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Abstract—The fifth generation of mobile wireless communi-
cation represents a significant evolution of mobile networks
due to its promises of Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC), and
Massive Machine Type Communications (mMTC) to be applied
to real-world applications. Even though there have been 5G
Network deployments in some parts of the world that depend
on 4G/LTE Core Networks, 5G is still a work in progress, with
ongoing research and development to improve and develop this
technology. 5G testbeds are essential for ongoing research to
propose a solution, simulate, configure, test, and evaluate the
impact of different network parameters on the system. Therefore,
this paper presents a comprehensive approach to deploying a
Standalone (SA) SDN-based 5G testbed for researchers to study
and improve the performance of 5G Networks. Our testbed
includes integrating several open-source projects to provide two
testing scenarios where we assess the throughput and latency
performance, Network slicing configuration, and the feasibility
of SDN capabilities. The testbed provides a helpful instrument
and lessons learned for the research community to improve and
contribute to the successful deployment of 5G Networks in the
real world.

Index Terms—5G testbed, SDN, SA, Open-source, Network
Slicing

I. INTRODUCTION

Since the introduction of the first-generation mobile network

in the 1980s, mobile wireless communication requirements

have been growing significantly from analog phone calls to

real-world applications such as autonomous vehicles, remote

surgeries, and advanced robotics. These real-world applica-

tions depend on three fundamental building blocks required for

5G Networks: Enhanced Mobile Broadband (eMBB), Ultra-

Reliable Low Latency Communications (URLLC), and Mas-

sive Machine Type Communications (mMTC). These three

fundamental building blocks are aimed at solving past gen-

erations’ challenges, such as higher capacity, lower latency

and cost, and consistent quality of service [1]. The fact

that 5G will tackle these challenges is highly appealing to

customers expecting to enhance their business or industry more

efficiently.

To deliver these requirements, it is necessary to apply

different technologies to provide customization, flexibility, and

management in the 5G Network, such as Software-Defined

Networks (SDN) and Network Function Virtualization (NFV)

[2]. SDN and NFV will help to manage the resources better,

enable scalability, manage the network from a centralized

perspective, and restore system functionality after an attack.

Also, it is possible to apply different mitigation services

against anomalies in the network using machine learning.

Several researchers are working on proposing different

solutions to speed up the process of 5G deployment to-

ward achieving the 5G KPIs: eMBB, URLLC, and mMTC.

Therefore, developing a testbed that simulates/emulates these

functionalities as close as expected to real 5G Networks and

demonstrating that these solutions will contribute to the overall

5G proliferation is crucial. However, building a 5G testbed can

be challenging since it is necessary to balance the intellectual

property and autonomy of the current implementations and

the proposed new functionalities and features to optimize the

technologies [3].

Currently, there are two main options in these research and

development efforts: 1) purchase specialized-purpose hardware

and software with 5G capabilities, or 2) utilize and deploy

open-source tools and resources. The main advantage of

using specialized-purpose equipment is that the deployment is

straightforward. However, this is costly and hinders flexibility

to deploy and test other approaches. On the other hand, open-

source projects reduce costs and allow fine-grained customiza-

tion. The challenge with this option is that the deployment

process can become complex, and there is a lack of support.

Still, most researchers will trend toward open-source interfaces

due to cost perspectives and innovation opportunities.

This paper proposes a 5G testbed focusing on implementing

Standalone (SA) mode in 5G Networks using SDN and NFV.

We have utilized a range of open-source projects, including

Open5Gs, srsRAN, UERANSIM, Opendaylight (ODL), and

OpenvSwitch (OVS), to build and deploy our testbed, which

is one of the first to provide a comprehensive understanding

of how to deploy and configure 5G SA networks using SDN

and NFV, focusing on the hardware and software components

involved. In addition, detailed instructions on deploying and

configuring these components are included for their easy

reproducibility. Overall, our testbed represents a valuable

resource for those interested in exploring the capabilities and

potential of 5G SA networks using SDN and NFV with the

exception of NFV Management and Orchestration (MANO)

deployment.

Through this testbed, we conducted some preliminary exper-

iments to demonstrate feasibility and performance. The testbed

experiments were designed to measure the data throughput and

latency, demonstrate Network Slicing (NS) capabilities, and

how SDN can be utilized to manage the network traffic.



The rest of the paper is organized as follows. Section II

provides related work to our testbed. Section III provides an

understanding of the concepts mentioned in the paper. The

proposed testbed approach is explained in section IV, followed

by the experiments and results in Section V. Section VI wraps

up the paper, while Section VII offers the details of the planned

demonstration.

II. RELATED WORK

The use of testbeds to evaluate the performance of 5G

Networks has garnered significant interest in recent years,

as they offer a controlled and reproducible environment for

evaluating the capabilities and limitations of different 5G tech-

nologies and architectures. As a result, several previous studies

have developed and deployed various 5G testbeds to evaluate

the performance of different aspects of 5G Networks. In the

previous study, [4] introduced an open-source 5G testbed with

NS capabilities for research purposes. This testbed used Open

Air Interface (OAI) Non-Standalone (NSA) elements and

included a 5G SA element ( Access and Mobility Management

Function (AMF)) to allow interworking with Evolved-UMTS

Terrestrial Radio Access Network (E-UTRAN). In addition,

OAI was selected to simulate the User Equipment (UE) and

Radio Access Network (RAN) since it allows adding the NS

features for the registration procedure. Despite their great

contribution of adding NS capabilities and providing details on

how to replicate their approach, their testbed did not address

SDN and 5G SA implementation.

Hence, [5] developed an open-source testbed with

blockchain-enabled for Non-Public Network (NPN) architec-

tures. The testbed’s purpose is to test the solution’s effec-

tiveness for this architecture and other capabilities, such as

exploring commercial applications. The authors’ methodology

is based on cloud and containerization to deploy free5GC

as the 5G SA Core Network, UERANSIM as the UE and

RAN simulation, and Go-Ethereum for the blockchain nodes.

While this testbed implemented 5G SA network functions,

it is an example of UERANSIM applications and focused

mainly on how to replicate their blockchain approach. In

addition, SDN and NS were not considered at all. Follow-

ing this idea, [6] proposed an open-source 5G testbed that

supports multi-tenancy, multi-radio access technologies, SDN

functionalities, orchestrating capabilities, and the deployment

of End-to-End (E2E) NS. This testbed implemented 5G NSA

OAI for the Core Network, srsLTE for the RAN, Open Source

Mano (OSM) as the NFV-MANO entity, and Openstack as

the Virtual Infrastructure Manager (VIM). In addition to the

integration of two tenant controllers: 5G-EmPOWER and M-

CORD. Similar to many others, this testbed also did not

implement 5G SA elements, and the usage of OpenStack limits

the flexibility of customizing the SDN capabilities.

Moreover, in [7], the authors had a different approach

by providing a portable demonstrator of their 5GENESIS

project 5G experimentation. This approach aims to have a tool

that allows on-site testing and experimentation. This portable

demonstrator consists of several physical components, from

commercial nodes to open-source projects: OAI for the 4G/5G

RAN, Ettus Universal Software Radio Peripheral (USRP)

N300 for RAN and UE simulation, Commercial Off-The-Self

(COTS) 5G NSA UEs, and OAI to simulate the Core Network

with 5G NSA components. The portable demonstrator dis-

played different components that can be used to deploy a 5G

Network. Nonetheless, there are no 5G SA elements and NS

approach implementation. Even though SDN was mentioned

as a part of the components, there were no details about

SDN setup and adequate details to replicate their approach.

Also, in [8], the authors presented an open-source, scalable

5G security testbed for experiments and implementation of

different security mechanisms that can be applied to real-

world scenarios. The testbed components consist of Free5GC

to deploy 5G SA Core Network functions, Openstack for Net-

work Function Virtualization Infrastructure (NFVI) and VIM,

OSM as the NFV-MANO, OpenFlow (OF) enabled switches,

and Open Network Operating System (ONOS) as the SDN-

controller. This method implemented several mechanisms for

5G security testbed experiments. However, the UE and RAN

were not implemented, comprehensive manuals to replicate

were not provided, and there was no demonstration of how

SDN can manage the network traffic. Instead, other tools were

implemented for that purpose.

Following this idea, authors in [9] considered rural areas

and proposed a practical and scalable 5G testbed that manages

and orchestrates network slices. The testbed combines open-

source solutions: Open5Gs for the 5G SA Core Network,

UERANSIM for the UE and gNB implementation, ONOS

as the SDN controller, OpenvSwitches as OpenFlow enabled

switches, Openstack as the VIM, and OSM as the NFV-

MANO. The authors deployed two Core Network slices with

an operator assigned for each slice. While this approach is

closest to ours, it lacks details to replicate the testbed and

demonstrate the SDN capabilities to manage the network.

III. TECHNICAL BACKGROUND

A. 5G architectures

3GPP has created eight deployment versions of 5G tech-

nology, shown in Fig. 1, and introduced two classifications.

Release 15 introduced Option 3, a NSA architecture that

uses the existing 4G infrastructure. Subsequently, Release

16 introduced Option 2, a SA architecture that lets users

appreciate the network’s full potential by utilizing only 5G

components. Along with these options, 3GPP introduced six

other deployment options varying in the connectivity between

each 4G and 5G element, as seen in Fig. 1.

B. UERANSIM

UERANSIM is an open-source project that simulates the

5G UE and gNB for SA and NSA architectures, supporting

many simultaneous communications. UERANSIM is compat-

ible with other open-source Core Network simulations such

as Open5Gs, Free5GC, and others to set up a 5G testing

environment [10].
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Fig. 1. 5G architecture

C. srsRAN

Software Radio Systems (SRS) is an Ireland-based company

that builds open-source software for 4G and 5G mobile wire-

less software radio (UE and RAN) systems for commercial

customization [11]. srsRAN is one of their software suites.

srsRAN allows using other third-party Core Network solutions

to build a complete 4G/5G mobile wireless network, and

it is compatible with Software Defined Radios (SDR) such

as USRPs, BladeRF, and others [12]. This software radio

suite includes srsUE for a full-stack 5G NSA/SA application,

srsENB for a full stack 5G NSA/SA capabilities, and srsEPC

for a light-weight 4G EPC implementation [13].

D. Open5GS

Open5Gs is an open-source project written in C and allows

portability for various hardware and application platforms.

This project allows the building and configuring of 5G SA

networks or 4G networks with 5G capabilities (NSA). It

provides a scalable and flexible platform for deploying 5G

Networks and services [14].

E. Software-Defined Networks

SDN refers to separating the network control plane from

the forwarding plane [15]. The SDN paradigm is based on

separating the control network functions from the network

devices themselves, and they will become simple packet-

forwarding devices while the control logic is implemented

in the centralized SDN controller [16]. To achieve such

separation, three components are required: a centralized SDN

controller, SDN-capable switches, and a management protocol.

SDN’s architecture consists of the control plane, the data

plane, and the application plane that communicates with the

control plane [17].

F. Network Function Virtualization

NFV is the concept of moving network services from

dedicated physical hardware/stand-alone appliances into ser-

vices/software that runs in a virtualized environment, such as

any white box or COTS server [18]. The NFV framework con-

sists of three main components: 1) Virtual Network Functions

(VNFs); 2) Network Function Virtualization Infrastructure

(NFVI); and 3) NFV Management and Orchestration (NFV-

MANO).

IV. PROPOSED 5G SA TESTBED APPROACH

A. Early Considerations

During the early stages of developing a 5G testbed for

research purposes, we conducted a thorough assessment of

prior related work based on their infrastructure and used re-

sources. We considered four different aspects of their testbed:

CN, RAN, UE, VIM, and the SDN controller. After collecting

the different open source projects used, we selected the most

commonly used: OAI for the Core Network, UE and the RAN,

Openstack as the VIM, and ONOS as the SDN controller.

1) Core Network, UE and RAN: We initially started with

OAI. OAI is an open-source project that provides a 5G SA

Core Network implementation and 5G RAN that allows a

full 5G Network simulation. In addition, OAI offers several

deployment modes (minimalist, basic, and slicing) controlled

by a python script, uses docker containers for the NF and

docker-compose to start, stop, and manage the 5G NF, and

provides several tutorials and manuals for deployment. OAI

was a great tool for our early research stages. However, the

docker-compose deployment was not suitable for our approach

since we were trying to split the network functions and deploy

these services independently in different VMs since each

network function relied on different parameters to deploy.

OAI would be a better option for researchers who trend

toward docker containers and are looking for portability and

an isolated environment for the OAI software.

Regarding the RAN, OAI offers documentation explaining

how to implement a basic deployment and test it with UER-

ANSIM as a RAN emulator, resulting in a successful job.

Since UERANSIM is flexible, customizable, and compatible

with other open-source 5G Core Network implementations,

we chose it to be integrated to our proposed testbed with

Open5GS.

2) SDN: ONOS is an open-source SDN controller and

provides a centralized control plane for network device man-

agement, such as switches and routers. During our initial stage,

we deployed ONOS as our SDN controller in conjunction

with Openvswitch for SDN testing. However, after working on

the OpenStack deployment using DevStack, we exchanged the

ONOS controller for Opendaylight due to much more available

network plugins.

B. Final Choices

After evaluating and deploying several solutions for 5G

Network simulation, SDN, and VIM, we finally encountered

the best suitable tools for our testbed. Therefore, compared to

the initial proposal, we changed our approach based on the

following: Open5GS for the Core Network, UERANSIM for

the RAN, VMware ESXI as the VIM and hypervisor, and

Opendaylight as the SDN controller. The following sections

will provide a better understanding of the final stage of

building a 5G-SDN testbed with these choices.

1) VIM-NFVI: Compared to the initial stages, we selected

VMWare ESXI as our VIM and Hypervisor which is a bare

metal hypervisor. Using ESXi, it is possible to create multiple



VMs and configure the VM hardware easily. Also, one of the

benefits of VMware ESXI is that it is possible to assign USB

devices using the available USB controller. This feature was

essential for us since, as an extension, we plan to deploy Ettus

Software Defined Radio and RF drivers that communicate

through USB 3.0.

2) Core Network: Open5GS is our final choice for the

Core Network deployment. It provided the flexibility required

for our testbed, which consisted of easy customization by

modifying the configuration files of each NF. Also, it was

compatible with other projects, such as UERANSIM and

srsRAN, and allowed the CP and UP separation in a very

convenient manner as opposed to OAI.

3) RAN and UE: Regarding the RAN, we considered two

solutions: UERANSIM and srsRAN. UERANSIM provided a

tool called NR-binder, which binds it with the Core Network

and acts like N2, N3, and N4 interfaces. The advantage of this

tool is that it allows different types of testing using the created

tunneling interface (i.e., uesimtun0). In addition, several testing

options were available, such as speedtest, ping, docker, curl,

and python applications.

srsRAN, on the other hand, allows the UE and RAN

simulation using a different approach via a messaging library

called ZeroMQ. ZeroMQ is an asynchronous messaging li-

brary for distributed or concurrent applications to provide

high performance. ZeroMQ ensures that the gNB can quickly

and efficiently send and receive data [19]. Also, ZeroMQ

allows the substitution of the need for physical RF hardware

and transmit radio samples. Using srsRAN in conjunction

with Open5Gs makes it possible to create an end-to-end

network. This method requires deploying the UE and RAN on

a single computer and separating them using different network

namespaces. The UE will receive an IP address from the 5G

Core, and the Linux kernel will bypass the tunneling interface

during routing traffic between both ends.

4) SDN: An important and unique aspect of our testbed

is to be able to use SDN capabilities. SDN will provide the

network programmability that the 5G Network needs to keep

agility and flexibility since it will deal with more traffic than

other mobile wireless generation. As a result, using SDN

will improve the network performance, facilitate adding new

services, and reduce the complexity of managing the network

[20]. There are several methods to deploy SDN since different

SDN switches and controllers are available. After considering

this, we kept this approach in mind to allow researchers to

choose their suitable SDN controller with Openvswitch.

For our testbed, we used open-source projects to deploy

the different SDN components. We use OpenvSwitch as our

SDN-capable switches, Opendaylight as our SDN controller,

and OpenFlow 1.3 as the management protocol. We selected

OpenvSwitch as our virtual switch due to its flexibility and

compatibility with several open-source SDN controllers. Also,

it supports OpenFlow and can be used in various virtualized

environments. When it comes to Opendaylight, as mentioned

in the prior section, after getting familiar with it during the

implementation in Openstack, we discovered the benefits of

Opendaylight as an SDN controller. Opendaylight has multiple

available applications that provide flexibility, several available

documentation, and more straightforward deployment.

For the SDN components deployment, we created 2 VMs

with the same configuration mentioned in the Core Net-

work section: one for the OpenvSwitch, and one for the

Opendaylight controller. All the VMs that contains the Core

Network functions, base stations, and UEs are connected to

the Openvswitch that the Opendaylight controller remotely

controls. The motivation behind this strategy is to allow us

to control all the component traffic of our testbed using the

SDN controller. In a real-world scenario, the SDN switch can

be placed in Midhaul or Backhaul, and the UEs may not be

directly connected to the SDN switch. However, our approach

is to allow other researchers to use it to better understand

the behavior of the UE traffic within the 5G Network. It is

also possible for other researchers to customize the proposed

testbed and place the SDN switch in different segments of the

network.

C. Different Testbed Scenarios

We implemented different scenarios using different tool

options. In any case, we installed ESXI VMWare on top of

a Dell Precision Workstation with 24 CPUs, 64GB of RAM,

and a 1 TB SSD. We deployed the CP NF and UP NF in

different virtual machines with 2 Core, 4G RAM and 40GB of

Disk. Similarly, UERANSIM and srsRAN were also deloyed

in two separate VMs. Finally, we created a VM for including

a Gateway router at the boundary. The purpose of the gateway

VM is to keep our testbed self-contained from the FIU network

environment. The Gateway VM is directly connected to the

ESXi virtual switch and the OpenvSwitch to allow the testbed

components to access Internet. This Gateway VM serves as a

boundary to isolate our 5G testbed from the host environment.

The overall designs for these testbed scenarios are shown in

Fig. 2, and 3. We now explain the details for each scenario.

Comprehensive guides on how to build the proposed testbed

can be found on: 1

1) Scenario 1: Scenario 1 uses UERANSIM as the UE and

RAN simulator with Open5Gs as the 5GCN, as shown in Fig.

2. In addition, two UE VMs has been created to run the UER-

ANSIM script to initiate the UEs and create the corresponding

UE tunnel interface. In this scenario, we also implemented the

NS capabilities offered by Open5GS and UERANSIM. Using

the Open5GS Web User Interface, it is possible to assign a

network slice to a subscriber. Furthermore, it allows the user

to assign a new slice by providing Slice/Service Type (SST),

Slice Differentiator (SD), Slice priority, and QoS. To this end,

we added an extra UPF (UP2) to the architecture. As a result,

we set up two network slices and declared them into AMF,

NSSF, SMF, UPF, and GNB configuration files. This means we

needed to create an additional VM for UP on Fig. 2. During

the subscriber registration, we assigned different slices to each

UE. In addition to the network slice assignation, we also set

1https://github.com/adwise-fiu/5G-SDN-Testbed
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the Session Aggregate Maximum Bit Rate (AMBR) to control

the amount of bandwidth a UE can use during a session. This

feature ensures that the network’s resources are used efficiently

and that the UE does not consume more than its allocated share

of network resources.

2) Scenario 2: Scenario 2 utilizes srsRAN for the UE

and RAN simulator with Open5GS as the 5G Core Network.

Compared to scenario 1, only a single gNB and UE is

supported. Therefore, we decided to test the environment with

one UE. The gNB and the UE are running in the same VM,

as shown in Fig. 3

V. EXPERIMENTS AND RESULTS

Using the developed testbed, we conducted some prelimi-

nary experiments to evaluate the feasibility and performance of

the proposed scenarios. The preliminary experiment involved

deploying 5G equipment at a test site, collecting data on

throughput, and latency from the UE simulations. To measure

each scenario’s bandwidth and latency, we used the speedtest-

cli command-line interface tool for scenario 1 (Fig. 2) and sce-

nario 2 (Fig. 3). This tool allows measuring the performance

of a network connection from the UE perspective Speedtest

CLI allows measuring the internet connection without relying

on a web browser. The test consists of the Linux environment

(the client) to determine the device location and the closest

test server based on a ping response. Once the server has been

established, the download test begins, which is the client trying

to download a small piece of data from the server. During this

test, two aspects are considered: the time it took the client

to get a piece of data and how much network resources were

used. If the client detects more sources available, it opens more



connections to the server and downloads more data [21]. The

obtained results, which consisted of an average of ten samples

taken every hour, are shown in Table I.

TABLE I
THROUGHPUT AND LATENCY

Throughput Latency

Average (Mbps) Average (ms)

Scenario 1 - UERANSIM

UE1
DL 98.27

15.08
UL 111.0

UE2
DL 112.82

13.73
UL 131.68

Scenario 1 - UERANSIM - NS

UE1
DL 21.72

13.45
UL 22.14

UE2
DL 10.79

13.34
UL 11.24

Scenario 2 - srsRAN

UE
DL 582.67

10.20
UL 281.07

As seen, scenario 1 presented a downlink data rate between

98.27 and 112.82 Mbps and an uplink rate between 111

and 131.68 Mbps. In contrast, scenario 2 showed almost a

quintuple of the downlink average (582.67 Mbps) and a triple

of the uplink average (281.07 Mbps) from scenario 1 results,

as shown in Table. I. The reason behind these results and such

a big gap between deployments using UERANSIM vs. using

srsRAN is the ZeroMQ utilization. ZeroMQ provides high-

performance results due to its asynchronous communication,

multithreading, high-performance transport mechanisms, and

high-throughput communication design [19].

On the other hand, checking the latency results, we observed

that scenario 2 showed better results than scenario 1, with a

latency of 10.20 ms, while that of scenario 1 was between

13.73 and 15.08ms as shown in Table. I.

VI. CONCLUSION

In this paper, we presented the design, development and

analysis of a 5G SA testbed to offer an open-source tool

for researchers while also evaluating how different UE-RAN

simulators can influence the 5G Network performance and

how SDN can be incorporated to control traffic. We incor-

porated software components, such as the 5G Core Network

functions, gNB, UE, SDN switch, and SDN controller, to de-

velop appropriate test scenarios and metrics for evaluating the

testbed’s performance. Our testbed provides a valuable tool for

researchers looking to study and improve the performance of

5G Networks and can contribute to the successful deployment

of 5G Networks in real life.

VII. DEMO

In this section, we explain what our demo will include

in terms of setup and additional experiments. We plan to

demonstrate NS and SDN capabilities through our demo.

A. Setup

The demo setup consists of using a laptop that will allow

us to remotely access our setup with the mentioned Dell

Workstation with VMWare ESXi as the hypervisor using SSH.

Within this environment, we will have six VMs: one for the

Control Plane (Open5Gs), two for different UPFs (Open5Gs),

one for the gNB (UERANSIM), and two for the UE simulation

(UERANSIM). The mentioned components are based on the

Scenario 1 in Section IV.C. Using the mentioned equipment,

we will run the scripts to start the UE and RAN simulation, as

we are also displaying the interaction logs between these two

projects. After the setup has been established, we will proceed

to demonstrate the following experiments.

B. Network Slicing

For the NS demonstration using scenario 1 shown in Fig. 2,

we assigned different network slices on each UE and verified

that they had been reflected during the process of a user

device connecting to the 5G Network. We will show the AMF

logs, which provide the indicated Subscribed Network Slice

Selection Assistance Information (S-NSSAI) after the UE has

been successfully registered to the network. It is important to

consider that this is a basic implementation of an NS scenario

for studying and testing purposes.

AMF logs
[amf] INFO:InitialUEMessage
[amf] INFO:[Added] Number of gNB-UEs is now 1
[amf] INFO:RAN_UE_NGAP_ID[1] AMF_UE_NGAP_ID[3] TAC[1]
CellID[0x10]
[amf] INFO:[suci-0-001-01-0000-0-0-0000000001] known
UE by SUCI
[gmm] INFO:Registration request
[gmm] INFO:[suci-0-001-01-0000-0-0-0000000001] SUCI
[amf] INFO:[imsi-001010000000001:1] Release SM context
[204]
[amf] INFO:[Removed] Number of AMF-Sessions is now 0
[gmm] INFO:[imsi-001010000000001] Registration complete
[amf] INFO:[imsi-001010000000001] Configuration update
command
...
[amf] INFO:[Added] Number of AMF-Sessions is now 1
[gmm] INFO:UE SUPI[imsi-001010000000001] DNN[internet]
S_NSSAI[SST:1 SD:0x1]

Fig. 4. AMF logs - UE1

Based on the obtained logs shown in Fig. 4 and 5, we will

pay attention to the last line on each log displays the indicating

UE’s Subscription Permanent Identifier (SUPI), DNN, and

Subscribed Network Slice Selection Assistance Information

(S-NSSAI). This information matches the provided informa-

tion during the subscriber registration using the Open5gs

WebUI and confirms the support of NS assignment in our

testbed.

We already conducted some experiments by setting the

AMBR of UE to 20 Mbps for DL and UL throughput and

10 Mbps for the second UE. The results, shown in Table I,

demonstrate the ability of the network to reduce the UE’s bit

rate depending on the assigned network slice. The results show

that UE number 1 has a downlink data rate of 21.72 Mbps

and an uplink of 22.14 Mbps, while the second UE showed

a downlink average of 10.79 Mbps and an uplink average of

11.24 Mbps. The latency results shown in Table I are slightly

better than that of Scenario 1 without NS, which indicates that

there is even performance improvement with NS. We plan to

highlight this during our demo.



AMF logs
[amf] INFO:InitialUEMessage
[amf] INFO:[Added] Number of gNB-UEs is now 2
[amf] INFO:RAN_UE_NGAP_ID[2] AMF_UE_NGAP_ID[4] TAC[1]
CellID[0x10]
[amf] INFO:[suci-0-001-01-0000-0-0-0000000002] known
UE by SUCI
[gmm] INFO:Registration request
[gmm] INFO:[suci-0-001-01-0000-0-0-0000000002] SUCI
[amf] INFO:[imsi-001010000000002:1] Release SM context
[204]
[amf] INFO:[Removed] Number of AMF-Sessions is now 1
[gmm] INFO:[imsi-001010000000002] Registration complete
[amf] INFO:[imsi-001010000000002] Configuration update
command
...
[amf] INFO:[Added] Number of AMF-Sessions is now 2
[gmm] INFO:UE SUPI[imsi-001010000000002] DNN[mec]
S_NSSAI[SST:2 SD:0x1]

Fig. 5. AMF logs - UE2

C. SDN Capabilities

As the second component of the demo, we demonstrate the

SDN features by creating two flows using the rest API of

Opendaylight in Postman API tool to allow any traffic and

the second one to drop traffic coming from the UEs. Postman

allows to perform CRUD (Create, Read, Update, and Delete)

operations using the Opendaylight REST API to edit current

flows in the Openvswitch [22]. The experiment consists of

adding the first flow using Postman to accept all traffic in the

OpenvSwitch using the action Normal only. Then, we start

scenario 1 and run the specified command in Fig. 6 to confirm

that traffic is working normally.

speedtest-cli --source 10.45.0.3 --secure
Retrieving speedtest.net configuration...
Testing from Florida International University (131.94.186.114)...
Retrieving speedtest.net server list...
Selecting best server based on ping...
Hosted by Summit Broadband (Miami, FL) [13.49 km]: 8.887 ms
Testing download speed.....
Download: 146.16 Mbit/s
Testing upload speed.....
Upload: 113.56 Mbit/s

Fig. 6. Speedtest Results after first flow added

After we add the second flow that drops the GRPS Tunnel

Protocol traffic which will block traffic coming from the UEs

using scenario 1.

speedtest-cli --source 10.45.0.3 --secure
Retrieving speedtest.net configuration...
Cannot retrieve speedtest configuration
ERROR: <urlopen error timed out>

Fig. 7. Speedtest Results after second flow added

Fig. 7 displays the obtained output after running the same

speedtest-cli command using the same interface. This output

suggests that there was an issue connecting to the speedtest.net

server due to that the packets coming from the tunneling

interface (uesimtun0) has been dropped. This way we will be

able to demonstrate the feasibility of SDN controller.
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