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Abstract

Many real-world problems not only have complicated nonconvex functional con-

straints but also use a large number of data points. This motivates the design of

efficient stochastic methods on finite-sum or expectation constrained problems. In

this paper, we design and analyze stochastic inexact augmented Lagrangian meth-

ods (Stoc-iALM) to solve problems involving a nonconvex composite (i.e. smooth

+ nonsmooth) objective and nonconvex smooth functional constraints. We adopt the

standard iALM framework and design a subroutine by using the momentum-based

variance-reduced proximal stochastic gradient method (PStorm) and a postprocessing

step. Under certain regularity conditions (assumed also in existing works), to reach

an ε-KKT point in expectation, we establish an oracle complexity result of O(ε−5),

which is better than the best-known O(ε−6) result. Numerical experiments on the

fairness constrained problem and the Neyman–Pearson classification problem with

real data demonstrate that our proposed method outperforms an existing method with

the previously best-known complexity result.
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1 Introduction

In the big-data era, many real-world applications are dealing with an extremely large

amount of data. Many such applications involve nonconvex functional constraints.

To compute solutions of these problems, using all data for each update (e.g., in a

deterministic method) is prohibitively expensive. This motivates us to design stochastic

methods to efficiently compute the solutions.

In this paper, we consider the nonconvex expectation constrained problem:

f ∗
0 := min

x∈Rd

{

f0(x) := g(x) + h(x), s.t. c(x) = 0
}

,

with g(x) = Eξ [G0(x; ξ)], c(x) = Eξ [C(x; ξ)] ∈ R
m,

(1)

where h is closed convex but possibly nonsmooth, and Eξ denotes the expectation

taken over the random variable ξ . Notice that it does not lose generality to use the

same random variable ξ in the objective and constraints, because if they depend on

two different random variables, we can represent ξ as the stack of the two random

variables. We assume that g(·) and c(·) are smooth (i.e., the gradient of g and the

Jacobian matrix of c are Lipschitz continuous) but possibly nonconvex. When ξ follows

the uniform distribution on {1, 2, . . . , N }, the problem (1) reduces to a finite-sum

structured problem:

f ∗
0 := min

x∈Rd

{

f0(x) := g(x) + h(x), s.t. c(x) = 0
}

,

with g(x) = 1

N

N
∑

ξ=1

G0(x; ξ), c(x) = 1

N

N
∑

ξ=1

C(x; ξ) ∈ R
m,

(2)

which arises from applications involving a large amount of pre-collected data.

Though only equality constraints are included, the formulation (1) is general

enough. As shown in [15], an inequality constraint t(x) ≤ 0 can be equivalently

formulated as an equality constraint t(x) + s = 0 by enforcing the nonnegativity of s,

and the Karush–Kuhn–Tucker (KKT) conditions of the reformulation are equivalent to

those of the original one. Also, a simple convex constraint set X can be included in (1)

by setting (part of) h to the indicator function 1X (x) = 0 if x ∈ X and +∞ otherwise.

Many applications can be formulated to (1), such as Neyman-Pearson classification

[26, 29] and the fairness constrained problem [21].

Due to the presence of nonconvexity and stochasticity in both objective and con-

straints, solving (1) is very challenging. Only a few works (e.g., [2, 21]) have proposed

and analyzed methods to solve such a problem. However, no existing methods have

fully exploited the structure of (1). We will present a stochastic method for (1) under the

general expectation setting, and establish its oracle complexity result, where the oracle

can return the function value and gradient of G0 and C at any point x and a sample of
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ξ . We follow the iALM framework and adopt the momentum-based variance-reduced

proximal stochastic gradient method (PStorm) [39] to design a subroutine.

1.1 Contributions

Our contributions are two-fold. First, we propose novel stochastic gradient-type

methods, based on the framework of the inexact augmented Lagrangian method

(Stoc-iALM), for solving nonconvex composite optimization problems with nonlinear

nonconvex (but smooth) expectation constraints, in the form of (1). By exploiting the

so-called mean-squared smoothness structure, we apply PStorm [39] together with a

proposed postprocessing step to design a subroutine within the framework of Stoc-

iALM. The subroutine design is crucial to yield our complexity result that is better

than existing best-known results and for good numerical performance, as its complex-

ity has low-order dependence not only on a target error tolerance but also on other

quantities such as the smoothness constant, variance bound, and initial objective gap.

Second, we conduct complexity analysis on the proposed Stoc-iALM with the

designed subroutine. Under a regularity condition (that was also assumed in many

existing works [15, 16, 18, 31]), we obtain an O(ε−5) oracle complexity result

for the expectation-constrained problem (1). Our O(ε−5) result yields a substantial

improvement over the best-known Õ(ε−6) and O(ε−6) complexity results1 of the

proximal-point methods in [21] and [2], which iteratively perturb both the objective

and constraints and solve a perturbed convex constrained subproblem. For two tested

problems, we verify the assumed regularity condition numerically and prove it when

a ball constraint is imposed and the involved data are preprocessed appropriately.

1.2 Related works

In this subsection, we discuss related works on the inexact augmented Lagrangian

method (iALM) and other first-order methods (FOMs) on functional constrained opti-

mization.

The iALM has been popularly used for solving constrained problems. It alter-

natingly updates the primal variable by approximately minimizing the augmented

Lagrangian function and the Lagrangian multiplier (also called dual variable) by dual

gradient ascent [9, 30]. For deterministic convex linear and/or nonlinear constrained

problems, the iALM-based FOM in [12, 17] and the proximal-iALM-based one in

[14] obtain an ε-KKT point with O
(

ε−1 log 1
ε

)

gradient evaluations, and the AL-

based FOMs in [14, 25, 27, 37, 38] obtain an ε-optimal solution with O(ε−1) gradient

evaluations. For strongly-convex problems, the results are reduced to O
(

ε−0.5 log 1
ε

)

and O(ε−0.5) respectively, e.g., in [14, 17, 24, 25, 38]. For deterministic nonconvex

problems with nonlinear convex constraints, when Slater’s condition holds, Õ(ε− 5
2 )

complexity results are obtained by the AL or penalty based FOMs in [17, 18] and the

proximal ALM-based FOM in [23]. If the constraints are polyhedral and the objective

is smooth, the complexity can be reduced to O(ε−2) with a hidden constant dependent

1 In this paper, we use Õ to suppress all logarithmic terms of ε from the big-O notation.
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on the so-called Hoffman’s bound of the polyhedral set [42]. Different from Slater’s

condition, a regularity condition is assumed in [14], which obtains an Õ(ε− 5
2 ) result

by an iALM-based FOM. The regularity condition is used to guarantee near feasibility

from near stationarity of the AL function. Assuming a similar regularity condition,

[14] and [18] both achieve Õ(ε−3) results for deterministic problems with noncon-

vex constraints, by an iALM based FOM and a proximal-point penalty based FOM

respectively. A single-loop FOM is given in [19] for solving problems with nonconvex

constraints.

There are many papers studying FOMs on convex stochastic constrained problems

(e.g., [13, 36, 40]). Also, a few papers (e.g., [11, 32, 35]) have studied FOMs for

nonconvex optimization with stochastic objective but deterministic constraints, either

based on an exact-penalty framework or ALM. However, few papers have studied

FOMs for the nonconvex expectation constrained problems. On solving inequality

expectation constrained nonconvex optimization, both [21] and [2] design stochas-

tic first-order methods in the framework of the proximal-point (PP) method. They

achieve Õ(ε−6) and O(ε−6) complexity results respectively, which are higher than

our O(ε−5) result. Both PP-based methods in [2, 21] iteratively perturb the nonconvex

objective and constraint functions to be strongly convex and inexactly solve the con-

strained convex subproblems. To achieve their results, the PP-based method in [21]

uses the online stochastic subgradient subroutine in [41], while the one in [2] designs

a constraint extrapolation (ConEx) subroutine. Note that nonconvex structures that

we assume are different from those in [2] and [21]. While we assume a nonconvex

composite objective and smooth constraints, the method in [2] applies to nonconvex

problems where both the objective and constraint functions can be nonconvex compos-

ite, and [21] only assumes weak convexity2 on the objective and constraint functions.

However, even with the nonconvex structures that we assume, the methods in [21] and

[2] can still only achieve the Õ(ε−6) and O(ε−6) complexity results, as they do not

exploit the smoothness structure in their subroutines.

Stochastic FOMs have also been proposed for minimax problems (e.g., [10, 20,

33]). The work [33] gives a hybrid variance-reduced stochastic gradient method for

nonconvex-linear minimax problems with a compact domain of dual variables and

establishes an O(ε−5) complexity result to find an ε-stationary point. Although a

nonlinear-constrained problem can be formulated as a nonconvex-linear minimax

problem by the ordinary Lagrangian function, KKT conditions of the former are

stronger than stationarity conditions of the latter that assumes a compact dual domain.

This is due to the fact that the stationary point of a nonconvex-concave minimax prob-

lem with a compact dual domain may not be primal feasible. Both of [10, 20] assume

strong concavity on the dual side. Let κ be the condition number of the dual part.

The method in [20] needs O(κ3ε−3) sample complexity to produce an ε-stationary

solution, while the complexity result in [10] is Õ(κ
9
2 ε−3). In order to obtain an ε-

KKT point of the problem (1) that we consider, under the regularity condition in

Assumption 3 below, we can apply the methods in [10, 20] to a penalized problem

minx

{

f0(x) + ρ
2
‖c(x)‖2

}

with ρ = Θ(ε−1), which is equivalent to the noncon-

vex strongly-concave minimax problem minx maxy

{

f0(x)+ y�c(x)− 1
2ρ

‖y‖2
}

. The

2 A function f is ρ-weakly convex for some ρ > 0, if f (·) + ρ
2 ‖ · ‖2 is convex.
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resulting complexity results will be O(ε−6) by the method in [20] and O(ε− 15
2 ) by

the method in [10], as the condition number of the equivalent minimax problem is

Θ(ε−1).

1.3 Notations

We use ‖ · ‖ for the Euclidean norm of a vector and the spectral norm of a matrix. The

notation [n] denotes the set {1, . . . , n}. For any a ∈ R, [a]1+ := max{a, 1}. The natural

logarithmic function is ln(·), and e = 2.71828... represents its base. We denote Jc(x)

as the Jacobian matrix of c at x and JC(x; ξ) the Jacobian matrix of C( ·; ξ) at x. The

distance between a vector x and a setX is denoted as dist(x,X ) = miny∈X ‖x−y‖. The

proximal operator of a convex function r is defined as proxr (x) := arg minu{r(u) +
1
2
‖u − x‖2}. Eξ1,ξ2 takes expectation about ξ1 and ξ2, and we always assume that ξ1

and ξ2 are independent and follow the same distribution as ξ in (1). We use ∂ f to

denote the subdifferetial of a function f . The augmented Lagrangian (AL) function

of (1) is

Lβ(x, y) = f0(x) + y�c(x) + β
2
‖c(x)‖2, (3)

where β > 0 is the penalty parameter, and y ∈ R
m is the multiplier or the dual variable.

Definition 1 (ε-KKT point in expectation) Given ε ≥ 0, a point x ∈ R
d is called an

ε-KKT point in expectation to (1) if there is a vector y ∈ R
m such that

E
[

‖c(x)‖2
]

≤ ε2, E

[

dist
(

0, ∂ f0(x) + J�
c (x) y

)2
]

≤ ε2.

2 Stochastic iALM and its outer iteration complexity

To efficiently find a near KKT-point of (1), we design a stochastic gradient-type method

based on the framework of the stochastic inexact augmented Lagrangian method (Stoc-

iALM), which is given in Algorithm 1. Because of nonconvexity, we can only produce

a near-stationary point of each subproblem, as required in (4). Though the condition

in (4) is not checkable (due to taking expectation), it can be guaranteed from the

convergence rate result of the subroutine that we will give in Sect. 3. The update to the

multiplier is inspired by [15, 31] and adapts to the estimated primal infeasibility. With

an appropriate choice of γk , we can ensure
‖yk‖
βk

→ 0, which is crucial in our analysis.

The iALM framework that we adopt here is similar to those in [15, 31]. The main

difference is the choice of subroutine. Our method only uses stochastic gradient/value

information of the objective and constraint functions in the updates of both primal and

dual variables, while the methods in [15, 31] need exact gradients/function values.

Without specifying a subroutine to obtain xk+1, we first establish the outer iteration

complexity result of Algorithm 1, by following the analysis in [15, 18]. Throughout

this paper, we make the following assumptions about (1).
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Algorithm 1: Stochastic inexact augmented Lagrangian method (Stoc-iALM) for

solving (1)

1 Initialization: given ε > 0, set y0 = 0 and choose x0 ∈ dom( f0), β0 > 0, σ > 1, and an integer

sequence {Mk }
2 for k = 0, 1, . . . , do

3 Let βk = β0σ k .

4 Obtain xk+1 (by a subroutine) satisfying

E

[

dist(0, ∂x Lβk
(xk+1, yk ))2

∣

∣ yk
]

≤ ε2. (4)

5 Obtain i.i.d samples {ξk
i
}Mk
i=1 and set c̃(xk+1) = 1

Mk

∑Mk
i=1 C(xk+1, ξk

i
).

6 Update y by

yk+1 = yk + min

{

βk ,
γk

‖c̃(xk+1)‖

}

c̃(xk+1). (5)

Assumption 1 (stochastic first-order oracle) For the problem (1), a stochastic first-

order oracle can be accessed. At any x ∈ dom(h), the oracle can obtain a sample ξ

and return (∇G0(x, ξ), C(x, ξ), JC(x, ξ)).

Remark 1 The overall complexity result of our algorithm will be measured by the total

number of stochastic first-order oracles that are called. Though the oracle can return

a tuple (∇G0(x, ξ), C(x, ξ), JC(x, ξ)), our algorithm may only use part of it during

one update. However, even if part of an oracle is used, one oracle will be counted in

measuring the complexity result.

Assumption 2 (structured bounded domain) The domain of h, denoted as X :=
dom(h), is compact. Moreover, for some M > 0, it holds that ∂h(x) ⊆ NX (x) +
BM ,∀x ∈ X , where NX (x) denotes the normal cone of X at x, and BM denotes a

closed ball of radius M centering at the origin.

Remark 2 Assumption 2 holds for rather general choices of h(·). For example, it holds

for any h(·) := r(·) + 1X (·) as long as ∂r is bounded everywhere (e.g., the �p-norm

for p ≥ 1), where 1X denotes the indicator function on X . Under Assumption 2, there

must exist finite constants B0 and Bc such that

B0 ≥ max
x∈dom(h)

max
{

| f0(x)|, ‖∇g(x)‖
}

, (6a)

Bc ≥ max
x∈dom(h)

‖Jc(x)‖. (6b)

Due to nonconvexity of the constraints in (1), one may not even find a near-feasible

point in polynomial time. Therefore, following [15, 16, 18, 31], we assume a regularity

condition on the constraints in (1), which ensures that a near-stationary point of the

AL function is near feasible to (1), if the penalty parameter is big. Note that knowledge

of v below is not required in Algorithm 1.
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Assumption 3 (regularity condition) There is a constant v > 0 such that for any

x ∈ X = dom(h),

v‖c(x)‖ ≤ dist
(

−Jc(x)�c(x),NX (x)
)

. (7)

Remark 3 Here, we give a couple of remarks about the regularity condition. First,

this regularity condition has been proven for many applications. For example, [15]

shows that it holds for all affine-equality constrained problems with possibly additional

polyhedral or ball constraint sets. Other examples are given in [18, 31]. In the appendix,

we show that the regularity condition can also hold for certain instances of the two

problems that we test in Sect. 4. Second, to find a near KKT point of a nonconvex

expectation constrained problem, the two existing works [22] and [2] also need a

certain regularity condition. Different from Assumption 3, a uniform Slater’s condition

is assumed in [22], and a strong MFCQ condition is assumed in [2]. Those conditions

are neither strictly stronger nor strictly weaker than Assumption 3, as shown in [18].

The next lemma will be used to upper bound
‖yk‖
βk

.

Lemma 1 For any constants α > 1 and σ > 1, if α ≥ 8
ln σ

and ln σ ≥ 8
e4 , then it

holds α ≥ logσ α2. In addition, for any x ≥ logσ α2, it holds σ x

x
≥ α.

Proof Define φ(α) = α− 2 ln α
ln σ

. Then φ′(α) = 1− 2
α ln σ

> 0,∀α > 2
ln σ

. Hence, φ(·)
is increasing on ( 2

ln σ
,∞). In addition, the condition ln σ ≥ 8

e4 implies φ( 8
ln σ

) ≥ 0.

Thus, for α ≥ 8
ln σ

, it holds φ(α) ≥ 0 that is equivalent to α ≥ logσ α2.

Now define ψ(x) = σ x − αx . Then ψ ′(x) = σ x · ln σ − α, and thus for any

x ≥ logσ α2, we have ψ ′(x) ≥ ψ ′(logσ α2) = α2 ln σ −α ≥ 7α > 0, where we have

used α ≥ 8
ln σ

. Hence, ψ(·) is increasing on [logσ α2,∞), and for any x ≥ logσ α2, it

holds ψ(x) ≥ ψ(logσ α2) = α2 − α logσ α2 ≥ 0. This completes the proof. ��
In Lemma 1, the requirement of ln σ ≥ 8

e4 (that holds if σ ≥ 1.158) is just for

ease of the analysis of our algorithm. The complexity results that we establish later

will hold for any σ > 1 but can have an additional constant factor if the condition is

not satisfied. The theorem below gives the outer iteration number of Algorithm 1 to

produce an ε-KKT point in expectation of (1).

Theorem 1 (Outer iteration complexity of Stoc-iALM) In (5), set γk = γ0,∀ k ≥ 0 for

some γ0 > 0 such that
√

8Bcγ0

β0vε
≥ 8

ln σ
. Then under Assumptions 2 and 3, Algorithm 1

needs at most K outer iterations to find an ε-KKT point in expectation of (1), where

K = max

⎧

⎨

⎩

⌈

logσ

√
8

√

ε2 + B2
0 + M2

β0vε

⌉

,

⌈

2 logσ

√
8Bcγ0

β0vε

⌉

⎫

⎬

⎭

+ 1. (8)

Proof First, by y0 = 0, the y-update in (5), and the choice of γk , we have from the

triangle inequality that for any k ≥ 0,

‖yk‖ ≤
k−1
∑

t=0

γt = kγ0, (9)
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where by the convention we define
∑k−1

t=0 γt = 0 if k = 0.

Second, from (7), we have

E

[

‖c(xk)‖2
]

≤ 1

v2
E

[

dist
(

−Jc(x
k)�c(xk),NX (xk)

)2
]

= 1

v2β2
k−1

E

[

dist
(

−βk−1 Jc(x
k)�c(xk), βk−1NX (xk)

)2
]

= 1

v2β2
k−1

E

[

dist
(

−βk−1 Jc(x
k)�c(xk),NX (xk)

)2
]

, (10)

where the last equation follows from NX (x) = β · NX (x),∀β > 0,∀ x ∈ X . In

addition, by ∂h(x) ⊆ NX (x) + BM from Assumption 2, it holds dist
(

z,NX (x) +
BM

)

≤ dist
(

z, ∂h(x)
)

for any z ∈ R
d . Also, it holds from the triangle inequality that

dist
(

z,NX (x)
)

≤ dist
(

z,NX (x) + BM

)

+ M . Hence,

dist
(

z,NX (x)
)

≤ dist
(

z, ∂h(x)
)

+ M,∀ x ∈ X ,∀ z ∈ R
d . (11)

Using (11) with z = −βk−1 Jc(x
k)�c(xk) and noticing

∂h(xk) = ∂xLβk−1
(xk, yk−1) − ∇g(xk) − Jc(x

k)�yk−1 − βk−1 Jc(x
k)�c(xk),

it holds

dist
(

−βk−1 Jc(x
k)�c(xk),NX (xk)

)

≤ dist
(

0, ∂xLβk−1
(xk, yk−1) − ∇g(xk) − Jc(x

k)�yk−1
)

+ M,

which together with (10) gives

E

[

‖c(xk)‖2
]

≤ 1

v2β2
k−1

E

[

dist
(

0, ∂xLβk−1
(xk , yk−1) − ∇g(xk) − Jc(x

k)�yk−1
)

+ M
]2

.

Moreover, applying the triangle inequality to the right hand side of the inequality

above, we have

E

[

‖c(xk)‖2
]

≤ 1

v2β2
k−1

E

[(

dist
(

0, ∂xLβk−1
(xk, yk−1)

)

+‖∇g(xk)‖ + ‖Jc(x
k)‖‖yk−1‖ + M

)2
]

,∀ k ≥ 1.

(12)

Now, using the Young’s inequality and by (6a), (6b), (4) and (9), we obtain

E[‖c(xk)‖2] ≤ 4

v2β2
k−1

(ε2 + B2
0 + B2

c (k − 1)2γ 2
0 + M2),∀ k ≥ 1. (13)
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Since βk = β0σ
k , we have from the choice of K in (8) that 4

v2β2
K−1

(ε2+B2
0 +M2) ≤ ε2

2
.

In addition, let α =
√

8Bcγ0

β0vε
. Then from the choice of K , it holds K − 1 ≥ logσ α2,

and thus from Lemma 1, we have σ K−1

K−1
≥ α. Hence,

4B2
c (K − 1)2γ 2

0

v2β2
K−1

= 4B2
c (K − 1)2γ 2

0

v2β2
0σ 2(K−1)

≤ 4B2
c γ 2

0

v2β2
0α2

= ε2

2
.

Thus it follows from (13) that E[‖c(xK )‖2] ≤ ε2.

Finally, it holds from (4) that

E

[

dist
(

0, ∂ f0(x
K ) + Jc(x

K )� (yK−1 + βK−1c(xK ))
)2
]

≤ ε2.

Therefore, xK is an ε-KKT point in expectation of (1) with the corresponding multi-

plier yK−1 + βK−1c(xK ), according to Definition 1. ��

Remark 4 A few remarks about Theorem 1 are as follows. First, the condition
√

8Bcγ0

β0vε
≥

8
ln σ

requires to know v. However, this is only for the ease of analysis. We do not

actually need the exact value of v. Notice that we can assume v ≤ 1, because if (7)

holds for some v > 1, it also holds with v = 1. In this case, it suffices to pick γ0

such that
√

8Bcγ0

β0ε
≥ 8

ln σ
, which does not involve v. Second, for convex cases where

c(·) consists of affine constraints, it is guaranteed that c(xk+1) = O( 1
βk

) if (4) holds

in a deterministic way (i.e., without the expectation) and the strong duality holds for

(1); see [38] for example. In this case, with γk = γ0,∀ k for an appropriate γ0, the

dual update will accept βk as the stepsize for all k. Third, the result in Theorem 1

does not depend on the setting of c̃(xk+1). For the special case in (2), we will set

c̃(xk+1) = c(xk+1), and for the general problem (1), we will choose Mk = Θ( 1
ε2 ) so

that E[‖c̃(xk+1) − c(xk+1)‖2] = O( 1
Mk

) = O(ε2) and thus c̃(xk+1) will be close to

c(xk+1) in expectation. Notice that with a smaller Mk , say Mk = O(1), our outer and

overall complexity results still hold. However, the multiplier update with a too-small

Mk will deviate too much from that by the classic ALM and can yield bad practical

performance. Finally, we have not specified the subroutine. To have a low overall

complexity in terms of the number of sample/component gradients, it is important to

obtain each xk+1 efficiently. In the next section, we will exploit the problem structure

and design an efficient subroutine to make (4) hold for each k.

3 Momentum-accelerated subroutine and overall oracle complexity

In this section, we give a subroutine to find each xk+1 in Algorithm 1 and thus have a

complete algorithm. Besides Assumptions 1-3, we make the following assumptions.
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Assumption 4 (mean-squared smoothness) For any u, v ∈ dom(h), G0(·, ξ) and

C(·, ξ) satisfy the mean-squared smoothness conditions:

Eξ

[

‖∇G0(u, ξ) − ∇G0(v, ξ)‖2
]

≤ L2
0‖u − v‖2,

Eξ

[

‖JC(u, ξ) − JC(v, ξ)‖2
]

≤ L2
J ‖u − v‖2,

Eξ1,ξ2

[

‖JC(u, ξ1)
�C(u, ξ2) − JC(v, ξ1)

�C(v, ξ2)‖2
]

≤ L2
J ‖u − v‖2,

where ξ1 and ξ2 are independent and follow the same distribution as ξ in (1).

Remark 5 Mean-squared smoothness is needed to have accelerated convergence for a

stochastic gradient-type method on solving nonconvex stochastic problems [1, 5, 7,

34, 39]. It naturally holds for the special case in (2) if each component of the objective

and constraint functions is smooth. This condition is crucial to obtain our O(ε−5)

complexity result.

Assumption 5 (unbiasedness and bounded variance) For any x ∈ dom(h), the objec-

tive and constraint functions satisfy

Eξ [∇G0(x, ξ)] = ∇g(x), Eξ [JC(x, ξ)] = Jc(x). (14)

Also, there exist σg, σc > 0 such that for any x ∈ dom(h),

Eξ

[

‖∇G0(x, ξ) − ∇g(x)‖2
]

≤ σ 2
g ,

Eξ

[

‖JC(x, ξ) − Jc(x)‖2
2

]

≤ σ 2
c ,

Eξ1,ξ2

[

‖JC(x, ξ1)
�C(x, ξ2) − Jc(x)�c(x)‖2

]

≤ σ 2
c ,

where ξ1 and ξ2 are independent and follow the same distribution as ξ .

Remark 6 Under Assumption 4 and the unbiasedness condition (14), it can be eas-

ily shown that g(·) is L0-smooth and c(·) is L J -smooth; see the arguments at the

end of section 2.2 of [34]. Hence, the mean-squared smoothness condition that we

assume is stronger than the smoothness condition in [2]. In addition, [21] does not

assume smoothness. However, the methods in [2, 21] can still only achieve a result of

O(ε−6) even with the mean-squared smoothness condition, as they solve a sequence of

strongly-convex subproblems and will not benefit from the mean-squared smoothness

structure.

3.1 PStorm subroutine

The smooth part of the AL function Lβk
(·, yk) has a smoothness parameter depending

on βk that eventually depends on a given tolerance ε. Hence, to achieve a low-order

overall complexity result, we need a subroutine whose complexity result has a low-

order dependence not only on the pre-given stationarity violation but also on the
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smoothness parameter. With the mean-squared smoothness condition, the momentum-

based variance-reduced proximal stochastic gradient method (PStorm) in [39] is the

one that meets our requirements. Below we first give a modified PStorm with a post-

processing step and then in the next subsection, discuss how to apply it to find xk+1 in

Algorithm 1. The postprocessing step is necessary in order to produce a solution that

meets the requirement in (4) of Algorithm 1. Without the sampling and postprocessing

steps, our subroutine is a direct application of the PStorm in [39].

Consider the problem

F∗ := min
x∈Rd

{

F(x) := G(x) + H(x)
}

, (15)

where H is a closed convex function, and G is smooth and possibly nonconvex.

Let A(x, ζ ) be a stochastic map that depends on a random variable ζ . Suppose the

following conditions hold: for some finite constants LG and σG ,

Eζ

[

‖A(x1, ζ ) − A(x2, ζ )‖2
]

≤ L2
G‖x1 − x2‖2,∀ x1, x2 ∈ dom(H), (16a)

Eζ

[

A(x, ζ )
]

= ∇G(x), E
[

‖A(x, ζ ) − ∇G(x)‖2
]

≤ σ 2
G ,∀ x ∈ dom(H). (16b)

With A(·, ζ ) that satisfies the conditions above, we give the modified PStorm in Algo-

rithm 2 and the complexity result in Lemma 2.

Algorithm 2: PStorm(G, H , x0, LG , σG , T , m0, η̄, δ,A, ε) for solving (15)

1 Input: initial point x0 ∈ dom(H), max iteration number T , smoothness constant LG , variance

bound σ 2
G

, step size η̄, momentum parameter δ ∈ (0, 1), and an unbiased gradient estimator A

satisfying (16)

2 Initialization: Let d0 = 1
m0

∑

ζ∈B0
A(x0, ζ ) with B0 containing m0 i.i.d. samples.

3 for t = 0, 1, . . . , T − 1 do

4

xt+1 = proxη̄H (xt − η̄dt ). (17)

Take a sample ζ t+1 of ζ and compute

vt+1 = A(xt+1, ζ t+1), ut+1 = A(xt , ζ t+1).

Let dt+1 = vt+1 + (1 − δ)(dt − ut+1).

5 Choose xτ uniformly at random from {x0, . . . , xT −1}.

6 Sampling: Set m1 =
⌈

48σ2
G

ε2

⌉

, obtain a set B1 of m1 i.i.d samples of ζ , and compute

v = 1
m1

∑

ζ∈B1
A(xτ , ζ ).

7 Postprocessing: output x̂ = proxη̄H (xτ − η̄v).
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Lemma 2 Assume the conditions in (16). Given an error tolerance ε > 0, choose

parameters of Algorithm 2 as follows:

η̄ = η

LG
3
√

T
, δ = 4η2 + 10η2(2 − ηT − 1

3 )

T
2
3 + 4η2

, m0 = �c0
3
√

T �

T =
⌈48

3
2 40

3
2

(

LG [F(x0)−F∗]1+
η

+ σ 2
G

20c0η2 + 242σ 2
Gη2

10

)
3
2

ε3

⌉

,

(18)

for some positive constants η and c0, where [a]1+ := max{a, 1} for any a ∈ R. If

η ≤
3√

T
10

, then the output x̂ satisfies E
[

dist(0, ∂ F(x̂))2
]

≤ ε2.

Proof First, directly from Corollary 2.2 of [39], we have

E

[

∥

∥

∥

∥

1

η̄

(

xτ − proxη̄H

(

xτ − η̄∇G(xτ )
)

)

∥

∥

∥

∥

2
]

≤ ε2

48
. (19)

Hence, by the postprocessing step of Algorithm 2, it holds that

E

[

∥

∥

∥

∥

x̂ − xτ

η̄

∥

∥

∥

∥

2
]

= E

[

∥

∥

∥

∥

1

η̄

(

xτ − proxη̄H (xτ − η̄v)
)

∥

∥

∥

∥

2
]

≤ E

[

(
∥

∥

∥

∥

1

η̄

(

xτ − proxη̄H

(

xτ − η̄∇G(xτ )
)

)

∥

∥

∥

∥

+ ‖v − ∇G(xτ )‖
)2
]

≤ 2E

[

∥

∥

∥

∥

1

η̄

(

xτ − proxη̄H

(

xτ − η̄∇G(xτ )
)

)

∥

∥

∥

∥

2
]

+ 2E
[

‖v − ∇G(xτ )‖2
]

,

where the first inequality follows from the nonexpansiveness of the proximal gradient

mapping, and the second inequality holds due to the Young’s inequality. Now by (19)

and noticing E[‖v − ∇G(xτ )‖2 ≤ σ 2
G

m1
≤ ε2

48
, we have from the inequality above that

E

[

∥

∥

∥

∥

x̂ − xτ

η̄

∥

∥

∥

∥

2
]

≤ ε2

12
. (20)

In addition, we have xτ −x̂
η̄

+ ∇G(x̂) − v ∈ ∂ F(x̂), and thus

E
[

dist(0, ∂ F(x̂))2
]

≤ E

[

∥

∥

∥

∥

xτ − x̂

η̄
+ ∇G(x̂) − ∇G(xτ ) + ∇G(xτ ) − v

∥

∥

∥

∥

2
]

≤ 3E

[

∥

∥

∥

∥

xτ − x̂

η̄

∥

∥

∥

∥

2
]

+ 3E
[

‖∇G(x̂) − ∇G(xτ )‖2
]

+ 3E
[

‖∇G(xτ ) − v‖2
]
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≤ (3 + 3L2
G η̄2)E

[

∥

∥

∥

∥

x̂ − xτ

η̄

∥

∥

∥

∥

2
]

+ 3ε2

48

≤ 6ε2

12
+ 3ε2

6
= ε2,

where we have used Young’s inequality in the second inequality, the third inequality

follows from the LG-smoothness of G and E[‖v − ∇G(xτ )‖2 ≤ ε2

48
, and the fourth

inequality holds because of (20) and η̄ ≤ 1
LG

. This completes the proof. ��

Below we choose an appropriate η and c0 in Lemma 2 to obtain a complexity result

that has a low-order dependence on σG, LG and F(x0) − F∗.

Lemma 3 Assume the conditions in (16). Let ε > 0 be given and satisfy ε ≤
σG

10

√
1920

√
3
(

242

10

)
1
2 . Choose parameters of Algorithm 2 as those in (18) with

η =
( 10

242

)
1
3

(

LG[F(x0) − F∗]1+
)

1
3

σ
2
3

G

, c0 =
(242

10

)
1
3 σ

8
3

G

20
(

LG [F(x0) − F∗]1+
)

4
3

.

(21)

Then E
[

dist(0, ∂ F(x̂))2
]

≤ ε2. The total number of calls to A is

TotalA = Θ

(

σG LG[F(x0) − F∗]1+
ε3

+
σ 3

G

εLG[F(x0) − F∗]1+

+
σ

8
3

G
(

LG[F(x0) − F∗]1+
)

4
3

⎞

⎠ ,

where [a]1+ := max{a, 1} for any a ∈ R.

Proof First, plugging the chosen η and c0 into (18), we have

T =
⌈1920

3
2 3

3
2

(

242

10

)
1
2
σG LG[F(x0) − F∗]1+

ε3

⌉

, (22)

and it is straightforward to verify η ≤
3√

T
10

by the condition ε ≤ σG

10

√
1920

√
3
(

242

10

)
1
2 .

Hence, from Lemma 2, it follows that E
[

dist(0, ∂ F(x̂))2
]

≤ ε2.

Second, notice that Algorithm 2 calls A twice for each iteration. Hence, accounting

the calls to A in the initial and postprocessing steps, we obtain the total number of

calls to A is

2T + m0 + m1 = 2T +
⌈

c0
3
√

T

⌉

+
⌈

48σ 2
G

ε2

⌉

≤ 2T + c0
3
√

T +
48σ 2

G

ε2
+ 2
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≤ 2
1920

3
2 3

3
2

(

242

10

)
1
2
σG LG[F(x0) − F∗]1+

ε3

+ c0

⎛

⎜

⎜

⎝

1920
3
2 3

3
2

(

242

10

)
1
2
σG LG[F(x0) − F∗]1+

ε3

⎞

⎟

⎟

⎠

1
3

+
48σ 2

G

ε2
+ c0 + 4

≤ 2 · 1920
3
2 3

3
2

(

242

10

)

1
2
(

σG LG[F(x0) − F∗]1+
ε3

+
σ 3

G

εLG [F(x0) − F∗]1+
+

σ 2
G

ε2
+

σ
8
3

G
(

LG[F(x0) − F∗]1+
)

4
3

⎞

⎠+ 4.

Now notice
σG LG [F(x0)−F∗]1+

ε3 + σ 3
G

εLG [F(x0)−F∗]1+
≥ 2σ 2

G

ε2 and absorb universal constants

into Θ . We obtain the desired result and complete the proof. ��

Remark 7 In the choice of η and c0 in Lemma 3, we have implicitly assumed σG > 0.

Hence, the claimed result does not apply to a deterministic scenario. Also, the setting

of η and c0 in (21) needs the value of F∗ that is unknown. However, we can replace

F(x0) − F∗ by its upper bound, which can be easily obtained, as we will see for the

subproblems of Algorithm 1.

3.2 Overall complexity

To apply Algorithm 2 to find each xk+1, the key is to build a stochastic map that

satisfies conditions similar to those in (16). The following lemma gives the key.

Lemma 4 Under Assumptions 1, 4 and 5, given y ∈ R
m , let Φ(·) := Lβ(·, y) − h(·)

and

Δ(x, ζ ) := ∇G0(x, ξ1) + JC(x, ξ1)
�y + β JC(x, ξ1)

�C(x, ξ2), (23)

where ζ = (ξ1, ξ2), and ξ1 and ξ2 are two independent random variables that follow

the same distribution as ξ in (1). Then it holds

Eζ

[

‖Δ(x1, ζ ) − Δ(x2, ζ )‖2
]

≤ L2
Φ‖x1 − x2‖2,∀ x1, x2 ∈ dom(h), (24a)

Eζ

[

Δ(x, ζ )
]

= ∇Φ(x), E
[

‖Δ(x, ζ ) − ∇Φ(x)‖2
]

≤ σ 2
Φ ,∀ x ∈ dom(h), (24b)

where

LΦ =
√

3L2
0 + 3L2

J ‖y‖2 + 3β2 L2
J , σΦ =

√

3σ 2
g + 3σ 2

c ‖y‖2 + 3β2σ 2
c .

Proof Because ξ1 and ξ2 are independent, it holds

Eζ

[

Δ(x, ζ )
]

= Eξ1

[

∇G0(x, ξ1)
]

+ Eξ1

[

JC(x, ξ1)
�y
]
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+Eξ1

[

β JC(x, ξ1)
]�

Eξ2

[

C(x, ξ2)
]

.

Since ξ1 and ξ2 both follow the distribution of ξ , we have from the definition of c(·)
in (1) and (14) that

Eζ

[

Δ(x, ζ )
]

= ∇g(x) + Jc(x)�y + β Jc(x)�c(x) = ∇Φ(x).

In addition, by the Young’s inequality, it follows that

‖Δ(x1, ζ ) − Δ(x2, ζ )‖2

≤ 3‖∇G0(x1, ξ1) − ∇G0(x2, ξ1)‖2 + 3‖JC(x1, ξ1)
�y − JC(x2, ξ1)

�y‖2

+ 3β2‖JC(x1, ξ1)
�C(x1, ξ2) − JC(x2, ξ1)

�C(x2, ξ2)‖2,

which together with Assumption 4 gives

Eζ

[

‖Δ(x1, ζ ) − Δ(x2, ζ )‖2
]

≤ 3(L2
0 + L2

J ‖y‖2 + β2 L2
J )‖x1 − x2‖2.

Hence, (24a) holds. Similarly, by the Young’s inequality and Assumption 5, we can

show (24b) and complete the proof. ��

With Lemma 4, we are able to apply Algorithm 2 to find each xk+1. The theorem

below gives the oracle complexity for the k-th outer iteration of Algorithm 1.

Theorem 2 (Oracle complexity per outer iteration) Let (xk, yk) be the k-th iterate

generated in Algorithm 1 with a given tolerance ε > 0. Define

Fk(x) := Lβk
(x, yk), F∗

k := min
x

Fk(x), Φk(x) := Fk(x) − h(x).

Under Assumptions 1, 4 and 5, if ε ≤
3

√

σ 2
g +β2

0 σ 2
c

10

√
1920

(

242

10

)
1
2 , then we can find xk+1

that satisfies (4) by Algorithm 2 with the following call

xk+1 ← PStorm(Φk, h, xk, LΦk
, σΦk

, Tk, m0,k, η̄k, δk,Δk, ε), (25)

where

LΦk
=
√

3L2
0 + 3L2

J ‖yk‖2 + 3β2
k L2

J , σΦk
=
√

3σ 2
g + 3σ 2

c ‖yk‖2 + 3β2
k σ 2

c , (26)

Δk(x, ζ ) := ∇G0(x, ξ1) + JC(x, ξ1)
�yk + βk JC(x, ξ1)

�C(x, ξ2). (27)

η̄k = ηk

LΦk
3
√

Tk

, δk =
4η2

k + 10η2
k (2 − ηk T

− 1
3

k )

T
2
3

k + 4η2
k

, m0,k = �c0,k
3
√

Tk� (28)

Tk =
⌈48

3
2 40

3
2

(

LΦk
[Fk (x

k)−F∗
k ]1+

η
+

σ 2
Φk

20c0,kη
2
k

+
242σ 2

Φk
η2

k

10

)
3
2

ε3

⌉

(29)
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with

ηk =
( 10

242

)
1
3

(

LΦk
[Fk(x

k) − F∗
k ]1+

)
1
3

σ
2
3

Φk

, c0,k =
(242

10

)
1
3

σ
8
3

Φk

20
(

LΦk
[Fk(xk) − F∗

k ]1+
)

4
3

. (30)

In addition, Tk calls to the stochastic first-order oracle that is defined in Assumption 1

will be enough to produce xk+1, where

Tk = O

⎛

⎝

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
ε3

+
σ 3

Φk

εLΦk

+
σ

8
3

Φk

L
4
3

Φk

⎞

⎠ . (31)

Proof By Lemma 4, it holds

Eζ

[

‖Δk(x1, ζ ) − Δk(x2, ζ )‖2
]

≤ L2
Φk

‖x1 − x2‖2,∀ x1, x2 ∈ dom(h), (32a)

Eζ

[

Δk(x, ζ )
]

= ∇Φk(x), E
[

‖Δk(x, ζ ) − ∇Φk(x)‖2
]

≤ σ 2
Φk

,∀ x ∈ dom(h),

(32b)

where LΦk
and σΦk

are given in (26). Hence, ε ≤ σΦk

10

√
1920

√
3
(

242

10

)
1
2 by β0 ≤

βk,∀ k ≥ 0 and the assumed condition on ε. Thus, from Lemma 3, the point xk+1

returned by Algorithm 2 with the call in (25) is an ε-stationary point xk+1 of Fk(·) in

expectation, i.e., E
[

dist(0, ∂xLβk
(xk+1, yk))2 | yk

]

≤ ε2 and, the total number of calls

to Δk is

TotalΔk
=Θ

(

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
ε3

+
σ 3

Φk

εLΦk
[Fk(xk) − F∗

k ]1+

+
σ

8
3

Φk

(

LΦk
[Fk(xk) − F∗

k ]1+
)

4
3

⎞

⎠

= O

⎛

⎝

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
ε3

+
σ 3

Φk

εLΦk

+
σ

8
3

Φk

L
4
3

Φk

⎞

⎠ , (33)

where we have used [Fk(x
k) − F∗

k ]1+ ≥ 1 in the second equation. Since each call to

Δk will need two stochastic first-order oracles as we assumed in Assumption 1, we

have Tk = 2 · TotalΔk
and thus complete the proof. ��

Remark 8 In the parameter settings of (26)–(30), we used the unknown value F∗
k . As

we point out in Remark 7, we can replace Fk(x
k)− F∗

k by its upper bound such as the

one we establish in (36) below.

The lemma below is used to bound E[Fk(x
k) − F∗

k ].
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Lemma 5 Let Fk(·) and F∗
k be defined in Theorem 2. If (9) and (13) hold, then

F0(x
0) − F∗

0 ≤ 2B0 + β0

2
‖c(x0)‖2, (34)

and for any k ≥ 1,

E[Fk(x
k) − F∗

k ]

≤ BF := 2B0 + ε2 + B2
0 + M2

vβ0

(2σ

v
+ 1

)

+ γ 2
0

2vβ0

(2σ

v
+ 1

)

(

v + 2B2
c

) 4

(ln σ)2σ
2

ln σ

.

(35)

Proof Suppose x̂k = arg minx Fk(x), i.e., F∗
k = Fk(x̂

k). Then it holds

Fk(x
k) − F∗

k = f0(x
k) + 〈yk, c(xk)〉 + βk

2
‖c(xk)‖2 − f0(x̂

k)

− 〈yk, c(x̂k)〉 − βk

2
‖c(x̂k)‖2

≤ f0(x
k) + 〈yk, c(xk)〉 + βk

2
‖c(xk)‖2 − f0(x̂

k) + 1

2βk

‖yk‖2

≤ 2B0 + kγ0‖c(xk)‖ + βk

2
‖c(xk)‖2 + k2γ 2

0

2βk

,∀ k ≥ 0, (36)

where the first inequality is by the Young’s inequality, and the second inequality

follows from (6a). Hence for k = 0, taking expectation on both sides of (36) gives

(34), and for k ≥ 1,

E[Fk(x
k) − F∗

k ] ≤2B0 + kγ0E
[

‖c(xk)‖
]

+ βk

2
E
[

‖c(xk)‖2
]

+ k2γ 2
0

2βk

≤2B0 +
2kγ0

√

ε2 + B2
0 + B2

c (k − 1)2γ 2
0 + M2

vβk−1

+ 2βk

v2β2
k−1

(

ε2 + B2
0 + B2

c (k − 1)2γ 2
0 + M2

)

+ k2γ 2
0

2βk

≤2B0 + k2γ 2
0

vβk−1
+
(

2βk

v2β2
k−1

+ 1

vβk−1

)

(ε2 + B2
0 + B2

c (k − 1)2γ 2
0 + M2) + k2γ 2

0

2βk

, (37)

where in the second inequality we have used (9), (13) and the Jensen’s inequality, and

the third inequality follows from the Young’s inequality.
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Notice that x2

σ x attains its maximum at x = 2
ln σ

for x > 0. Thus

x2

σ x
≤ 4

(ln σ)2σ
2

ln σ

,∀ x > 0. (38)

Now by βk = β0σ
k , we have for any k ≥ 1,

2βk

v2β2
k−1

+ 1

vβk−1
= 2σ

v2β0σ k−1
+ 1

vβ0σ k−1
≤ 2σ

v2β0
+ 1

vβ0
,

k2γ 2
0

vβk−1
+ k2γ 2

0

2βk

=
(σγ 2

0

vβ0
+ γ 2

0

2β0

) k2

σ k
≤
(σγ 2

0

vβ0
+ γ 2

0

2β0

) 4

(ln σ)2σ
2

ln σ

,

(

2βk

v2β2
k−1

+ 1

vβk−1

)

B2
c (k − 1)2γ 2

0 ≤ B2
c γ 2

0

( 2σ

v2β0
+ 1

vβ0

) 4

(ln σ)2σ
2

ln σ

.

Plugging the three inequalities above into (37) and using the definition of BF , we

obtain (35). ��

By Theorem 2 and Lemma 5, we are ready to show the overall oracle complexity

of Algorithm 1 to produce an ε-KKT point of (1) in expectation.

Theorem 3 (Overall complexity of Algorithm 1) Under Assumptions 1 through 5, let

ε ∈ (0, 1) be a given tolerance. Suppose ε ≤
3

√

σ 2
g +β2

0 σ 2
c

10

√
1920

(

242

10

)
1
2 . In Algorithm 1,

set Mk = Θ(ε−2) and γk = γ0,∀ k ≥ 0 for some γ0 > 0 such that
√

8Bcγ0

β0vε
≥ 8

ln σ
.

Then it can produce an ε-KKT point of (1) in expectation, by using Algorithm 2 as

the subroutine and calling it via (25). In addition, the total number Oracletotal of calls

to the oracle defined in Assumption 1 satisfies

E
[

Oracletotal

]

= O(ε−5).

Proof From Theorem 1, we know that xK is an ε-KKT point of (1) in expectation,

where K is given in (8). Hence, the oracle complexity Oracletotal of Algorithm 1

is upper bounded by
∑K−1

k=0 (Tk + Mk) with Tk defined in (31). To upper bound

E
[

Oracletotal

]

, it suffices to upper bound E
[

Tk

]

for each k < K .

By βk = β0σ
k and (9), we have from (26) that

√
3β0 L J σ k ≤ LΦk

≤
√

3L2
0 + 3L2

J k2γ 2
0 + 3β2

0 L2
J σ 2k ≤

√
3
(

L0+L J kγ0+β0 L J σ k
)

.

(39)

and

σΦk
≤
√

3σ 2
g + 3σ 2

c k2γ 2
0 + 3β2

0σ 2
c σ 2k ≤

√
3
(

σg + σckγ0 + β0σcσ
k
)

. (40)
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Hence,

σ 3
Φk

εLΦk

+
σ

8
3

Φk

L
4
3

Φk

= σΦk

ε

σ 2
Φk

LΦk

+
( σ 2

Φk

LΦk

)
4
3

≤
√

3
(

σg + σckγ0 + β0σcσ
k
)

ε
·

3σ 2
g + 3σ 2

c k2γ 2
0 + 3β2

0σ 2
c σ 2k

√
3β0 L J σ k

+
(3σ 2

g + 3σ 2
c k2γ 2

0 + 3β2
0σ 2

c σ 2k

√
3β0 L J σ k

)
4
3
. (41)

By (38), it holds
3σ 2

c k2γ 2
0√

3β0 L J σ k
≤ 3σ 2

c γ 2
0√

3β0 L J

4

(ln σ)2σ
2

ln σ

and k ≤ σ k 4

(ln σ)2σ
2

ln σ

. Hence,

√
3
(

σg + σckγ0 + β0σcσ
k
)

= Θ(σ k),
3σ 2

g + 3σ 2
c k2γ 2

0 + 3β2
0σ 2

c σ 2k

√
3β0 L J σ k

= Θ(σ k).

(42)

Therefore, (41) implies

K−1
∑

k=0

⎛

⎝

σ 3
Φk

εLΦk

+
σ

8
3

Φk

L
4
3

Φk

⎞

⎠ = O

(

K−1
∑

k=0

(σ 2k

ε
+ σ

4k
3

)

)

= O

(

σ 2K

ε

)

(43)

In addition, E
[

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
]

≤ E
[

σΦk
LΦk

(Fk(x
k) − F∗

k )
]

+σΦk
LΦk

.

Hence, from Lemma 5, (39), and (40), we obtain

E

[

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
]

≤ 3
(

L0 + L J kγ0 + β0 L J σ k
)(

σg + σckγ0 + β0σcσ
k
)

(

1 + max

{

BF , 2B0 + β0

2
‖c(x0)‖2

})

,

which together with (42) gives

K−1
∑

k=0

E

[

σΦk
LΦk

[Fk(x
k) − F∗

k ]1+
]

= O

(

K−1
∑

k=0

σ 2k

)

= O(σ 2K ). (44)

Therefore, from (31), (43), and (44), it follows that E
[
∑K−1

k=0 Tk

]

= O
(

σ 2K

ε3

)

.

Plugging K given in (8), we have E
[
∑K−1

k=0 Tk

]

= O(ε−5). Since Mk = O(ε−2) for

all k, we obtain E
[

Oracletotal

]

= E
[
∑K−1

k=0 (Tk + Mk)
]

= O(ε−5) and complete the

proof. ��

Before concluding this section, we make some discussions on certain other frame-

works and their oracle complexity for solving (1). Both of [15, 18] focus on
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deterministic FOMs, but their frameworks can be easily adapted to stochastic ver-

sions. Different from the proposed Stoc-iALM in Algorithm 1, the methods in [15,

18] solve a sequence of strongly-convex subproblems based on the proximal-point (PP)

framework. Hence, they can be adapted to stochastic FOMs if a stochastic gradient-

type method is applied to those strongly-convex subproblems. However, the resulting

stochastic methods will have higher-order complexity than our proposed method on

solving (1). Let us focus on the adaptation of the method in [15] while a similar dis-

cussion applies to that in [18]. Instead of using a stochastic method to directly find a

stationary point of each ALM subproblem, [15] applies the PP method, and each PP

subproblem is in the form of

min
x

U (x) := Lβ(x, y) + ρ

2
‖x − x̂‖2, (45)

where x̂ is the proximal center that is set to the approximate solution of the previous PP

subproblem, and ρ > 0 is chosen to make the objective in (45) to be strongly convex.

In order to find an ε-stationary point of Lβ(·, y), the PP method needs to approximately

solve Θ(
ρ

ε2 ) PP subproblems, for each of which an ε
4

-stationary solution is required.

Suppose U is LU -smooth in (45) and has the unique minimizer xU . Then it holds

‖∇U (x)‖ ≤ LU ‖x − xU ‖. Now let us apply the result in [28, Lemma 1] for the

stochastic gradient method (SGM) on solving a smooth strongly-convex stochastic

problem. The SGM needs Θ(
L2

U G2
U

ρ2ε2 ) iterations to produce a point x such that LU E
[

‖x−
xU ‖

]

≤ ε
4

, where GU is a bound of ∇U . Therefore, for each ALM subproblem, the PP

method together with the (optimal) SGM as a subroutine will incur Θ(
L2

U G2
U

ρε4 ) oracle

calls. Since the penalty parameter β will geometrically increase to Θ( 1
ε
), the constants

LU , ρ and GU of the corresponding ALM subproblem will eventually all be in the

order of 1
ε
. This way, we obtain the oracle complexity of Õ(ε−7) if the method in [15]

is adapted to a stochastic version.

4 Numerical results

In this section, we demonstrate the numerical performance of the proposed Stoc-iALM

in Algorithm 1 (with PStorm in Algorithm 2 as the subroutine) on solving a fairness

constrained problem and a Neyman-Pearson Classification problem. We compare it

to the IPC method in [21] that achieves the state-of-the-art complexity for solving (1).

All the tests were performed in MATLAB 2019b on a Macbook Pro with 4 cores and

16GB memory.

4.1 Nonconvex fairness constrained problem

Let x denote the parameters of a linear model and f (x; a, b) = φα(l(x; a, b)) be the

truncated logistic loss function, where l(x; a, b) = log(1 + exp(−ba�x)), φα(s) =
α log(1 + s

α
), and α = 2 is set in our tests. Suppose there is a labeled dataset D =
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{(ai , bi )}|D|
i=1, a possibly unlabeled dataset S = {a j }|S|

j=1, and a subset Smin ⊆ S of the

minority population in S. Then the problem of training x using the loss f (x; a, b) with

a fairness constraint [21] can be formulated as

min
x∈Rd

f0(x) := 1

|D|
∑

(a,b)∈D

f (x; a, b),

s.t. f1(x) := c
∑

a∈S

σ(a�x) −
∑

a∈Smin

σ(a�x) ≤ 0,

(46)

where c ∈ (0, 1) is a fairness parameter and σ(s) = exp(s)
1+exp(s)

. The fairness

constraint above aims at forcing the classifier to have a positive prediction on

the minority group often enough. Following [21], we use three data sets: bank-

marketing from UCI repository [6] (shortened as bank below) with d = 81 and

(|D|, |S|, |Smin|) = (22605, 22605, 233), a9a from LIBSVM library [4] with d = 123

and (|D|, |S|, |Smin|) = (32561, 16281, 1561), and loan from LendingClub (which

contains the information of 128375 loans issued in the fourth quarter of 2018; see [21]

for more description) with d = 250 and (|D|, |S|, |Smin|) = (64485, 63890, 31966).

We set the fairness parameter to c = 0.4 for the bank dataset, c = 0.1 for the a9a

dataset, and c = 0.6 for the loan dataset.

To solve (46) by the proposed Stoc-iALM, we reformulate its inequality constraint

to an equality constraint f1(x)+v = 0 where v ≥ 0 is enforced. Notice that the refor-

mulation has equivalent stationarity conditions to the original model (46) as shown

in [15]. The IPC method in [21] is applied directly to (46), and following [21], we

adopt its deterministic version. We only compare to the IPC, as it is demonstrated in

[21] to outperform other methods on solving (46) such as the Penalty with trust region

method in [3] and the subgradient method in [41].

The tolerance is set to ε = 0.01 in all tests. Our proposed Stoc-iALM is termi-

nated, if both primal residual (computed as [ f1(x)]+) and dual residual (computed

as ‖∇ f0(x) + y∇ f1(x)‖) are below ε, where x and y are the primal and dual iterate

generated by the algorithm. The IPC method does not generate a dual iterate, so for

a fair comparison, we compute an optimal dual variable z ≥ 0 that minimizes the

squared sum of the violation to the dual feasibility and the complementary slackness

conditions of (46):

min
z≥0

‖∇ f0(x) + J f1(x)�z‖2 + |z� f1(x)|2. (47)

Since f1 is a scalar function in (46), it is not difficult to have the optimal z =
[

− ∇ f0(x)�∇ f1(x)

f1(x)2+‖∇ f1(x)‖2

]

+
. Given this z, the IPC is terminated if both primal residual

[ f1(x)]+ and dual residual ‖∇ f0(x) + z∇ f1(x)‖ are below the given tolerance ε. For

Stoc-iALM, at the k-th outer iteration, we set βk = 2.5k and the smoothness param-

eter to 10 + βk , and we set c̃(xk+1) = c(xk+1) in the y-update (5). In the PStorm

subroutine, we set the mini-batch size to 30 for all three data sets. The parameter set-

tings of the IPC exactly follow from the code of [21] that was kindly provided by the

authors. The primal and dual residuals are recorded after every 50 inner iterations for
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Fig. 1 Mean curves and standard deviation (by shadow area†) of 10 different trials by the proposed Stoc-

iALM and the curves by the IPC in [21] on solving the fairness constrained problem (46) with bank, a9a,

and loan data sets (from left to right). † Some shadow areas are invisible because the deviations are too

small

Stoc-iALM, and after every data pass for IPC. Both methods start from a zero vector.

As the proposed method is randomized, we run it for 10 independent trials by using

different random seeds, while IPC is deterministic and thus we only perform one trial.

Table 1 lists the violation of primal feasibility and the violation to the dual feasibility

at the produced ε-KKT point, and the number of data passes (shortened by pres,

dres and #data respectively) for each method to produce such a point. Figure 1

plots the curves of the constraint function value and dres at generated iterates by the

proposed Stoc-iALM and the IPC, where the solid red curve shows the average results

and the shadow area represents the standard deviation for the proposed method. To

clearly show the difference of the results by the proposed method and IPC, we only

plot the curves by IPC up to 20 number of data passes for the bank and a9a data sets.

From the results in Table 1 and Fig. 1, we see that both methods can reduce pres

and dres below the given tolerance. However, the IPC needs significantly more data

passes, especially for the bank and a9a data sets. In addition, the proposed method

can perform well for all 10 trials.

4.2 Nonconvex Neyman–Pearson classification

In this subsection, we test our proposed Stoc-iALM (Algorithm 1) with the PStorm

(Algorithm 2) subroutine on solving the nonconvex Neyman-Pearson classification

problem [29, 40]. The problem aims at minimizing the false-negative error subject to

a constraint on the level of false-positive error. It can be formulated as
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Table 1 The violation of primal feasibility and the violation to the dual feasibility at the produced ε-KKT point with ε = 10−2, and the number of data passes (shortened by

pres, dres and #data† respectively) of 10 trials with different random seeds by the proposed Stoc-iALM and the IPC in [21] on solving the fairness constrained problem (46)

with a9a, bank, and loan data sets (from left to right)

Method [a9a] Pres Dres #Data Method [bank] Pres Dres #Data Method [loan] Pres Dres #Data

Stoc-iALM (1) 5.7e−3 9.3e−3 3.83 Stoc-iALM (1) 4.1e−3 9.7e−3 4.78 Stoc-iALM (1) 2.2e−4 9.1e−3 1.21

Stoc-iALM (2) 5.8e−3 9.5e−3 3.90 Stoc-iALM (2) 4.1e−3 9.9e−3 4.72 Stoc-iALM (2) 2.6e−4 9.7e−3 1.23

Stoc-iALM (3) 5.7e−3 9.4e−3 3.97 Stoc-iALM (3) 4.2e−3 1.00e−2 4.72 Stoc-iALM (3) 2.3e−4 9.3e−3 1.21

Stoc-iALM (4) 6.0e−3 1.00e−2 3.63 Stoc-iALM (4) 4.2e−3 9.9e−3 4.72 Stoc-iALM (4) 2.4e−4 9.6e−3 1.21

Stoc-iALM (5) 5.8e−3 9.2e−3 3.83 Stoc-iALM (5) 4.1e−3 9.5e−3 4.85 Stoc-iALM (5) 1.9e−4 8.3e−3 1.21

Stoc-iALM (6) 5.7e−3 9.9e−3 3.56 Stoc-iALM (6) 4.1e−3 1.00e−2 4.72 Stoc-iALM (6) 2.5e−4 9.2e−3 1.23

Stoc-iALM (7) 5.6e−3 9.5e−3 3.69 Stoc-iALM (7) 4.1e−3 9.8e−3 4.72 Stoc-iALM (7) 2.1e−4 9.0e−3 1.21

Stoc-iALM (8) 5.7e−3 9.3e−3 3.90 Stoc-iALM (8) 4.1e−3 9.9e−3 4.72 Stoc-iALM (8) 2.6e−4 9.8e−3 1.21

Stoc-iALM (9) 5.5e−3 8.6e−3 4.11 Stoc-iALM (9) 4.0e−3 9.9e−3 4.72 Stoc-iALM (9) 2.0e−4 8.8e−3 1.23

Stoc-iALM (10) 5.7e−3 9.9e−3 4.46 Stoc-iALM (10) 4.1e−3 9.8e−3 4.72 Stoc-iALM (10) 2.5e−4 1.00e−2 1.21

IPC 0 9.1e−3 111 IPC 0 9.7e−3 107 IPC 0 2.8e−3 3

†#Data by Stoc-iALM are fractional because the subroutine PStorm uses minibatch of data points to compute sample gradients and we record pres and dres after every 50

inner iterations

1
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min
x∈Rd

f0(x) := 1

n+

n+
∑

i=1

φ(x�a+
i ),

s.t. f1(x) := 1

n−

n−
∑

i=1

φ(−x�a−
i ) − ĉ ≤ 0, (48)

where {a+
i }n+

i=1 and {a−
i }n−

i=1 denotes the positive-class samples and negative-class

samples of the training data set. The parameter ĉ controls the level of the false-positive

error. In (48), we set φ(·) to the sigmoid function: φ(u) = 1/(1 + exp(u)). We use

three data sets: spambase [6] with d = 57 and (n+, n−) = (1813, 2788), madelon

[8] with d = 500 and (n+, n−) = (1300, 1300), and gisette [8] with d = 2000 and

(n+, n−) = (3500, 3500). To make sure the feasibility of the problem, we set the

false-positive error parameter to ĉ = 0.2 for spambase and gisette, and ĉ = 0.4 for

madelon. Following [40], before feeding each data set into the solvers, we preprocess

them by first normalizing it feature-wisely to have mean 0 and variance 1, and then

scaling each sample to have unit 2-norm.

Similar to Sect. 4.1, we reformulate the inequality constraint in (48) to an equality

constraint f1(x) + v = 0 for our method Stoc-iALM, where v ≥ 0 is enforced. The

compared IPC method in [21] is applied directly to (48). The tolerance is again set

to ε = 10−2 in all tests. Both methods are terminated if the violation of primal and

dual feasibility is below ε, where the dual variable of the IPC is computed by (47)

as in Sect. 4.1. For Stoc-iALM, at the k-th outer iteration, we set βk = 2k and the

smoothness constant to
βk+1

2
, and again we set c̃(xk+1) = c(xk+1) in the y-update

(5). In the PStorm subroutine, we set the mini-batch size to 10 for spambase, and 30

for madelon and gisette. The parameter settings of the IPC exactly follow from the

code of [21] provided by its authors. Again, we record the primal and dual residuals

after every 50 inner iterations in Stoc-iALM, and after every data pass in IPC. Both

methods start from a zero vector for each data set, and we perform 10 independent

trials by using different random seeds for the proposed method.

Table 2 gives pres and dres at the produced ε-KKT point and #data by each

method to produce such a point. Figure 2 plots the curves of the constraint function

value and dres. Again, we see that our proposed method Stoc-iALM needs signifi-

cantly fewer data passes to produce a KKT point with the same-level error tolerance.

5 Conclusion

We have presented a stochastic inexact augmented Lagrangian method (Stoc-iALM)

for solving nonconvex expectation constrained optimization. To handle nonconvex

stochastic iALM subproblems, we apply a momentum-based variance-reduced proxi-

mal stochastic gradient method (PStorm) subroutine with a proposed post-processing

step. To reach an ε-KKT solution in expectation, we establish an oracle complexity of

O(ε−5), which improves over the state-of-the-art complexity of O(ε−6). Numerically,
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Table 2 The violation of primal feasibility and the violation to the dual feasibility at the produced ε-KKT point with ε = 10−2, and the number of data passes (shortened

by pres, dres and #data† respectively) of 10 trials with different random seeds by the proposed Stoc-iALM and the IPC in [21] on solving the Neyman-Pearson classification

problem (48) with spambase, madelon, and gisette data sets (from left to right)

Method [spambase] Pres Dres #Data Method [madelon] Pres Dres #Data Method [gisette] Pres Dres #Data

Stoc-iALM (1) 0 7.8e−3 18.75 Stoc-iALM (1) 0 1.00e−2 336.08 Stoc-iALM (1) 0 1.00e−2 234.04

Stoc-iALM (2) 0 6.1e−3 39.23 Stoc-iALM (2) 0 1.00e−2 324.77 Stoc-iALM (2) 0 1.00e−2 235.24

Stoc-iALM (3) 0 8.5e−3 13.74 Stoc-iALM (3) 0 1.00e−2 330.08 Stoc-iALM (3) 0 1.00e−2 234.04

Stoc-iALM (4) 0 7.6e−3 16.93 Stoc-iALM (4) 0 1.00e−2 314.15 Stoc-iALM (4) 0 1.00e−2 235.24

Stoc-iALM (5) 0 9.0e−3 11.01 Stoc-iALM (5) 0 1.00e−2 323.15 Stoc-iALM (5) 0 1.00e−2 234.04

Stoc-iALM (6) 0 6.5e−3 21.48 Stoc-iALM (6) 0 1.00e−2 322.92 Stoc-iALM (6) 0 1.00e−2 235.24

Stoc-iALM (7) 0 6.8e−3 28.76 Stoc-iALM (7) 0 1.00e−2 317.85 Stoc-iALM (7) 0 1.00e−2 235.24

Stoc-iALM (8) 0 9.9e−3 22.85 Stoc-iALM (8) 0 1.00e−2 332.38 Stoc-iALM (8) 0 1.00e−2 235.24

Stoc-iALM (9) 0 9.3e−3 11.47 Stoc-iALM (9) 0 1.00e−2 326.38 Stoc-iALM (9) 0 1.00e−2 234.04

Stoc-iALM (10) 0 7.1e−3 16.47 Stoc-iALM (10) 0 1.00e−2 341.15 Stoc-iALM (10) 0 1.00e−2 234.04

IPC 0 9.7e−3 37 IPC 0 1.00e−2 1804 IPC 0 1.00e−2 650

†#Data by Stoc-iALM are fractional because the subroutine PStorm uses minibatch of data points to compute sample gradients and we record pres and dres after every 50

inner iterations

1
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Fig. 2 Mean curves and standard deviation (by shadow area†) of 10 different trials by the proposed Stoc-

iALM and the curves by the IPC in [21] on solving the Neyman-Pearson classification problem (48) with

spambase, madelon, and gisette data sets (from left to right). † Some shadow areas are invisible because

the deviations are too small

we have demonstrated that the proposed Stoc-iALM can significantly outperform one

state-of-the-art method.
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A regularity condition for ball-constrained fairness and Neyman–
Pearson problems

In this section, we show that the regularity condition in (7) holds for the nonconvex

fairness problem in (46) and the Neyman-Pearson classification problem in (48), when

a ball constraint is imposed and the input data satisfies certain conditions. We consider

the two problems together in the following form:

min
x,s

f0(x), s.t. f̂1(x, s) := f1(x) + s = 0, s ≥ 0, x ∈ X := {x ∈ R
d : ‖x‖ ≤ λ},

(49)
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where λ > 0, and f0 and f1 are the functions defined in (46) and (48) respectively

for the fairness problem and the Neyman-Pearson classification problem. The slack

variable s is used to reformulate (46) and (48) into equality-constrained problems.

We did not include the constraint x ∈ X in our experiments but the generated iterate

sequence remained bounded.

Let NX (x) be the normal cone of X at x ∈ X and N+(s) the normal cone of R+ at

s ≥ 0. Then the regularity condition in (7) for the problem (49) becomes: there exists

ν > 0 such that

ν2( f1(x) + s)2 ≤ dist

(

−( f1(x) + s)

[

∇ f1(x)

1

]

, NX (x) ⊗ N+(s)

)2

,∀ x ∈ X , s ≥ 0. (50)

Notice that NX (x) = {0} if ‖x‖ < λ and NX (x) = {αx : α ≥ 0} if ‖x‖ = λ. Also,

N+(s) = {0} if s > 0 and N+(s) = R− if s = 0. Hence, for any (x, s) ∈ X ⊗ R+,

dist

(

−( f1(x) + s)

[

∇ f1(x)

1

]

, NX (x) ⊗ N+(s)

)2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( f1(x) + s)2 + dist
(

− ( f1(x) + s)∇ f1(x), NX (x)
)2

, if s > 0

min
(

f1(x), 0
)2 + | f1(x)|2‖∇ f1(x)‖2, if s = 0, ‖x‖ < λ

min
(

f1(x), 0
)2 + minα≥0 ‖ f1(x)∇ f1(x) + αx‖2, if s = 0, ‖x‖ = λ.

(51)

From (51), we can easily have that when s > 0 or when s = 0 and f1(x) ≤ 0, it

holds

( f1(x) + s)2 ≤ dist

(

−( f1(x) + s)

[

∇ f1(x)

1

]

, NX (x) ⊗ N+(s)

)2

.

Thus we only need to show the regularity condition at (x, 0) with x ∈ X such that

f1(x) > 0. We make the following assumption about the data involved in (46) and

(48).

Assumption 6 The feature vectors in (46) and (48) satisfy:

(i) In (46), ‖a‖ = q,∀ a ∈ S for some q > 0 and 〈a1, a2〉 ≥ 0 for any a1, a2 ∈ S. In

addition,

eλq

(1 + eλq)2

√

∑

a1,a2∈S\Smin

a�
1 a2 >

1 − c

4c

√

∑

a1,a2∈Smin

a�
1 a2. (52)

(ii) In (48), ‖a−
i ‖ = q,∀ i for some q > 0, and 〈a−

i , a−
j 〉 ≥ 0 for any i, j .

The above assumption will hold if each data point is first normalized and then appended

by 1 at the end, which is equivalent to having an intercept term in the model, and in

addition, for (46) the minority group Smin is only a small fraction of S.

123



Z. Li et al.

Claim A1 Under Assumption 6, let f1 be given in (46) or (48). Then ν1 :=
min‖x‖≤λ ‖∇ f1(x)‖ > 0.

Proof We first prove the claim for (48), for which case,

∇ f1(x) = − 1

n−

n−
∑

i=1

φ′(−x�a−
i )a−

i . (53)

Suppose ν1 = ‖∇ f1(x̃)‖, i.e., the minimum is reached at x̃. Notice φ′(u) =
− eu

(1+eu)2 < 0. Thus

ν2
1 = 1

(n−)2

n−
∑

i, j=1

φ′(−x̃�a−
i )φ′(−x̃�a−

j )〈a−
i , a−

j 〉 ≥ 1

(n−)2

n−
∑

i=1

[

φ′(−x̃�a−
i )
]2‖a−

i ‖2,

where the inequality follows from 〈a−
i , a−

j 〉 ≥ 0 for all i, j . Hence, ν1 > 0 must hold

by Assumption 6(ii).

Next we prove the claim for (46). When f1 is the function in (46), it holds

∇ f1(x) = c
∑

a∈S\Smin

σ ′(a�x)a − (1 − c)
∑

a∈Smin

σ ′(a�x)a.

Again, suppose ν1 = ‖∇ f1(x̃)‖. Notice σ ′(u) = eu

(1+eu)2 is decreasing on [0,+∞) and

increasing on (−∞, 0]. Also, by Assumption 6(i) and ‖x̃‖ ≤ λ, we have |a�x̃| ≤ qλ.

Hence, eqλ

(1+eqλ)2 ≤ σ ′(a�x̃) ≤ 1
4

. Thus

∥

∥

∥

∥

∥

∥

c
∑

a∈S\Smin

σ ′(a�x̃)a

∥

∥

∥

∥

∥

∥

2

= c2
∑

a1,a2∈S\Smin

σ ′(a�
1 x̃)σ ′(a�

2 x̃)a�
1 a2

≥ c2e2qλ

(1 + eqλ)4

∑

a1,a2∈S\Smin

a�
1 a2,

and

∥

∥

∥

∥

∥

∥

(1 − c)
∑

a∈Smin

σ ′(a�x)a

∥

∥

∥

∥

∥

∥

2

≤ (1 − c)2

16

∑

a1,a2∈Smin

a�
1 a2.

By the triangle inequality, it holds that

‖∇ f1(x)‖ ≥ c

∥

∥

∥

∥

∥

∥

∑

a∈S\Smin

σ ′(a�x)a

∥

∥

∥

∥

∥

∥

− (1 − c)

∥

∥

∥

∥

∥

∥

∑

a∈Smin

σ ′(a�x)a

∥

∥

∥

∥

∥

∥

.

Therefore, from (52), we obtain ν1 > 0 and complete the proof. ��
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Claim A2 Suppose Assumption 6(ii) holds and in addition, the origin is a feasible point

of (48), i.e., f1(0) ≤ 0. Then it holds

ν2 := min
α≥0,x

{

‖ f1(x)∇ f1(x) + αx‖ : ‖x‖ = λ, f1(x) ≥ 0
}

> 0. (54)

Proof Suppose that the minimum in (54) is reached at x̃, i.e., ‖x̃‖ = λ, f1(x̃) ≥ 0,

and

ν2 = min
α≥0

‖ f1(x̃)∇ f1(x̃) + αx̃‖.

If ν2 = 0, then we must have x̃ = −λ
∇ f1(x̃)

‖∇ f1(x̃)‖ and the optimal α = ‖∇ f1(x̃)‖
λ

. By (53),

we have

−x̃�a−
j = − λ

‖∇ f1(x̃)‖
1

n−

n−
∑

i=1

φ′(−x�a−
i )〈a−

i , a−
j 〉 > 0,

where the inequality follows from φ′(u) < 0,∀ u and Assumption 6(ii). Now notice

that φ(u) is an decreasing function. We have f1(x̃) < f1(0) ≤ 0, which contradicts

to f1(x̃) ≥ 0. Therefore, we must have ν2 > 0 and thus complete the proof. ��

By Claims A1 and A2, we immediately obtain the theorem below.

Theorem 4 Suppose Assumption 6 holds and in addition, the origin is feasible in (48).

Then there must exist a constant ν > 0 such that if f1 is given in (46),

ν| f̂1(x, s)| ≤ dist
(

− f̂1(x, s)∇ f̂1(x, s), NX (x) ⊗ N+(s)
)

,∀ x ∈ int(X ), s ≥ 0,

(55)

and if f1 is given in (48),

ν| f̂1(x, s)| ≤ dist
(

− f̂1(x, s)∇ f̂1(x, s), NX (x) ⊗ N+(s)
)

,∀ x ∈ X , s ≥ 0, (56)

where f̂1 and X are defined in (49).

Proof From (50) and (51), we obtain (55) with ν = min{1, ν1}, where ν1 is defined in

Claim A1, and we obtain (56) with ν = min{1, ν1, ν2}, where ν1 and ν2 are defined

in Claims A1 and A2. ��

Remark 9 From Theorem 4, we see that the regularity condition will hold for the ball

constrained version of (48) under a certain data preprocessing and an origin feasibility

condition. It can almost hold for a ball constrained version of (46), except for the

points on the sphere of the constraint ball. For the tested instances of (46) and (48)

without a ball constraint, we checked the regularity condition at the iterates (because

we actually only need the condition at the generated iterates). We found that for (46),

the introduced slack variable s would always be positive during the iterations, and for
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(48), the iterates became feasible after just a few iterations; see Fig. 2. Hence, for the

instances tested in our experiments, the regularity condition in (7) holds with ν = 1

for x being a generated iterate.
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