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Abstract—The fifth generation of mobile wireless communi-
cation represents a significant evolution of mobile networks
due to its promises of Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC), and
Massive Machine Type Communications (mMTC) to be applied
to real-world applications. Even though there have been 5G
Network deployments in some parts of the world that depend
on 4G/LTE Core Networks, 5G is still a work in progress, with
ongoing research and development to improve and develop this
technology. 5G testbeds are essential for ongoing research to
propose a solution, simulate, configure, test, and evaluate the
impact of different network parameters on the system. Therefore,
this paper presents a comprehensive approach to deploying a
Standalone (SA) SDN-based 5G testbed for researchers to study
and improve the performance of 5G Networks. Our testbed
includes integrating several open-source projects to provide two
testing scenarios where we assess the throughput and latency
performance, Network slicing configuration, and the feasibility
of SDN capabilities. The testbed provides a helpful instrument
and lessons learned for the research community to improve and
contribute to the successful deployment of 5G Networks in the
real world.

Index Terms—5G testbed, SDN, SA, Open-source, Network
Slicing

I. INTRODUCTION

Since the introduction of the first-generation mobile network
in the 1980s, mobile wireless communication requirements
have been growing significantly from analog phone calls to
real-world applications such as autonomous vehicles, remote
surgeries, and advanced robotics. These real-world applica-
tions depend on three fundamental building blocks required for
5G Networks: Enhanced Mobile Broadband (eMBB), Ultra-
Reliable Low Latency Communications (URLLC), and Mas-
sive Machine Type Communications (mMMTC). These three
fundamental building blocks are aimed at solving past gen-
erations’ challenges, such as higher capacity, lower latency
and cost, and consistent quality of service [1]]. The fact
that 5G will tackle these challenges is highly appealing to
customers expecting to enhance their business or industry more
efficiently.

To deliver these requirements, it is necessary to apply
different technologies to provide customization, flexibility, and
management in the 5G Network, such as Software-Defined
Networks (SDN) and Network Function Virtualization (NFV)
[2]. SDN and NFV will help to manage the resources better,
enable scalability, manage the network from a centralized
perspective, and restore system functionality after an attack.

Also, it is possible to apply different mitigation services
against anomalies in the network using machine learning.

Several researchers are working on proposing different
solutions to speed up the process of 5G deployment to-
ward achieving the 5G KPIs: eMBB, URLLC, and mMTC.
Therefore, developing a testbed that simulates/emulates these
functionalities as close as expected to real 5G Networks and
demonstrating that these solutions will contribute to the overall
5G proliferation is crucial. However, building a 5G testbed can
be challenging since it is necessary to balance the intellectual
property and autonomy of the current implementations and
the proposed new functionalities and features to optimize the
technologies [3|.

Currently, there are two main options in these research and
development efforts: 1) purchase specialized-purpose hardware
and software with 5G capabilities, or 2) utilize and deploy
open-source tools and resources. The main advantage of
using specialized-purpose equipment is that the deployment is
straightforward. However, this is costly and hinders flexibility
to deploy and test other approaches. On the other hand, open-
source projects reduce costs and allow fine-grained customiza-
tion. The challenge with this option is that the deployment
process can become complex, and there is a lack of support.
Still, most researchers will trend toward open-source interfaces
due to cost perspectives and innovation opportunities.

This paper proposes a 5G testbed focusing on implementing
Standalone (SA) mode in 5G Networks using SDN and NFV.
We have utilized a range of open-source projects, including
Open5Gs, srsRAN, UERANSIM, Opendaylight (ODL), and
OpenvSwitch (OVS), to build and deploy our testbed, which
is one of the first to provide a comprehensive understanding
of how to deploy and configure 5G SA networks using SDN
and NFV, focusing on the hardware and software components
involved. In addition, detailed instructions on deploying and
configuring these components are included for their easy
reproducibility. Overall, our testbed represents a valuable
resource for those interested in exploring the capabilities and
potential of 5G SA networks using SDN and NFV with the
exception of NFV Management and Orchestration (MANO)
deployment.

Through this testbed, we conducted some preliminary exper-
iments to demonstrate feasibility and performance. The testbed
experiments were designed to measure the data throughput and
latency, demonstrate Network Slicing (NS) capabilities, and
how SDN can be utilized to manage the network traffic.



The rest of the paper is organized as follows. Section II
provides related work to our testbed. Section III provides an
understanding of the concepts mentioned in the paper. The
proposed testbed approach is explained in section IV, followed
by the experiments and results in Section V. Section VI wraps
up the paper, while Section VII offers the details of the planned
demonstration.

II. RELATED WORK

The use of testbeds to evaluate the performance of 5G
Networks has garnered significant interest in recent years,
as they offer a controlled and reproducible environment for
evaluating the capabilities and limitations of different 5G tech-
nologies and architectures. As a result, several previous studies
have developed and deployed various 5G testbeds to evaluate
the performance of different aspects of 5G Networks. In the
previous study, [4] introduced an open-source 5G testbed with
NS capabilities for research purposes. This testbed used Open
Air Interface (OAI) Non-Standalone (NSA) elements and
included a 5G SA element ( Access and Mobility Management
Function (AMF)) to allow interworking with Evolved-UMTS
Terrestrial Radio Access Network (E-UTRAN). In addition,
OAI was selected to simulate the User Equipment (UE) and
Radio Access Network (RAN) since it allows adding the NS
features for the registration procedure. Despite their great
contribution of adding NS capabilities and providing details on
how to replicate their approach, their testbed did not address
SDN and 5G SA implementation.

Hence, [5] developed an open-source testbed with
blockchain-enabled for Non-Public Network (NPN) architec-
tures. The testbed’s purpose is to test the solution’s effec-
tiveness for this architecture and other capabilities, such as
exploring commercial applications. The authors’ methodology
is based on cloud and containerization to deploy freeSGC
as the 5G SA Core Network, UERANSIM as the UE and
RAN simulation, and Go-Ethereum for the blockchain nodes.
While this testbed implemented 5G SA network functions,
it is an example of UERANSIM applications and focused
mainly on how to replicate their blockchain approach. In
addition, SDN and NS were not considered at all. Follow-
ing this idea, [6] proposed an open-source 5G testbed that
supports multi-tenancy, multi-radio access technologies, SDN
functionalities, orchestrating capabilities, and the deployment
of End-to-End (E2E) NS. This testbed implemented SG NSA
OALI for the Core Network, srsLTE for the RAN, Open Source
Mano (OSM) as the NFV-MANO entity, and Openstack as
the Virtual Infrastructure Manager (VIM). In addition to the
integration of two tenant controllers: 5SG-EmPOWER and M-
CORD. Similar to many others, this testbed also did not
implement 5G SA elements, and the usage of OpenStack limits
the flexibility of customizing the SDN capabilities.

Moreover, in [7], the authors had a different approach
by providing a portable demonstrator of their SGENESIS
project 5G experimentation. This approach aims to have a tool
that allows on-site testing and experimentation. This portable
demonstrator consists of several physical components, from

commercial nodes to open-source projects: OAI for the 4G/5G
RAN, Ettus Universal Software Radio Peripheral (USRP)
N300 for RAN and UE simulation, Commercial Off-The-Self
(COTS) 5G NSA UEs, and OAI to simulate the Core Network
with 5G NSA components. The portable demonstrator dis-
played different components that can be used to deploy a 5G
Network. Nonetheless, there are no 5G SA elements and NS
approach implementation. Even though SDN was mentioned
as a part of the components, there were no details about
SDN setup and adequate details to replicate their approach.
Also, in [§]], the authors presented an open-source, scalable
5G security testbed for experiments and implementation of
different security mechanisms that can be applied to real-
world scenarios. The testbed components consist of Free5GC
to deploy 5G SA Core Network functions, Openstack for Net-
work Function Virtualization Infrastructure (NFVI) and VIM,
OSM as the NFV-MANO, OpenFlow (OF) enabled switches,
and Open Network Operating System (ONOS) as the SDN-
controller. This method implemented several mechanisms for
5G security testbed experiments. However, the UE and RAN
were not implemented, comprehensive manuals to replicate
were not provided, and there was no demonstration of how
SDN can manage the network traffic. Instead, other tools were
implemented for that purpose.

Following this idea, authors in [9]] considered rural areas
and proposed a practical and scalable 5G testbed that manages
and orchestrates network slices. The testbed combines open-
source solutions: Open5Gs for the 5G SA Core Network,
UERANSIM for the UE and gNB implementation, ONOS
as the SDN controller, OpenvSwitches as OpenFlow enabled
switches, Openstack as the VIM, and OSM as the NFV-
MANO. The authors deployed two Core Network slices with
an operator assigned for each slice. While this approach is
closest to ours, it lacks details to replicate the testbed and
demonstrate the SDN capabilities to manage the network.

III. TECHNICAL BACKGROUND
A. 5G architectures

3GPP has created eight deployment versions of 5G tech-
nology, shown in Fig. [I] and introduced two classifications.
Release 15 introduced Option 3, a NSA architecture that
uses the existing 4G infrastructure. Subsequently, Release
16 introduced Option 2, a SA architecture that lets users
appreciate the network’s full potential by utilizing only 5G
components. Along with these options, 3GPP introduced six
other deployment options varying in the connectivity between
each 4G and 5G element, as seen in Fig. E}

B. UERANSIM

UERANSIM is an open-source project that simulates the
5G UE and gNB for SA and NSA architectures, supporting
many simultaneous communications. UERANSIM is compat-
ible with other open-source Core Network simulations such
as Open5Gs, Free5GC, and others to set up a 5G testing
environment [|10]].
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Fig. 1. 5G architecture

C. srsRAN

Software Radio Systems (SRS) is an Ireland-based company
that builds open-source software for 4G and 5G mobile wire-
less software radio (UE and RAN) systems for commercial
customization [[11]. srsSRAN is one of their software suites.
srsRAN allows using other third-party Core Network solutions
to build a complete 4G/5G mobile wireless network, and
it is compatible with Software Defined Radios (SDR) such
as USRPs, BladeRF, and others [12]. This software radio
suite includes srsUE for a full-stack 5G NSA/SA application,
srsSENB for a full stack 5G NSA/SA capabilities, and srsEPC
for a light-weight 4G EPC implementation [13].

D. Open5GS

Open5Gs is an open-source project written in C and allows
portability for various hardware and application platforms.
This project allows the building and configuring of 5G SA
networks or 4G networks with 5G capabilities (NSA). It
provides a scalable and flexible platform for deploying 5G
Networks and services [[14].

E. Software-Defined Networks

SDN refers to separating the network control plane from
the forwarding plane [15]]. The SDN paradigm is based on
separating the control network functions from the network
devices themselves, and they will become simple packet-
forwarding devices while the control logic is implemented
in the centralized SDN controller [[16]. To achieve such
separation, three components are required: a centralized SDN
controller, SDN-capable switches, and a management protocol.
SDN’s architecture consists of the control plane, the data
plane, and the application plane that communicates with the
control plane [[17].

F. Network Function Virtualization

NFV is the concept of moving network services from
dedicated physical hardware/stand-alone appliances into ser-
vices/software that runs in a virtualized environment, such as
any white box or COTS server [[18]]. The NFV framework con-
sists of three main components: 1) Virtual Network Functions
(VNFs); 2) Network Function Virtualization Infrastructure
(NFVI); and 3) NFV Management and Orchestration (NFV-
MANO).

IV. PROPOSED 5G SA TESTBED APPROACH
A. Early Considerations

During the early stages of developing a 5G testbed for
research purposes, we conducted a thorough assessment of
prior related work based on their infrastructure and used re-
sources. We considered four different aspects of their testbed:
CN, RAN, UE, VIM, and the SDN controller. After collecting
the different open source projects used, we selected the most
commonly used: OAI for the Core Network, UE and the RAN,
Openstack as the VIM, and ONOS as the SDN controller.

1) Core Network, UE and RAN: We initially started with
OAI OALI is an open-source project that provides a 5G SA
Core Network implementation and 5G RAN that allows a
full 5G Network simulation. In addition, OAI offers several
deployment modes (minimalist, basic, and slicing) controlled
by a python script, uses docker containers for the NF and
docker-compose to start, stop, and manage the 5SG NF, and
provides several tutorials and manuals for deployment. OAI
was a great tool for our early research stages. However, the
docker-compose deployment was not suitable for our approach
since we were trying to split the network functions and deploy
these services independently in different VMs since each
network function relied on different parameters to deploy.
OAI would be a better option for researchers who trend
toward docker containers and are looking for portability and
an isolated environment for the OAI software.

Regarding the RAN, OAI offers documentation explaining
how to implement a basic deployment and test it with UER-
ANSIM as a RAN emulator, resulting in a successful job.
Since UERANSIM is flexible, customizable, and compatible
with other open-source 5G Core Network implementations,
we chose it to be integrated to our proposed testbed with
Open5GS.

2) SDN: ONOS is an open-source SDN controller and
provides a centralized control plane for network device man-
agement, such as switches and routers. During our initial stage,
we deployed ONOS as our SDN controller in conjunction
with Openvswitch for SDN testing. However, after working on
the OpenStack deployment using DevStack, we exchanged the
ONOS controller for Opendaylight due to much more available
network plugins.

B. Final Choices

After evaluating and deploying several solutions for 5G
Network simulation, SDN, and VIM, we finally encountered
the best suitable tools for our testbed. Therefore, compared to
the initial proposal, we changed our approach based on the
following: OpenSGS for the Core Network, UERANSIM for
the RAN, VMware ESXI as the VIM and hypervisor, and
Opendaylight as the SDN controller. The following sections
will provide a better understanding of the final stage of
building a 5G-SDN testbed with these choices.

1) VIM-NFVI: Compared to the initial stages, we selected
VMWare ESXI as our VIM and Hypervisor which is a bare
metal hypervisor. Using ESXij, it is possible to create multiple



VMs and configure the VM hardware easily. Also, one of the
benefits of VMware ESXI is that it is possible to assign USB
devices using the available USB controller. This feature was
essential for us since, as an extension, we plan to deploy Ettus
Software Defined Radio and RF drivers that communicate
through USB 3.0.

2) Core Network: OpenSGS is our final choice for the
Core Network deployment. It provided the flexibility required
for our testbed, which consisted of easy customization by
modifying the configuration files of each NF. Also, it was
compatible with other projects, such as UERANSIM and
srsRAN, and allowed the CP and UP separation in a very
convenient manner as opposed to OAL

3) RAN and UE: Regarding the RAN, we considered two
solutions: UERANSIM and srsRAN. UERANSIM provided a
tool called NR-binder, which binds it with the Core Network
and acts like N2, N3, and N4 interfaces. The advantage of this
tool is that it allows different types of testing using the created
tunneling interface (i.e., uesimtun0). In addition, several testing
options were available, such as speedtest, ping, docker, curl,
and python applications.

srsSRAN, on the other hand, allows the UE and RAN
simulation using a different approach via a messaging library
called ZeroMQ. ZeroMQ is an asynchronous messaging li-
brary for distributed or concurrent applications to provide
high performance. ZeroMQ ensures that the gNB can quickly
and efficiently send and receive data [19]. Also, ZeroMQ
allows the substitution of the need for physical RF hardware
and transmit radio samples. Using srsRAN in conjunction
with Open5Gs makes it possible to create an end-to-end
network. This method requires deploying the UE and RAN on
a single computer and separating them using different network
namespaces. The UE will receive an IP address from the 5G
Core, and the Linux kernel will bypass the tunneling interface
during routing traffic between both ends.

4) SDN: An important and unique aspect of our testbed
is to be able to use SDN capabilities. SDN will provide the
network programmability that the 5G Network needs to keep
agility and flexibility since it will deal with more traffic than
other mobile wireless generation. As a result, using SDN
will improve the network performance, facilitate adding new
services, and reduce the complexity of managing the network
[20]. There are several methods to deploy SDN since different
SDN switches and controllers are available. After considering
this, we kept this approach in mind to allow researchers to
choose their suitable SDN controller with Openvswitch.

For our testbed, we used open-source projects to deploy
the different SDN components. We use OpenvSwitch as our
SDN-capable switches, Opendaylight as our SDN controller,
and OpenFlow 1.3 as the management protocol. We selected
OpenvSwitch as our virtual switch due to its flexibility and
compatibility with several open-source SDN controllers. Also,
it supports OpenFlow and can be used in various virtualized
environments. When it comes to Opendaylight, as mentioned
in the prior section, after getting familiar with it during the
implementation in Openstack, we discovered the benefits of

Opendaylight as an SDN controller. Opendaylight has multiple
available applications that provide flexibility, several available
documentation, and more straightforward deployment.

For the SDN components deployment, we created 2 VMs
with the same configuration mentioned in the Core Net-
work section: one for the OpenvSwitch, and one for the
Opendaylight controller. All the VMs that contains the Core
Network functions, base stations, and UEs are connected to
the Openvswitch that the Opendaylight controller remotely
controls. The motivation behind this strategy is to allow us
to control all the component traffic of our testbed using the
SDN controller. In a real-world scenario, the SDN switch can
be placed in Midhaul or Backhaul, and the UEs may not be
directly connected to the SDN switch. However, our approach
is to allow other researchers to use it to better understand
the behavior of the UE traffic within the 5G Network. It is
also possible for other researchers to customize the proposed
testbed and place the SDN switch in different segments of the
network.

C. Different Testbed Scenarios

We implemented different scenarios using different tool
options. In any case, we installed ESXI VMWare on top of
a Dell Precision Workstation with 24 CPUs, 64GB of RAM,
and a 1 TB SSD. We deployed the CP NF and UP NF in
different virtual machines with 2 Core, 4G RAM and 40GB of
Disk. Similarly, UERANSIM and srsRAN were also deloyed
in two separate VMs. Finally, we created a VM for including
a Gateway router at the boundary. The purpose of the gateway
VM is to keep our testbed self-contained from the FIU network
environment. The Gateway VM is directly connected to the
ESXi virtual switch and the OpenvSwitch to allow the testbed
components to access Internet. This Gateway VM serves as a
boundary to isolate our 5G testbed from the host environment.
The overall designs for these testbed scenarios are shown in
Fig. [2} and |3} We now explain the details for each scenario.
Comprehensive guides on how to build the proposed testbed
can be found on: [

1) Scenario 1: Scenario 1 uses UERANSIM as the UE and
RAN simulator with Open5Gs as the SGCN, as shown in Fig.
In addition, two UE VMs has been created to run the UER-
ANSIM script to initiate the UEs and create the corresponding
UE tunnel interface. In this scenario, we also implemented the
NS capabilities offered by Open5GS and UERANSIM. Using
the Open5GS Web User Interface, it is possible to assign a
network slice to a subscriber. Furthermore, it allows the user
to assign a new slice by providing Slice/Service Type (SST),
Slice Differentiator (SD), Slice priority, and QoS. To this end,
we added an extra UPF (UP2) to the architecture. As a result,
we set up two network slices and declared them into AMF,
NSSF, SMF, UPF, and GNB configuration files. This means we
needed to create an additional VM for UP on Fig. |2 During
the subscriber registration, we assigned different slices to each
UE. In addition to the network slice assignation, we also set

Uhttps://github.com/adwise-fiu/SG-SDN-Testbed
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the Session Aggregate Maximum Bit Rate (AMBR) to control
the amount of bandwidth a UE can use during a session. This
feature ensures that the network’s resources are used efficiently
and that the UE does not consume more than its allocated share
of network resources.

2) Scenario 2: Scenario 2 utilizes srsSRAN for the UE
and RAN simulator with Open5GS as the 5G Core Network.
Compared to scenario 1, only a single gNB and UE is
supported. Therefore, we decided to test the environment with
one UE. The gNB and the UE are running in the same VM,
as shown in Fig. 3]

V. EXPERIMENTS AND RESULTS

Using the developed testbed, we conducted some prelimi-
nary experiments to evaluate the feasibility and performance of
the proposed scenarios. The preliminary experiment involved

deploying 5G equipment at a test site, collecting data on
throughput, and latency from the UE simulations. To measure
each scenario’s bandwidth and latency, we used the speedtest-
cli command-line interface tool for scenario 1 (Fig. 2) and sce-
nario 2 (Fig. [3). This tool allows measuring the performance
of a network connection from the UE perspective Speedtest
CLI allows measuring the internet connection without relying
on a web browser. The test consists of the Linux environment
(the client) to determine the device location and the closest
test server based on a ping response. Once the server has been
established, the download test begins, which is the client trying
to download a small piece of data from the server. During this
test, two aspects are considered: the time it took the client
to get a piece of data and how much network resources were
used. If the client detects more sources available, it opens more



connections to the server and downloads more data [21]. The
obtained results, which consisted of an average of ten samples
taken every hour, are shown in Table m

TABLE 1
THROUGHPUT AND LATENCY

Throughput Latency
Average (Mbps) | Average (ms)
Scenario 1 - UERANSIM
DL 98.27
UE1 OL 110 15.08
DL 112.82
UE2 L T31.68 1373
Scenario 1 - UERANSIM - NS
DL 21.72
UE1 UL 14 13.45
DL 10.79
UE2 UL T34 13.34
Scenario 2 - srsRAN
DL 582.67
UE UL 281.07 10.20

As seen, scenario 1 presented a downlink data rate between
98.27 and 112.82 Mbps and an uplink rate between 111
and 131.68 Mbps. In contrast, scenario 2 showed almost a
quintuple of the downlink average (582.67 Mbps) and a triple
of the uplink average (281.07 Mbps) from scenario 1 results,
as shown in Table. [l The reason behind these results and such
a big gap between deployments using UERANSIM vs. using
srSRAN is the ZeroMQ utilization. ZeroMQ provides high-
performance results due to its asynchronous communication,
multithreading, high-performance transport mechanisms, and
high-throughput communication design [[19].

On the other hand, checking the latency results, we observed
that scenario 2 showed better results than scenario 1, with a
latency of 10.20 ms, while that of scenario 1 was between
13.73 and 15.08ms as shown in Table. [

VI. CONCLUSION

In this paper, we presented the design, development and
analysis of a 5G SA testbed to offer an open-source tool
for researchers while also evaluating how different UE-RAN
simulators can influence the 5G Network performance and
how SDN can be incorporated to control traffic. We incor-
porated software components, such as the 5G Core Network
functions, gNB, UE, SDN switch, and SDN controller, to de-
velop appropriate test scenarios and metrics for evaluating the
testbed’s performance. Our testbed provides a valuable tool for
researchers looking to study and improve the performance of
5G Networks and can contribute to the successful deployment
of 5G Networks in real life.

VII. DEMO

In this section, we explain what our demo will include
in terms of setup and additional experiments. We plan to
demonstrate NS and SDN capabilities through our demo.

A. Setup

The demo setup consists of using a laptop that will allow
us to remotely access our setup with the mentioned Dell

Workstation with VMWare ESXi as the hypervisor using SSH.
Within this environment, we will have six VMs: one for the
Control Plane (Open5Gs), two for different UPFs (Open5Gs),
one for the gNB (UERANSIM), and two for the UE simulation
(UERANSIM). The mentioned components are based on the
Scenario 1 in Section IV.C. Using the mentioned equipment,
we will run the scripts to start the UE and RAN simulation, as
we are also displaying the interaction logs between these two
projects. After the setup has been established, we will proceed
to demonstrate the following experiments.

B. Network Slicing

For the NS demonstration using scenario 1 shown in Fig. 2
we assigned different network slices on each UE and verified
that they had been reflected during the process of a user
device connecting to the 5G Network. We will show the AMF
logs, which provide the indicated Subscribed Network Slice
Selection Assistance Information (S-NSSAI) after the UE has
been successfully registered to the network. It is important to
consider that this is a basic implementation of an NS scenario
for studying and testing purposes.

AMF logs

[amf] INFO:InitialUEMessage

[amf] INFO: [Added] Number of gNB-UEs is now 1

[amf] INFO:RAN_UE_NGAP_ID[1] AMF_UE_NGAP_ID[3] TAC[1]
CellID[0x10]

[amf] INFO: [suci-0-001-01-0000-0-0-0000000001] known
UE by SUCI

[gmm] INFO:Registration request

[gmm] INFO: [suci-0-001-01-0000-0-0-0000000001] SUCI
[amf] INFO:[imsi-001010000000001:1] Release SM context
[204]

[amf] INFO:[Removed] Number of AMF-Sessions is now 0
[gmm] INFO:[imsi-001010000000001] Registration complete
[amf] INFO:[imsi-001010000000001] Configuration update
command

[amf] INFO: [Added] Number of AMF-Sessions is now 1
[gmm] INFO:UE SUPI[imsi-001010000000001] DNN[internet]
S_NSSAI[SST:1 SD:0x1]

Fig. 4. AMF logs - UEl

Based on the obtained logs shown in Fig. 4] and [5] we will
pay attention to the last line on each log displays the indicating
UE’s Subscription Permanent Identifier (SUPI), DNN, and
Subscribed Network Slice Selection Assistance Information
(S-NSSAI). This information matches the provided informa-
tion during the subscriber registration using the Open5gs
WebUI and confirms the support of NS assignment in our
testbed.

We already conducted some experiments by setting the
AMBR of UE to 20 Mbps for DL and UL throughput and
10 Mbps for the second UE. The results, shown in Table [l
demonstrate the ability of the network to reduce the UE’s bit
rate depending on the assigned network slice. The results show
that UE number 1 has a downlink data rate of 21.72 Mbps
and an uplink of 22.14 Mbps, while the second UE showed
a downlink average of 10.79 Mbps and an uplink average of
11.24 Mbps. The latency results shown in Table [I] are slightly
better than that of Scenario 1 without NS, which indicates that
there is even performance improvement with NS. We plan to
highlight this during our demo.



AMF logs

[amf] INFO:InitialUEMessage

[amf] INFO: [Added] Number of gNB-UEs is now 2

[amf] INFO:RAN_UE_NGAP_ID[2] AMF_UE_NGAP_ID[4] TAC[1]
CellID[0x10]

[amf] INFO: [suci-0-001-01-0000-0-0-0000000002] known
UE by SUCI

[gmm] INFO:Registration request

[gmm] INFO: [suci-0-001-01-0000-0-0-0000000002] SUCI
[amf] INFO:[imsi-001010000000002:1] Release SM context
[204]

[amf] INFO:[Removed] Number of AMF-Sessions is now 1
[gmm] INFO:[imsi-001010000000002] Registration complete
[amf] INFO:[imsi-001010000000002] Configuration update
command

iéﬁf] INFO: [Added] Number of AMF-Sessions is now 2
[gmm] INFO:UE SUPI[imsi-001010000000002] DNN[mec]
S_NSSAI[SST:2 SD:0x1]

Fig. 5. AMF logs - UE2

C. SDN Capabilities

As the second component of the demo, we demonstrate the
SDN features by creating two flows using the rest API of
Opendaylight in Postman API tool to allow any traffic and
the second one to drop traffic coming from the UEs. Postman
allows to perform CRUD (Create, Read, Update, and Delete)
operations using the Opendaylight REST API to edit current
flows in the Openvswitch [22]. The experiment consists of
adding the first flow using Postman to accept all traffic in the
OpenvSwitch using the action Normal only. Then, we start
scenario 1 and run the specified command in Fig. [6]to confirm
that traffic is working normally.

speedtest-cli —--source 10.45.0.3 --secure
Retrieving speedtest.net configuration...
Testing from Florida International University
Retrieving speedtest.net server list...
Selecting best server based on ping...
Hosted by Summit Broadband (Miami, FL)
Testing download speed.....

Download: 146.16 Mbit/s

Testing upload speed.....

Upload: 113.56 Mbit/s

[13.49 km]: 8.887 ms

Fig. 6. Speedtest Results after first flow added

After we add the second flow that drops the GRPS Tunnel
Protocol traffic which will block traffic coming from the UEs
using scenario 1.

speedtest-cli —--source 10.45.0.3 --secure
Retrieving speedtest.net configuration...
Cannot retrieve speedtest configuration
ERROR: <urlopen error timed out>

Fig. 7. Speedtest Results after second flow added

Fig. [7] displays the obtained output after running the same
speedtest-cli command using the same interface. This output
suggests that there was an issue connecting to the speedtest.net
server due to that the packets coming from the tunneling
interface (uesimtun0) has been dropped. This way we will be
able to demonstrate the feasibility of SDN controller.
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