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Abstract

Many real-world problems not only have complicated nonconvex functional con-
straints but also use a large number of data points. This motivates the design of
efficient stochastic methods on finite-sum or expectation constrained problems. In
this paper, we design and analyze stochastic inexact augmented Lagrangian meth-
ods (Stoc-iALM) to solve problems involving a nonconvex composite (i.e. smooth
+ nonsmooth) objective and nonconvex smooth functional constraints. We adopt the
standard iALM framework and design a subroutine by using the momentum-based
variance-reduced proximal stochastic gradient method (PStorm) and a postprocessing
step. Under certain regularity conditions (assumed also in existing works), to reach
an e-KKT point in expectation, we establish an oracle complexity result of O (¢7>),
which is better than the best-known O (s~°) result. Numerical experiments on the
fairness constrained problem and the Neyman—Pearson classification problem with
real data demonstrate that our proposed method outperforms an existing method with
the previously best-known complexity result.
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1 Introduction

In the big-data era, many real-world applications are dealing with an extremely large
amount of data. Many such applications involve nonconvex functional constraints.
To compute solutions of these problems, using all data for each update (e.g., in a
deterministic method) is prohibitively expensive. This motivates us to design stochastic
methods to efficiently compute the solutions.

In this paper, we consider the nonconvex expectation constrained problem:

f¢ = min {fo(x) = g(x) + h(x), s.t. ¢(x) = 0},
xeRd 60
with g(x) = E¢[Go(x: £)], e(x) = E¢[C(x; §)] e R™,

where & is closed convex but possibly nonsmooth, and E¢ denotes the expectation
taken over the random variable &. Notice that it does not lose generality to use the
same random variable £ in the objective and constraints, because if they depend on
two different random variables, we can represent & as the stack of the two random
variables. We assume that g(-) and c(-) are smooth (i.e., the gradient of g and the
Jacobian matrix of ¢ are Lipschitz continuous) but possibly nonconvex. When & follows
the uniform distribution on {1, 2, ..., N}, the problem (1) reduces to a finite-sum
structured problem:

£ = min { fo®) := g(®) + h(x), s.t. e(x) =0},

= min
xeR4
. g 1 @)

with g = = 3 Go(x: ), ¢(®) =~ > C(x; &) eR",

&=1 £=1

which arises from applications involving a large amount of pre-collected data.

Though only equality constraints are included, the formulation (1) is general
enough. As shown in [15], an inequality constraint #(x) < O can be equivalently
formulated as an equality constraint #(x) + s = 0 by enforcing the nonnegativity of s,
and the Karush—-Kuhn—Tucker (KKT) conditions of the reformulation are equivalent to
those of the original one. Also, a simple convex constraint set X' can be included in (1)
by setting (part of) 4 to the indicator function 1 (x) = 0ifx € X and 4oc0 otherwise.
Many applications can be formulated to (1), such as Neyman-Pearson classification
[26, 29] and the fairness constrained problem [21].

Due to the presence of nonconvexity and stochasticity in both objective and con-
straints, solving (1) is very challenging. Only a few works (e.g., [2, 21]) have proposed
and analyzed methods to solve such a problem. However, no existing methods have
fully exploited the structure of (1). We will present a stochastic method for (1) under the
general expectation setting, and establish its oracle complexity result, where the oracle
can return the function value and gradient of G and C at any point x and a sample of
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&. We follow the iALM framework and adopt the momentum-based variance-reduced
proximal stochastic gradient method (PStorm) [39] to design a subroutine.

1.1 Contributions

Our contributions are two-fold. First, we propose novel stochastic gradient-type
methods, based on the framework of the inexact augmented Lagrangian method
(Stoc-iALM), for solving nonconvex composite optimization problems with nonlinear
nonconvex (but smooth) expectation constraints, in the form of (1). By exploiting the
so-called mean-squared smoothness structure, we apply PStorm [39] together with a
proposed postprocessing step to design a subroutine within the framework of Stoc-
iALM. The subroutine design is crucial to yield our complexity result that is better
than existing best-known results and for good numerical performance, as its complex-
ity has low-order dependence not only on a target error tolerance but also on other
quantities such as the smoothness constant, variance bound, and initial objective gap.

Second, we conduct complexity analysis on the proposed Stoc-iALM with the
designed subroutine. Under a regularity condition (that was also assumed in many
existing works [15, 16, 18, 31]), we obtain an O (e73) oracle complexity result
for the expectation-constrained problem (1). Our O (&™) result yields a substantial
improvement over the best-known 6(5_6) and O(s7%) complexity results' of the
proximal-point methods in [21] and [2], which iteratively perturb both the objective
and constraints and solve a perturbed convex constrained subproblem. For two tested
problems, we verify the assumed regularity condition numerically and prove it when
a ball constraint is imposed and the involved data are preprocessed appropriately.

1.2 Related works

In this subsection, we discuss related works on the inexact augmented Lagrangian
method (1IALM) and other first-order methods (FOMs) on functional constrained opti-
mization.

The iALM has been popularly used for solving constrained problems. It alter-
natingly updates the primal variable by approximately minimizing the augmented
Lagrangian function and the Lagrangian multiplier (also called dual variable) by dual
gradient ascent [9, 30]. For deterministic convex linear and/or nonlinear constrained
problems, the iALM-based FOM in [12, 17] and the proximal-iALM-based one in
[14] obtain an ¢-KKT point with O (s‘l log %) gradient evaluations, and the AL-
based FOMs in [14, 25, 27, 37, 38] obtain an g-optimal solution with O (8_1) gradient
evaluations. For strongly-convex problems, the results are reduced to O (8_0'5 log %)
and 0(8_0'5 ) respectively, e.g., in [14, 17, 24, 25, 38]. For deterministic nonconvex

problems with nonlinear convex constraints, when Slater’s condition holds, 6(8_%)
complexity results are obtained by the AL or penalty based FOMs in [17, 18] and the
proximal ALM-based FOM in [23]. If the constraints are polyhedral and the objective
is smooth, the complexity can be reduced to O (¢~2) with a hidden constant dependent

! In this paper, we use O to suppress all logarithmic terms of & from the big- O notation.
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on the so-called Hoffman’s bound of the polyhedral set [42]. Different from Slater’s

condition, a regularity condition is assumed in [14], which obtains an 0(8’%) result
by an iALM-based FOM. The regularity condition is used to guarantee near feasibility
from near stationarity of the AL function. Assuming a similar regularity condition,
[14] and [18] both achieve 6(8_3) results for deterministic problems with noncon-
vex constraints, by an iALM based FOM and a proximal-point penalty based FOM
respectively. A single-loop FOM is given in [19] for solving problems with nonconvex
constraints.

There are many papers studying FOMs on convex stochastic constrained problems
(e.g., [13, 36, 40]). Also, a few papers (e.g., [11, 32, 35]) have studied FOMs for
nonconvex optimization with stochastic objective but deterministic constraints, either
based on an exact-penalty framework or ALM. However, few papers have studied
FOMs for the nonconvex expectation constrained problems. On solving inequality
expectation constrained nonconvex optimization, both [21] and [2] design stochas-
tic first-order methods in the framework of the proximal-point (PP) method. They
achieve O(£~%) and O (¢~°) complexity results respectively, which are higher than
our O (¢7) result. Both PP-based methods in [2, 21] iteratively perturb the nonconvex
objective and constraint functions to be strongly convex and inexactly solve the con-
strained convex subproblems. To achieve their results, the PP-based method in [21]
uses the online stochastic subgradient subroutine in [41], while the one in [2] designs
a constraint extrapolation (ConEx) subroutine. Note that nonconvex structures that
we assume are different from those in [2] and [21]. While we assume a nonconvex
composite objective and smooth constraints, the method in [2] applies to nonconvex
problems where both the objective and constraint functions can be nonconvex compos-
ite, and [21] only assumes weak convexity? on the objective and constraint functions.
However, even with the nonconvex structures that we assume, the methods in [21] and
[2] can still only achieve the O(¢°) and O (¢~°) complexity results, as they do not
exploit the smoothness structure in their subroutines.

Stochastic FOMs have also been proposed for minimax problems (e.g., [10, 20,
33]). The work [33] gives a hybrid variance-reduced stochastic gradient method for
nonconvex-linear minimax problems with a compact domain of dual variables and
establishes an O(¢~>) complexity result to find an e-stationary point. Although a
nonlinear-constrained problem can be formulated as a nonconvex-linear minimax
problem by the ordinary Lagrangian function, KKT conditions of the former are
stronger than stationarity conditions of the latter that assumes a compact dual domain.
This is due to the fact that the stationary point of a nonconvex-concave minimax prob-
lem with a compact dual domain may not be primal feasible. Both of [10, 20] assume
strong concavity on the dual side. Let « be the condition number of the dual part.
The method in [20] needs O (k3¢~3) sample complexity to produce an e-stationary
solution, while the complexity result in [10] is O(x2&3). In order to obtain an &-
KKT point of the problem (1) that we consider, under the regularity condition in
Assumption 3 below, we can apply the methods in [10, 20] to a penalized problem
miny { fo(x) + §lle(®)|*} with p = @ ("), which is equivalent to the noncon-
vex strongly-concave minimax problem miny maxy { fox)+y ex) — ﬁ Iyl } The

2 A function [ is p-weakly convex for some p > 0, if f(-) + %H . ||2 is convex.
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resulting complexity results will be O (¢7°) by the method in [20] and 0(8_%) by
the method in [10], as the condition number of the equivalent minimax problem is
O .

1.3 Notations

We use || - || for the Euclidean norm of a vector and the spectral norm of a matrix. The
notation [n] denotes theset {1, ..., n}.Foranya € R, [a]|+ := max{a, 1}. The natural
logarithmic function is In(-), and e = 2.71828... represents its base. We denote J.(x)
as the Jacobian matrix of ¢ at x and J¢(x; &) the Jacobian matrix of C(-; &) at x. The
distance between a vector x and aset X' is denoted as dist(x, X') = minyex ||x—y||. The
proximal operator of a convex function r is defined as prox, (x) := arg min, {r (u) +
%Hu —x|%}. K¢, ¢, takes expectation about & and &>, and we always assume that &
and &, are independent and follow the same distribution as & in (1). We use 9 f to
denote the subdifferetial of a function f. The augmented Lagrangian (AL) function
of (1)is

Lo, y) = fo&) +y e® + § e, 3)

where § > 01is the penalty parameter, andy € R™ is the multiplier or the dual variable.

Definition 1 (¢-KKT point in expectation) Given & > 0, a point x € R is called an
¢-KKT point in expectation to (1) if there is a vector y € R such that

E[le@]?] <2, E |:dist (0, 3 fo(x) + JJ (x) y>2i| <2,

2 Stochastic iALM and its outer iteration complexity

To efficiently find a near KKT-point of (1), we design a stochastic gradient-type method
based on the framework of the stochastic inexact augmented Lagrangian method (Stoc-
iALM), which is given in Algorithm 1. Because of nonconvexity, we can only produce
a near-stationary point of each subproblem, as required in (4). Though the condition
in (4) is not checkable (due to taking expectation), it can be guaranteed from the
convergence rate result of the subroutine that we will give in Sect. 3. The update to the
multiplier is inspired by [15, 31] and adapts to the estimated primal infeasibility. With

k
an appropriate choice of yx, we can ensure Il 0, which is crucial in our analysis.

The iALM framework that we adopt here is similar to those in [15, 31]. The main
difference is the choice of subroutine. Our method only uses stochastic gradient/value
information of the objective and constraint functions in the updates of both primal and
dual variables, while the methods in [15, 31] need exact gradients/function values.

Without specifying a subroutine to obtain x**1, we first establish the outer iteration
complexity result of Algorithm 1, by following the analysis in [15, 18]. Throughout
this paper, we make the following assumptions about (1).
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Algorithm 1: Stochastic inexact augmented Lagrangian method (Stoc-iALM) for
solving (1)

1 Initialization: given ¢ > 0, set y0 = 0 and choose x° € dom( fy), Bo > 0, 0 > 1, and an integer
sequence {M}}

2fork=0,1,..., do

3 | Let By = Boot.

4 Obtain xk+1 (by a subroutine) satisfying

E [dist(O, xLp, (xk+1 yk))2 |yk] <2 “4)
s | Obtainiid samples {££)%% and set ek +1) = 5h- 30K Ccox+! ghy.
6 Update y by

k+1 _ k . Yk o k1
y =Yy +mln{ﬂk, m}c(x ). (5)

Assumption 1 (stochastic first-order oracle) For the problem (1), a stochastic first-
order oracle can be accessed. At any x € dom(%), the oracle can obtain a sample &
and return (VGo(x, §), C(x, §), Je(x, §)).

Remark 1 The overall complexity result of our algorithm will be measured by the total
number of stochastic first-order oracles that are called. Though the oracle can return
atuple (VGo(x, &), C(x, &), Jc(x, £)), our algorithm may only use part of it during
one update. However, even if part of an oracle is used, one oracle will be counted in
measuring the complexity result.

Assumption 2 (structured bounded domain) The domain of /4, denoted as X :=
dom(h), is compact. Moreover, for some M > 0, it holds that dh(x) € Ny (x) +
By, Vx € X, where Ny (x) denotes the normal cone of X at x, and B); denotes a
closed ball of radius M centering at the origin.

Remark 2 Assumption 2 holds for rather general choices of /(-). For example, it holds
for any h(-) :=r(-) + 1x(-) as long as dr is bounded everywhere (e.g., the £,-norm
for p > 1), where 1y denotes the indicator function on X'. Under Assumption 2, there
must exist finite constants By and B, such that

By > , IV , 6
0 _Xegmh)maX{lfo(X)l Ve } (62)
B: > Xeg})agﬁ(h) I eIl (6b)

Due to nonconvexity of the constraints in (1), one may not even find a near-feasible
point in polynomial time. Therefore, following [15, 16, 18, 31], we assume a regularity
condition on the constraints in (1), which ensures that a near-stationary point of the
AL function is near feasible to (1), if the penalty parameter is big. Note that knowledge
of v below is not required in Algorithm 1.
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Assumption 3 (regularity condition) There is a constant v > 0 such that for any
x € X = dom(h),
vle®)| < dist (=Je(®) T e(x), Nx () . )

Remark 3 Here, we give a couple of remarks about the regularity condition. First,
this regularity condition has been proven for many applications. For example, [15]
shows that it holds for all affine-equality constrained problems with possibly additional
polyhedral or ball constraint sets. Other examples are givenin [18, 31]. In the appendix,
we show that the regularity condition can also hold for certain instances of the two
problems that we test in Sect. 4. Second, to find a near KKT point of a nonconvex
expectation constrained problem, the two existing works [22] and [2] also need a
certain regularity condition. Different from Assumption 3, a uniform Slater’s condition
is assumed in [22], and a strong MFCQ condition is assumed in [2]. Those conditions
are neither strictly stronger nor strictly weaker than Assumption 3, as shown in [18].

k
The next lemma will be used to upper bound ”,ys_kH

Lemma 1 For any constants « > 1 and o > 1, if ¢ > % and Ino > %, then it
e

holds o > log,, a?. In addition, Sfor any x > log, a2, it holds % > .

Proof Define ¢ (o) = o — 2122 Then ¢'(e) = 1 — —2— > 0,V > % Hence, ¢ (-)

is increasing on (%, 00). In addition, the condition Ino > e% implies q)(%) > 0.
Thus, for o > %, it holds ¢ () > 0 that is equivalent to o > log, a?.

Now deﬁne Y(x) = o — ax. Then 1//’(x) = ¢* - Ino — «, and thus for any
x > log, a , we have ¥/ (x) > v¥/(log,, 012) =« lna — o > T7a > 0, where we have
used o > —. Hence, ¥ (-) is 1ncreas1ng on [logt7 a2, 00), and for any x > log,, a?, it

ln

holds ¥ (x) > ¥ (log, a?) = a®> — alog, & > 0. This completes the proof. O

In Lemma 1, the requirement of Ino > e% (that holds if o > 1.158) is just for
ease of the analysis of our algorithm. The complexity results that we establish later
will hold for any o > 1 but can have an additional constant factor if the condition is
not satisfied. The theorem below gives the outer iteration number of Algorithm 1 to
produce an ¢-KKT point in expectation of (1).

Theorem 1 (Outer iteration complexity of Stoc-iIALM) In (5), set yr. = yo, Vk > 0 for

some yy > 0 such that fB‘ VO > . Then under Assumptions 2 and 3, Algorithm 1

needs at most K outer lteratlons to find an e-KKT point in expectation of (1), where

«/§V82+B‘%+MT [21 ‘/_cho—‘ 1. ®

K = max lrlogo 5
ove

Proof First, by y0 = 0, the y-update in (5), and the choice of y;, we have from the
triangle inequality that for any k > 0,

k—1

Y <> v = k. ©)

t=0
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where by the convention we define Zf:_é v =0ifk =0.
Second, from (7), we have

E [l = B [dist (—7e e, NX(Xk))Z]

1 2
=3 E [dist (=B 4 Tetdh). BroiNa (o) ]

v By
= E [dist (—ﬁk1Jc(x">Tc(xk),NX(xk))2} .10
1

vzﬁk_

where the last equation follows from Ny (x) = 8- Ny(x),VB8 > 0,Vx € X. In
addition, by dh(x) € Nx(x) 4+ By from Assumption 2, it holds dist(z, Ny (x) +
BM) < dist(z, 8h(x)) for any z € RY. Also, it holds from the triangle inequality that
dist(z, Ny (x)) < dist(z, Nx (x) + By) + M. Hence,

dist(z, Ny (x)) < dist(z, dh(x)) + M,Vx € X, ¥z e RY. (11)
Using (11) with z = —Bx_1 Je(xK) Te(x¥) and noticing

oh(x) = 0. Lp (x5, ¥ = Vex) — Jex) Ty = Broi Je(x) Tex),

it holds

dist (B Je(x) Te(x), Ny (x))
< dist(0, 9, Lg,_, (x5, ¥y — Vg(x*) — s Ty 1) + M,

which together with (10) gives

1 2
) : k k-1 k Iy T k=1
B le)1P] = B [ain(0. 81, 0¥ = V) — s Y + ]

Moreover, applying the triangle inequality to the right hand side of the inequality
above, we have

E[lee)1?]
1

5 F [(dist(0, 8, L5, (5, ¥1)) (12)

2
HIVE &+ 1y "1+ M) ] V=1

Now, using the Young’s inequality and by (6a), (6b), (4) and (9), we obtain

Elfle(x")|*] < 7 1<82+15*§+15*3(k— DG+ M) Vk=1.  (13)
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Since Br = Boo*, we have from the choice of K in (8) that 75 2 (8 +BZ+M2)

In addition, let & = “/‘;OB <0 Then from the choice of K, it holds K —1>log, a”,

&
2
a2

—1
and thus from Lemma 1, we have & ﬁ > «. Hence,

4B2(K — 1yg _ 4BXK — )%y _ 4Bl &
V2B L

Thus it follows from (13) that E[||e(xX)||?] <
Finally, it holds from (4) that

E [dist (0.9 f0x5) + Je )T K+ ﬁK_1c<x’<>>)2} <e’.

Therefore, xX is an e-KKT point in expectation of (1) with the corresponding multi-

plier y¥ ! 4+ Bx_1e(xX), according to Definition 1. O
Remark 4 A few remarks about Theorem 1 are as follows. First, the condition Ii‘ 0 >

% requires to know v. However, this is only for the ease of analysis. We do not
actually need the exact value of v. Notice that we can assume v < 1, because if (7)

holds for some v > 1 it also holds with v = 1. In this case, it suffices to pick yy
such that IB‘VO >

- ln o’
c(+) consists of affine constraints, it is guaranteed that c(xktly = O(—k) if (4) holds
in a deterministic way (i.e., without the expectation) and the strong duality holds for
(1); see [38] for example. In this case, with yx = yp, Y k for an appropriate yy, the
dual update will accept Bi as the stepsize for all k. Third, the result in Theorem 1
does not depend on the setting of E(ka). For the special case in (2), we will set
¢(xkt1y = ¢(xkt1), and for the general problem (1), we will choose My = @(8%) SO
that E[|le(x*T1) — e(xkt1h|2] = O(MLk) = 0(¢?) and thus ¢(x**t1) will be close to
c(x*t1) in expectation. Notice that with a smaller My, say My = O (1), our outer and
overall complexity results still hold. However, the multiplier update with a too-small
M. will deviate too much from that by the classic ALM and can yield bad practical
performance. Finally, we have not specified the subroutine. To have a low overall
complexity in terms of the number of sample/component gradients, it is important to
obtain each x*! efficiently. In the next section, we will exploit the problem structure
and design an efficient subroutine to make (4) hold for each k.

which does not involve v. Second, for convex cases where

3 Momentum-accelerated subroutine and overall oracle complexity

In this section, we give a subroutine to find each x¥*! in Algorithm 1 and thus have a

complete algorithm. Besides Assumptions 1-3, we make the following assumptions.
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Assumption 4 (mean-squared smoothness) For any u,v € dom(h), Go(-, &) and
C(-, &) satisfy the mean-squared smoothness conditions:

E¢[IVGo(u, &) — VGo(v, &)[1*] < Lillu—v|?,
Ee[llJc(u, &) — Je(v, ©)17] < LA u - v||?,
Ee, 6 [l Jc(u, £) T C, &) — Je(v, &) C(v, £) 1] < Lillu—v|)?,

where &1 and &, are independent and follow the same distribution as & in (1).

Remark 5 Mean-squared smoothness is needed to have accelerated convergence for a
stochastic gradient-type method on solving nonconvex stochastic problems [1, 5, 7,
34, 39]. It naturally holds for the special case in (2) if each component of the objective
and constraint functions is smooth. This condition is crucial to obtain our O(g~>)
complexity result.

Assumption 5 (unbiasedness and bounded variance) For any x € dom (%), the objec-
tive and constraint functions satisfy

Ee[VGo(x, §)] = Vegx), EelJe(x, §)] = Je(x). (14)

Also, there exist g, 0. > 0 such that for any x € dom(h),

Ee [1VGo(x. ) — Ve@)?] < o2,
Ee [I/e(x, &) = Je3] < o?.

Eey [ Ve, 60T Cx ) = Je®) Tem)?] = o2,

where &1 and &, are independent and follow the same distribution as &.

Remark 6 Under Assumption 4 and the unbiasedness condition (14), it can be eas-
ily shown that g(-) is Lo-smooth and ¢(-) is L j-smooth; see the arguments at the
end of section 2.2 of [34]. Hence, the mean-squared smoothness condition that we
assume is stronger than the smoothness condition in [2]. In addition, [21] does not
assume smoothness. However, the methods in [2, 21] can still only achieve a result of
0 (£~°) even with the mean-squared smoothness condition, as they solve a sequence of
strongly-convex subproblems and will not benefit from the mean-squared smoothness
structure.

3.1 PStorm subroutine

The smooth part of the AL function Lg, (-, ¥¥) has a smoothness parameter depending
on B that eventually depends on a given tolerance ¢. Hence, to achieve a low-order
overall complexity result, we need a subroutine whose complexity result has a low-
order dependence not only on the pre-given stationarity violation but also on the
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smoothness parameter. With the mean-squared smoothness condition, the momentum-
based variance-reduced proximal stochastic gradient method (PStorm) in [39] is the
one that meets our requirements. Below we first give a modified PStorm with a post-
processing step and then in the next subsection, discuss how to apply it to find x**! in
Algorithm 1. The postprocessing step is necessary in order to produce a solution that
meets the requirement in (4) of Algorithm 1. Without the sampling and postprocessing
steps, our subroutine is a direct application of the PStorm in [39].
Consider the problem

F* = min [F(x) == Gx)+ Hx)}, (15)

xeR

where H is a closed convex function, and G is smooth and possibly nonconvex.
Let A(x, ¢) be a stochastic map that depends on a random variable . Suppose the
following conditions hold: for some finite constants L and o,

e[l A1, §) — A, OIP] = LglIxi — %2, V1, %2 € dom(H), (16a)
E¢[Ax, §)] = VGx), E[| AKX, ¢) — VGX)|I*] < 0&,Vx € dom(H). (16b)

With A(-, ¢) that satisfies the conditions above, we give the modified PStorm in Algo-
rithm 2 and the complexity result in Lemma 2.

Algorithm 2: PStorm(G, H, x0, Lg,o06,T,mg, 1,8, A, ¢) for solving (15)

1 Input: initial point x0 e dom(H), max iteration number 7', smoothness constant L, variance

bound oé, step size 77, momentum parameter § € (0, 1), and an unbiased gradient estimator .A
satisfying (16)
» Initialization: Let d = % Z{e Bo AxO, ¢) with B containing m i.i.d. samples.
3forr=0,1,..., T —1do

4
X't = prox;y (x' — ijd"). (17)
Take a sample ¢’ 1 of ¢ and compute

vt+1 =A(Xt+l,{r+]), ut+] :A(X[,§t+l).

| Letd'T! = v+l 4 (1 —5)@ —u'th).

5 Choose x* uniformly at random from {XO, . X

4802
6 Sampling: Setm| = ’7%—‘ obtain a set By of m1 i.i.d samples of ¢, and compute

V= Ve AKX 0.
7 Postprocessing: output X = Prox; g &X' —qv).

T*l}A
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Lemma 2 Assume the conditions in (16). Given an error tolerance ¢ > 0, choose
parameters of Algorithm 2 as follows:

_ 1 4n? +10n Q2 —nT™7)
n= 3= , mo = [eoV/T]
LgNT’ T3 +4n2
3 (13)
3 3 L [F( 0)7F*] UZ 24202 7]2 2
482402 ( . xn = 20c§n2 + =0
T = ,
| z 1
or some positive constants n and cg, where [a]|+ := max{a, or any a € R.
71} d here [a] { 1} R. [
n < £ then the output X satisfies E[dlst(O 0F (X)) ]
Proof First, directly from Corollary 2.2 of [39], we have
1 2 &2
E Hg(xf — prox;, (x” — ﬁVG(xr))) < T (19)

Hence, by the postprocessing step of Algorithm 2, it holds that

2 1 2

E[ } - [Hﬁ("’ - prov; ° ) }
1 2

<E [(Hn(x — prox; (x — iVG(x")) H +llv - VG(X’)II) }

2
} +2E[|Iv - VG&H|1*].

X —x°

]

1 _
<2E |:Hﬁ<xf — prox; (x* — nVG(x’)))

where the first inequality follows from the nonexpansiveness of the proximal gradient
mapping, and the second inequality holds due to the Young’s inequality. Now by (19)

2
and noticing E[||[v — VG (x)||> < m1 < 48, we have from the inequality above that
g —x7|? g2
E - < —. (20)
n 12

— v € JF(X), and thus

T

"X L VGR) - VGK) 4+ VG(XT) — v

|

E[dist(0, 0 F(%))?] < E U X

§3E|:

+3E[IVG(T) — v|?]

x" —X

2
] +3E[IVG®) — VG (x|
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X —x°

< B +3LLPHE [H ;

2 n 362
48

662 3¢2 5
< — =g,
12 6
where we have used Young’s inequality in the second inequality, the third inequality
follows from the Lg-smoothness of G and E[||v — VG (x7)||? < %, and the fourth
inequality holds because of (20) and n < i This completes the proof. O

Below we choose an appropriate 1 and cg in Lemma 2 to obtain a complexity result
that has a low-order dependence on oG, Lg and F (x%) — F*.

Lemma 3 Assume the conditions in (16). Let ¢ > 0 be given and satisfy ¢ <
1
(I—g\/ 1920\/5(%) 2. Choose parameters of Algorithm 2 as those in (18) with

8

10 \} (LlF (") = F*]1y)? 242\ 4 ol
"Z(ﬁ) 2 ’ co:(ﬁ) i
ol 20(LGIF(x0) — F*]14)?
(21)
Then ]E[dist(O, 3F(f())2] < &2. The total number of calls to A is
LG[F(x°) — F* o}
Total 4 = © oG Lg[F(x") I+ G
&3 eLG[F(x%) — F*]14+
%
o2
- L - |-
(LGIF(x0) — F*]14)°
where [a]1+ := max{a, 1} forany a € R.
Proof First, plugging the chosen 7 and ¢ into (18), we have
3.3 2 3
1920333 (Zli)2 oG LGIF(x%) — F*]1+
T [ i W (22)
e

and it is straightforward to verify n < *Sl/—of by the condition & < 9%+/1920+/3 (%) 3
Hence, from Lemma 2, it follows that E[dist(0, 3 F (X))?] < 2.

Second, notice that Algorithm 2 calls A twice for each iteration. Hence, accounting
the calls to A in the initial and postprocessing steps, we obtain the total number of
calls to A is

4802

4 o
G

2
52+

8 2
2T—|—mo+m1:2T+’760\/3T—‘+[ ZGW <2T +coNT +
&
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09—

3
1920333 (io) o6 LGIF(x%) — F*]i4

<2
=< 3
3 } %
1920333 (38)" 06 Lo I F (") = F*l1s 48(,(2;
+ o 3 +co+4
€
1
2\ 2 0y _ rx*
<2.192033} 24~ oGLG[F(X") — F*]14
10 &3
3 2 §
% 9% %
+ + =+ +4.
0y _ 2 4
eLg[F(xV) — F*]i1+ & (Lc;[F(XO) —F*]1+)3
0 * 3 2
Now notice UGLG[F(;)_F 1++8LG F(;?) I > 2&%andabsorbuniversalconstants
into ®. We obtain the desired result and complete the proof. O

Remark 7 In the choice of n and ¢¢ in Lemma 3, we have implicitly assumed og > 0.
Hence, the claimed result does not apply to a deterministic scenario. Also, the setting
of n and ¢ in (21) needs the value of F* that is unknown. However, we can replace
F(x%) — F* by its upper bound, which can be easily obtained, as we will see for the
subproblems of Algorithm 1.

3.2 Overall complexity

To apply Algorithm 2 to find each x¥*!, the key is to build a stochastic map that
satisfies conditions similar to those in (16). The following lemma gives the key.

Lemma4 Under Assumptions 1, 4 and 5, given'y € R™, let @(-) := Lg(-,y) — h(")
and

AKX, £) i= VGo(x, &) + Jex, &) Ty + BJc(x, £) TC(x, &), (23)

where { = (&1, &), and &1 and & are two independent random variables that follow
the same distribution as & in (1). Then it holds

Ec[IlA(1, ) = A(x, O] < Ly lIxi — x21%, ¥x1, %2 € dom(h), (242)
E;[Ax, §)] = VoX), E[|AKX, ¢) — VOX)|*] < 0, ¥x € dom(h), (24b)

where

Lo = 3L3+3L31yI? +38°L3. o0 = J302 + 3021112 + 36272
Proof Because & and &; are independent, it holds
E:[A®x, )] = Eg [VGo(x, &)] + Eg, [Je(x. D) Y]
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+Eg, [BIcx, £)] Es[Cx, &)].

Since &1 and &, both follow the distribution of &, we have from the definition of ¢(-)
in (1) and (14) that

E[Ax, 0)] = V&) + Je®) "y + Ble(®) " e(x) = VO (x).
In addition, by the Young’s inequality, it follows that
1A, ) — ARxa, O

< 3|VGo(xi1, &) — VGo(x2, EDII* + 3Jc(x1, £ Ty — Je(xo, &) Tyl
+ 382 Jc(x1, &) C(x1, &) — Je(xa, 1) TC(xa, £) 12,

which together with Assumption 4 gives
B[l A, ©) = Alx2, O] < 3(L5+ LIy + ALY Ix1 — x>,

Hence, (24a) holds. Similarly, by the Young’s inequality and Assumption 5, we can
show (24b) and complete the proof. O

With Lemma 4, we are able to apply Algorithm 2 to find each x**!. The theorem
below gives the oracle complexity for the k-th outer iteration of Algorithm 1.

Theorem 2 (Oracle complexity per outer iteration) Let (x*, y*) be the k-th iterate
generated in Algorithm 1 with a given tolerance ¢ > 0. Define

Fr(x) := Lg, (x, yk), F,;'< = rr;in Fi(x), Dr(x):= Fr(x) — h(x).

3,/02+B30? 1
Under Assumptions 1, 4 and 5, if ¢ < %TBOUV 1920(%) 2, then we can find xk+1
that satisfies (4) by Algorithm 2 with the following call
XK1 < PStorm(®x, h, X*, Loy, 00y, Tk, Mo ks Tk, Sy ks €), (25)

where

Lo, = \/3L% +3L3 ¥ I2 4+ 3BELY, o, = \/3og2 + 302y 11> 4+ 3B02, (26)

Ak(x,¢) = VGo(x, &) + Jo(x, £) ¥ + Brde(x, &) TC(x, £). (27)
1
2 2 -3
- uls Ang + 100, 2 —m T, 7)
M = Lo T & = —* 2 £ mox = eory/Ti] (28)
Dy k TkS +4n,%
3
33 (Lo [F ()~ Fflie 93, 24203 i\ 2
482402 ( ] + 20(‘0,](7]1% + 10
Ty = [ 3 1 (29)

@ Springer



Z.lietal.

with
1 8
e — (ﬂ)% (Lo [Fr(xF) — Ff14)3 o — (E)% O,
10720 (Lo [Fi(xk) — Fi1iy)

. (30)

242

TS

(o2

SRS
=

In addition, Ty, calls to the stochastic first-order oracle that is defined in Assumption 1

will be enough to produce x**1, where
K 3 5
og, Lo, [Fr(x*) — F}'] o o
,17( -0 Loy k(3 ) KA1+ + Dy + 4451( ) (31)
3 eLg, L3
Dy

Proof By Lemma 4, it holds

B[l Ak (x1, 0) — Ap(x2. OIIP] < L, X1 — X2, VX1, %2 € dom(h),  (32a)

E;[Ar(x. 0)] = VO (x). E[[|Ak(x, 0) — VO (x)|*] < 0,. Yx € dom(h),
(32b)

where Lg, and og, are given in (26). Hence, & < %«/1920\@(%)% by Bo <
Bi, Yk > 0 and the assumed condition on &. Thus, from Lemma 3, the point x**!
returned by Algorithm 2 with the call in (25) is an e-stationary point x*T! of Fj(-) in
expectation, i.e., ]E[dist(O, 0 Lg, (xK L yk)2 | yk] < &2 and, the total number of calls

to Ay is

ol —o [CnLalFOH — Fli 03,
otalp, = 3 o
€ Lo [Fr(x*) — F 11+
%
o
+ L .
(Lo [Fr(x¥) = F{liy)?
k 3 %
oo Lo [Fr(XY) — F'lh o, Og
—o| Bt r T T %y O (33)
& eLg, L3
Dy

where we have used [ Fy (xk) — F lj‘ ]i+ > 1 in the second equation. Since each call to
Ay will need two stochastic first-order oracles as we assumed in Assumption 1, we
have 7; = 2 - Total 5, and thus complete the proof. O

Remark 8 In the parameter settings of (26)—(30), we used the unknown value F;". As
we point out in Remark 7, we can replace Fy (x¥) — F, « by its upper bound such as the
one we establish in (36) below.

The lemma below is used to bound E[Fj (x*) — F k*].
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Lemma5 Let Fi(-) and F}' be defined in Theorem 2. If (9) and (13) hold, then
0 * ﬂO 0y 112
Fo(x”) — Fy <2Bo + TIIC(X 7S (34)
and for any k > 1,

E[F(x*) — F]

2 2 2
&°+ By + M= /2
by mamg SN 2y

(270 +1)(v+282)

v (35)

R 4
2vpo (Ino)20 Ts

Proof Suppose XF = arg miny F(x), i.e., F}' = Fj (%%). Then it holds

F(x*) — FF = foxh) + (v%, e(xh)) + %uc(x%n2 — fo®)

— vk, e(®h) — %nc(ﬁk)n2

1
+ %uc(x’%n2 - fo&H + 7||y"||2
P et + kzﬁyo Vk =0, (36)

< fox") + (5, e(xb))
< 2By + kyllexO) | + =

where the first inequality is by the Young’s inequality, and the second inequality
follows from (6a). Hence for k = 0, taking expectation on both sides of (36) gives
(34), and for k > 1,

2.,2
k k~y,
E[Fe(x*) — F1 <2Bo + kyoE[lex") 1] + P E[||c(xk)||2] + 76:
2kyo\/82 + By + B2(k — 1)?y5 + M?
<2Bo +
VBk—1
zﬂk 2 2 k )/0
+ + B3 + B2k — )y + M?) + —2
v B ( ’ k=D ) 2Bk
k2 2 2 1
<2By+ —10 4 Zﬁz" +
VBk—1 v Bi_; vBrk—1
k2y2
(e + By + BX(k — 1)*yg + M?) + =L T (37)
k

where in the second inequality we have used (9), (13) and the Jensen’s inequality, and
the third inequality follows from the Young’s inequality.
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. 2 .. .
Notice that ;—X attains its maximum at x = % for x > 0. Thus

x2 4
< — Vx>0 (38)
" 7 (Ino)2ome

Now by Bk = ﬁoak, we have for any k > 1,

2Bk 1 20 1 20 1

= < —_
V2B, - vBio1  v2pook! * vpook=l T v2fy - vho’
2.,2 2.,2 2 2 2
Ly Er (22 _>Li§(ayo+y_o> L
vhr—1 2Pk vBo 20/ 0 vBo 2P0/ (Ino)2o e
2 1 20 1 4
( P | )Bz(k—l)yongyo( +—)

VB, B v2Bo  vBo/ (Ino)2o s

Plugging the three inequalities above into (37) and using the definition of Br, we
obtain (35). O

By Theorem 2 and Lemma 5, we are ready to show the overall oracle complexity
of Algorithm 1 to produce an e-KKT point of (1) in expectation.

Theorem 3 (Overall complexity of Algorithm 1) Under Assumptions 1 through 5, let

3,/02+B3c2 1
N 0 J1920(28)2. n Algorithm 1,

set My = O(¢72) and Yk = v0, Yk > 0 for some yo > 0 such that V8Beyy > %

Then it can produce an -KKT point of (1) in expectation, by using Algomhm 2 as
the subroutine and calling it via (25). In addition, the total number Oraclea of calls
to the oracle defined in Assumption 1 satisfies

¢ € (0, 1) be a given tolerance. Suppose & <

E[Oraclejoal | = 0(e™).

Proof From Theorem 1, we know that xX is an e-KKT point of (1) in expectation,
where K is given in (8). Hence, the oracle complexity Oracley, of Algorithm 1
is upper bounded by Zfz_ol (Tr + My) with 7; defined in (31). To upper bound
E[Oraclemml], it suffices to upper bound E[’Z}] foreachk < K.

By fr = Boo* and (9), we have from (26) that

V3BoLyo* < Lo, < \[3L3 +3L3k2y¢ + 383L30% < V3(Lo+LskyotoLso").
(39)
and

0o, < /302 +302k22 + 3p3020% < V3(og + ocky + fooeat).  (40)
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Hence,
3 § 2 2
oo, O _ o0 %o (E)é
eLg, L% e Lo, Le,
Py
_ Y3(og +ocky + pooeat) 307 +302K2yg + 3pjole
a € V3BoL ok
(o2 3024008+ 38l )
V3BoL ok .
. 302k2y2 302y} 4 k 4
By (38), it hold 0 < -0 dk<o*———— H ,
y (38),itholds —==-"7 < —=2o- p—og = andk <o ppe = ence
3062 4 30 2k>y¢ 4 32020k
V3(0oy + ockyo + Booeo*) = O (), & c_ 70 0 = O(ch).
( g KV ﬁ c ) ﬁﬂoLJak
(42)
Therefore, (41) implies
8
K—1 3 3 K—1 o 2K
o o o 4% o
D =0< (7*“))=0(T> “3)
k=0 k L<1>k k=0

Inaddition, E [0¢, Lo, [Fx(x*) — F111] < E [00, Lo, (Fi(x*) — F)]+00, L.
Hence, from Lemma 5, (39), and (40), we obtain
E 00, Lo Fx) = F{li |

<3(Lo + Lykyo + BoL ") (0 + ockyo + Pooea™)

(1 + max {BF, 2By + %nc(xo)nz}) ,

which together with (42) gives

K-1 K—1
> E o Lo, [Fx) = Flii | = 0 (Z a2k> —06™). @4

k=0 k=

02K

Therefore, from (31, (43), and (44), it follows that E[ YK/ 1] = 0 (T)

Plugging K given in (8), we have E[ /! 7] = 0(¢ 7). Since My = 0(¢72) for
all k, we obtain E[Oracle ] = E[ Zfz_ol (T + M) = O (¢7>) and complete the
proof. O

Before concluding this section, we make some discussions on certain other frame-
works and their oracle complexity for solving (1). Both of [15, 18] focus on
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deterministic FOMs, but their frameworks can be easily adapted to stochastic ver-
sions. Different from the proposed Stoc-iALM in Algorithm 1, the methods in [15,
18] solve a sequence of strongly-convex subproblems based on the proximal-point (PP)
framework. Hence, they can be adapted to stochastic FOMs if a stochastic gradient-
type method is applied to those strongly-convex subproblems. However, the resulting
stochastic methods will have higher-order complexity than our proposed method on
solving (1). Let us focus on the adaptation of the method in [15] while a similar dis-
cussion applies to that in [18]. Instead of using a stochastic method to directly find a
stationary point of each ALM subproblem, [15] applies the PP method, and each PP
subproblem is in the form of

minU(x) == Lp(x.y) + §||x—§(||2, (45)

where X is the proximal center that is set to the approximate solution of the previous PP
subproblem, and p > 0 is chosen to make the objective in (45) to be strongly convex.
In order to find an e-stationary point of Lg (-, y), the PP method needs to approximately
solve @(8%) PP subproblems, for each of which an §-stationary solution is required.
Suppose U is Ly-smooth in (45) and has the unique minimizer Xy. Then it holds
IVUX)|| < Ly|lx — xy|l. Now let us apply the result in [28, Lemma 1] for the
stochastic gradient method (SGM) on solving a smooth strongly-convex stochastic

2 2
problem. The SGM needs © ( L;’ZSZU ) iterations to produce a point x such that Ly E [ ||Ix—

Xy ||] < §.where Gy is abound of VU. Therefore, for each ALM subproblem, the PP

2 ~2
method together with the (optimal) SGM as a subroutine will incur @(LZ g“ ) oracle

calls. Since the penalty parameter 8 will geometrically increase to & (%), the constants
Ly, p and Gy of the corresponding ALM subproblem will eventually all be in the
order of % This way, we obtain the oracle complexity of O(¢77) if the method in [15]
is adapted to a stochastic version.

4 Numerical results

In this section, we demonstrate the numerical performance of the proposed Stoc-iALM
in Algorithm 1 (with PStorm in Algorithm 2 as the subroutine) on solving a fairness
constrained problem and a Neyman-Pearson Classification problem. We compare it
to the IPC method in [21] that achieves the state-of-the-art complexity for solving (1).
All the tests were performed in MATLAB 2019b on a Macbook Pro with 4 cores and
16GB memory.

4.1 Nonconvex fairness constrained problem
Let x denote the parameters of a linear model and f(x; a, b) = ¢,(/(x; a, b)) be the

truncated logistic loss function, where [(x; a, b) = log(1 + exp(—ba'x)), o (s) =
alog(l 4 2), and o = 2 is set in our tests. Suppose there is a labeled dataset D =
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{(a;, b,-)}l.gll, a possibly unlabeled dataset S = {aj}lisz‘l, and a subset Spin € S of the

minority population in S. Then the problem of training x using the loss f (x; a, b) with
a fairness constraint [21] can be formulated as

1
min fp(x) := DI Z f(x;a,b),

xeRd

(a,b)eD (46)
st fi(x) := cZo(aTx) — Z o(aTx) <0,
acs acSmin
. . exp(s) .
where ¢ € (0,1) is a fairness parameter and o (s) Trexp(s) " The fairness

constraint above aims at forcing the classifier to have a positive prediction on
the minority group often enough. Following [21], we use three data sets: bank-
marketing from UCI repository [6] (shortened as bank below) with d = 81 and
(ID1, IS], ISminl) = (22605, 22605, 233), a9a from LIBSVM library [4] withd = 123
and (| D], |S], |Smin]) = (32561, 16281, 1561), and loan from LendingClub (which
contains the information of 128375 loans issued in the fourth quarter of 2018; see [21]
for more description) with d = 250 and (| D], |S|, |Smin|) = (64485, 63890, 31966).
We set the fairness parameter to ¢ = 0.4 for the bank dataset, ¢ = 0.1 for the a%a
dataset, and ¢ = 0.6 for the loan dataset.

To solve (46) by the proposed Stoc-iALM, we reformulate its inequality constraint
to an equality constraint fj(x) +v = 0 where v > 0 is enforced. Notice that the refor-
mulation has equivalent stationarity conditions to the original model (46) as shown
in [15]. The IPC method in [21] is applied directly to (46), and following [21], we
adopt its deterministic version. We only compare to the IPC, as it is demonstrated in
[21] to outperform other methods on solving (46) such as the Penalty with trust region
method in [3] and the subgradient method in [41].

The tolerance is set to ¢ = 0.01 in all tests. Our proposed Stoc-iALM is termi-
nated, if both primal residual (computed as [ f1(x)]+) and dual residual (computed
as ||V fo(x) + yV f1(x)]|) are below ¢, where x and y are the primal and dual iterate
generated by the algorithm. The IPC method does not generate a dual iterate, so for
a fair comparison, we compute an optimal dual variable z > 0 that minimizes the
squared sum of the violation to the dual feasibility and the complementary slackness
conditions of (46):

min [V fo(x) + /7, ) "2l1” + |27 i1, (47)

Since f7 is a scalar function in (46), it is not difficult to have the optimal z =
[_ Vo "V f1(x)
[G2+HIV A2
[ f1(x)]+ and dual residual ||V fo(x) +zV f1(x)| are below the given tolerance €. For
Stoc-iALM, at the k-th outer iteration, we set Sy = 2.5k and the smoothness param-
eter to 10 + B, and we set &(x*T!) = ¢(x*T!) in the y-update (5). In the PStorm
subroutine, we set the mini-batch size to 30 for all three data sets. The parameter set-
tings of the IPC exactly follow from the code of [21] that was kindly provided by the
authors. The primal and dual residuals are recorded after every 50 inner iterations for

] . Given this z, the IPC is terminated if both primal residual
+
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Fig. 1 Mean curves and standard deviation (by shadow area’) of 10 different trials by the proposed Stoc-
iALM and the curves by the IPC in [21] on solving the fairness constrained problem (46) with bank, a9a,
and loan data sets (from left to right). T Some shadow areas are invisible because the deviations are too
small

Stoc-iALM, and after every data pass for [IPC. Both methods start from a zero vector.
As the proposed method is randomized, we run it for 10 independent trials by using
different random seeds, while IPC is deterministic and thus we only perform one trial.

Table 1 lists the violation of primal feasibility and the violation to the dual feasibility
at the produced -KKT point, and the number of data passes (shortened by pres,
dres and #data respectively) for each method to produce such a point. Figure 1
plots the curves of the constraint function value and dres at generated iterates by the
proposed Stoc-iALM and the IPC, where the solid red curve shows the average results
and the shadow area represents the standard deviation for the proposed method. To
clearly show the difference of the results by the proposed method and IPC, we only
plot the curves by IPC up to 20 number of data passes for the bank and a9a data sets.
From the results in Table 1 and Fig. 1, we see that both methods can reduce pres
and dres below the given tolerance. However, the IPC needs significantly more data
passes, especially for the bank and a9a data sets. In addition, the proposed method
can perform well for all 10 trials.

4.2 Nonconvex Neyman-Pearson classification

In this subsection, we test our proposed Stoc-iALM (Algorithm 1) with the PStorm
(Algorithm 2) subroutine on solving the nonconvex Neyman-Pearson classification
problem [29, 40]. The problem aims at minimizing the false-negative error subject to
a constraint on the level of false-positive error. It can be formulated as
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Table 1 The violation of primal feasibility and the violation to the dual feasibility at the produced e-KKT point with ¢ = 1072, and the number of data passes (shortened by
pres, dres and #data’ respectively) of 10 trials with different random seeds by the proposed Stoc-iALM and the IPC in [21] on solving the fairness constrained problem (46)

with a9a, bank, and loan data sets (from left to right)

Method [a9a] Pres Dres #Data Method [bank] Pres Dres #Data Method [loan] Pres Dres #Data
Stoc-iALM (1) 5.7e—3 9.3e—3 3.83 Stoc-iALM (1) 4.1e—3 9.7e—3 4.78 Stoc-iALM (1) 2.2e—4 9.1e—3 1.21
Stoc-iALM (2) 5.8e—3 9.5e—3 3.90 Stoc-iALM (2) 4.1e—3 9.9¢e—3 4.72 Stoc-iALM (2) 2.6e—4 9.7¢e—3 1.23
Stoc-iALM (3) 5.7e-3 9.4e—3 3.97 Stoc-iALM (3) 4.2e—3 1.00e—2 4.72 Stoc-iALM (3) 2.3e—4 9.3e—3 1.21
Stoc-iALM (4) 6.0e—3 1.00e—2 3.63 Stoc-iALM (4) 4.2e—3 9.9¢—3 4.72 Stoc-iALM (4) 2.4e—4 9.6e—3 1.21
Stoc-iALM (5) 5.8¢—3 9.2e—3 3.83 Stoc-iALM (5) 4.1e—3 9.5¢—3 4.85 Stoc-iALM (5) 1.9¢e—4 8.3e—3 1.21
Stoc-iALM (6) 5.7e-3 9.9¢—3 3.56 Stoc-iALM (6) 4.1e—3 1.00e—2 4.72 Stoc-iALM (6) 2.5e—4 9.2e—3 1.23
Stoc-iALM (7) 5.6e—3 9.5¢-3 3.69 Stoc-iALM (7) 4.1e—3 9.8¢—3 4.72 Stoc-iALM (7) 2.1e—4 9.0e—3 1.21
Stoc-iALM (8) 5.7e-3 9.3e—3 3.90 Stoc-iALM (8) 4.1e—3 9.9¢e—-3 4.72 Stoc-iALM (8) 2.6e—4 9.8e—3 1.21
Stoc-iALM (9) 5.5e—3 8.6e—3 4.11 Stoc-iALM (9) 4.0e—3 9.9¢e—3 4.72 Stoc-iALM (9) 2.0e—4 8.8e—3 1.23
Stoc-iALM (10) 5.7e—3 9.9¢e—3 4.46 Stoc-iALM (10) 4.1e—3 9.8e—3 4.72 Stoc-iALM (10) 2.5e—4 1.00e—2 1.21
IPC 0 9.1e-3 111 IPC 0 9.7e—3 107 IPC 0 2.8e—3 3

T#Data by Stoc-iALM are fractional because the subroutine PStorm uses minibatch of data points to compute sample gradients and we record pres and dres after every 50

inner iterations
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+
: IS T+
min fo(x) := x'ah),
min fo(x) = - i§:1j¢< i)

1 < .
LA = — Y ¢(—xTaj)—¢ =<0, (48)
i=1
where {a;”};‘; and {a, }f’;] denotes the positive-class samples and negative-class

samples of the training data set. The parameter ¢ controls the level of the false-positive
error. In (48), we set ¢ (-) to the sigmoid function: ¢(u) = 1/(1 + exp(u)). We use
three data sets: spambase [6] withd = 57 and (n™, n™) = (1813, 2788), madelon
[8] with d = 500 and (n™, n™) = (1300, 1300), and gisette [8] with d = 2000 and
(n*,n™) = (3500, 3500). To make sure the feasibility of the problem, we set the
false-positive error parameter to ¢ = 0.2 for spambase and giserte, and ¢ = 0.4 for
madelon. Following [40], before feeding each data set into the solvers, we preprocess
them by first normalizing it feature-wisely to have mean O and variance 1, and then
scaling each sample to have unit 2-norm.

Similar to Sect. 4.1, we reformulate the inequality constraint in (48) to an equality
constraint f1(x) + v = 0 for our method Stoc-iALM, where v > 0 is enforced. The
compared IPC method in [21] is applied directly to (48). The tolerance is again set
to & = 1072 in all tests. Both methods are terminated if the violation of primal and
dual feasibility is below ¢, where the dual variable of the IPC is computed by (47)
as in Sect.4.1. For Stoc-iALM, at the k-th outer iteration, we set 8; = 2k and the
smoothness constant to @ and again we set E(Xk_H) = c(xk‘H) in the y-update
(5). In the PStorm subroutine, we set the mini-batch size to 10 for spambase, and 30
for madelon and gisette. The parameter settings of the IPC exactly follow from the
code of [21] provided by its authors. Again, we record the primal and dual residuals
after every 50 inner iterations in Stoc-iALM, and after every data pass in IPC. Both
methods start from a zero vector for each data set, and we perform 10 independent
trials by using different random seeds for the proposed method.

Table 2 gives pres and dres at the produced ¢-KKT point and #data by each
method to produce such a point. Figure 2 plots the curves of the constraint function
value and dres. Again, we see that our proposed method Stoc-iALM needs signifi-
cantly fewer data passes to produce a KKT point with the same-level error tolerance.

5 Conclusion

We have presented a stochastic inexact augmented Lagrangian method (Stoc-iALM)
for solving nonconvex expectation constrained optimization. To handle nonconvex
stochastic iALM subproblems, we apply a momentum-based variance-reduced proxi-
mal stochastic gradient method (PStorm) subroutine with a proposed post-processing
step. To reach an ¢-KKT solution in expectation, we establish an oracle complexity of
O (¢7°), which improves over the state-of-the-art complexity of O (¢~°). Numerically,
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Table 2 The violation of primal feasibility and the violation to the dual feasibility at the produced e-KKT point with ¢ = 1072, and the number of data passes (shortened
by pres, dres and #data’ respectively) of 10 trials with different random seeds by the proposed Stoc-iALM and the IPC in [21] on solving the Neyman-Pearson classification

problem (48) with spambase, madelon, and gisette data sets (from left to right)

Method [spambase] Pres Dres #Data Method [madelon] Pres Dres #Data Method [gisette] Pres Dres #Data
Stoc-iALM (1) 0 7.8e—3 18.75 Stoc-iALM (1) 0 1.00e—2 336.08 Stoc-iALM (1) 0 1.00e—2 234.04
Stoc-iALM (2) 0 6.le—3 39.23 Stoc-iALM (2) 0 1.00e—2 324.77 Stoc-iALM (2) 0 1.00e—2 235.24
Stoc-iALM (3) 0 8.5¢—3 13.74 Stoc-iALM (3) 0 1.00e—2 330.08 Stoc-iALM (3) 0 1.00e—2 234.04
Stoc-iALM (4) 0 7.6e—3 16.93 Stoc-iALM (4) 0 1.00e—2 314.15 Stoc-iALM (4) 0 1.00e—2 235.24
Stoc-iALM (5) 0 9.0e—3 11.01 Stoc-iALM (5) 0 1.00e—2 323.15 Stoc-iALM (5) 0 1.00e—2 234.04
Stoc-iALM (6) 0 6.5e—3 21.48 Stoc-iALM (6) 0 1.00e—2 322.92 Stoc-iALM (6) 0 1.00e—2 235.24
Stoc-iALM (7) 0 6.8e—3 28.76 Stoc-iALM (7) 0 1.00e—2 317.85 Stoc-iALM (7) 0 1.00e—2 235.24
Stoc-iALM (8) 0 9.9e—3 22.85 Stoc-iALM (8) 0 1.00e—2 332.38 Stoc-iALM (8) 0 1.00e—2 235.24
Stoc-iALM (9) 0 9.3e—3 11.47 Stoc-iALM (9) 0 1.00e—2 326.38 Stoc-iALM (9) 0 1.00e—2 234.04
Stoc-iALM (10) 0 7.1e—3 16.47 Stoc-iALM (10) 0 1.00e—2 341.15 Stoc-iALM (10) 0 1.00e—2 234.04
IPC 0 9.7e—3 37 IPC 0 1.00e—2 1804 IPC 0 1.00e—2 650

T#Data by Stoc-iALM are fractional because the subroutine PStorm uses minibatch of data points to compute sample gradients and we record pres and dres after every 50

inner iterations
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Fig.2 Mean curves and standard deviation (by shadow area’) of 10 different trials by the proposed Stoc-
iALM and the curves by the IPC in [21] on solving the Neyman-Pearson classification problem (48) with
spambase, madelon, and gisette data sets (from left to right). T Some shadow areas are invisible because
the deviations are too small

we have demonstrated that the proposed Stoc-iALM can significantly outperform one
state-of-the-art method.
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A regularity condition for ball-constrained fairness and Neyman-
Pearson problems

In this section, we show that the regularity condition in (7) holds for the nonconvex
fairness problem in (46) and the Neyman-Pearson classification problem in (48), when
a ball constraint is imposed and the input data satisfies certain conditions. We consider
the two problems together in the following form:

min fo(X), s.t. fl(x, )= f1Ix)+s=0,s>0,xe X¥:={x¢€ R? Ix]| < A},
X,S§
(49)
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where A > 0, and fjj and f] are the functions defined in (46) and (48) respectively
for the fairness problem and the Neyman-Pearson classification problem. The slack
variable s is used to reformulate (46) and (48) into equality-constrained problems.
We did not include the constraint x € X in our experiments but the generated iterate
sequence remained bounded.

Let Ny (x) be the normal cone of X atx € X and Ny (s) the normal cone of Ry at
s > 0. Then the regularity condition in (7) for the problem (49) becomes: there exists
v > 0 such that

2
V2(fi(x) +5)% < dist (—(fl(X) +5) [Vfi(x)] , Nx(x) ®N+(s)> ,Vx e X,s>0. (50)

Notice that Ny (x) = {0} if [|x]| < A and Ny (x) = {ax : « > 0} if ||x|| = A. Also,
Ny (s) ={0}ifs > 0and N (s) = R_ if s = 0. Hence, for any (x,s) € X @ R,

2
dist (—(fl(x) +5) [Vfi(x)] . Ny (x) ®N+(s))

(1) + )2 +dist( — (1(X) + )V f1(x), Ny ), ifs > 0

= { min (f1(x),0)” + | A1V Ai0)]1%, ifs =0, x| <2
min (fi (%), 0)° + ming=0 [l fi(V fi (%) + ax|?, if s =0, x| = A.
(51)

From (51), we can easily have that when s > 0 or when s = 0 and fj(x) < 0, it
holds

2
(oo +97 <aist (~iw+0 | VIO A s o)

Thus we only need to show the regularity condition at (x, 0) with x € X" such that
fi(x) > 0. We make the following assumption about the data involved in (46) and
(48).

Assumption 6 The feature vectors in (46) and (48) satisfy:

(1) In (46), ||a|| = g,V a € S for some g > 0 and (aj, a;) > O for any aj,a, € S.In

addition,
e - l—c T 52
a+ ekq)Z Z apag > d¢ Z a; az. (52)
a1,22€85\ Smin 41,22 € Smin

(ii) In (48), |la; || = ¢, Vi for some g > 0, and (ai_,a;) > 0 forany i, j.

The above assumption will hold if each data point is first normalized and then appended
by 1 at the end, which is equivalent to having an intercept term in the model, and in
addition, for (46) the minority group Smin is only a small fraction of S.
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Claim A1 Under Assumption 6, let fi be given in (46) or (48). Then v =
minx < [IV /1 (x)[| > 0.

Proof We first prove the claim for (48), for which case,

1« o
VAK =——3 ¢'(—x"a])a;. (53)
i=1
Suppose vi = |[VAi®)], i.e., the minimum is reached at X. Notice ¢'(u) =

(1+e“)2 < 0. Thus

1« _
= )z Z ¢'(-XTa)¢ (R a))a a)) 2 o ;[¢’<—xTa;>]2||a;||2,

i,j=1

where the inequality follows from (a;, aj_) > (O foralli, j. Hence, v > 0 must hold
by Assumption 6(ii).
Next we prove the claim for (46). When fj is the function in (46), it holds

VA =c Y d@xa—(1-c Y o'@xa
aeS\ Smin A€ Smin

Again, suppose v = ||V f1(X)||. Notice o’ (1) = is decreasing on [0, +00) and

eu
(1+¢")?
increasing on (—oo, 0]. Also, by Assumption 6(i) and | X|| < A, we have laTk| < ga.
qh
Hence, m <o (a X) < —. Thus
2
¢ Z o'(a’®al| =c? Z o’(a] X)o'(a) X)a| ay
€S\ Smin a1,22€5\ Smin
2 ,2qgA
c’e T
> — a, ag,
= (1 + e9)? Z 142

a1,22€5\ Smin

and

2

Ry
(1 —c¢) Z o'(a'x)al < d 166) Z a ay.

€ Smin a1,22€Smin

By the triangle inequality, it holds that

IVAXI >c Z a/(aTx)a —(1—=2o¢) Z a'(aTx)a .

aES\Smin A€Smin

Therefore, from (52), we obtain v; > 0 and complete the proof. O
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Claim A2 Suppose Assumption 6(ii) holds and in addition, the origin is a feasible point
of (48), i.e., f1(0) < 0. Then it holds

vy i= min {IIfl(X)Vfl(X) +ax]| : x|l = A, fi(x) = 0} > 0. (54)

Proof Suppose that the minimum in (54) is reached at X, i.e., [|X|| = A, f1(X) > 0,
and

v = ggg 1AV fi(X) + ax].

If v, = 0, then we must have X = —A éﬁ g;” and the optimal @ = |Vf1 ® .By (53),
we have

S N SR U SV S
Xla) = o n*;(l)( x'a; ) (a;,a7) >0,

where the inequality follows from ¢’ (1) < 0,V u and Assumption 6(ii). Now notice
that ¢ («) is an decreasing function. We have fi(X) < f1(0) < 0, which contradicts
to f1(X) > 0. Therefore, we must have v, > 0 and thus complete the proof. O

By Claims Al and A2, we immediately obtain the theorem below.

Theorem 4 Suppose Assumption 6 holds and in addition, the origin is feasible in (48).
Then there must exist a constant v > 0 such that if fi is given in (46),

WA 9] < dist (= A OV ), Ne®) @A), Yx € int(X), 5 =0,
(55)
and if fi is given in (48),

v fi(x, $)| < dist (—fl(x,swﬁ (x,5), Ny(x) ®N+(s)) VX e X,s>0, (56)

where f] and X are defined in (49).

Proof From (50) and (51), we obtain (55) with v = min{1, vy}, where v; is defined in
Claim A1, and we obtain (56) with v = min{l, vy, v2}, where v and v, are defined
in Claims A1 and A2. O

Remark 9 From Theorem 4, we see that the regularity condition will hold for the ball
constrained version of (48) under a certain data preprocessing and an origin feasibility
condition. It can almost hold for a ball constrained version of (46), except for the
points on the sphere of the constraint ball. For the tested instances of (46) and (48)
without a ball constraint, we checked the regularity condition at the iterates (because
we actually only need the condition at the generated iterates). We found that for (46),
the introduced slack variable s would always be positive during the iterations, and for
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(48), the iterates became feasible after just a few iterations; see Fig. 2. Hence, for the
instances tested in our experiments, the regularity condition in (7) holds with v = 1
for x being a generated iterate.
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