5; the purple curve, C = —0.1, the Alice blue curve, C = —0.3; the
light green curve, C = —0.5. (c) Unduloids are plotted for Y(0) = 0, 0.105, 0.225, 0.367,
corresponding to C=0, 0.1, 0.2, 0.3, respectively. Only one limiting circle (C=0) is shown. Observe
how the neck diameter changes with the variation of these parameters. (d) Application of the
unduloidal solutions for the description of droplets on fibers. In an unduloidal drop on a fiber of
radius Ry , the neck of radius R,;, is “hidden” inside the fiber. One can introduce the droplet
radius as the maximum height of the unduloid bulge, R;,q., and the contact angle 6 at the
contact line, point C. (e) Nodoids are plotted for Y (0)=0, -0.0954, -0.1832, -0.2649 corresponding
to C=0, -0.1, -0.2, -0.3, respectively. Observe how non-physical knots form as one varies these
parameters. (f) Application of the nodoidal solutions for the description of droplets on fibers. In a
nodoidal drop on a fiber of radius R¢, the knot and the neck of radius R,;, must be “hidden”
inside the fiber. One can introduce the droplet radius as the maximum height of the nodoid bulge,

Rax @and the contact angle 8 at the contact line, point C.

2.3 Unduloidal droplets
We assume that there is a unduloidal drop sitting on a fiber with radius R, and the

drop forms contact angle 8 with the fiber surface, Fig. 3 (d).
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At the neck of the unduloid (point A in Fig. 3(d)), we have ¥y =§ andy = Run -

Therefore, Eqg. (10) is written as

AP _, o
Rinin = %Rmin + ﬁc' (11)
At the bulge of the unduloid (point B in Fig. 3(d)), we have y = g aty = Roax-

Therefore,

AP ) o
Rpax = %Rmax + EC- (12)

Solving these two equations (11) — (12) for the pressure drop, we immediately

obtain
20
AP =———— (13)
Rmax + Rmin
Solving for constant C, we have
2
C = APRmin _ E(E) ernin — ZRmamein . (14)
o 2\ o (Rmax + Rmin)2

Since Ryqx > Rmin > 0in Eq. (13), the pressure drop in the unduloid is always
positive suggesting that the pressure inside unduloid is always greater than the pressure
in the surrounding fluid. Moreover, investigating Eq. (14), we confirm that the constant
varies between 0 < C < 1/2. As R,;,;, — 0, the unduloid transforms into a sphere, and
the constant C goes to zero; as Ry,in = Rpax, the unduloid transforms into a circular
cylinder, and the constant C goes to 1/2. Thus, Eq. (10) contains all possible unduloidal

solutions.
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2.4 Profile of unduloidal drop

We can apply the unduloidal solution (10) to describe the profile of the drop on fiber.
In the general case of unduloidal solution, the neck of the unduloid describing the drop is
invisible, Fig. 3(d). Therefore, to use Eq. (13) — (14) the neck radius has to be
determined. We apply Eqg. (10) to find it at the fiber surface where the drop meets the
fiber at contact angle 6.

At the contact line between the unduloidal drop and fiber (point C in Fig. 3 (d)), we
havey = g— 6 at y = Ry. Therefore,

R, si (E—e)—ER%ic (15)
732 207 AP

Solving Eq. (12) and Eq. (15) for pressure drop AP, we find the following expression

Rppax — Ry cos @

AP =20
Rlznax - RJZ

(16)

Substituting Eq. (16) in Eq. (13), the neck radius of the unduloid can be rewritten in
terms of observable parameters

Rlznax - sz _
Rppax — Ry cos 6

Rmax : (17)

Rmin =

Similarly, C can be rewritten as,

2RmaxRy (Rmax — Ry cos 9)(Rmax cosf — Rf)

C = 5
(R]g - ernax)

(18)

In order to ensure the existence of an unduloidal drop on fiber, we have to guarantee

that the following conditions are met:

14



1) The neck radius of the unduloid must be positive and smaller than the fiber radius.
ernax - R]g

0<Rpin <R, ,=0< -
min = TS Rmax — Ry cos 0

Rimax < Ry (19)

2) The bulge of the unduloid must be above the surface of the fiber, Ry < R4y
3) In conditions 1-2, the contact angle 6 is allowed to change from 0° to 90°;
therefore, 0 < cosf < 1.
Solving the left-hand side of the inequality (19) for R4, with constraints Ry <
Ryax &0 < cosf < 1, we have

Ry
cos @

< Rpax - (20)

Solving the left-hand side of the inequality (19) for R,,,x, We have cos 8 < 1, which
holds. Thus, Ry < % holds. Thus, for the given contact angle 6 that varies from 0° to
90°, we can always find an unduloidal drop. The maximum radius of this drop must be
Ry

greater than the radius of the limiting sphere, vl
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2.5 Relation between the capillary pressure and the size of unduloidal droplets on

fibers

R
The unduloidal drop of limiting radius R4, = ﬁ has a very special geometrical

meaning. Substituting Ry,qx =

corresponds to the case when the unduloid turns into a sphere. Since R4 =

in Eq. (18), we find € = 0. This constant C=0

Ry

cos @

specifies the smallest possible radius of unduloidal drop, Eq. (20), this radius % sets up

the boundary of the existence of unduloidal droplets on fibers. Below the curve n =

13] D4

0,356

nar

0.26

0 n2F

cos@
shown in Fig. 4 (b), no unduloidal droplets can exist.
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Fig. 4. (a) The dependence of constant C on the ratio Ry, /Ry at different contact angles.

The hollow triangles label the maximum values of C. The asterisks correspond to the spherical

R
droplets of radius Ry,,5, = ﬁ meeting the fiber surface at the given contact angle 6. (b) The

dashed curve specifies the boundary C,,,4, Wwhere the maximum values of integration constant C,

the hollow triangles in (a), have been reached. The critical ratio % = ﬁ specified by the dash-
f

dotted curve corresponds to the boundary where the unduloidal drop becomes spherical. Below
this curve, no unduloidal droplets can exist. The insert shows the dependence of C,;,4, On the

. . . APR
contact angle as follows from Eq. (23). (c) Dimensionless capillary pressure Tf Versus

max

. , . . R . . .
dimensionless radius of unduloidal drop . (d) The constant C versus dimensionless capillary
f

APR
pressure Tf . The contact angles are the same as those in (c). The hollow triangles correspond
to the maximums of C-curves. The asterisks correspond to the spherical droplets with the radius

Rpax = % and capillary pressure AP = 2acos 6/ Ry.

As discussed earlier, the constant C fully specifies the shape of an unduloid. For an
unduloidal drop on fiber, this constant is fixed by R4, , see Eq. (18). Therefore, we are
able to investigate the dependence of C on Ry, -

In Fig. 4(a), we plot C versus dimensionless drop radius R,,,. /Ry at different contact
angles. Owing to constraint (20), each curve has a unique beginning point R4, =
R¢/ cos 8, asterisked in Fig. 4(a). Surprisingly, the plots show that constant C changes

with the size of the unduloidal drop non-monotonously. Moreover, the maximum value
17



of C is not necessarily %. The hollow triangles in Fig. 4(a) label the maximum peaks on
each curve. This non-monotonous dependence suggests that each C selects not a single

unduloid but two different unduloids with different R, -

ZRmafo(Rmax)(Rmax cos @) .
2 2 -
(Rmax)

When R, goes to infinity, C approaches zero as C =

Rf cos 8 /Rpax — 0. Again, this constant € = 0 corresponds to the case when the
unduloid turns into a sphere. Thus, we have two limiting spheres, one has a finite radius

R P .
ﬁ, and another has an infinite radius.

The non-monotonicity of constant C on the maximum radius of unduloidal droplet
calls for establishing a selection principle for the given unduloid as a possible model of a
droplet resting on a fiber. Taking the partial derivative of C, Eq. (18), with respect to R, 4,
we analyze the dependence of the drop radius R,,,,, corresponding to the maximum of C

as a function of contact angle 9:

0C  2Rg[cos 6 (Rf + 6RFR%ax + Riax) — RpRinax(cos 26 + 3)(RF + Ryax )]
ORpmax (R? - Rzy)’

Or
cos 6 (1 + 6n* + n*) —n(cos 26 + 3)(1 +n?) = 0, where n = Ry0x/Ry.

(21)

Equation (21) has to be solved with constraints 0 < Rf < R0, & 0 <6 < g As

shown in Supplementary materials, Eq.(21) has a unique solution:
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_ 1+sin@ _Rf(1+sin9)

max

(22)

cos @ cos @

Substituting Eq. (22) back into Eq. (18), we find a relation between contact angle 6
and the maximum value of C,

cos? @
Crnax = 7 (23)

The relations expressed by Eq. (22) is plotted in Fig. 4 (b), and Eq. (23) is plotted in the
insert of Fig. 4 (b).

We notice that Eq. (22) specifies the radius of unduloidal drop having the contact
angle with the fiber equal to the inflection angle of an unduloid[41, 42]. In other words,
when C = Cpqy, the fiber radius Ry and the radius R, of the point where the curvature
of the generator changes its sign coincide. Carrol conjectured that when Ry = R;;,¢, an
unduloidal drop should be unstable and would turn into a clamshell[22]. The relation
between R;,r and 6 was later corrected by McHale’s group(23, 43].

Thus, the area bounded by the dashed and dash-dotted curves in Fig. 4(b),
corresponds to the unduloidal droplets with ascending C in Fig. 4(a). The unduloidal
droplets with larger radii, including the infinitely large spherical droplet, sit above the
dashed curve. Moreover, the dashed curve is the inflection point condition for an
unduloidal drop: the droplets with radii greater than the dashed boundary will always
contain a meniscus where the curvature changes its sign. The sign of the curvature of

smaller droplets sitting below the dashed curve remains the same.
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APR
We further plot the dimensionless capillary pressure Tf as a function of the ratio

Rmax

R, Fig. 4(c). This dependence appears monotonous. Therefore, we can re-parametrize
f

) . . . APR . APRf.
C as a function of dimensionless capillary pressure Tf This dependence C (Tf) is

shown in Fig. 4(d). In both graphs, Fig. 4(c) - (d), the capillary pressure approaches zero
when R4, goes to infinity.
2.6 Profile and volume of unduloidal drop

To find the unduloid profile, we rewrite Eq. (6) in the form

d dx 1
d—i/=coty=>5=tany= —siny (1 —sin?y)7z . (24)
. o . _ AP Co1 .
Using the first integral, siny = v + Py we then obtain
2] 2
dx (AP +C 1)1 (AP +C 1) 25)
dy 267 " g y 267 " g y '

where C is defined by Eq. (18) and AP is defined by Eq. (16). The differential equation (25)
can be numerically integrated from Ry to Rpq, Using MATLAB ODE45 to provide the
droplet shape, Fig. 5(a).

Hence, we can use MATLAB to integrate the function x(y) of the unduloid and to get

its volume.

Rmax

, dx 2
V =2m y @dy — 2mRf (xn-ght - xleft) , (26)
Rp

where x;. ¢ and X, 45, are positions of the left and right contact lines.

20



R
Thus, by varying the drop size R4, from ﬁ to infinity, we can calculate the volume

of unduloidal drops at any specific contact angle 6. Figure 5 (b) shows how the volume of
an unduloidal drop changes. Again, the hollow triangles label the points where C reaches
its maximum peak value corresponding to the inflection point criterion, and the asterisks
correspond to the spherical drop forming the given contact angle with the fiber.

Using the algorithm explained in the Supplementary material, we numerically
obtained a series of unduloids of fixed volume with different contact angles, Fig. 5(c).

The relation between the capillary pressure and unduloid volume is plotted in Fig. 5
(c). The smallest unduloid is a spherical drop (see asterisks in Fig. 5), with a maximum
capillary pressure 20 cos 6 /R¢. The capillary pressure decreases monotonously with an

increase in the drop size.

{al (B . )

3

Fig. 5. (a) Unduloidal droplets of constant volume R—VO = 0.0144 making different contact angles
f

with the fiber. (b) The dimensionless volume of an unduloidal drop plotted as a function of

dimensionless drop radius. The insert shows this dependence for smaller Ry, /Ry ratios. No
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3
unduloidal drops of vqume‘Ié—V—O > 40 making 85° with the fiber exist. (c) Dimensionless capillary
f

pressure versus dimensionless drop volume.

2.7 Nodoidal droplets
Consider a nodoidal drop sitting on a fiber of radius R¢. The drop forms a contact angle
6 with the fiber surface, Fig. 3(f).

At the neck of the nodoid (point A in Fig. 3(f)), we have y = —g and y = Rin.

Therefore, Eqg. (10) is written as

AP ) o
—Rpmin =5—R

P min+ﬁc' (27)

At the bulge of the nodoid (point B in Fig. 3(f)), we have y = gand Y = Rax- Then,

AP ) o
Rypax = %Rmax + EC- (28)

Solving these two equations (27) — (28) for the pressure drop AP and C separately,

we obtain

20
AP = ———— (29)

Rmax - Rmin

C=— ZRmax Rmin —. (30)
(Rmax - Rmin)

Comparing (13) with (29), one observes that the unduloidal drop of radius R4, will
always have smaller capillary pressure than that of a nodoidal drop of the same R, 4-
The capillary pressure in nodoidal drop is still positive, i.e. the pressure in the nodoidal

drop is greater than the pressure in the surrounding fluid.
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2.8 Parameters of nodoidal drop on a fiber
To specify the nodoidal droplet, we must relate R,,;, with the fiber radius and droplet

contact angle 6. At the contact line between nodoidal drop and the fiber (point C in Fig.

3(f)), we havey = % — 0 aty = Ry. Therefore,
T AP o
' — 2
Rf““(i_e)—% f+—C. (31)

Using (28) to eliminate C, we obtain from (31):

Rppax — Ry cos 6

AP =20
ernax - R]g

(32)

Then, using the pair of equations (27) and (31) to eliminate C, and Eq. (32) to

express AP via R, we find

_ Re(Ryax cos 8 — Ry)

min —

33
Rf cos 0 — Ry (33)

Similarly, C is found as,

RimaxRr(Rr €050 — Riax ) (Ry — Rigyx cos 6)

C= >
(sz - ernax)

(34)

2.9 Parametric analysis of the nodoidal droplets

In order to ensure the existence of a nodoidal drop on a fiber, we have to satisfy the
following conditions:
1) The neck radius of the nodoid must be positive and smaller than the fiber radius.
2)The bulge of nodoid must be located above the fiber's surface.

3) The contact angle 8 is allowed to change from 0° degrees to 180°, —1 < cos 8 < 1.
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As proved in Supplementary material, for the given contact angle 8 that varies from

0° to 90° degrees, a nodoidal drop could have its maximum radius R,,,, within the
boundaries Ry < Rpqx < %. For contact angles within the range 90° < 8 < 180°, no

restriction on R,,,, exists. In contrast to the unduloidal droplets, the constant C of
nodoidal droplets is a monotonous function of n (see the proof in Supplementary
material and the insert in Fig. 6 (c)).

Substituting C , Eq. (34), and AP, Eq. (32), into differential equation (25), the profile
of nodoidal droplet x(y) is obtained numerically by integrating this differential equation
from Rf to Ry,qx Using MATLAB ODE45, Fig. 6 (a-b); the volume of nodoidal drop is
calculated using Eqg. (26). Following the same algorithm for finding the droplets of equal
volume (Supplementary materials, S2), we plot the profiles of nodoidal droplets forming

different contact angles with the fiber, Fig. 6(a). This set of nodoidoidal droplets is

R
obtained by first searching for a spherical drop with the radius ﬁ and contact

angles 8 < 90° . For example, when 6 = 61.75°, the corresponding dimensionless

volume is equal to 3 and this limiting droplet is shown by the dashed line in Fig. 6 (a).
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Fig. 6. (a) Nodoidal droplets of the same volume cannot make arbitrarily chosen contact
angles with the fibers. In this example of droplets of dimensionless volume equal to 3, no nodoidal
droplets making 30° or 50° with the fiber exist. The black dashed line shows the profile of a
nodoidal drop having the smallest possible contact angle 61.75° among the drops of the same
volume. (b) A series of nodoidal and unduloidal droplets with different volumes having constant
Rpnax/Rr and making different contact angles with the fiber. The dashed curves show nodoidal
droplets, while the solid curves show the unduloidal drops of the same dimensionless radius

making 30° and 50° degrees contact angle with the fiber when no nodoidal droplets exist. (c)
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Rf '

. . . APR . . . .
Dimensionless capillary pressure L versus dimensionless radius of nodoidal drop

o
R R
asterisks in this series of graphs correspond to R4, = |$| Notice that though the ratio |ﬁ|

R —Rfcos@ . i
—max T is different
Rmax_Rf

for 8 = 30° and 150° is the same, the capillary pressure AP = 20
because of the different signs of cosine. The insert shows the dependence of constant C on
Rimax /Ry for nodoidal droplets making different contact angles with the fiber. In contrast to

unduloidal droplets, this dependence is always monotonous. The asterisks correspond to Ry,q =

Ry
cos 6

. (d) Dimensionless volume of nodoidal droplets as a function of Ry, /Ry. The asterisk

1

corresponding to the spherical drop having the 85° contact angle is out of range (? > 8). (e)
f

. . . APR i i 1 )
Dimensionless capillary pressure Tf versus dimensionless volume V3/R; . The asterisk

1

corresponding to the spherical drop having the 85° contact angle is out of range (? > 8).
f

. . . ) APR
The dimensionless capillary pressure of nodoidal drop Tf decreases monotonously

from infinity to 2 cos 6 when R4, increases from Ry to infinity, Fig. 6(c).

The volume of nodoidal droplets as a function of the dimensionless radius of the drop
is shown in Fig. 6(d).

The relation between the capillary pressure and volume of nodoidal droplet is plotted

in Fig. 6 (e). The asterisks correspond to the droplets with R, = |%| with capillary

pressure
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20 cos 6

- (0° < 6 < 90°)
AP = ) . (35)
9 Rmax=Ry cos6 (90° < 6 < 180°)

2 2
Rmax_Rf

The capillary pressure decreases monotonously with the drop size.

2.9 Transition between unduloids and nodoids

As shown, nodoidal and unduloidal droplets represent two families of axisymmetric
droplets that could potentially rest on the fibers. Figure 7 (a) shows the relations between
the dimensionless capillary pressure and dimensionless drop volumes for these solutions
at the fixed contact angles specified by different colors. The solid curves represent
unduloidal droplets, and the dashed curves represent nodoidal droplets. In unduloidal
droplets, two markers indicate two limiting cases. The asterisks mark limiting spherical
drops; the hollow triangles correspond to the drop with an inflection point at the contact
ling, i.e., the point where the unduloidal drop has a maximum value of C.

As expected, the curves for unduloidal and nodoidal droplets merge when these two
solutions approach their shared spherical drop with radius Ry,,x = Ry = Ry/cos 8. The
continuity of curves in Fig. 7(a) indicates that the nodoidal droplets could spontaneously
transform into the unduloidal droplet when the droplet volume increases above the

limiting volume corresponding to the volume of the limiting spherical droplet.
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Accordingly, the capillary pressure of smaller nodoidal droplets is always greater than that
of the larger unduloidal droplets.

We further analyze the surface energy of unduloids and nodoids. The surface energy,
W, of a drop on the fiber includes two parts: 1) interfacial energy between the drop and
surrounding fluid, W; = 0Agyop, Where Agrop is the surface area of the drop. 2) The work
of adhesion between drop and fiber, W, = (1 + cos 0)Asper, Where Agjper is the
wetted area of the fiber under the drop.

The surface area Agy-op is determined by integrating the following equation,

Rmax

ds
Adrop =4n f y@dy (36)
Rp

The wetted area of the fiber under the drop is calculated as
Afiber = ZﬂRfL (37)
Where the wetted length L is obtained by integration of Eq. (25): L = 2(x; — x,) where

_ Xo(y = Rf)
*= {xl(y = Rmax).

Thus, the surface energy of droplets is calculated as

Rmax
ds
W=Ww,+W, =4on j yady + 20mR¢L(1 + cos 6) (38)

Ry
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Fig. 7. (a) Dimensionless capillary pressure Tfof unduloidal and nodoidal droplets versus

1
dimensionless volume V3 /Ry. (b) Dimensionless surface energy % of unduloidal and nodoidal
f

1
droplets versus dimensionless volume V3 /Ry.

In Fig. 7(b), we plot the dimensionless surface energy % of unduloidal and nodoidal
7

1

. L. . V3 . .
droplets as a function of their dimensionless volume " The comparison of this energy

makes sense only for the wetting case when the contact angle is less than 90°. The dashed
lines always appear before the solid lines, meaning that the surface energy of the
nodoidal droplet is always smaller. Therefore, the smaller droplets are always nodoidal.
Then, increasing the drop volume, the nodoidal drop transforms into an unduloidal drop.

The energies of these two configurations with the same volume are equal only for limiting

spherical droplets.

29



3 Experimental validation of the existence of nodoidal droplets

These experiments aim to confirm the existence of an equilibrium nodoidal drop
with an inverted meniscus making a contact angle greater than 90° with a fiber.
Experiments on hundred-micrometer fibers show that an unsupported barreled drop is
unstable at large contact angles: it transforms into a clamshell drop[8, 18, 19, 21-26]. In
experiments, the observed barreled droplets were unduloidal, and their transformation
to clamshells followed the inflection point criterion. Thus, the inflection point criterion
serves as an indicator for the barrel-clamshell transition. In these experiments, the
clamshells were small, and the fibers were large enough to support them. We question:
"What will happen when tens or hundreds of micrometers aerosol drops hit
submicrometer fibers?" Will non-wettable fiber support axisymmetric drops? To the best
of our knowledge, no systematic analysis of this scenario when the drop is supposed to
take on a nodoidal shape has been done so far. It is unclear whether any experimental
limitation on the fiber diameter and drop size exists to observe these droplets. Therefore,
it is too early to state that the clamshells are the only stable configuration for large

contact angles.

To illustrate the challenges associated with analyses of interactions of droplets
with fine fibers, we used hydrophobic Basalt fibers (FibreCoat GmbH) of 21 microns in
diameter. As shown in the Supplementary material, the advancing contact angle that

water makes with the fiber is greater than 90° and the receding contact angle is 56°.
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Fig. 8. (a) Water droplets sprayed on the Basalt fiber. Notice that the barreled droplets are
not axisymmetric. (b) To confirm that gravity is insignificant, the fiber was 180° rotated around
the fiber axis to flip the top and bottom sides of the drops in (a). Neither barreled droplets nor
clamshell droplets fall: the bigger bulge from the bottom was safely moved to the top, confirming
that gravity is insignificant. (c)-(e) An axisymmetric unduloidal drop was increased in size by
spraying more water droplets on it. It eventually turned into a nonsymmetric drop. (f)-(h) The
profiles of the upper and lower parts of the droplets extracted with an edge detection LabView

program "IMAQ Extract Contour VI".

On these fibers, the water droplets could take on barreled and clamshell shapes, Fig.
8 (a)-(b). The droplet weight is insignificant: this is proved by rotating the fiber by180°
about its axis and confirming that the droplets do not change their shape. The noticeable

asymmetry of the barreled droplets is, probably, caused by the contact angle hysteresis,
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as explained below. To probe the droplet shape when the contact lines advance over dry
parts of the fiber, we prepared an unduloidal droplet shown in Fig. 8(c). The upper and
lower parts of the extracted profile are best fitted with two surface patches of unduloidal
drops, the upper making 8 = 76.7° and the lower making 8 = 76.2° contact angles with
the fiber. Within the acceptable experimental error, these angles are very close one to
the other, confirming that the drop has an unduloidal shape.

After spraying more water on it, this unduloidal droplet kept its unduloidal shape, Fig.
8(d): the upper and lower unduloidal surface patches meet the fiber at almost the same
contact angles, the upper making 82.8°, and the lower making 82.5° contact angles with
the fiber. A noticeable increase in the advancing contact angle suggests that the end
menisci meet the drier parts of the fiber relative to those in Fig. 8(c).

The drop suddenly lost its symmetry after spraying more water on it, Fig. 8(e). The
upper side of the drop bulges stronger than the lower side. The upper and lower parts of
the extracted profile cannot be fitted with two surface patches of unduloidal drops. The
best trial function for fitting the upper part appeared to be nodoidal patch making 8 =
92.3° contact angle with the fiber and the best trial function for fitting the lower part
appeared to be unduloidal patch making 8 = 62.9° contact angle with the fiber. It is
understandable that nonsymmetric drop cannot be described by nodoidal or unduloidal
shapes, but this fitting indicates a trend toward achieving a shape resembling a nodoidal

drop when the drop volume increases. We were not able to obtain axisymmetric nodoidal

32



droplets by spraying more water: the upper part remained larger until the drop fell down
under its own weight.

These experiments illustrate the difficulty of working with micrometer-sized fibers
and droplets: at this scale, the contact angle hysteresis significantly affects the droplet
shape[44]. We, therefore, turned to another experimental setup that mimics the drop

behavior at smaller scales and, at the same time, allows us to work with available fibers.

Instead of spraying droplets on fibers, we “pierced” a hemispherical droplet
resting at the end of a capillary tube. These experimental conditions fully satisfy the

boundary conditions of the model.

As schematically illustrated in Fig. 9, a drop of water is slowly formed at the end
of a capillary tube. The fiber was coaligned with the tube axis, and when the drop was
released, the fiber remained partly inserted inside the tube. When the drop diameter
becomes equal to the tube diameter, the drop approaches the end of the capillary tube
horizontally with the slope parallel to the tube axis. This drop mimics one-half of a free-
standing drop on a fiber with the same boundary condition at the equator. According to
the model and results presented in Fig. 6(d), changing the contact angle at fixed Rmax/Rf,

one changes the drop volume.
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Camera

Microscope

Capillary tube -, Fiber

3D stage

To syringe pump

Fig. 9. Experimental setup allowing to validate the models of axisymmetric droplets on fibers. A

syringe pump allowing the user to control the drop volume is connected to a capillary tube. A fiber
coaligned with the tube axis by a 3D stage is partially inserted in the tube. The tube-fiber system
is placed under the microscope, and the process of drop release and its evaporation is filmed with
a camera. The drop profiles at different time moments are shown as dashed lines. The solid line

selects a hemispherical drop of interest.

As a capillary tube, we used a 20G medical needle with an outer diameter of 2R =
1.27 mm. A stainless-steel rod of 2Ry = 0.170mm in diameter was used as a fiber. The
tip of the needle was cut and polished. Thus R4 = R = 0.635 mm, and Ry,qx /Ry =
7.47. The rod was coated with a thin layer of microcrystalline wax (Cosmoloid H80,

Kremer Pigmente GmbH). The measured static contact angle of DI water on the wax was
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6 = 103° + 2°. The effect of gravity on the drop shape was negligible as proved by the

estimated Bond number Bo =

2
—Rm‘Z‘pg = 0.028 K 1. All the experiments were performed

under ambient conditions (22°C-25°C).

The advancing contact angles were studied by extruding/withdrawing DI water at
a controlled rate. Extruding water at the rate 0.014mm?3/s and tracking the contact line
movement, its velocity U=0.0076 mm/s was estimated at the moment when the droplet
radius reached the needle radius R = R, - This velocity was repeatable from one
experiment to the other. The receding contact angle was also investigated by tracing the
movement of the evaporating meniscus. During evaporation, the same condition R =

R4 Was achieved at different velocities ranging from 0.00017 to 0.00045 mm/s. In all
cases, the capillary number Ca = %~0(10‘9) —0(1077), (nis the water viscosity),

was very much smaller than 1, indicating that the capillary forces control the drop shaping.

Therefore, we consider the droplets to be in a quasi-equilibrium state.

The photographs of the drops and the results of their fitted profiles are presented
in Fig. 10. We confirmed that the water drop on the hydrophobic rod takes on an apple-
like shape with the inverted meniscus forming the contact angle 6=100.5+1.4° (average +
standard deviation based on five experiments). Therefore, within experimental error, the
best-fit profile recovers the measured contact angle. The droplet is nodoidal, indeed.

When water was slowly withdrawn from the droplet, the nodoidal droplet was

transformed into an unduloidal droplet with the 6=56.2° contact angle.
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The above experiments confirm the existence of a nodoidal drop on a fiber. They

also demonstrate the possibility of changing the droplet shape by moving the fiber in and

E (b)
200 um

(e)

out from the drop.

15

0 05 X 1 15

Fig. 10. (a-c) A quasi-equilibrium configuration of the droplet: (a) lllustration of the output of the

fitting algorithm. The drop profile was normalized by the maximum radius of the drop, Rmax. The
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open dots mark the experimental profile (only every other experimental point is shown, and the
last fitted point is asterisked); the red horizontal line is the rod surface; the green area is filled
with the set of theoretical profiles used for searching the best fit by changing contact angles; the
blue line is the best-fit nodoidal profile (6= 101.9°). The inset: the goodness of fit (gof,
Supplementary materials, S4) versus contact angle; the smallest gof is achieved when a nodoidal
function describes the drop profile with 6=101.9°. (b) The top view of a water drop with the
overlaid best-fit nodoidal profile (the yellow line). (c) The photograph was taken at the 80° angle
with respect to the rod axis to make the inverted meniscus visible. (d-f) A dynamic configuration
of the droplet: the contact line recedes with the 0.00017mm/s velocity due to the drop

evaporation; the best-fit unduloidal profile makes the 6=56.2° contact angle with the rod.

4 Conclusions

The complete classification of axisymmetric shapes of droplets on fibers has been
provided for the no-gravity case. In our theory, the wetting properties of fibers were
varied to cover the entire range of contact angles, from 0° to 180° . The shapes of these
droplets are described by the Laplace equation of capillarity, a non-linear second-order
differential equation with very special boundary conditions. This problem can be analyzed
using the phase portrait shown in Fig. 3(a-b). It is shown that the droplets could take on
only two possible shapes described by unduloidal or nodoidal surface patches of the two

constant-mean curvature surfaces.
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When the contact angle 6 that the drop makes with the fiber of radius Ry is less

than 90°, the axisymmetric droplet could be either unduloidal or nodoidal. A nodoidal

R
drop could have its maximum radius Ry, within the boundaries Rf < R4y < ﬁ. In

contrast, unduloidal droplets with the same contact angle should have larger maximum

R
radius varying within the range ﬁ < Rpax < . A spherical droplet of radius R, =

R
Ry = é separates these two configurations. The transition from one configuration to

the other is monotonous with respect to the drop volume and capillary pressure.

_ Rg(1+sin )

Unduloidal droplets of maximum radius R, = g have very special

geometrical meaning: these droplets meet the fiber at the inflection points on their
profile[23]. This special property directly follows from the parametric analysis of

unduloidal solutions, Eqs(21)-(23), and is illustrated in Fig. 4.

An analysis of the free energy of these two types of droplets reveals that the
surface energy of the nodoidal droplet is always smaller than the energy of unduloidal
droplets. Thus, the smaller axisymmetrical droplets are always nodoidal, which
transforms into unduloidal droplets with an increase in the drop volume. The energies of

these two configurations with the same volume are equal only for limiting spherical

Rf
cosf’

droplets of radius Ry =

When the contact angle 6 is greater than 90°, only nodoidal axisymmetric

droplets could exist.
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A series of experiments with free-standing droplets obtained by spraying water on
fibers showed that the barreled droplets with a contact angle greater than 90°could be
formed on these fibers. However, we could not obtain axisymmetric droplets: most likely,
the contact angle hysteresis significantly influences the drop formation process. We,
therefore, turned to a setup where only one contact angle determines the droplet shape.
By forming a hemispherical drop at the end of a capillary tube and piercing the drop with
fiber, we were able to satisfy all the boundary conditions required by the Laplace model.
It was confirmed that the nodoidal apple-like droplets could be repeatably formed. Fixing
the ratio R4, /Ry, and withdrawing the fiber from the nodoidal drop, we confirmed that

an unduloidal drop could be formed and its receding contact angle satisfies the

R
theoretically derived condition: cos 8 < L

max

The obtained results complete the classification of morphological configurations
of axisymmetric droplets on fibers and could be used in many applications in fiber science
and biology [1-6, 45, 46], where one needs to evaluate the possibility of obtaining
axisymmetric droplets on fibers. The developed theory significantly enriches the existing
scenario of the formation of drops on fibers by introducing nodoidal solutions of the
Laplace equation of capillarity. We believe that with the developments in nanotechnology
and nanofluidics [47-49], where gravity is not significant, or in space exploration
applications, this theory will be helpful for the design of fluidic devices and fluid

management with fibrous materials [17, 50-53].
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Supplementary material

This material includes the details on the solution of Eq.(21), an explanation of the numeric
algorithm for calculating unduloidal and nodoidal droplets of the same volume with more
examples, derivation and analyses of conditions for the existence of nodoidal droplets,

and protocol for fitting the drop profile.
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