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Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological pro-
cesses. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of
cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been
studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA
effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear
PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated
extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as tran-

scription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA
affects various aspects of plant growth, development, and response to stress and environmental changes.

1. Introduction

Membrane lipids are not only structural backbones for cellular and
intracellular compartmentalization, but also rich sources for generating
cellular mediators in response to various stimuli. Phosphatidic acid
(PA), which is a central intermediate in glycerolipid metabolism (Fig. 1),
has emerged as an important class of lipid mediators in various cellular
and physiological processes [1,2,3,4,5,6). PA affects plant growth,
development, reproduction, and responses to abiotic and biotic chal-
lenges (reviewed in [7,8,9,3,10,0)). In animal systems, PA is involved in
multiple pathophysiological processes, such as inflammation, malignant
transformation, neurodegenerative disorders, and infection (reviewed in
[11,12,13)). In microbes, PA regulates various processes, such as
mediating lipid metabolism and cellular response to nutrient availability
[14,15,16).

The regulatory functions of PA and its mode of action have been
studied primarily outside the nuclei. However, recent studies indicate
that some of the PA effects are mediated through its action in nuclei
[17,18,19,20,21,22,23]. Here, we will review evidence on the

production and detection of nuclear PA, PA interaction with proteins
that function in nuclei, and cellular and physiological processes affected
by nuclear PA, as well as current knowledge gaps in the rapidly pro-
gressing research field.

2. Production of PA associated with nuclei

PA is a minor component of membrane lipids, with the simplest head
group, phosphate without any modification (Fig. 1). The cellular level of
PA is highly dynamic, changing rapidly and transiently in plant response
to stress, such as wounding, stress hormones, dehydration, salt, cold/
freezing, and pathogen attack [24,25,26,27,28,29). The production and
removal of PA are mediated by multiple enzymes (Fig. 1), some of which
are associated with nuclei. In addition, PA produced by extranuclear

enzymes can move to nuclei [22).

2.1. Cellular production of PA associated with nuclei

Phospholipase D (PLO) and diacylglycerol (DAG) kinase (DGK) are
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two major families of enzymes that produce signaling PA. PLD hydro-
lyzes membrane phospholipids, such as phosphatidylcholine (PC), to PA
(Fig. 1). DGK produces PA by phosphorylating DAG that can be pro-
duced by phosphoinositide-specific phospholipase C (PI-PLC) or non-
specific PLC (NPC) (Fig. 1). PA can be removed by PA phosphohy-
drolase (PAH), lipid phosphate phosphatase (LPP), phospholipase A
(PLA), or PA kinase (PAK) (Fig. 1). Each of the PA-metabolizing enzyme
families has multiple members and many of them within the same family
have different biochemical and regulatory properties, temporal and
spatial expression, and/or subcellular associations [7,8]. For example,
the differences, such as Ca’+ requirements, substrate preferences, and
stimulus-induced activation of different PLDs (Table 1), can lead to
specific temporal and spatial patterns of PA production, as well as mo-
lecular species of PA produced, underlying a basis for diverse cellular
effects of PA.

Some of the PA-producing and removal enzymes are associated with
nuclei. Early studies in animal systems indicate that PA-metabolizing
enzymes are associated with the nucleus, and isolated nuclei can syn-
thesize PA [38,39,40]. PAH is translocated between the endoplasmic
reticulum (ER) and nucleus in yeast [41]. Among 12 PLDs in Arabi-
dopsis, PLDy was associated with isolated nuclei, revealed by an anti-
body raised against PLDy [42]. Arabidopsis has three PLDys with high
sequence similarity, and whether all PLDys are associated with nuclei
remains to be determined. Arabidopsis has seven DGKSs that are grouped
into cluster I (DGKI and 2), II (DGK3, 4 and 7), and III (DGKS and 6). A
portion of cluster III DGKS5 has been found to be associated with nuclei
[43,44]. Moreover, disruption of DGKS decreased, whereas over-
expressing it increased nuclear PA levels [44].

Since DGK in nuclei phosphorylates DAG to PA, the DAG-producing
enzymes, including PI-PLC and NPC, can indirectly affect nuclear PA
levels. PI-PLC3 in Arabidopsis is associated with both the nucleus and
plasm membrane [45], and is involved in lateral root initiation and
thermotolerance [46,47]. The total cellular PA was not changed inplc3,
but the effect of PLC3 on nuclear PA levels remains to be determined
[47]. Three of the six NPCs in Arabidopsis (NPCIl, NPC2, and NPC5) are
localized to ER (reviewed in [48]). Since the outer nuclear membrane is
continuous with the ER membrane, the ER-associated PLCs could
potentially affect the DAG levels in the outer nuclear membrane, but
their effect on nuclear PA levels is not tested.
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2.2. PA movement to nuclei

In addition to PA-metabolizing enzymes associated with nuclei,
extranuclear PA has been reported to move into nuclei. In animal cells,
PA outside the nucleus enters the nucleus via PA trafficking, while the
precise mechanism remains to be elucidated [49]. In plants, PLD6 is
involved in heat-induced PA accumulation associated with nuclei [22].
PLDG6 is associated with the plasma membrane [50]. The heat-induced
PA elevation in nuclei was diminished by knockout of PLDo and by the
vesicle trafficking inhibitor brefeldin A (BFA), as shown using mass
spectrometry (MS)-based analysis of nuclear PA and by live-cell imaging
[22]. The heat-induced nuclear PA elevation that was blocked by BFA
was also shown using a PA biosensor [51]. The results suggest the pos-
sibility that PA moves to the nucleus via vesicle trafficking under heat
stress (Fig. 2). We propose a topologically possible model for the PA-
GAPC co-movement through the outer and inner nuclear membranes
without flipping of any lipids or proteins (Fig. 2), and such nuclear en-
velope trafficking has been proposed in other systems [52,53,54,55].
However, it remains unclear whether the transport is direct or via other
subcellular compartments, such as Golgi complex or endoplasmic re-
ticulum, and hence, the specific route by which PA and GAPC move into
the nucleus requires further elucidation. In addition, other possibilities
exist as described below.

The geometrical shape of PA renders it a high propensity to distort
membranes. PA in membranes exists in a cone-like shape because it
contains two bulky fatty acids and a relatively small head group [56].
This structure of PA decreases the packing stability of the lipid bilayer
and induces negative (concave) curvature on the membrane, which
could be involved in membrane budding and vesicle formation [57]. PA
has been shown to interact with proteins in vesicle fission/fusion
[58,59,60,61]. In addition, PA can transverse membrane lipid bilayer
spontaneously or be assisted by proteins. PA has been found extracel-
lularly in phloem associated with proteins as mobile signals in long-
distance signaling [62]. Furthermore, the nuclear envelope is
comprised of double membranes that are physically continuous with ER.
ER is connected directly to the outer nuclear membrane (ONM), which is
contiguous with the inner nuclear membrane (INM) via membranes
surrounding nuclear pore complexes [63]. Thus, extranuclear PA can be
associated with nuclei potentially via direct movement through
continuous membrane connections, vesicular trafficking, and/or mem-
brane contact sites. The complex PA behaviors may account for its
diverse effects on vesicular trafficking and membrane fusion/fission
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Fig. 1. Multiple enzymes that produce and remove PA. Green and red arrows indicate the production and removal of PA, respectively. Numbers in parenthesis
indicate the number of genes in Arabidopsis. Please refer to the text for abbreviations of lipids and enzymes. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Table 1

Signature properties and functions of arabidopsis PLDs.
Group Stimulation Substrate preference Subcellular pssociation Mutant phenotypea Referencea

Ca?+ PIP2 Oleate

PLDal mM No No PC> PE Cyto, Mic Water loss [30]
PLDa3 mM No No PC< PE Mic Salt, drought [31]
PLDpl uM Yes No PC PE Mic Pathogens [32]
PLDyl uM Yes No PC< PE Mic, Nue Al [33]
PLDB uM-mM Yes Yes PC< PE PM Salt, temp [347; [22]
PLDe puM-mM Yes No PC< PE PM,Mic N deficit [24]
PLDLI No Yes No PC PM, Mic P, deficit [35]
PLDI;2 No Yes No PC Vacuole P, deficit [36]; [37]

a Selected phenotypes and references only. Mic, microsome; Nuc, nucleus; PM, plasma membrane; Temp, temperature; PC, phosphatidylcholine; PE,

phosphatidylethanolamine.
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Fig. 2. A proposed model for PLD6 derived PA interacting with GAPC and
PA-GAPC co-movement into nuclei under heat. In response to heat stress, PA
produced by PLDS5 activity promotes GAPC translocation into the nucleus via
vesicle trafficking, where GAPC increases the expression of heat-inducible
genes, rendering Arabidopsis tolerant to heat stress. For simplicity, mem-
branes are depicted as monolayer and PA acyl chains in vesicle omitted, and
outer nuclear membrane (ONM) undervalued. PL, phospholipid; !NM, inner
nuclear membrane.

—

depending on cell types and conditions [64,65,66,67]. Thus, the specific
route by which PA moves into nuclei could be specific to a given cue,
which requires further elucidation.

2.3. Enzymes degrading PA

PA can be removed by various enzymes, such as dephosphorylation
by PAHs and LPPs and deacylation by acyl-hydrolases and PLA. The PAH
homologs in mammals and invertebrates have been found to be associ-
ated with ER and nuclear membranes and regulate gene expression [68].
Arabidopsis has two PAHs, and both are localized into the cytosol
[69,70]. The double knockout of PAHI and PAH2 caused overexpansion
of the ER membrane [69]. One of nine LPPs in Arabidopsis, LPPa2, is
localized to the ER membrane and regulates ER phospholipid biosyn-
thesis [71]. PLA hydrolyzes the acyl group of phospholipids to produce
lysophospholipid and free fatty acids. The secretory PLA2-a was found to

move into the nucleus, but its activity toward PA is very low [72,73].
Several members of Arabidopsis PLAs can use PA as substrate and have
also been reported to be localized to ER (reviewed in [74]). Since the
outer nuclear membrane is continuous with the ER membrane, these ER-
localized PA-hydrolyzing enzymes could potentially contribute to the
regulation of PA levels in nuclei.

3_ Detection of PA associated with nuclei

The ability to detect and quantify PA in nuclei is crucial to determine
its function in nuclei. Different approaches have been used to analyze
PA, such as MS-based lipidomic profiling and PA biosensors, as well as
traditional lipid separation and quantification. PA associated with nuclei
has been measured using MS-based lipidomic profiling with the ability
to quantify molecular species of PA and PA biosensors for live-cell
monitoring of PA dynamics. In addition, fluorescently labeled lipids,
including PA, have been applied to detect lipid distribution and dy-
namics in nuclei.

3.1. MS-based lipid profiling of nuclear fracti.on

MS-based lipid profiling has been used to quantify PA from isolated
nuclei without apparent cytoplasmic contamination [17]. Lipids are
extracted from the nuclear fraction and analyzed using electrospray
ionization tandem MS (ESI-MS/MS, Fig. 3A). For example, a recent
study measured PA levels in nuclei isolated from heat-treated WT, pld/5,
and BFA-treated WT to determine whether heat stress induced nuclear
PA accumulation [22]. Upon heat stress, total cellular PA levels
increased in all the plants, with most PA molecular species being
increased. However, heat-induced PA increases were only detected in
WT, but not inpld/5 or BFA-treated WT.

One precaution in nuclear fractionation is to prevent lipolytic ac-
tivity during mechanical disruption of the cells. Major lipolytic activities
can be inhibited by including in all buffers used for extraction and
fractionation millimolar levels of Ca?+-chelating EGTA that inhibit key
lipolytic enzymes, such as PLD [17]. To test whether the lipolytic ac-
tivity is inhibited, we compared the PA levels of nuclear fractions be-
tween WT and pldalpld/5 treated without and with EGTA (Fig. 3B).
PLDal and PLD6 are the two most active PLDs in Arabidopsis. The re-
sults indicate that including EGTA is required to minimize PA produc-
tion during nuclear isolation (Fig. 3B).

3.2. PA biosensors detecti.ng PA associated with nuclei in-cell

To detect PA changes at subcellular levels, PA biosensors have been
used, including membrane translocation-based single fluorescent PA
biosensors and Forster resonance energy transfer (FRET)-based PA
sensors. The translocation PA biosensors feature a PA-binding domain
(PABD) attached to a fluorescent protein, such as GFP
[75,76,77,51,64,78]. The GFP-tagged PABD from the N-terminal region
of Arabidopsis respiratory burst oxidase homolog D (GFP-NI60Rboho)
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Fig. 3. Quantification of nuclear PA. A. A workflow for nuclear isolation and
lipid analysis. Isolated nuclei were verified by immunoblotting Histone H3 as a
nuclear marker and phosphoenolpyruvate carboxylase (PEPC) as a cytosolic
marker. Lipids from nuclei were analyzed using ESI-MS/MS. B. Suppression of
PA formation by EGTA during nuclear isolation. Nuclei were isolated from 10-
day-old Arabidopsis seedlings by Percoll gradient centrifugation with or
without 50 mM EGTA. PA was quantified by ESI-MS/MS and shown as per total
nuclear proteins.

successfully detected salt-induced PA increase at the plasma membrane
(PM) of root cells, while the PA binding-abolished mutant GFP-
N160MRbohD failed to detect the PA increase at PM [51]. Moreover, heat
stress induced the translocation of GFP-N1I60MRbohD from PM to nuclei,
which was impaired by suppressing PLO- and DGK-mediated PA pro-
duction [51].

In FRET-based PA probes, the emission spectrum of a donor fluo-
rophore overlaps with the excitation spectrum of an acceptor fluo-
rophore [79,80). When the donor gets close to the acceptor, the emission
of the acceptor can be detected under the excitation wavelength of the
donor. FRET detection is based on ratio imaging, thus having advantages
over single-intensity probes because the effects of probe concentration
or photobleaching cancel out when two images are divided to yield a
ratio. FRET-based PA biosensors have been used to monitor PA changes
in plant cells. The construct features the PABD from NADPH oxidase that
was fused between cyan (CFP) and yellow (YFP) fluorescent proteins
through rigid a-helical linkers consisting of repeated EAAAR sequences
[81]. Also, FRET sensors can be targeted to specific subcellular mem-
branes to measure local changes in PA, such as using the non-raft plasma
membrane-targeted domain of K-Ras4B [80]. The FRET PA biosensor
has detected in real-time PA increases in the PM induced by salt and
abscisic acid (ABA) [81].
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3.3. Detection of nuclear PA using fluorescent lipids and FRET

The application of fluorescent lipids has greatly facilitated the study
of lipid distribution and dynamics, including PA in nuclei [49,22,82].
When nitrobenzoxadiazole (NBD)-labeled lipids were infiltrated into
Arabidopsis seedlings, NBD-PA bound to proteins, which were pulled
down by immunoprecipitation, and this helped to verify PA interactions
with transcription factors [21). To provide spatial information about the
interactions, FRET between a CFP-tagged protein and an NBD-labeled
lipid has been used to detect lipid-protein interaction in vivo at a sub-
cellular level, including nuclei, as the excitation spectrum of NBD (488
nm) overlaps with the emission spectrum of CFP ([22]; Fig. 4A).

In addition, the fluorophore BODIPY (TopFluor)-labeled lipids offer
some advantages over the NBD-lipids because TopFluor ()1.Max ex/"-Max em
= 505 nm/513 nm) is more photostable and hydrophobic [84,85].
TopFluor has low excitation at 405 nm, so it could be a better FRET
acceptor than NBD to be paired with CFP (Fig. 4A). The emission
spectrum of TopFluor tetramethylrhodamine (TMR)-PA excited at 561
nm shows less overlap with the emission of CFP excited at 406 nm
compared with that of NBD excited at 488 nm [83]. TopFluor TMR-PA
and CFP-tagged cytosolic glyceraldehyde-3-phosphate dehydrogenase
(GAPC) have been used to document PA-GAPC interaction in planta
(Fig. 4B; [83]). Without stress, GAPC mainly interacts with PA in the
cytosol (Fig. 4B), whereas some GAPC-PA co-move into nuclei under
heat stress [22). In addition, recent developments in using click-
chemistry to control and detect PA production in mammalian cells
[86] are promising to be adapted to visualize nuclear PA and investigate
nuclear PA functions. It is worth noting some limitations of the above
methods. The fluorophores on PA may hinder the binding of PA to its
target protein. The FRET-based PA probes may not detect PA that would
be partially embedded in a protein. Hence, a lack of FRET signals does
not necessarily mean an absence of PA-protein interaction.

4. PA interactions with proteins that function in nuclei

PA binding to proteins is one of the modes of PA's cellular actions
and the identification of PA-interacting proteins and subsequent ana
lyses have shed light on how PA acts as cellular mediators (Fig. 5; [9]).
Physiochemical properties of PA, such as pH-dependent dual deproto-
nation and the ability to act as an electrostatic/hydrogen-bond switch,
make PA a unique class of lipids in interacting with proteins [87). The
study of PA-interacting proteins has led to the identification of several
PA-binding proteins in nuclei [17,21].

4.1. PA binding to transcription regulators

An earlier study identified WEREWOLF (WER) as PA binding protein
that functions in nuclei. WER is a MYB transcription factor that regulates
cell differentiation, such as root hair patterning, and the PA-WER
interaction affects the WER's nuclear localization and root hair devel-
opment [88]. To explore lipid interactions with transcription factors, an
Arabidopsis transcription factor library was screened for lipid binding
[21]. This led to the finding that PA binds to two closely related MYB
transcription factors, CIRCADIAN CLOCK ASSOCIATED (CCAl) and
LATE ELONGATED HYPOCOTYL (LHY), which are core regulators of the
circadian clock in Arabidopsis [21]. In addition, PA was found to bind
the AT-hook motif-containing nuclear localized (AHL) protein, AHL4.
Further analysis revealed that the PA-AHL4 interaction modulates
transcriptional regulation of triacylglycerol (TAG) degradation and seed
germination [17].

The PA interactions with LHY/CCAI and AHL4 were shown with
filter binding, liposomal binding, surface plasmon resonance (SPR), and
co-immunoprecipitation [17,21]. The binding specificity has been tested
against other phospholipids such as PC, phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), phosphatidylserine (PS), and moreover,
different PA molecular species. For example, LHY binds to PA-
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containing, but not PC-only, liposomes, and it binds to specific PA spe-
cies (e.g., dil6:0-PA) but not dil8:I-PA (Fig. 6). In addition, LHY and PA
were co-immunoprecipitated from plant
fluorescence-labeled PA in plants was co-immunoprecipitated with PA-
binding LHY/CCAL, but not with a non-PA binding transcription fac-
tor [21].

extracts. Furthermore,

4.2. PA binding to proteins that translocate into nuclei in response to
stimuli

PA was shown to interact with GAPCs in Arabidopsis, a cytosolic
glycolytic enzyme [89,90]. A portion of GAPC molecules undergoes

nuclear translocation from the cytoplasm in response to various
stressors, including heat [91,92,93]. A recent study showed that PA is
involved in the heat-induced nuclear localization of GAPC [22]. The loss
of PLDS5 activity in Arabidopsis abolished nuclear PA accumulation and
nuclear translocation of GAPC, both induced by heat, suggesting that
PLDS5 mediates the heat-induced PA accumulation in nuclei and the
nuclear localization of GAPC [22].

Several other proteins that interact with PA also undergo nuclear
translocation. GIBBERELLIN (GA)-INSENSITIVE DWARFI (G!DI) is a
soluble GA receptor that moves into nuclei in response to GA. PA binds
to G!DI in rice, and the mutations of arginines 79 and 82 of G!DI that
are required for PA binding abolish its nuclear localization [18]. A
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recent study shows that PA binds ABA DEFICIENT 2 (ABA2) and sup-
presses its enzymatic activity. ABA2 was detected in and outside nuclei,
and the loss of the nuclear DGKS decreased the nuclear association of
ABAZ2. Those results indicate that DGK5 and PA interact with ABA2 and
suppress ABA production [44]. In addition, the scaffolding Al subunit of
protein phosphatase 2A (PP2AA1) mediates the dephosphorylation of
auxin transporter PIN-FORMED 1 (PINI) and regulates the distribution
of auxin. PA binds to PP2AA1 in Arabidopsis, and exogenous PA induces
the accumulation of PP2AA1 on the membrane. The inhibition of PLO-
mediated PA production by 1-butanol causes the perinuclear aggrega-
tion of PP2AA1 [94].

A recent study indicates that PA promotes the nuclear translocation
of the calcium-dependent protein kinase (CDPKs /CPK) CPK12 in Ara-
bidopsis upon low oxygen (hypoxia) stress [19]. CPKs play important
roles in plant development and stress response by sensing the calcium
signals induced by developmental and environmental stimuli and
phosphorylating different substrate proteins [95]. CPK12 is activated
during hypoxia stress and translocated from the cytoplasm to the nu-
cleus, where it interacts and stabilizes the core regulator of hypoxia
sensing group VII ethylene-responsive transcription factors (ERF-VII).
PA binds to CPK12, and the application of PA promotes the nuclear
translocation of CPK 12, whereas the inhibition of PLO-mediated PA
production abolishes it upon hypoxia stress [ 19].

4.3. PA molecular species display binding selectivity for protein
interactions

PA can exist as various molecular species due to the number of car-
bons and double bonds of two fatty acyl chains. PA-binding proteins
exhibit varied binding preferences to different PA molecular species
[96,89,88,28]. For example, ABSCISIC ACID INSENSITIVE 1 (ABil), a
protein phosphatase 2C that negatively regulates plant response to the
stress hormone ABA, displayed binding to dil8:1-PA but not to dil6:0-
PA (Fig. 6; [28]). This binding property is in stark contrast with LHY
that binds 16:0-containing PA species (e.g., dil6:0 and 16:0/18:1-PA)
but not dil8:1-PA ([21]; Fig. 6). Another PA-binding transcription fac-
tor AHL4 binds PA containing unsaturated fatty acids (e.g. 16:0/18:1
and dil8:1-PA), but not PA containing two saturated fatty acids (e.g.,
di16:0 and di18:0-PA; [17]). By comparison, sphingosine kinases bind to
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16:0/18:1-PA and dil8:1-PA equally well, but not dil18:0-PA or dil8:2-
PA ([96]; Fig. 6), whereas GAPCs displayed no specific preference for PA
species tested [89]. The binding specificity has been verified using
liposomal binding and, in some cases, with SPR [96,89]. In addition,
LHY immunoprecipitated from plants has 16C-containing PA associated
[21].

Lipidomic analyses revealed selective changes of PA species abun-
dance as affected by genetic alterations of lipid metabolic enzymes and
stress conditions. For example, among 23 PA species measured, the level
of 34:3-PA was decreased by disruption of pPLAIf} whereas the levels of
34:3-PA and 7 major PA species, such as 34:1, 34:2, 36:2, 36:3, 36:4,
36:5 and 36:6-PA, were increased by overexpression ofpPLAIII/J [97]. A
recent study reported that the nuclear levels of 34:2-, 34:3-, and 36:6-PA
were decreased in DGKS-KO, while 34:1, 34:2, 36:2, 36:3, and 36:4-PA
were increased in DGKS-OE, compared to WT, with the levels of other
PA species comparable to those of WT [44]. NaCl stress decreased the
nuclear levels of 34:3, 36:2, 36:4, and 36:5-PA in DGKS-KO and
increased those of 34:2-, 34:3-, and 36:4-PA in DGKS-OE, with the nu-
clear levels of other PA species in the DGKS-altered plants being com-
parable to those in WT [44]. Heat stress increased the levels of 34:2,
34:3, 36:3, and 36:4-PA in nuclei while increasing levels of most species
of total cellular PA [22]. The contents of PA species vary depending on
photoperiod and circadian conditions as well. 34:2, 34:3, 34:6, 36:4,
36:5 and 36:6-PA highly accumulated at dawn when compared to dusk,
and 34:4 and 36:6-PA levels oscillated diurnally [21,98].

Such specific interactions and their biological significances are sup-
ported by structural analysis. For example, the hydrophobic residues at
the C-terminus of the Arabidopsis actin capping protein (AtCP) are
inserted into the lipid bilayer containing PA, and this interaction is likely
to be regulated by the length of the PA acyl chains [99,100]. Changes in
PA levels in specific membranes can directly affect the PA-targeted
proteins, their localization, activity, and biological functions. These re-
sults suggest that the acyl chain composition of PA is an important
determinant of PA interactions with specific target proteins.

5. PA effects on nuclear and physiological processes

The involvement of PA in nuclear functions is currently supported by
two categories of evidence. One is the interaction of PA with proteins
that function in nuclei, such as transcription factors. The other is the
impact of the genes and enzymes that affect nuclear PA production and
cellular processes. Manipulations of the nuclear PA-producing reactions
shed light on the role of nuclear PA in specific cellular and physiological
processes.

5.1. Lipid modulation of circadian clock function

The finding that PA binding to the core regulators of the circadian
clock LHY/CCALI provided valuable insights into the interconnection
between lipid metabolism and molecular clock functioning (Fig. 7). LHY
and CCAl, together with TIMING OF CAB EXPRESSION] (TOCI),
constitute a central loop in the molecular clock of Arabidopsis. LHY and
CCAI accumulate in the morning and suppress TOCI expression by
binding to its promoter, while TOCI, in turn, represses LHY/CCAI
expression in the evening [101,102,103]. Increasing levels of 16C-PA
species that bind to LHY impeded the LHY binding to TOClpro, inter-
fering with LHY''s association with target gene promoters [21]. The ef-
fect of the PA-LHY/CCAL interaction on the circadian clock is supported
by the finding that perturbations of PA metabolism alter clock function
(Fig. 7A, B). The pahlpah2 that had elevated levels of PA exhibited
longer periods in TOCI expression and leaf movements than WT
(Fig. 7B). Conversely, when the PA production by PLO or DGK was
suppressed, the oscillation of leaf movement was approximately one
hour shorter than solvent controls [21]. The opposing changes in
circadian period length from the increased and decreased PA levels
suggest that altered PA metabolism affects the PA-LHY/CCAI
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interaction and impacts clock function [21].

Studies in animal systems also indicate an interplay between lipids
and the circadian clock. Clock misalignments, such as shift work,
chronic jet lag, sleep deprivation, and clock gene mutations, are asso-
ciated with various lipid metabolic diseases, such as obesity and
nonalcoholic fatty liver disease [104,105,106]. The core clock regula-
tors BMALI and CLOCK play an important role in the modulation of fat
storage, utilization, and adipocyte differentiation [107]. C16:0, a com-
mon fatty acid in the human diet, alters the expression of clock-
regulated genes and disrupts circadian rhythms [108], and high-fat
diets impaire BMALI recruitment to target chromatin sites and rhyth-
mic expression of clock genes [109,110,111,112,113]. The effect of a
high-fat diet on circadian gene expression is mediated in part through
PPARy effect on BMAL/CLOCK [110]. PPARs bind to CRY1/2 [114], and
PPARa binds to PER2 and modulates the circadian expression of BMALI
[115,116], which is also regulated by PPARy [117]. PPARSs' role in
circadian regulation is through interaction with lipids because fatty
acids, eicosanoids, and PA are ligands for PPAR activity. PA binds to
PPARa and reduces its ability to bind the promoter of epidermal growth
factor receptor (EGFR), repressing the EGFR expression in cancer cells
[118]. In addition, the level of an 18:0-containing PA species oscillates
in the nucleus in mouse liver cells [119]. Suppression of PA production
inhibited the rhythmic expression of BMAL/ in human cells, and the
effect was associated with its attenuation of the mTOR pathway [120].
These results indicate that PA may directly and/or indirectly regulate

clock functions in mammals.

5.2. Transcriptional regulation of lipid synthesis and seed oil production

Genetic alterations of the clock transcriptional regulators LHY/CCALI
affect lipid metabolism and accumulation [121,21]. The levels of spe-
cific species, including 16C-containing PA, display cycling with a period
of -24-h in WT, but not in /hy ccal [21]. Similar lipid oscillation was
observed previously, but whether it was due to die! cycles in the envi-
ronment or under circadian regulation was unclear [98]. The analysis
with /hy ccal mutants suggests that the lipid level changes observed in
WT are influenced by the circadian clock, rather than just as a response
to a light-dark cycle. Furthermore, the storage TAG content in seeds was
decreased in /hy ccal but increased in LHY-OF plants, compared to WT
[20,21]. Similarly, CCAI-OE plants also displayed an increase in seed oil
content [121]. The opposite effects on oil content in /Ay ccal and their
OE plants are consistent with their effect on circadian periods because
lhy ccal plants are short-period (i.e. -19 h) whereas LHY-/CCAI-OE
plants are long-period to arrhythmic, as the level of overexpression in-
creases [122,123].

As evidence for how the perturbation of the clock and changed
circadian periods lead to the opposite effects on lipid accumulation, our
recent study shows that LHY/CCALI regulates the initial condensation
step of fatty acid biosynthesis in Arabidopsis [20]. Increased LHY
expression enhanced FA synthesis, and the expression of KASI//I that
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encoded -ketoacyl-ACP synthase III was oppositely changed in devel-
oping seeds of LHYICCAI-OEs and Ihyccal. Chromatin immunoprecip-
itation, electrophoretic mobility shift, and transactivation assays
indicated that LHY directly bound and activated the promoter of KASIII
(Fig. 7C). PA, a metabolic precursor of TAG, inhibited LHY binding to
KASIII promoter elements, suggesting that PA acts as a negative effector
modulating the LHY/CCAIl promotion of storage lipid production
(Fig. 7C; [20]).

5.3. Transcriptional regulation of lipid degradation and seed gennination

Transcriptional control plays important roles in metabolic regulation
because it can affect the expression of a network of multiple genes. In
lipid biosynthesis, transcription factors, such as WRINKLED 1 (WRil),
LEAFY COTYLEDONSs (LECs), and FUSCA 3 (FUS3), regulate the
expression of multiple genes contributing to lipid synthesis and TAG
accumulation [124,125,126,127,128,129]. However, little was known
about the transcriptional regulation of lipid degradation in plants.

The characterization of the PA-AHL4 interaction led to the finding
that AHL4 suppresses the expression of genes for TAG lipases and for
enzymes in fatty acid -oxidation during seedling establishment and
growth [17]. AHL4 bound to the promoter regions of the genes encoding
the TAG lipases SDPIl and DALLS and acyl-thioesterase KATS involved
in fatty acid -oxidation [17]. Those genes contained AHL4-binding cis-
elements, and the AHL4 interaction with the promoter region was sup-
pressed by PA species that bound to AHL4. The expression levels of
AHLA4-targeted genes, SDPI, DALLS, and KATS, were decreased in
pldalpldi5 that had a lower PA content but increased in pahlpah2 mu-
tants with a higher PA level [17]. The rate of seed TAG degradation
during and after germination was lower in the seeds and seedlings of
AHL4 OEs but higher in those of AHL4 KOs. These results indicate that
an increase in PA releases the suppression of AHL4 on its target genes,
and, in tum, increases TAG hydrolysis and fatty acid oxidation to pro-
vide the energy and substrates for seedlings establishment and
development.

5.4. PA in honnone signaling and production

PLD, NPC, and PA have been shown to mediate ABA signaling and
auxin distribution [130,30,131,132,28]. The protein phosphatase 2C
ABIl negatively regulates ABA response, which requires its catalytic
activity and nuclear localization [133,134]. PA binds ABil and inhibits
phosphatase activity of ABil, which in tum promotes ABA response. The
plda displayed decreased ABA-induced PA production and impaired
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ABA-mediated stress response but had increased nuclear accumulation
of ABil [30,28]. PA application increased the membrane association of
the PA-binding protein PP2AA1, which enhances protein phosphatase 2
A (PP2A) activity [94]. In addition, PA binds PINOID kinase (PID), in-
creases the plasma membrane association of PID, and promotes PID-
dependent phosphorylation of PIN, which regulates the efflux and
redistribution of auxin [132]. These results indicate that PA is involved
in ABA response and auxin distribution by modulating the protein ac-
tivity and/or subcellular distribution in and outside nuclei.

Recent results indicate that PA action in nuclei is involved in hor-
mone signaling and metabolism (Fig. 8). PA interacts with the GA re-
ceptor GIDI in rice and affects the translocation of GIDI into nuclei
[18]. The GA-induced nuclear localization of GIDI and degradation of
the DELLA protein SLENDER RICEI (SLRI) are impaired inplda6 [18].
Another study suggested that the inhibition of PA production by 1-
butanol abolished the salicylic acid (SA)-induced nuclear localization
of the SA receptors non-expresser of pathogenesis-related protein
(NPRI) [135]. SA plays a critical role in plant defense response, and the
nuclear localization of NPRI is required to activate the expression of
pathogenesis-related (PR) genes [136,137].

In addition, DGKS and its product PA bind the ABA synthesizing
enzyme ABA2 and reduce the enzymatic activity of ABA2 (Fig. 8; [44]).
ABA content was increased in DGKS-KO plants but decreased in DGKS-
OE plants. DGKS-KO plants were more resistant to water and salt stress,
but DGKS-OE plants were more sensitive to those stressors. In addition,
both DGKS and ABA2 were localized in and outside nuclei, and the in
vivo interaction between DGKS and ABA2 mainly occurred in nuclei.
Moreover, ABA2 was accumulated less in nuclei in DGKS-KOs plants
[44]. These results indicate that DGKS and PA regulate ABA production
by regulating the enzymatic activity and/or subcellular distribution of
ABA2.

5.5. PA in hypoxia responses

PA levels have been reported to increase in response to hypoxia in
Arabidopsis and wheat [138,139]. Both plda and pld/5 displayed
increased sensitivity to hypoxia [23]. Hypoxia stress, which is usually
caused by root waterlogging and submergence in plants, has a negative
effect on plant growth and production [140,141]. The submergence of
plants in water causes the gaseous hormone ethylene to entrap in the
submerged tissues, and ethylene has been found to play an important
role in hypoxia acclimation and metabolic adjustment in response to
flooding-induced hypoxia stress [142]. In the absence of ethylene, the
Raf-like protein kinase CONSTITUTIVE TRIPLE RESPONSEI (CTRI)
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phosphorylates the C-terminal domain of ETHYLENE-INSENSITIVE2
(EIN2), preventing the nuclear localization of EIN2, whereas, in pres-
ence of ethylene, CTRI perceives the signal from the ethylene receptor
complex and becomes inactive (Fig. 8). The unphosphorylated C-ter-
minal domain of EIN2 is then cleaved and translocated from the ER
membrane into nuclei, where it regulates its downstream transcription
factors [143]. A previous study showed that PA bound CTRI, inhibited
its kinase activity, and impaired the interaction between CTRI and the
ethylene receptor ETRI [144]. Additionally, exogenous PA promotes the
nuclear translocation of EIN2 [138]. A recent study shows that PA binds
CPK12 and promotes its nuclear translocation ([19]; Fig. 8). The cyto-
plasm to nuclear translocation of CPK 12 under hypoxia stabilizes the
core regulator of hypoxia signaling and response [ 19].

In addition, PA also promotes the translocation of an ethylene-
responsive transcription factor RAP2.12 from the PM into the nuclei
[23]. RAP2.12 is involved in the regulation of plant metabolism under
hypoxia stress, and low oxygen induces the translocation of RAP2.12
into the nucleus, where it induces the expression of hypoxia-responsive
genes [145,146,147]. The binding of PA to mitogen-activated protein
kinase 6 (MPK6) stimulates its kinase activity and increases the MPK6-
mediated phosphorylation of RAP2.12, which activates the transcrip-
tional activity of RAP2.12 [148,23]. These results indicate that PA is
involved in plant hypoxia response via directly or indirectly modulating
the nuclear accumulation of proteins that regulate hypoxia sensing and
response (Fig. 8).

5.6. GAPC nuclear moonlighting in plant stress responses

GAPC is a cytosolic metabolic enzyme involved in glycolysis and also
has moonlighting functions in plant responses to different stress condi-
tions. One mode of GAPC's non-metabolic actions is via its intracellular
translocation from the cytoplasm to the nucleus under stress, including
cadmium, hydrogen sulfide, bacterial flagellin, and heat
[149,150,91,93]. Nuclear GAPC has been reported to mediate stress
responses as a transcriptional regulator [91,151]. In response to heat, for
example, some of GAPC molecules were translocated into nuclei, where
it bound and activated a transcription factor known to regulate the
expression of heat-inducible genes, enhancing the thermotolerance of
Arabidopsis (Fig. 2; [91]).

As a mechanism of how heat induced GAPC nuclear translocation, a
recent study shows that PLDS5 and its lipid product PA mediates the
nuclear translocation of GAPC in Arabidopsis under heat (Fig. 2; [20]).
Previously, heat stress was shown to induce a rapid PA increase, which
resulted mainly from PLO activation even though specific PLD(s) for the
process remained unknown [152]. In addition, both PLD5 and PA were
found to interact with GAPC in Arabidopsis [153,89]. PLDS is associated
with the plasma membrane, and its intracellular distribution is not
affected by heat stress [50,154]. Thus, PLD5 may not directly co-move
with GAPC for the nuclear translocation of GAPC under heat stress.
Instead, the PLD5-mediated PA production is required for the nuclear
translocation of GAPC, and colocalization and interaction of PA-GAPC in
the nucleus during heat stress are inhibited by the membrane trafficking
inhibitor BFA [22]. These results indicate that during heat stress, PA
produced by PLDS mediates the translocation of GAPC into the nucleus,
where GAPC promotes the expression of heat-inducible genes and reg-
ulates the thermotolerance of Arabidopsis (Fig. 2).

5.7. PA effects on root architecture

The development of proper root architecture is crucial to the water
and nutrient uptake of plants and communication with other plants and
the environment [155,156]. The analysis of DGKs in rice reveals that
DGKI, which is predicted to be associated with the nucleus, and its
associated lipid mediators, DAG and PA, play an important role in root
architecture in rice [157]. KO plants of OsDGKI had more lateral roots
and smaller seminal root radius than those of WT, whereas
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overexpression of OsDGKI resulted in fewer lateral roots with larger
radius. Exogenous DAG and PA had the opposite effect on lateral root
number and seminal root radius, and the addition of PA, which is the
product of DGK-mediated phosphorylation of DAG, restored the root
phenotype of OsDGKI KO to that of WT [157]. DAG in animal cells is a
potent cellular messenger [158,159], but the signaling functions of DAG
remain elusive in plants. The loss of NPC5, which hydrolyzes phospho-
lipids to produce DAG, decreased the DAG content in roots and caused
fewer lateral roots under mild salt stress [160]. The application of
exogenous DAG restored the lateral root number of NPCS-KO to that of
WT, but the addition of PA failed to rescue the later root phenotype of
NPCS-KO. In contrast to the inhibitory effect of PA on lateral root
development, PA promotes the elongation of primary roots. Inhibition of
DAG conversion to PA by a DGK inhibitor caused shorter primary roots
[161]. These results indicate that PA and DAG have opposite effects on
lateral root development.

Several PLDs, which hydrolyze phospholipids to produce PA, are
involved in primary root elongation. The pldalpldo mutants, which had
lower PA contents, had shorter primary roots under salt stress, and
exogenous PA restored the primary root length of pldalpldo to that of
WT under salt stress [132]. The loss of PLDI; in Arabidopsis decreased
the primary root length under phosphate deficiency [35,37]. Moreover,
the overexpression of PLDc, which increased PA contents, increased
primary root length in Arabidopsis, canola, and soybean [24,162,163].
These results together show that PA and DAG play important roles in the
development of root architecture; PA enhances primary root elongation
but inhibits lateral root development, whereas DAG promotes lateral
root development. However, further studies are needed to establish the
direct connection between nuclear PA and its effects on root
architecture.

6. PA in nuclear membrane remodeling and homeostasis

In addition to their signaling roles, PA and DAG are metabolic pre-
cursors for membrane synthesis, and changes in their cellular levels
affect nuclear membrane remodeling, homeostasis, and functions. De-
fects in PAH that convert PA to DAG lead to an abnormal nuclear en-
velope (NE) in yeast and metazoan. The loss of PAH homolog Smp2 in
yeast caused enlarged nuclei with long nuclear membranes [164].
Down-regulation of PAH homolog Lipin-1 by RNAIi in Caenorhabditis
elegans impaired the breakdown of NE during mitosis and resulted in bi-
nucleated cells [165]. The catalytic activity of animal PAH homolog
lipin was also found to be involved in increased nuclear eccentricity
[166]. One possibility is that the PA/DAG ratio serves as a signal for
feedback regulatory pathways that control overall lipid homeostasis. In
budding yeast, PA accumulates in nuclear envelope herniations that
form from the hyperactivation of the ESCRT-III (endosomal sorting
complex required for transport III) nuclear envelope remodeling ma-
chinery [167]. The ESCRT machinery plays key roles in membrane
remodeling and protecting the nuclear envelope integrity [168]. PA
binds to the NE-specific ESCRT, Chm?, and an increase in cellular PA
levels leads to the translocation of Chm? from the cytosol to the NE/ER
membrane [167]. The data suggest that the local accumulation of PA on
NE recruits Chm? to the fusion sites of the inner and outer nuclear
membranes and contributes to the NE sealing during nuclear pore
complex mis-assembly [167].

In Arabidopsis, pahlpah2 that lost both PA phosphohydrolases
exhibited overexpansion of the ER membrane, although the volume of
the nucleus was not greatly enlarged in the cells of pahlpah?2 leaves [69].
Compared to WT, pahlpah2 had a higher level of nuclear PA, and the
major nuclear PA species (34:2, 34:3, 34:4, 36:2, 36:3, 36:4, 36:5, and
36:6) were all increased [17]. Conversely, the PLO mutants pldalpldo
had a lower level of nuclear PA, with the levels of major nuclear PA
species being decreased compared to those in WT. The nuclear PA
changes in response to stress, such as high temperature and salinity.
Under heat stress, nuclear PA levels increased in WT but not in pldo,
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suggesting that PA produced by PLDS5 in the plasma membrane possibly
moves to the nucleus [22]. Under salt stress, DGKS-KOs had a 40% lower
nuclear PA level but a 17% higher nuclear DAG level than WT, whereas
DGKS-OEs displayed a 45% higher nuclear PA level but a 16% lower
nuclear DAG level than WT. Thus, the nuclear PA/DAG ratio was lower
in DGKS-KOs but higher in DGKS-OEs [44]. These results indicate that
DGKS regulates the nuclear PA/DAG homeostasis in Arabidopsis.
Mechanisms that control nuclear membrane remodeling are essential to
maintain the integrity and function of the nucleus, but they remain to be
fully elucidated.

7. Future perspectives

PA has emerged as an important class of cellular mediators, and
perturbations of its metabolism and signaling function affect various
cellular and physiological processes. The mode of PA's action has been
studied primarily outside the nuclei, but the recent findings of PA
signaling and function in nuclei, as described here, open a new direction
to investigate and understand the regulatory function of PA. The nuclear
function of PA may underlie a basis for its role in regulating gene
expression, cell proliferation, and stress responses. However, the precise
mechanisms of PA actions in nuclei require further elucidation. One
open question is whether nuclear PA changes are associated with the
nuclear envelope, nucleoplasm reticulum, and/or nucleoplasm. Devel-
oping effective nuclear PA probes enabling nuclear PA detection and
quantification in vivo will help address this question. Another question is
how the PA binding to a nuclear protein affects the protein functions,
such as its structure, membrane association, catalytic activity, and/or
interaction with other proteins or other nuclear components, such as
nucleic acids and chromatin. In addition, how does PA move into and
out of nuclei, such as via membrane contact site, lipid movements in the
continuous membrane between ER and nuclear envelope, or vesicular
trafficking? How does PA affect protein trafficking into nuclei, such as
via vesicular trafficking, nuclear pore complex, and/or interaction with
other proteins? Increasing results indicate the importance of the acyl
chain composition of PA in PA-protein interactions, which could un-
derlie a basis for the specificity and diverse functions of PA. However,
except for binding specificity for proteins, little is known about the effect
of the acyl groups on the biological functions of PA and biochemical
reactions and specific conditions by which the specific PA acyl species
are produced. Furthermore, besides being the substrate and product of
PA metabolism (Fig. 1), DAG is a mediator in plants, and the role of PA/
DAG homeostasis in nuclei and plant growth, development, and stress
responses requires more attention.

Moreover, how PA, despite having the simplest structure, has such
diverse functions has been a long-standing question in the field. The
characterization of PA-metabolizing enzymes, such as PLO, DGK, and
NPC families, has begun to shed light on the issue. Many of the indi-
vidual members of a given family, such as PLO, display distinguishable
regulatory properties, subcellular associations, stimulus-induced tem-
poral and spatial expression, and/or substrate preferences (Table 1). It is
conceivable that those characteristics collectively lead to cellular regu-
lation of PA changes in terms of specific temporal and spatial patterns
and acyl composition, as well as in response to specific stimuli. The PA
signature is decoded in the cell, at least in part, by its interaction with
different effector proteins, such as transcription factors and those
involved in hormone signaling, transport, and production (Fig. 8). The
production and distribution of the effector proteins themselves are
tightly regulated. Those properties, in combination, could underly a
basis for the diverse cellular effects of PA. The discovery of PA signaling
in nuclei and further elucidation of the process will advance the un-
derstanding of the mechanism by which PA mediates cellular functions,
which may unveil new regulatory mechanisms for gene expression, lipid
metabolism, and stress responses.
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