
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023 2579

Towards Understanding Asynchronous Advantage
Actor-Critic: Convergence and Linear Speedup

Han Shen , Kaiqing Zhang, Mingyi Hong , Senior Member, IEEE, and Tianyi Chen

Abstract—Asynchronous and parallel implementation of stan-
dard reinforcement learning (RL) algorithms is a key enabler of the
tremendous success of modern RL. Among many asynchronous RL
algorithms, arguably the most popular and effective one is the asyn-
chronous advantage actor-critic (A3C) algorithm. Although A3C
is becoming the workhorse of RL, its theoretical properties are still
not well-understood, including its non-asymptotic analysis and the
performance gain of parallelism (a.k.a. linear speedup). This paper
revisits the A3C algorithm and establishes its non-asymptotic con-
vergence guarantees. Under both i.i.d. and Markovian sampling,
we establish the local convergence guarantee for A3C in the general
policy approximation case and the global convergence guarantee
in softmax policy parameterization. Under i.i.d. sampling, A3C
obtains sample complexity of O(ε−2.5/N) per worker to achieve
ε accuracy, where N is the number of workers. Compared to
the best-known sample complexity of O(ε−2.5) for two-timescale
AC, A3C achieves linear speedup, which justifies the advantage of
parallelism and asynchrony in AC algorithms theoretically for the
first time. Numerical tests on synthetic environment, OpenAI Gym
environments and Atari games have been provided to verify our
theoretical analysis.

Index Terms—Reinforcement learning, policy gradient, actor
critic, asynchronous parallel method.

I. INTRODUCTION

R EINFORCEMENT learning (RL) has achieved impressive
performance in many domains such as robotics [30], [33]

and video games [32]. However, these empirical successes are
often at the expense of significant computation. To unlock high
computation capabilities, the state-of-the-art RL approaches rely
on sampling data from massive parallel simulators on multiple
machines [3], [15], [32], [35]. Empirically, these approaches
can significantly reduce training time when implemented in an
asynchronous manner. One popular method that achieves the
state-of-art performance is the asynchronous variant of the actor-
critic (AC) algorithm, referred to as A3C [32].

Manuscript received 24 February 2022; revised 22 December 2022 and 4
April 2023; accepted 4 April 2023. Date of publication 12 May 2023; date of
current version 20 July 2023. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Monica F. Bugallo. This
work was supported in part by the Rensselaer-IBM AI Research Collaboration
(http://airc.rpi.edu) and in part by IBM AI Horizons Network (http://ibm.biz/
AIHorizons). (Corresponding authors: Tianyi Chen; Han Shen.)

Han Shen and Tianyi Chen are with the Department of Electrical, Computer,
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
USA (e-mail: shenh5@rpi.edu; chentianyi19@gmail.com).

Kaiqing Zhang is with the Laboratory for Information & Decision Systems and
Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139 USA (e-mail: kaiqing@csail.mit.edu).

Mingyi Hong is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
mhong@umn.edu).

Digital Object Identifier 10.1109/TSP.2023.3268475

A3C builds on the original AC algorithm [25]. At a high
level, AC simultaneously performs policy optimization (a.k.a.
the actor step) using the policy gradient (PG) method [45]
and policy evaluation (a.k.a. the critic step) using the temporal
difference learning (TD) algorithm [43]. To ensure scalability
to large state-action spaces, both actor and critic steps can com-
bine with various function approximation techniques. To ensure
stability, AC is often implemented in a two time-scale fashion,
where the actor step runs in the slow timescale and the critic
step runs in the fast timescale. Similar to other on-policy RL
algorithms, AC uses samples generated from the target policy.
Thus, data sampling is entangled with the learning procedure,
which generates significant overhead. To speed up the sampling
process of AC, A3C introduces multiple workers with a shared
policy, and each worker has its own simulator to perform data
sampling. The shared policy can be then updated using samples
collected from multiple workers.

Despite the empirical success achieved by A3C, to the best of
our knowledge, its theoretical property is not well-understood.
The following theoretical questions remain unclear: Q1) Under
what assumption does A3C converge? If so, does it converge
to the global optimal solution? Q2) What is its convergence
rate? Q3) Can A3C obtain benefit (or linear speedup) using
parallelism and asynchrony?

For Q3), we are interested in the training time linear speedup
with N workers, which is the ratio between the training time
using a single worker and that using N workers. Since asyn-
chronous parallelism mitigates the effect of stragglers and
keeps workers busy, the training time speedup can be measured
roughly by the sample complexity (i.e., computational) linear
speedup [29]:

Speedup(N)

=
sample complexity with one worker

average sample complexity per worker with N workers
.

(1)

If Speedup(N) = Θ(N), the speedup is linear, and the training
time roughly reduces linearly as the number of workers in-
creases. This paper aims to answer this question, towards the goal
of providing theoretical justification for the empirical successes
of parallel and asynchronous RL.

A. Related Works

The PG method and its global convergence: The global op-
timality of the stationary points of policy optimization problems
has been shown in [7]. Then the finite-time convergence rate for
exact PG method with softmax policy was established in [2] by
utilizing a gradient-dominance type result under relative entropy
regularized objective function. Later, [31] extended this result

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2580 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

TABLE I
COMPARISON OF RESULTS. IN THE TABLE, ‘CONSTANT BATCH-SIZE’ INDICATES WHETHER OR NOT THE BATCH SIZE IS INDEPENDENT OF THE ACCURACY AND
THUS CAN BE A CONSTANT, AND ‘SINGLE-LOOP’ INDICATES WHETHER OR NOT THE WORK ANALYZES THE SINGLE-LOOP ACTOR-CRITIC METHOD WHERE A
SINGLE CRITIC UPDATE IS PERFORMED PER POLICY UPDATE. IN ‘SAMPLING METHOD’ COLUMN, ‘I.I.D.’ STANDS FOR I.I.D. SAMPLING FROM THE STATIONARY

DISTRIBUTION WHILE ‘MARKOVIAN’ STANDS FOR SAMPLING FOLLOWING A MARKOV CHAIN

to the entropy regularized setting and established linear conver-
gence rate for exact PG method under softmax parameterization.
Later, [8] has proved linear convergence rate for general class
PG methods. In the stochastic setting, [55] has established local
optimal convergence for stochastic PG with unbiased rollout
and increasing step sizes, and [46] has established the global
convergence of stochastic neural PG with increasing batch of
i.i.d. samples. Later, [54] proved that the minibatch version
of PG achieves global convergence with the help of relative
entropy regularization. But none of them consider the global
convergence of the AC method. On the application side, the
PG method has been broadly applied in various settings; see
e.g. [12], [13], [14], [19]. In [13], the actor critic method was
used to jointly optimize the trajectory, transmission and caching
content delivery of the unmanned aerial vehicles. In [14], the
policy gradient method was used to jointly optimize the stream-
ing rate and transmission power. In [19], the PG method was
used to help the learning of a distribution adaptation strategy.
In [12], the PG method is used in a multitask learning algorithm
which seeks to improve generalization to new tasks.

Analysis of AC algorithm: AC method was first proposed
by [11], [25], with asymptotic convergence guarantees pro-
vided in [10], [11], [25]. It was not until recently that the
non-asymptotic analyses of AC have been established. The
finite-sample guarantee for the batch AC algorithm has been
established in [22], [27], [53] with i.i.d. sampling. Later, in [36],
the finite-sample analysis was established for the double-loop
nested AC algorithm under the Markovian setting. An improved
analysis for the Markovian setting with minibatch updates has
been presented in [51] for the nested AC method. More re-
cently, [49], [52] have provided the first finite-time analyses
for the two-timescale AC algorithms under Markov sampling,
with both Õ(ε−2.5) sample complexity, which is the best-known
sample complexity for two-timescale AC. Through the lens of
bi-level optimization, [23] has provided finite-sample guarantees
for two-timescale AC, when a natural policy gradient step is used
in the actor. Recently, [22] also analyzed the single-timescale AC
algorithm under an exact critic oracle. On a less relevant line of
research, AC-based multi-agent RL has been studied in [16],
[37], [56]. However, none of the existing works has analyzed
the effect of the asynchronous and parallel updates in AC; see a
comparison in Table I.

Parallel and distributed RL methods: In [32], the origi-
nal A3C method was proposed and became the workhorse in
empirical RL. Later, [4] has provided a GPU-version of A3C
which significantly decreases training time. Recently, the A3C
algorithm is further optimized in modern computers by [41],
where a large batch variant of A3C with improved efficiency is
also proposed. In [20], an importance weighted distributed AC
algorithm IMPALA has been developed to solve a collection of

problems with one single set of parameters. A gossip-based dis-
tributed AC algorithm has been proposed in [3] which achieves
performance competitive to A3C. Additionally, distributed RL
is closely related to the multi-agent RL, both of which have a
broad range of applications [24], [39], [50]. In [24], a distributed
algorithm based on Q-learning was proposed and was shown to
achieve convergence under a sparse communication network.
In [39], an asynchronous caching approach which utilized PG
to find an optimal caching policy was developed. A robust de-
centralized TD learning method was proposed in [50] to defend
against malicious agents in a multi-agent network.

Asynchronous stochastic optimization: For solving gen-
eral optimization problems, asynchronous stochastic methods
have received much attention recently. Due to the possible
speedup that can be achieved by asynchronous optimization,
it has also been extensively applied to various machine learning
areas including RL [32], [39] and distributed learning [48]. The
study of asynchronous stochastic methods can be traced back to
1980s [6]. With the batch size M , [1] analyzed asynchronous
SGD (async-SGD) for convex functions, and derived a conver-
gence rate of O(K− 1

2M− 1
2). In [38], a lock-free asynchronous

SGD was proven to converge fast under spasity. [21] extended
the analysis of [1] to smooth convex with nonsmooth regulariza-
tion and derived a similar rate. Recent studies by [29] improved
upper bound of K0. In [34], a random parallel algorithm is
proposed to solve the problems with large data set size and
feature dimension. However, all these works have focused on the
single-timescale SGD with a single variable, which cannot cap-
ture the stochastic recursion of the AC and A3C algorithms. To
best of our knowledge, non-asymptotic analysis of asynchronous
two-timescale SGD has remained unaddressed, and its speedup
analysis is an uncharted territory.

B. This Work

In this context, we revisit A3C with TD(0) for the critic
update. The goal is to provide non-asymptotic guarantee and
linear speedup justification for this popular algorithm.

Our contributions: Compared to the existing literature on
both the AC algorithms and the async-SGD, our contributions
can be summarized as follows.

c1) We revisit two-timescale A3C and establish its conver-
gence rates with both i.i.d. and Markovian sampling. We first
prove the local convergence rate for A3C in the general function
approximation case, and then prove that A3C achieves global
convergence for the softmax policy parameterization. To the best
of our knowledge, this is the first non-asymptotic convergence
result for asynchronous parallel AC algorithms, and also the
first finite time global convergence result for AC.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2581

c2) We characterize the sample complexity of A3C. In the
i.i.d. setting, A3C achieves a sample complexity of O(ε−2.5/N)
per worker, where N is the number of workers. Compared to
the best-known complexity of O(ε−2.5) for i.i.d. two-timescale
AC [23], A3C achieves linear speedup, thanks to the parallelism
and asynchrony. In the Markovian setting, if delay is bounded,
the sample complexity of A3C matches the order of the non-
parallel AC algorithm [49].

c3) We test A3C on a synthetic environment to verify our
theoretical guarantees with both i.i.d. and Markovian sampling.
We also test A3C on the classic control tasks and Atari Games.

Technical challenges: The works [27], [36], [53] analyze
the nonparallel nested-loop actor-critic where the critic loop is
nested on the actor loop. At each iteration, the critic updates till
convergence under a stationary policy. While this work focuses
on the A3C algorithm which is a parallel asynchronous single-
loop algorithm. For each worker, the actor and critic updates
simultaneously at each iteration. Thus compared to [27], [36],
[53], this work additionally deals with the policy drift problem
for critic update and the asynchrony error. Compared to the
recent analysis of nonparallel single-loop AC in [23], [49], [52],
several new challenges arise due to parallelism and asynchrony.

Markovian noise coupled with asynchrony and delay: The
analysis of two-timescale AC algorithm is non-trivial because
of the Markovian noise coupled with both the actor and critic
steps. Different from the nonparallel AC that only involves a
single Markov chain, A3C introduces multiple Markov chains
(one per worker) that mix at different speeds. This is because at
a given iteration, workers collect different number of samples
and thus their chains mix to different degrees. As we will show
later, the worker with the slowest mixing chain will determine
the convergence.

Linear speedup for SGD with two coupled sequences: Par-
allel async-SGD has been shown to achieve linear speedup re-
cently [29], [42]. Different from async-SGD, asynchronous AC
is a two-timescale stochastic semi-gradient algorithm for solving
the more challenging bilevel optimization problem (see [23]).
The errors induced by asynchrony and delay are intertwined with
both the actor and critic updates via a nested structure, which
makes the sharp analysis more challenging. Our linear speedup
analysis should be also distinguished from that of mini-batch
async-SGD [28], where the speedup is a result of variance
reduction thanks to the larger batch size generated by parallel
workers.

Global convergence of A3C under structured problems: We
establish global convergence for A3C with softmax policy pa-
rameterization and log-barrier regularization. Though the global
convergence of policy gradient was established in [31] under the
softmax policy without regularization, the result relies on the fact
that the policy iterates are uniformly bounded which is true for
the deterministic and synchronous algorithm in [31]. While in
our case, A3C is a stochastic and asynchronous algorithm and
thus we find it difficult to apply the result in [31]. Therefore,
we turn to the log-barrier regularization and prove the global
convergence result.

II. PRELIMINARIES

A. Markov Decision Process and Policy Gradient

A Markov decision process (MDP) can be described by
M = {S,A,P, R, γ}, where S is the state space, A is the
action space, P(s′|s, a) is the probability of transitioning to

s′ ∈ S from state s ∈ S and action a ∈ A, r(s, a, s′) is the
reward associated with the transition (s, a, s′), and γ ∈ [0, 1) is
a discount factor. Throughout the paper, we assume the reward r
is upper-bounded by a constant rmax. A policy π : S → ∆(A)
is defined as a mapping from the state space S to the probability
distribution over the action space A.

Considering discrete time t in an infinite horizon, a policy π
can generate a trajectory (s0, a0, s1, a1, . . .) with at ∼ π(·|st)
and st+1 ∼ P(·|st, at). Given a policy π, we define the state and
state action value functions as

Vπ(s) := E
[∞∑

t=0

γtr(st, at, st+1) | s0 = s

]
,

Qπ(s, a) := E
[∞∑

t=0

γtr(st, at, st+1) | s0 = s, a0 = a

]
(2)

where E is taken over the trajectory (s0, a0, s1, a1, . . .) gen-
erated under policy π. With the above definitions, the advan-
tage function is Aπ(s, a) := Qπ(s, a)− Vπ(s). With η denot-
ing the initial state distribution, the discounted state visita-
tion measure induced by policy π is defined as dπ(s) := (1−
γ)
∑∞

t=0 γ
tP(st = s | s0 ∼ η,π). We also overload the notation

and define the state-action visitation distribution dπ(s, a) =
(1− γ)

∑∞
t=0 γ

tP(st = s | s0 ∼ η,π)π(a|s). In the case where
π is parameterized by θ, we use dθ as shorthand notations for
dπθ .

The goal of RL is to find an optimal policy π∗ defined as π∗ ∈
argmaxπ J(π) := (1− γ)Es∼η[Vπ(s)], with the optimal return
defined as J∗ := maxπ J(π). When the state and action spaces
are large, finding the optimal policy π becomes computationally
intractable. To overcome the inherent difficulty of learning a
function, the policy gradient methods search the best performing
policy over a class of parameterized policies. We parameterize
the policy with parameter θ ∈ Rd, and solve the optimization
problem as

max
θ∈Rd

J(θ) with J(θ) := (1− γ)Es∼η[Vπθ (s)]. (3)

To maximize J(θ) with respect to θ, one can update θ using the
policy gradient [45]

∇J(θ) = Es,a∼dθ [Aπθ (s, a)ψθ(s, a)] , (4)
where ψθ(s, a) := ∇ log πθ(a|s). Since computing E in (4)
is expensive if not impossible, popular policy gradient-based
algorithms iteratively update θ using stochastic estimate of (4)
such as REINFORCE [47] and G(PO)MDP [5].

It is also a common practice to adopt regularization and
augment the objective function to

Jλ(θ) := J(θ)− λEs∼ηp [DKL(πp(·|s)|πθ(·|s))] (5)
with a regularization constant λ ≥ 0. Here ηp is a prior distri-
bution of states, πp is a prior policy. The regularization term
encourages πθ to imitate πp, incorporating prior knowledge into
training process. When πp and ηp are set as uniform distribu-
tions, the regularization term is reduced to the relative-entropy
regularization widely analyzed in the literature [2], [7], [54].
Moreover, the regularization prevents degenerate solutions that
can lead to the pitfall of certain policy parametrization [7].
Given πp and ηp, we use R(θ) as a shorthand notation of
−Es∼ηp [DKL(πp(·|s)|πθ(·|s))].

B. Actor-Critic With Value Function Approximation

Both REINFORCE and G(PO)MDP-based policy gradient
algorithms rely on a Monte-Carlo estimate of the value function

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2582 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Vπθ (s) and thus ∇J(θ) by generating a trajectory per iteration.
However, policy gradient methods based on Monte-Carlo es-
timate typically suffer from high variance and large sampling
cost. An alternative way is to recursively refine the estimate of
Vπθ (s). For a policy πθ, it is known that Vπθ (s) satisfies the
Bellman equation [44], that is

Vπθ (s) = Ea∼πθ(·|s), s′∼P(·|s,a) [r(s, a, s
′) + γVπθ (s

′)] . (6)

In practice, when the state space S is prohibitively large, one
cannot afford the computational and memory complexity of
computing Vπθ (s) and Aπθ (s, a). To overcome this curse-of-
dimensionality, a popular method is to approximate the value
function using function approximation techniques. Given the
state feature mapping φ(·) : S −→ Rd′

for some d′ > 0, we ap-
proximate the value function linearly as Vπθ (s) ≈ V̂ω(s) :=
φ(s)+ω, where ω ∈ Rd′

is the critic parameter.
Given πθ, the task of finding the best ω such that Vπθ (s) ≈

V̂ω(s) is usually addressed by TD learning [43]. Given πθ, the
task of finding the best ω such that Vπθ (s) ≈ V̂ω(s) is usually
addressed by TD learning [43]. Formally, we first define

Aθ,φ := Es∼µπθ
,s′∼Pπθ

[φ(s)(γφ(s′)− φ(s))+], (7a)

bθ,φ := Es∼µπθ
,a∼πθ [r(s, a, s

′)φ(s)]. (7b)

where Pπθ (s
′|s) :=

∑
a P(s′|s, a)πθ(a|s), and µπθ is the sta-

tionary distribution of the Markov chain with transition distri-
bution P and policy πθ. Then given a policy πθ, the exact TD
update takes the following form:

ωk+1 = ωk + β (Aθ,φωk + bθ,φ) . (8)

When analyzing TD, the following standard assumption is
often made:

Assumption 1: For all s ∈ S , the feature vector φ(s) is nor-
malized so that ‖φ(s)‖2 ≤ 1. For all eligible θ, the symmetric
part of Aθ,φ, denoted as (Aθ,φ +A+

θ,φ)/2, is negative definite
and has a largest eigenvalue upper bounded by −λ.

Assumption 1 is common in analyzing TD with linear function
approximation; see e.g., [9], [49], [50]. In fact, as shown in [9],
when redundant features are removed such that the feature
covariance matrix is full-rank, this assumption is satisfied. With
this assumption, Aθ,φ is full-rank, thus the update in (8) admits
a unique stationary point ω∗(θ) = −A−1

θ,φbθ,φ. Moreover, there
exists a constant Rω := rmax√

λ(1−γ)
3
2

such that ‖ω∗(θ)‖2 ≤ Rω.

We often use the stochastic approximation of the TD update
in (8). With kth transition defined as xk := (sk, ak, sk+1), the
corresponding TD target is

δ̂(xk,ωk) := r(sk, ak, sk+1) + γφ(sk+1)
+ωk − φ(sk)

+ωk

(9)

and the critic gradient g(xk,ωk) := δ̂(xk,ωk)∇V̂ωk(sk). We
update the parameter ω via

ωk+1 = ΠRω (ωk + βg(xk,ωk)) , (10)

where β is the critic step size, and ΠRω is a projection operator
that projects a vector to a l2 norm ball with radius Rω. The
projection step is often used to control the norm of gradient. In
AC, it prevents the actor and critic updates from going too far
in the ‘wrong’ direction; see e.g., [25], [49], [52], [57].

Using the definition that Aπθ (s, a) = Es′∼P [r(s, a, s′) +
γVπθ (s

′)]− Vπθ (s), we can also rewrite (4) as ∇J(θ) =
Es,a∼dθ,s′∼P [(r(s, a, s′) + γVπθ (s

′)− Vπθ (s))ψθ(s, a)].
Leveraging the value function approximation, we can then

approximate the regularized policy gradient as

∇̂Jλ(θ) = ∇̂J(θ) + λ∇̂R(θ) = δ̂(x,ω)ψθ(s, a)︸ ︷︷ ︸
v(x,θ,ω)

+λψθ(x
p).

(11)

where v(x, θ,ω) is an estimator of ∇J(θ), and xp := (sp ∼
ηp, ap ∼ πp(·|sp)). Then it is easy to check that ψθ(xp) is an
unbiased estimator of∇R(θ). This gives rise to the policy update

θk+1 = θk + α (v(xk, θk,ωk) + λψθ(x
p)) , (12)

where α is the stepsize for the actor update. To ensure conver-
gence when simultaneously performing critic and actor updates,
the stepsizes α and β often decay at two different rates, which
is referred to the two-timescale AC [25], [49].

III. A3C IMPLEMENTATION

To speed up the training process, AC can be implemented over
N workers in a shared memory setting without coordinating
among workers [32]. Each worker has its own simulator to
perform sampling, and then collaboratively updates the shared
policy πθ using AC updates. As there is no synchronization after
each update, the policy used by workers to generate samples may
be outdated, which introduces staleness.

Notations on samples: Subscription t in xt and xp
t indicates

the sample is generated in tth local iteration of a worker.
When Markovian sampling is used, subscription t in xt =
(st, at, st+1) also indicates that it is the tth transition of the
local Markov chain. We use k to denote the global counter (or
iteration), which increases by one whenever a worker finishes
the actor and critic updates in the shared memory. We use
subscription (k) in (s(k), a(k), s

′
(k)) and (sp(k), a

p
(k)) to indicate

the samples used in the kth update.
Algorithm flow: Specifically, we initialize θ0, ω0 in the

shared memory. Each worker will initialize the simulator with
initial state s0. Without coordination, workers will load θ, ω
in the shared memory. The worker then generates samples
with either i.i.d. or Markovian sampling method. In Markovian
sampling case, we maintain separate Markov chains for actor
and critic. For critic, we generate samples following the original
transition kernel P . While the actor’s chain can be viewed as
evolving under a transition kernel P̂ = γP + (1− γ)η. At each
iteration, we have a probability of 1− γ to reset the chain, thus
taking the initial state distribution into account. If the actor’s
chain evolves under P like critic, asymptotically the initial
distribution η is forgotten, which will introduce an asymptotic
error. Once samples are obtained, each worker locally computes
the gradients, and then updates the parameters in shared memory
asynchronously by

ωk+1 = ΠRω

(
ωk + βg(x(k),ωk−τk)

)
(13a)

θk+1=θk+α
(
v(x̂(k), θk−τk ,ωk−τk)+λψθk−τk

(xp
(k))
)

(13b)

where τk is the delay in the kth actor and critic updates. See
A3C in Algorithm 1 and Fig. 1.

Parallel sampling: The AC update (10) and (12) uses samples
generated “on-the-fly” from the target policy πθ, which brings
overhead. Compared with (10) and (12), the A3C update (13)
allows parallel sampling from N workers, which is the key to
linear speedup. We consider the case where only one worker can
update parameters in the shared memory at the same time and
the update cannot be interrupted. In practice, (13) can also be
performed in a mini-batch fashion.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2583

Fig. 1. Implementation of A3C with two workers.

Algorithm 1: A3C: Each Worker’s View.
1: Global initialize: Global counter k=0, initial θ0, ω0 in

the shared memory.
2: Worker initialize: Counter t=0. Sample s0∼η, ŝ0∼η.
3: for t = 0, 1, 2, · · · do
4: Read θ,ω in the shared memory.
5: option 1 (i.i.d. sampling):
6: xt = (st ∼ µπθt

, at ∼ πθt(·|st), s′t ∼ P(·|st, at)).
7: x̂t = (ŝt ∼ dπθt

, ât ∼ πθt(·|ŝt), ŝ′t ∼ P(·|ŝt, ât)).
8: option 2 (Markovian sampling):
9: xt = (st, at ∼ πθ(·|st), st+1 ∼ P(·|st, at)).

10: x̂t = (ŝt, ât ∼ πθ(·|ŝt), s′t+1 ∼ P(·|ŝt, ât)).
11: With probability γ: ŝt+1=s′t+1; Otherwise: ŝt+1∼η.
12: Compute g(xt,ω) = δ̂(xt,ω)∇ωV̂ω(st).
13: Compute v(x̂t, θ,ω) = δ̂(x̂t,ω)ψθ(ŝt, ât).
14: Compute ψθ(x

p
t) with xp

t = (spt ∼ ηp, a
p
t ∼ πp(·|spt)).

15: In the shared memory, perform update (13).
16: end for

Separate sampling protocols: In Algorithm 1, we maintain
separate sampling protocols for actor and critic. This is due to the
mismatch between the actor and critic sampling distribution. As
indicated by (7), the desired sampling distribution of critic isµπθ .
The policy gradient (4) requires sampling from dπθ . However,
dπθ and µπθ are in general different, and the difference is non-
diminishing. Therefore, if one uses the same samples for actor
and critic, either the actor or the critic update will have a non-
diminishing bias.

To mitigate the asymptotic bias, it is just natural to choose
different sampling protocols for actor and critic. Our theoretical
analysis justifies this choice by proving that such sampling
method gives unbiased stochastic gradients asymptotically. We
also provide experiments to demonstrate the superiority of the
separated sampling methods.

IV. CONVERGENCE ANALYSIS OF A3C

In this section, we analyze the convergence of A3C in both
i.i.d. and Markovian settings. Throughout this section, O(·)
contains constants that are independent of N and K0.

To analyze the performance of A3C, we make the following
assumptions.

Assumption 2: There exists K0 such that the delay at each
iteration is bounded by τk ≤ K0, ∀k.

Assumption 2 ensures the viability of analyzing the asyn-
chronous update; see the same assumption in e.g., [3], [29], [48].

In practice, the delay usually scales as the number of workers,
that is K0 = Θ(N).

Assumption 3: For any θ, θ′ ∈ Rd, s ∈ S and a ∈ A,
there exist constants Cψ, Lψ, Lπ such that: i) ‖ψθ(s, a)‖2 ≤
Cψ; ii) ‖ψθ(s, a)− ψθ′(s, a)‖2 ≤ Lψ‖θ − θ′‖2; iii) |πθ(a|s)−
πθ′(a|s)| ≤ Lπ‖θ − θ′‖2.

Assumption 3 is common in analyzing policy gradient-type
algorithms which has also been made by e.g., [2], [55]. This
assumption holds for many policy parameterization methods
such as tabular softmax policy [2], Gaussian policy [18] and
Boltzmann policy [26].

Assumption 4: For any θ, assume the Markov chains with
transition kernels P and P̂ are irreducible and aperiodic under
policy πθ. Then there exist constants κ > 0 and ρ ∈ (0, 1) such
that

sup
s∈S

dTV (P(st ∈ ·|s0 = s,πθ), µπθ) ≤ κρt, (14a)

and
sup
s∈S

dTV (P(ŝt ∈ ·|ŝ0 = s,πθ), dπθ) ≤ κρt. (14b)

where st is the tth state of the Markov chain with transition
kernel P , and ŝt is the tth state of the Markov chain with
transition kernel P̂ .

Assumption 4 assumes the Markov chain mixes at a geometric
rate. This assumption has also been made by other analysis on
Markovian sampling; see e.g. [9], [49]. It is worth noting that
the second part of our assumption, that is (14b), holds as long
as γ < 1.

We define the critic approximation error as

εapp := max
θ∈Rd

√
Es∼µθ |Vπθ (s)− V̂ω∗

θ
(s)|2 (15)

where µθ is the stationary distribution under πθ and P . This
error captures the quality of the critic function approximation;
see also [36], [49], [50]. When the MDP is tabular and the feature
matrix is full-rank, the value function Vπθ is in the span of the
features. In this case, we have εapp = 0.

We first give the convergence result of the critic and actor
update under i.i.d. sampling, the proof of which is presented in
Section VII.

Theorem 1 (Critic convergence): Suppose Assumptions 1–4
hold. Consider Algorithm 1 with i.i.d. sampling and V̂ω(s) =
φ(s)+ω. Select step sizeα = K− 3

5 and β = K− 2
5 . Then it holds

that

1

K

K∑

k=1

E
∥∥ωk−ω∗

θk

∥∥2
2
=O

(
K2

0

K
4
5

)
+O

(
K0

K
3
5

)
+O

(
1

K
2
5

)
.

(16)
Theorem 2 (Actor convergence): Under the same assump-

tions of Theorem 1, select step size α = K− 3
5 and β = K− 2

5 .
Then it holds that

1

K

K∑

k=1

E‖∇Jλ(θk)‖22

= O
(

1

K
2
5

)
+O

(
K2

0

K
4
5

)
+O

(
K0

K
3
5

)
+O(εapp). (17)

If K0 = Θ(N) = O(K
1
5), then it holds that

1

K

K∑

k=1

E‖∇Jλ(θk)‖22 = O
(
K− 2

5

)
+O(εapp) (18)

where O(·) contains constants independent of N and K0.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2584 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Corollary 1 (Linear speedup): To reach ε-accuracy in (18),
the required number of iterations is O(ε−2.5). Since each iter-
ation of A3C only uses one sample (one transition), the sam-
ple complexity is O(ε−2.5), which matches the state-of-the-art
sample complexity of two-timescale AC running on one worker.
Then under A3C, the average sample complexity per worker is
O(ε−2.5/N) which indicates linear speedup in (1). The negative
effect of parameter staleness introduced by parallel asynchrony
vanishes asymptotically with the step size. Vanished staleness
allows for parallel computing from workers to speedup the
training process.

Remark 1 (Comparison to async-SGD analysis): Different
from async-SGD (e.g., [29]), the optimal critic parameter ω∗

θ
is constantly drifting as θ changes at each iteration. This ne-
cessitates setting the actor update to be at a faster time scale
than the critic. In this sense, the policy is static relative to the
critic asymptotically. In actor update, the gradient v(x, θ,ω) is
biased because of inexact value function. The bias introduced by
the critic optimality gap and the function approximation error
correspond to the last two terms in (17).

A. Convergence Result With Markovian Sampling

Due to space limitation, we will directly present the conver-
gence theorem under Markovian sampling and defer the proof
to the supplementary material.

Theorem 3 (Critic convergence): Suppose Assumptions 1–
4 hold. Consider Algorithm 1 with Markovian sampling and
V̂ω(s) = φ(s)+ω. Select step size α = K− 3

5 and β = K− 2
5 .

Then it holds that

1

K

K∑

k=1

E ‖ωk − ω∗
k‖

2
2

= O
(

1

K
2
5

)
+O

(
K2

0 log
2 K

K
3
5

)
+O

(
K0 logK

K
2
5

)
.

(19)
The following theorem gives the convergence rate of actor

update in Algorithm 1.
Theorem 4 (Actor convergence): Under the same assump-

tions of Theorem 3, select step size α = K− 3
5 and β = K− 2

5 .
Then it holds that

1

K

K∑

k=1

E‖∇Jλ(θk)‖22

= O
(
K2

0 log
2 K

K
3
5

)
+O

(
K0 logK

K
2
5

)
+O (εapp) . (20)

If we further assume K0 = Θ(N) = O(K
1
5). It holds that

1

K

K∑

k=1

E‖∇Jλ(θk)‖22 = Õ
(
K0 K

− 2
5

)
+O(εapp) (21)

where Õ(·) hides constants and the logarithmic order of K.
Different from i.i.d. sampling, the stochastic gradients g(x,ω)

and v(x, θ,ω) are biased for Markovian sampling, and the bias
decreases as the chain mixes. The mixing time corresponds
to the logarithmic terms logK in (19) and (20). Because of
asynchrony, at a given iteration, workers collect different number
of samples and their chains mix to different degrees. The worker
with the slowest mixing chain will determine the rate of conver-
gence. The product ofK0 and logK in (19) and (20) appears due
to the slowest mixing chain. As the last term in (19) dominates

other terms asymptotically, the convergence rate degrades as
the number of workers increases. While the theoretical linear
speedup is difficult to establish in the Markovian setting, we
will empirically test it in Section V.

Remark 2 (Challenges compared to AC analysis): Unlike
synchronous AC, A3C introduces asynchrony and delay in
both the actor and critic updates. At each iteration k, the de-
layed parameters will introduce extra error in g(x,ωk−τk)−
g(x,ωk) and v(x, θk−τk ,ωk−τk)− v(x, θk,ωk). Furthermore, it
also causes delays in sampling since samples are drawn from
the delayed policy πθk−τk

instead of πθk . This delay will get
amplified as every state on the Markov chain is generated by
policies with different delays. At local counter t (tth transition
on local Markov chain), we compare the chain transition in
synchronous and asynchronous settings:

sync : st
θt−→ at

P−→ st+1
θt+1−−−→ at+1 · · · ;

async : st
θk−τk−−−→ at

P−→ st+1

θk+dt−τk+dt−−−−−−−−→ at+1 · · ·

where k is the global counter at which the local Markov chain
takes tth transition, τk is the delay of policy used to generate tth
local transition, dt is the number of global updates between two
local transitions. Clearly, the parameter delay makes the Markov
chain more difficult to analyze.

B. Global Convergence Under Structured Problem

A3C is a gradient ascent type algorithm, thus can only achieve
local convergence under a generally non-concave objective func-
tion Jλ(θ) w.r.t. θ. However, under some special structured
problem, A3C can be shown to achieve global convergence. In
this section, we consider the class of MDP which has finite state
space and action space. Suppose the policy is parameterized by
the softmax function:

πθ(a|s) =
exp(θs,a)∑
s,a exp(θs,a)

(22)

where θ ∈ R|S||A| and θs,a is the policy parameter corresponds
to pair (s, a). The softmax policy class cannot represent deter-
ministic policies with finite θ. To avoid driving θ to infinity, it
is crucial to penalize the deterministic policies with the regular-
ization term introduced in (5). To do so, we set the priors ηp and
πp as uniform distribution on state and action space, then the
objective function can be rewritten as

Jλ(θ) = J(θ) +
λ

|S||A|
∑

s,a

log πθ(a|s) + λ log |A|. (23)

Define the state feature matrix Φ′ := [φ(s1), φ(s2), . . . ,
φ(s|S|)]+ ∈ R|S|×d′

of which rows are features. We make the
following assumption on Φ′.

Assumption 5: For any eligible θ, there exists ωθ ∈ Rd′
such

that Φ′ωθ = Vπθ .
This assumption assumes that the value function Vπθ can be

accurately approximated by linear functions. For the assumption
to hold, it suffices to select a squared full-rank feature matrix Φ′.
It is worth noting that when this assumption does not hold, our
result in Theorem 5 holds with an extra error term, which is the
function approximation error εapp.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2585

Fig. 2. Algorithm 1 with separate chain sampling (option 2) vs shared chain sampling (setting x̂t = xt in the algorithm). The asymptotic error roughly scales
propotionally to 1− γ. With a smaller γ, the objective function J becomes more shortsighted, and thus initial state distribution (restarting the chain) plays a more
important role. If the actor shares the sample with critic, then a lack of chain restarting will introduce an unavoidable asymptotic error that grows larger as γ
becomes smaller. Separate chain sampling works thanks to the random restarting with a probability scaling with γ.

To establish global convergence, a gradient-dominance type
condition was proven in [2]:

Lemma 1: With softmax policy parameterization and uni-
form priors, if ‖∇Jλ(θ)‖2 ≤ λ

2|S||A| , then J∗ − J(θ) ≤ ελ :=
2λ
1−γ
∥∥dπ∗
η

∥∥
∞.

For an arbitrary accuracy ε, if we set λ = (1−γ)ε
2‖ dπ∗

η ‖∞
, then we

have ελ = ε. Note that in order for ‖dπ∗
η ‖∞ to be finite, we

need η(s)>0 for any s ∈ S , which can be assumed without
loss of generality. In the case where η>0 does not hold, one
can start with an exploratory initial state distribution η′>0
like in [2], and our result still holds. This lemma allows us to
establish connection between the gradient norm and optimality
gap, giving rise to the following theorem.

Theorem 5: Suppose Assumptions 1, 2 and 4–5 hold. Con-
sider Algorithm 1 with softmax policy and linear critic function
V̂ω(s) = φ(s)+ω. Select step size α = K− 3

5 , β = K− 2
5 and let

K0 = Θ(N) = O(K
1
5), then it holds

for i.i.d. sampling

J∗ − 1

K

K∑

k=1

E [J(θk)] = O
(
λ−2K− 2

5
)
+ ελ, (24a)

and for Markovian sampling

J∗ − 1

K

K∑

k=1

E [J(θk)] = Õ
(
λ−2K0 K

− 2
5
)
+ ελ. (24b)

V. NUMERICAL EXPERIMENTS

We test the impact of separate sampling and the speedup
property of A3C in both synthetically generated and Gym envi-
ronments. The tests on synthetic environment were performed
in a 16-core CPU computer, and those on Atari games were run
in a 4 GPU computer.

A. Separate Sampling Protocol

We compare the separate chain sampling method in Algo-
rithm 1 with the shared chain sampling method. The shared
chain method is simply using the same sample for both actor
and critic, i.e., setting x̂t = xt in Algorithm 1.

To clearly demonstrate the impact of sampling, we mitigate
the impact from other sources such as delay and MDP non-
ergodicity by considering a synthetic environment with 1 worker.

TABLE II
HYPER-PARAMETERS OF A3C IN THE ATARI GAMES

In this test, we use the tabular softmax policy parameterization.
The synthetic MDP has a state space |S| = 10, an discrete
action space of |A| = 4. State features each has a dimension
of 10. Elements of the transition matrix, the reward and the state
features are randomly sampled from a uniform distribution over
(0, 1).

It can be clearly observed from Fig. 2 that using the same
sample for actor and critic leads to an asymptotic error scaled
with choice of γ. The intuitive explanation is in the caption of
Fig. 2. Although when γ −→ 1, the error is small (but still exists),
we want our algorithm design to not restrict the choice of γ, and
thus adopt the separate chain sampling method.

B. Linear Speedup

Experiment settings: For the synthetic environment, we
used linear value function approximation and tabular softmax
policy [2]. For CartPole, we used a 3-layer MLP with 128
neurons and sigmoid activation function in each layer. The first
two layers are shared for both actor and critic network. For
the Atari games, we used a convolution-LSTM network. For
network details, see [17].

For the separate sampling protocol test, we have α = 0.6 and
critic step sizeβ = 0.7, along withλ = 0.3. For the speedup tests
in synthetic envrionment, we set actor step size αk = 0.05

(1+k)0.6

and critic step size βk = 0.05
(1+k)0.4 . In tests of CartPole, we run

Algorithm 1 with a minibatch of 20 samples. We update the actor
network with a step size ofαk = 0.01

(1+k)0.6 and critic network with
a step size of βk = 0.01

(1+k)0.4 . See Table II for hyper-parameters
in Atari game tests.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2586 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Fig. 3. Convergence results of A3C with i.i.d. sampling in synthetic environment.

Fig. 4. Convergence results of A3C with Markovian sampling in synthetic environment.

Fig. 5. Speedup of A3C in OpenAI gym classic control task (Carpole).

Fig. 6. Speedup of A3C in OpenAI Gym Atari game (Beamrider).

Synthetic environment: We first test the speedup property
of A3C in a synthetic environment with |S| = 100, |A| = 5 and
state feature with dimension 10. The reward and transition matrix
of the MDP are randomly generated in the same way as that in
Section V-A. We evaluate the convergence of actor in terms of the
average reward and the critic in terms of the gap ‖ωk − ω∗

θk
‖2.

Figs. 3 and 4 show the training time and sample complexity
of running A3C with i.i.d. sampling and Markovian sampling
respectively. For the speedup plots, we first record the maximum
average reward R one worker can achieve in reasonable time.
Then we obtain tn, sn which are respectively the runtime and
samples for n workers to achieve the average reward R. Finally,
we calculate the runtime-speedup and speedup for n-workers

respectively as t1/tn and Ns1/sn. All the results are average
over 10 Monte-Carlo runs. Fig. 3 shows that the sample com-
plexity of A3C stays the same with different number of workers
under i.i.d. sampling. Also, it can be observed from the speedup
plot of Fig. 3 that the A3C achieves roughly linear speedup,
which is consistent with Corollary 1. The speedup of A3C with
Markovian sampling shown in Fig. 4 is roughly linear when
number of workers is small.

OpenAI Gym environments: We also test the speedup
property of A3C with neural network parametrization in the
classic control (Carpole) and the Atari (Breakout and Pong)
environments. In Figs. 5–8, each curve was averaged over 5
Monte-Carlo runs with 95% confidence interval. Figs. 5–8 show

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2587

Fig. 7. Speedup of A3C in OpenAI Gym Atari game (Breakout).

Fig. 8. Speedup of A3C in OpenAI Gym Atari game (Pong).

the speedup of A3C under different number of workers, where
the average reward is computed by taking the running average
of test rewards. It can be observed from the figures that the
speedup is sometimes sub-linear. Our theorem suggests this
is due to the Markovian sampling error that scales with the
number of workers. If according to [38], another reason might
be related to the sparsity of the gradient. It has been observed
in [38] that linear speedup is easier to achieve with a sparse
gradient. While in our applications, the rewards are not sparse
and we use a dense neural network which may not give a
sparse gradient. Other reasons are related to hardware limits, see
e.g., [29].

VI. CONCLUSION

This paper revisits the A3C algorithm. With linear value
function approximation, the convergence of the A3C algorithm
has been established under both i.i.d. and Markovian sampling
settings. Under i.i.d. sampling, A3C achieves linear speedup
compared to the best-known sample complexity of AC, theoret-
ically justifying the benefit of parallelism and asynchrony for
the first time. Under Markov sampling, such a linear speedup
can be observed in most benchmark tasks.

One limitation of this paper is that theoretical linear speedup
cannot be established in the Markovian setting. This moti-
vates two interesting directions: i) developing new tools of
analyzing two-timescale SGD with Markov sampling; and,
ii) designing better algorithms than A3C to achieve better
speedup.

VII. PROOF

In this section, we provide the convergence analysis of A3C
under i.i.d. sampling (Theorems 1 and 2) and the global conver-
gence of A3C (Theorem 5). We defer the proof of Theorem 3
and Theorem 4 to the supplementary material.

A. Preliminary Lemmas

We first give a proposition regarding the Lλ-Lipschitz conti-
nuity of the regularized policy gradient under proper assump-
tions, which has been shown by [2], [55].

Proposition 1: Suppose Assumption 3 hold. For any θ, θ′ ∈
Rd, we have ‖∇Jλ(θ)−∇Jλ(θ′)‖2 ≤ Lλ‖θ − θ′‖2, where Lλ
is a positive constant.

We then directly give a proposition that will be useful in
the main proof, the justification of which is deferred to the
supplementary material.

Proposition 2: Suppose Assumption 1, 3 and 4 hold. For any
θ1, θ2 ∈ Rd, we have

‖ω∗
θ1 − ω∗

θ2‖2 ≤ Lω‖θ1 − θ2‖2,
where Lω := 2rmax|A|Lπ(λ−1 + λ−2(1 + γ))(1 + logρ κ

−1

+ (1− ρ)−1).

B. Proof of Theorem 1

As compared to the works in [27], [36], [53] that analyze the
nested-loop AC, this proof analyzes the asynchronous single-
loop AC and additionally deals with asynchrony error along
with the policy drift problem in the critic update.

We first define the exact TD update as:
g(x,ω) := Es∼µθ,a∼πθ,s′∼P [g(x,ω)] . (25)

The critic update in Algorithm 1 can be written as:
ωk+1 = ΠRω

(
ωk + βg(x(k),ωk−τk)

)
, (26)

where τk is the delay of the parameters used in evaluating the kth
stochastic gradient, and x(k) := (s(k), a(k), s

′
(k)) is the sample

used to evaluate the stochastic gradient at kth update.
Proof: Using ω∗

k as shorthand notation of ω∗
θk

, we start with
the optimality gap

‖ωk+1 − ω∗
k+1‖22

= ‖ΠRω

(
ωk + βg(x(k),ωk−τk)

)
− ω∗

k+1‖22
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2588 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

≤ ‖ωk + βg(x(k),ωk−τk)− ω∗
k+1‖22

= ‖ωk − ω∗
k + βg(x(k),ωk−τk) + ω∗

k − ω∗
k+1‖22

Expanding RHS of the last equality gives
‖ωk+1 − ω∗

k+1‖22

= ‖ωk − ω∗
k‖

2
2 +

∥∥ω∗
k − ω∗

k+1 + βg(x(k),ωk−τk)
∥∥2
2

+2
〈
ωk − ω∗

k,ω
∗
k − ω∗

k+1

〉
+2β

〈
ωk − ω∗

k, g(x(k),ωk−τk)
〉

= ‖ωk − ω∗
k‖

2
2+2β

〈
ωk − ω∗

k, g(x(k),ωk−τk)
〉

+2
〈
ωk − ω∗

k,ω
∗
k − ω∗

k+1

〉
+2
∥∥ω∗

k − ω∗
k+1

∥∥2
2
+2C2

δβ
2. (27)

The second term in (27) can be decomposed as〈
ωk − ω∗

k, g(x(k),ωk−τk)
〉

=〈ωk−ω∗
k, g(θk,ωk)〉+

〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉

+
〈
ωk − ω∗

k, g(x(k),ωk−τk)− g(x(k),ωk)
〉
. (28)

We first bound 〈ωk − ω∗
k, g(θk,ωk)〉 in (28) as

〈ωk − ω∗
k, g(θk,ωk)〉

= 〈ωk − ω∗
k, g(θk,ωk)− g(θk,ω

∗
k)〉

where the equality is due to g(θ,ω∗
θ) = Aθ,φω∗

θ + b = 0. By
definition of g, we can continue to write

〈ωk − ω∗
k, g(θk,ωk)〉

=
〈
ωk − ω∗

k,E
[
φ(s) (γφ(s′)− φ(s))

+]
(ωk − ω∗

k)
〉

=
〈
ωk − ω∗

k, Aπθk
(ωk − ω∗

k)
〉

≤ −λ‖ωk − ω∗
k‖22, (29)

where the last inequality follows Assumption 1.
We then bound the third term in (28) as〈
ωk − ω∗

k, g(x(k),ωk−τk)− g(x(k),ωk)
〉

=
〈
ωk−ω∗

k,
(
γφ(s′(k))−φ(s(k))

)+
(ωk−τk−ωk)φ(s(k))

〉

≤ (1 + γ)‖ωk − ω∗
k‖2‖ωk−τk − ωk‖2

≤ (1 + γ)‖ωk − ω∗
k‖2

k−1∑

i=k−τk

β‖g(xi,ωi−τi)‖2

≤ 2CδK0β‖ωk − ω∗
k‖2, (30)

where constant Cδ := rmax + (1 + γ)max{ rmax
1−γ , Rω}, then

the last inequality follows from

‖g(x,ω)‖2 ≤ |r(x) + γφ(s′)+ω − φ(s)+ω|
≤ rmax + (1 + γ)Rω ≤ Cδ (31)

and likewise, we have ‖g(x,ω)‖2 ≤ Cδ .
Substituting (30) and (29) into (28) gives〈

ωk − ω∗
k, g(x(k),ωk−τk)

〉

≤ −λ‖ωk − ω∗
k‖22 + 2CδK0β‖ωk − ω∗

k‖2

+
〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉
. (32)

Next we jointly bound the third and fourth term in (27) as
〈
ωk − ω∗

k,ω
∗
k − ω∗

k+1

〉
+
∥∥ω∗

k − ω∗
k+1

∥∥2
2

≤ ‖ωk − ω∗
k‖2

∥∥ω∗
k − ω∗

k+1

∥∥
2
+
∥∥ω∗

k − ω∗
k+1

∥∥2
2

≤ 2Lω ‖ωk − ω∗
k‖2 ‖θk − θk+1‖2 + 2L2

ω ‖θk − θk+1‖22
≤ 2LωCpα ‖ωk − ω∗

k‖2 + 2L2
ωC

2
pα

2, (33)
where constant Cp := CδCψ + λCψ . The second inequality is
due to the Lω-Lipschitz continuity of ω∗

θ shown in Proposition
2 in the supplementary, and the last inequality follows the fact
that
‖θk − θk+1‖2 = α‖v(x̂(k), θk−τk ,ωk−τk) + λψθk−τk

(xp
(k))‖2

≤ αCp. (34)
Substituting (32) and (33) into (27), and taking expectation on
both sides yield
E‖ωk+1 − ω∗

k+1‖22
≤ (1− 2λβ)E ‖ωk − ω∗

k‖
2
2

+ 2β

(
C1
α

β
+ C2K0β

)
E ‖ωk − ω∗

k‖2

+ 2βE
〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉
+Cqβ

2, (35)

where C1 := LωCp, C2 := 2Cδ and Cq := 2C2
δ + 2L2

ωC
2
p
α2

β2 .
For brevity, we use x ∼ θ to denote s ∼ µθ, a ∼ πθ and s′ ∼

P in this proof. Consider the third term in (35) conditioned on
θk,ωk, θk−τk . We bound it as

E
[〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉
|θk,ωk, θk−τk

]

=
〈
ωk − ω∗

k,Ex(k)∼θk−τk

[
g(x(k),ωk)|ωk

]
− g(θk,ωk)

〉

=
〈
ωk − ω∗

k, g(θk−τk ,ωk)− g(θk,ωk)
〉

≤ ‖ωk − ω∗
k‖2‖g(θk−τk ,ωk)− g(θk,ωk)‖2

≤ 2Rω
∥∥∥Ex∼θk−τk

[g(x,ωk)]− Ex∼θk [g(x,ωk)]
∥∥∥
2

≤ 2Rω sup
x

‖g(x,ωk)‖2
∥∥∥µθk−τk

⊗πθk−τk
−µθk⊗πθk

∥∥∥
TV

≤ 4RωCδdTV (µθk−τk
⊗ πθk−τk

, µθk ⊗ πθk), (36)
where second last inequality follows the definition of TV norm.

Define constant C3 := 2RωCδ|A|Lπ(1 + logρ κ
−1 + (1−

ρ)−1). Then by following the third item in [49, Lemma A.1],
we can write (36) as

E
[〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉
|θk,ωk, θk−τk

]

≤ 4RωCδdTV (µθk−τk
⊗ πθk−τk

⊗ P, µθk ⊗ πθk ⊗ P)

≤ C3 ‖θk−τk − θk‖2

≤ C3

k−1∑

i=k−τk

α‖g(xi,ωi−τi)‖2

≤ C3CδK0α, (37)
Taking total expectation on both sides of (37) and substituting

it into (35) yield

E‖ωk+1 − ω∗
k+1‖22 ≤ (1− 2λβ)E ‖ωk − ω∗

k‖
2
2

+ 2β

(
C1
α

β
+ C2K0β

)
E ‖ωk − ω∗

k‖2

+ 2C3CδK0βα+ Cqβ
2. (38)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2589

which along with the factα = 1

(K+1)
3
5

andβ = 1

(K+1)
2
5

implies

1

K

K∑

k=1

E ‖ωk−ω∗
k‖

2
2=O

(
K2

0

K
4
5

)
+O

(
K0

K
3
5

)
+O

(
1

K
2
5

)
.

(39)

This completes the proof. !

C. Proof of Theorem 2

As compared to the works in [27], [36], [53] that analyze the
nonparallel AC, this proof analyzes the parallel asynchronous
AC and additionally deals with asynchrony error in the actor
update and establishes the linear speedup.

We first define the ‘optimal’ TD target as:

δ(x, θ) := r(s, a, s′) + γVπθ (s
′)− Vπθ (s).

The update in Algorithm 1 can be written as:

θk+1 = θk + αδ̂(x̂(k),ωk−τk)ψθk−τk
(ŝ(k), â(k))

+ αλψθk−τk
(xp

(k)). (40)

For brevity, we useω∗
k as shorthand notation ofω∗

θk
in this proof.

We also write the delayed score function ψθk−τk
(ŝ(k), â(k)) as

ψk−τk . Then we are ready to give the convergence proof.
Proof: From Lλ-Lipschitz continuity of regularized policy

gradient shown in Proposition 1, we have:

Jλ(θk+1)− Jλ(θk)

≥ 〈∇Jλ(θk), θk+1 − θk〉 −
Lλ
2
‖θk+1 − θk‖22.

By the update rule (40), we can rewrite the first term in RHS of
the above inequality as

Jλ(θk+1)− Jλ(θk)

≥ α
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)− δ̂(x̂(k),ω

∗
k)
)
ψk−τk

〉

+ α
〈
∇Jλ(θk), δ̂(x̂(k),ω

∗
k)ψk−τk + λψθk−τk

(xp
(k))
〉

− Lλ
2
‖θk+1 − θk‖22

≥ α
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)− δ̂(x̂(k),ω

∗
k)
)
ψk−τk

〉

+ α
〈
∇Jλ(θk), δ̂(x̂(k),ω

∗
k)ψk−τk + λψθk−τk

(xp
(k))
〉

− Lλ
2
C2

pα
2,

where the last inequality follows the definition of Cp in (34).
Taking expectation on both sides of the last inequality yields

E[Jλ(θk+1)]− E[Jλ(θk)]

≥ αE
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)−δ̂(x̂(k),ω

∗
k)
)
ψk−τk

〉

I1

+ αE
〈
∇Jλ(θk), δ̂(x̂(k),ω

∗
k)ψk−τk + λ∇R(θk−τk)

〉

I2

− Lλ
2
C2

pα
2. (41)

where we used the fact that E[ψθk−τk
(xp

(k))|θk−τK] =

∇R(θk−τk).

We first decompose I1 as

E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)− δ̂(x̂(k),ω

∗
k)
)
ψk−τk

〉

= E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)− δ̂(x̂(k),ωk)

)
ψk−τk

〉

I(1)
1

+ E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk)− δ̂(x̂(k),ω

∗
k)
)
ψk−τk

〉

I(2)
1

. (42)

We bound I(1)1 as

I(1)1 = E
〈
∇Jλ(θk),

(
γφ(ŝ′(k))− φ(ŝ(k))

)+

(ωk−τk − ωk)ψk−τk
〉

≥ −2CψE [‖∇Jλ(θk)‖2‖ωk − ωk−τk‖2]
≥ −2CψCδK0βE‖∇Jλ(θk)‖2. (43)

The last inequality follows

‖ωk − ωk−τk‖2 =

∥∥∥∥∥

k−1∑

i=k−τk

(ωi+1 − ωi)

∥∥∥∥∥
2

≤
k−1∑

i=k−τk

‖βg(xi,ωi−τi)‖2

≤ βK0Cδ, (44)
where the last inequality is due to (31).

Similarly, we can bound I(2)1 as

I(2)1 ≥ −(1 + γ)CψE [‖∇Jλ(θk)‖2‖ωk − ω∗
k‖2] . (45)

Collecting lower bounds of I(1)1 and I(2)1 gives
I1 ≥ −2CψE [‖∇Jλ(θk)‖2 (CδK0β + ‖ωk − ω∗

k‖2)]

≥ −1

2
E‖∇Jλ(θk)‖22 − 2C2

ψE
[
(CδK0β + ‖ωk − ω∗

k‖2)2
]

≥ −1

2
E‖∇Jλ(θk)‖22 − 4C2

ψC
2
δK

2
0β

2 − 4C2
ψE‖ωk − ω∗

k‖22,
(46)

where the the second and third inequality follow Young’s
inequality.

Now we consider I2. We first decompose I2 as

E
〈
∇Jλ(θk), δ̂(x̂(k),ω

∗
k)ψk−τk + λ∇R(θk−τk)

〉

= E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ω

∗
k)− δ̂(x̂(k),ω

∗
k−τk)

)
ψk−τk

〉

I(1)
2

+ E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ω

∗
k−τk)− δ(x̂(k), θk−τk)

)
ψk−τk

〉

I(2)
2

+E
〈
∇Jλ(θk), δ(x̂(k), θk−τk)ψk−τk+λ∇R(θk−τk)−∇Jλ(θk)

〉

I(3)
2

+‖∇Jλ(θk)‖22. (47)

By the definition of δ̂ in (9), we can write I(1)2 as

I(1)2 = E
〈
∇Jλ(θk),

(
γφ(ŝ′(k))− φ(ŝ(k))

)+

×
(
ω∗
k − ω∗

k−τk
)
ψk−τk

〉

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2590 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

≥ − LV Cψ(1 + γ)E
∥∥ω∗

k − ω∗
k−τk

∥∥
2

≥ − LV LωCψ(1 + γ)E‖θk − θk−τk‖2
≥ − LV LωCψCp(1 + γ)K0α, (48)

where LV := rmax
1−γ Cψ + λCψ is the trivial upper bound of

‖∇Jλ(θ)‖2 and ‖∇J(θ)‖2. The second last inequality follows
from Proposition 2 and the last inequality uses (34) as

‖θk − θk−τk‖2 ≤
k−1∑

i=k−τk

‖θi+1 − θi‖2

=
k−1∑

i=k−τk

α‖δ̂(x̂i,ωi−τi)ψθi−τi
(ŝi, âi)‖2

≤
k−1∑

i=k−τk

αCp ≤ CpK0α. (49)

We bound I(2)2 as

I(2)2 =E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ω

∗
k−τk)−δ(x̂(k), θk−τk)

)
ψk−τk

〉

≥ − LV CψE
∣∣δ̂(x̂(k),ω

∗
k−τk)− δ(x̂(k), θk−τk)

∣∣

≥ − LV Cψ
(
γE
∣∣φ(ŝ′(k))+ω∗

k−τk − Vπθk−τk
(ŝ′(k))

∣∣

+ E
∣∣Vπθk−τk

(ŝ(k))− φ(ŝ(k))
+ω∗

k−τk
∣∣)

≥ − LV Cψ

(
γ

√
E
∣∣∣φ(ŝ′(k))+ω∗

k−τk − Vπθk−τk
(ŝ′(k))

∣∣∣
2

+

√
E
∣∣∣Vπθk−τk

(ŝ(k))− φ(ŝ(k))+ω∗
k−τk

∣∣∣
2
)

≥ − LV Cψ(1 + γ)εapp. (50)
Using the fact that

E
[
δ(x̂(k), θk−τk)ψk−τk

∣∣ θk−τk , θk
]

= E dθk−τk

[
Aπθk−τk

(ŝ(k), â(k))ψk−τk
∣∣θk−τk , θk

]

= ∇J(θk−τk), (51)
then we can write

I(3)2 =
〈
∇Jλ(θk),∇Jλ(θk−τk)−∇Jλ(θk)

〉

≥ −‖∇Jλ(θk)‖2‖∇Jλ(θk−τk)−∇Jλ(θk)‖2
≥ −LV Lλ‖θk−τk − θk‖2 ≥ −LV LλCpK0α, (52)

where the second last inequality is due to Lλ-Lipschitz conti-
nuity of policy gradient shown in Proposition 1, and the last
inequality follows (49).

Collecting lower bounds of I(1)2 , I(2)2 and I(3)2 gives
I2 ≥ −D1K0α− LV Cψ(1 + γ)εapp, (53)

where constant D1 := LV LωCψCp(1 + γ) + LV LλCp.
Substituting (46) and (53) into (41) yields
E[Jλ(θk+1)]− E[Jλ(θk)]

≥ α

2
E‖∇Jλ(θk)‖22 − 4C2

ψαE‖ωk − ω∗
k‖22 − 4C2

ψC
2
δK

2
0αβ

2

−2LV Cψεappα−
(
D1K0 +

Lλ
2
C2

p

)
α2. (54)

After telescoping, we have
K∑

k=1

1

2
E‖∇Jλ(θk)‖22 ≤ 1

α
(J∗−Jλ(θK0))

+4C2
ψ

K∑

k=1

E‖ωk − ω∗
k‖22+4KC2

ψC
2
δK

2
0β

2

+ 2KLV Cψεapp +K

(
D1K0 +

Lλ
2
C2

p

)
α. (55)

Select α = K− 3
5 and β = K− 2

5 , we have

1

K

K∑

k=1

E‖∇Jλ(θk)‖22=O
(

1

K
2
5

)
+O

(
1

K

K∑

k=1

E‖ωk−ω∗
k‖22

)

+O
(
K2

0

K
4
5

)
+O

(
K0

K
3
5

)
+O(εapp).

(56)
This completes the proof. !

D. Proof of Theorem 5

Proof: We define an event Ek as ‖∇Jλ(θk)‖ ≤ λ
2|S||A| and its

complementEc
k as ‖∇Jλ(θk)‖ > λ

2|S||A| . We use1Ek to indicate
whether the event happens or not, i.e. 1Ek = 1 if Ek happens
and 1Ek = 0 if Ec

k happens. Then we have
K∑

k=1

E [J∗ − J(θk)]

=
K∑

k=1

E [(J∗ − J(θk))1Ek] +
K∑

k=1

E
[
(J∗ − J(θk))1Ec

k

]

≤ 2λ

1− γ

∥∥∥
dπ∗

η

∥∥∥
∞

K∑

k=1

E [1Ek] +
K∑

k=1

E
[
(J∗ − J(θk))1Ec

k

]

≤ 2λ

1− γ

∥∥∥
dπ∗

η

∥∥∥
∞

K∑

k=1

E [1Ek] + J∗
K∑

k=1

E
[
1Ec

k

]

≤ 2λ

1− γ

∥∥∥
dπ∗

η

∥∥∥
∞
K + J∗

K∑

k=1

E
[
1Ec

k

]
, (57)

where the first inequality follows from Lemma 1.
Now it suffices to bound

∑K
k=1 E[1Ec

k
].

K∑

k=1

E‖∇Jλ(θk)‖2 ≥
K∑

k=1

E
[
‖∇Jλ(θk)‖21Ec

k

]

≥
K∑

k=1

λ2

4|S|2|A|2E
[
1Ec

k

]
(58)

Substituting the above inequality into (57) and dividing both
sides by K give

1

K

K∑

k=1

E [J∗ − J(θk)]

≤ 2λ

1− γ

∥∥∥
dπ∗

η

∥∥∥
∞
+

4|S|2|A|2

λ2
1

K

K∑

k=1

E‖∇Jλ(θk)‖2. (59)

It is known that the softmax policy satisfies Assumption 3, thus
we immediately know that Theorems 2 and 4 hold. Furthermore,

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2591

by assumption 5, we haveφ(s)+ω∗
θ = Vπθ (s) and thus εapp = 0.

Applying Theorem 2 and 4 to (59) completes the proof. !

APPENDIX A
PRELIMINARY LEMMAS

A. Geometric Mixing

The operation p⊗ q denotes the product between two distri-
butions p(x) and q(y), i.e. (p⊗ q)(x, y) = p(x) · q(y).

Lemma 2: Suppose Assumption 4 holds. For any θ ∈ Rd, we
have

sup
s0∈S

dTV (P((st, at, st+1) ∈ ·|s0,πθ), µθ ⊗ πθ ⊗ P) ≤ κρt.

(60a)

and

sup
s0∈S

dTV

(
P((ŝt, ât, s′t+1) ∈ ·|s0,πθ), dθ ⊗ πθ ⊗ P

)
≤ κρt.

(60b)

where (st, at, st+1) is the tth transition on the Makov chain with
transition kernelP . (ŝt, ât) is the tth state-action pair on Markov
chain with transition kernel P̂ , and s′t+1 ∼ P(·|ŝt, ât).

Proof: We start with

sup
s0∈S

dTV (P((st, at, st+1) = ·|s0,πθ), µθ ⊗ πθ ⊗ P)

= sup
s0∈S

dTV (P(st = ·|s0,πθ)⊗ πθ ⊗ P, µθ ⊗ πθ ⊗ P)

= sup
s0∈S

1

2

∫

s∈S

∑

a∈A

∫

s′∈S

∣∣P(st = ds|s0,πθ)πθ(a|s)P(ds′|s, a)

− µθ(ds)πθ(a|s)P(ds′|s, a)
∣∣

= sup
s0∈S

dTV (P(st ∈ ·|s0,πθ), µθ)

≤ κρt, (61)

Inequality (60a) along with the fact that the stationary distribu-
tion of the Markov chain with transition probability P̂ and policy
πθ is simply dθ immediately implies (60b). This completes the
proof. !

For the use in the later proof, given K > 0, we first define
mK as:

mK := min
{
m ∈ N+|κρm−1 ≤ min{α,β}

}
, (62)

where κ and ρ are constants defined in (4). mK is the minimum
number of samples needed for the Markov chain to approach the
stationary distribution so that the bias incurred by the Markovian
sampling is small enough.

B. Lipschitz Continuity of Critic

We provide a justification for Lipschitz continuity of ω∗
θ in

the following proposition.
Proposition 3 (Restatement of Proposition 2): Suppose As-

sumption 1, 3 and 4 hold. For any θ1, θ2 ∈ Rd, we have

‖ω∗
θ1 − ω∗

θ2‖2 ≤ Lω‖θ1 − θ2‖2,

where Lω := 2rmax|A|Lπ(λ−1 + λ−2(1 + γ))(1 + logρ κ
−1

+ (1− ρ)−1).
Proof: We use A1, A2, b1 and b2 as shorthand notations of

Aπθ1
, Aπθ2

, bπθ1
and bπθ2

respectively. By Assumption 1, Aθ,φ
is invertible for any θ ∈ Rd, so we can write ω∗

θ = −A−1
θ,φbθ,φ.

Then we have

‖ω∗
1 − ω∗

2‖2

= ‖ −A−1
1 b1 +A−1

2 b2‖2

= ‖ −A−1
1 b1 −A−1

1 b2 +A−1
1 b2 +A−1

2 b2‖2

= ‖ −A−1
1 (b1 − b2)− (A−1

1 −A−1
2)b2‖2

≤ ‖A−1
1 (b1 − b2)‖2 + ‖(A−1

1 −A−1
2)b2‖2

≤ ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 −A−1
2 ‖2‖b2‖2

= ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 (A2 −A1)A
−1
2 ‖2‖b2‖2

≤ ‖A−1
1 ‖2‖b1 − b2‖2 + ‖A−1

1 ‖2‖A−1
2 ‖2‖b2‖2‖(A2 −A1)‖2

≤ λ−1 ‖b1 − b2‖2 + λ−2rmax ‖A1 −A2‖2 , (63)

where the last inequality follows Assumption 1, and the fact that

‖b2‖2 = ‖E[r(s, a, s′)φ(s)]‖2 ≤ E ‖r(s, a, s′)φ(s)‖2
≤ E [|r(s, a, s′)|‖φ(s)‖2] ≤ rmax.

Denote (s1, a1, s′1) and (s2, a2, s′2) as samples drawn with θ1
and θ2 respectively, i.e. s1 ∼ µθ1 , a1 ∼ πθ1 , s′1 ∼ P and s2 ∼
µθ2 , a2 ∼ πθ2 , s′2 ∼ P . Then we have

‖b1 − b2‖2
=
∥∥E
[
r(s1, a1, s′1)φ(s1)

]
− E

[
r(s2, a2, s′2)φ(s2)

]∥∥
2

≤ rmax‖P((s1, a1, s′1) ∈ ·)− P((s2, a2, s′2) ∈ ·)‖TV

= 2rmaxdTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P)

≤ 2rmax|A|Lπ(1 + logρ κ
−1 + (1− ρ)−1)‖θ1 − θ2‖2,

(64)
where the first inequality follows the definition of total variation
(TV) norm, and the last inequality follows Lemma A.1. in [49].
Similarly we have:

‖A1 −A2‖2
≤ 2(1 + γ)dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

=(1 + γ)|A|Lπ(1 + logρ κ
−1+(1− ρ)−1)‖θ1 − θ2‖2.

(65)

Substituting (64) and (65) into (63) completes the proof. !

APPENDIX B
PROOF OF RESULTS UNDER MARKOV SAMPLING

In this section, we prove the convergence of A3C under
Markovian sampling. As compared to previous work on non-
parallel AC [27], [36], [49], [53], the proof for Thoerem 3 and
Theorem 4 additionally deal with the asynchrony error coupled
with Markovian noise. As compared to the nested-loop AC
analysis [27], [36], [53], this proof also addionally deals with
the policy drift problem in critic update.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2592 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

A. Proof of Theorem 3

Given the definition in Section VII-B, we now give the conver-
gence proof of critic update in Algorithm 1 with linear function
approximation and Markovian sampling.

The following Lemma will be used in the proof of Theorem 3.
Due to space limitation, we directly present the result and defer
the proof to the supplementary material of the online version of
this paper [40].

Lemma 3: For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1,
we have

E
〈
ωk − ω∗

θk , g(x(k),ωk)− g(θk,ωk)
〉

≤ C4E‖θk − θk−dm‖2 + C5

dm∑

i=τk

E‖θk−i − θk−dm‖2

+ C6E‖ωk − ωk−dm‖2 + C7κρ
m−1,

where constant dm ≤ (K0 + 1)m+K0, and C4 := 2CδLω
+4RωCδ|A|Lπ (1 + logρ κ

−1 +(1− ρ)−1), C5 :=
4RωCδ|A|Lπ and C6 := 4(1 + γ) Rω + 2Cδ , C7 := 8RωCδ .

Now we start to prove Theorem 3.
Proof: By following the derivation of (35), we have

E‖ωk+1 − ω∗
k+1‖22 ≤(1− 2λβ)E ‖ωk−ω∗

k‖
2
2

+2β

(
C1
α

β
+C2K0β

)
E ‖ωk − ω∗

k‖2

+ 2βE
〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉
+ Cqβ

2, (66)

where C1 := CpLω , C2 := Cδ(1 + γ) and Cq := 2C2
δ +

2L2
ωC

2
p max(k)

α2

β2 .
Now we consider the third item in the last inequality.

For some m ∈ N+, we define M := (K0 + 1)m+K0. Fol-
lowing Lemma 3, for some dm ≤ M and positive constants
C4, C5, C6, C7, we have

E
〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉

≤ C4E‖θk − θk−dm‖2 + C5

dm∑

i=τk

E‖θk−i − θk−dm‖2

+ C6E‖ωk − ωk−dm‖2 + C7κρ
m−1

≤ C4

k−1∑

i=k−dm

E‖θi+1 − θi‖2+C5

dm−1∑

i=τk

k−i−1∑

j=k−dm

E‖θj+1−θj‖2

+ C6

k−1∑

i=k−dm

E‖ωi+1 − ωi‖2 + C7κρ
m−1

≤ C4dmCpα+ C5(dm − τk)
2Cpα+ C6dmCδβ + C7κρ

m−1

≤
(
C4 M + C5 M

2
)
Cpα+ C6 MCδβ + C7κρ

m−1, (67)

where the last inequality is due to τk ≥ 0 and dm ≤ M .
Further letting m = mK which is defined in (62) yields

E
〈
ωk − ω∗

k, g(x(k),ωk)− g(θk,ωk)
〉

=
(
C4MK + C5M

2
K

)
Cpα+ C6CδMKβ + C7κρ

mK−1

≤
(
C4MK + C5M

2
K

)
Cpα+ C6CδMKβ + C7α, (68)

where MK = (K0 + 1)mK +K0, and the last inequality fol-
lows the from mK = O(logK).

Substituting (68) into (66) gives

E‖ωk+1 − ω∗
k+1‖22 (69)

≤(1− 2λβ)E ‖ωk − ω∗
k‖

2
2

+ 2β

(
C1
α

β
+ C2K0β

)
E ‖ωk − ω∗

k‖2

+2β
((
C4MK+C5M

2
K

)
Cpα+C6CδMKβ+C7α

)
+Cqβ

2.
(70)

Select α = K− 3
5 and β = K− 2

5 . After telescoping, we have

1

K

K∑

k=1

E ‖ωk − ω∗
k‖

2
2

= O
(

1

K
2
5

)
+O

(
K2

0 log
2 K

K
3
5

)
+O

(
K0 logK

K
2
5

)
.

This completes the proof. !

B. Proof of Theorem 4

Given the definition in Section VII-C, we now give the con-
vergence proof of actor update in Algorithm 1 with linear value
function approximation and Markovian sampling method.

The following lemmas will be used in the proof of Theorem
4. Due to space limitation, we directly present the results and
defer the proof to the supplementary material of [40].

Lemma 4: For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1,
we have

E
〈
∇Jλ(θk),

(
δ̂(x̂(k),ω

∗
k)− δ(x̂(k), θk)

)
ψθk−τk

(ŝ(k), â(k))
〉

≥ −D2E‖θk−τk − θk−dm‖2 −D3E‖θk − θk−dm‖2

−D4

dm∑

i=τk

E‖θk−i− θk−dm‖2−D5κρ
m−1−LV Cψ(1+γ)εapp,

where D2 := 2LV LψCδ , D3 := (2CδCψLλ + LV Cψ(Lω +
LV)(1 + γ)), D4 := 2LV CψCδ|A|Lπ and D5 := 4LV CψCδ .

Lemma 5: For any m ≥ 1 and k ≥ (K0 + 1)m+K0 + 1,
we have

E
〈
∇Jλ(θk), δ(x̂(k), θk)ψθk−τk

(ŝ(k), â(k))−∇J(θk)
〉

≥−D6E‖θk−τk−θk−dm‖2−D7E‖θk−θk−dm‖2

−D8

dm∑

i=τk

E‖θk−i − θk−dm‖2−D9κρ
m−1,

where dm ≤ (K0 + 1)m+K0, D6 := LV CδLψ , D7 :=
CpLλ + (1 + γ)L2

V Cψ + 2LV Lλ, D8 := LV Cp|A|Lπ and
D9 := 2LV Cp.

Now we start to prove Theorem 4.
Proof: By following the derivation of (41), we have

E[Jλ(θk+1)− Jλ(θk)] ≥

αE
〈
∇Jλ(θk),

(
δ̂(x̂(k),ωk−τk)−δ̂(x̂(k),ω

∗
k)
)
ψθk−τk

(ŝ(k), â(k))
〉

I1

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: TOWARDS UNDERSTANDING ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC: CONVERGENCE AND LINEAR SPEEDUP 2593

+αE
〈
∇Jλ(θk),δ̂(x̂(k),ω

∗
k)ψθk−τk

(ŝ(k), â(k))+λ∇R(θk−τk)
〉

I2

− Lλ
2
C2

pα
2. (71)

The item I1 can be bounded by following (46) as

I1 ≥ −1

2
E‖∇Jλ(θk)‖22 − 4C2

ψC
2
δK

2
0β

2 − 4C2
ψE‖ωk − ω∗

k‖22.
(72)

Next we consider I2. We first decompose it as

I2

=E
〈
∇Jλ(θk), δ̂(x(k),ω

∗
k)ψθk−τk

(s(k), a(k))+λ∇R(θk−τk)
〉

=E
〈
∇Jλ(θk),

(
δ̂(x(k),ω

∗
k)−δ(x(k), θk)

)
ψθk−τk

(s(k), a(k))
〉

I(1)
2

+ E
〈
∇Jλ(θk), δ(x(k), θk)ψθk−τk

(s(k), a(k))−∇J(θk)
〉

I(2)
2

+ E 〈∇Jλ(θk),λ∇R(θk−τk)− λ∇R(θk)〉
I(3)
2

+ E‖∇Jλ(θk)‖22. (73)

For some m ∈ N+, define M := (K0 + 1)m+K0. Follow-
ing Lemma 4, for some dm ≤ M and positive constants
D2, D3, D4, D5, I(1)2 can be bounded as

I(1)2

=E
〈
∇Jλ(θk),

(
δ̂(x(k),ω

∗
k)−δ(x(k), θk)

)
ψθk−τk

(s(k), a(k))
〉

≥ −D2E‖θk−τk − θk−dm‖2 −D3E‖θk − θk−dm‖2

−D4

k−τk∑

i=k−dm

E‖θi − θk−dm‖2 −D5κρ
m−1

− LV Cψ(1 + γ)εapp

≥ −D2(dm − τk)Cpα−D3dmCpα−D4(dm − τk)
2Cpα

−D5κρ
m−1 − (1 + γ)LV Cψεapp, (74)

where the derivation of the last inequality is similar to that of
(67). By setting m = mK in (74), and following the fact that
dmK ≤ MK and τk ≥ 0, we have

I(1)2 ≥ −D2MKCpα−D3MKCpα−D4M
2
KCpα

−D5κρ
mK−1 − (1 + γ)LV Cψεapp

= −
(
(D2 +D3)CpMK +D4CpM

2
K

)
α

−D5κρ
mK−1 − (1 + γ)LV Cψεapp

≥ −
(
(D2 +D3)CpMK +D4CpM

2
K

)
α

−D5α− (1 + γ)LV Cψεapp, (75)

where the last inequality is due to the definition of mK .
Following Lemma 5, for some positive constants D6, D7 and

D8, we bound I(2)2 as

I(2)2 = E
〈
∇Jλ(θk), δ(x(k), θk)ψθk−τk

(s(k), a(k))−∇J(θk)
〉

≥ −D6E‖θk−τk−θk−dm‖2−D7E‖θk−θk−dm‖2

−D8

dm∑

i=τk

E‖θk−i−θk−dm‖2−D9κρ
m−1.

Similar to the derivation of (75), we have

I(2)2 ≥−
(
D6CpMK+D7CpMK+D8CpM

2
K

)
α−D9α.

(76)

Term I(3)2 can be bounded as

I(3)2 ≥ −λLV ‖∇R(θk)−∇R(θk−τk)‖2
≥ −λLV Lψ‖θk − θk−τk‖2
≥ −λLV LψK0Cpα. (77)

Collecting the lower bounds of I(1)2 , I(2)2 and I(3)2 yields

I2 ≥ −DKα− (1 + γ)LV Cψεapp + E‖∇Jλ(θk)‖22, (78)

where we define DK := Cp(D4 +D8)M2
K + Cp(D2 +D3 +

D6 +D7)MK + λLV LψK0Cp +D5 +D9 for brevity.
Substituting 72 and 78 into (71) yields

E[Jλ(θk+1)− Jλ(θk)]

≥ α

2
E‖∇Jλ(θk)‖22 − 4C2

ψαE‖ωk − ω∗
k‖22 − 4C2

ψC
2
δK

2
0αβ

2

−2LV Cψεappα−DKα
2. (79)

Choose step sizeα = K− 3
5 , β = K− 2

5 . WithDK = O(M2
K) =

O(K2
0 log

2 K), the last inequality implies

1

K

K∑

k=1

E‖∇Jλ(θk)‖22 (80)

=O
(

1

K

K∑

k=1

E‖ωk−ω∗
k‖22

)
+O

(
K2

0 log
2 K

K
3
5

)
+O (εapp) .

(81)
This completes the proof. !

REFERENCES

[1] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,”
in Proc. 24th Int. Conf. Neural Inf. Process. Syst., 2011, pp. 873–881.

[2] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality
and approximation with policy gradient methods in Markov decision
processes,” in Proc. 30th Conf. Learn. Theory, 2020, pp. 64–66.

[3] M. Assran, J. Romoff, N. Ballas, J. Pineau, and M. Rabbat, “Gossip-based
actor-learner architectures for deep reinforcement learning,” in Proc. 33rd
Int. Conf. Neural Inf. Process. Syst., 2019, pp. 13320–13330.

[4] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Reinforce-
ment learning through asynchronous advantage actor-critic on a GPU,” in
Proc. Int. Conf. Learn. Representations, 2017, pp. 1–12.

[5] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Artif. Intell. Res., vol. 15, pp. 319–350, 2001.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall, 1989.

[7] J. Bhandari and D. Russo, “Global optimality guarantees for policy gradi-
ent methods,” 2022, arXiv:1906.01786.

[8] J. Bhandari and D. Russo, “On the linear convergence of policy gradient
methods for finite MDPs,” in Proc. 24th Int. Conf. Artif. Intell. Statist.,
2021, pp. 2386–2394.

[9] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal
difference learning with linear function approximation,” in Proc. Conf.
Learn. Theory, 2018, pp. 1691–1692.

[10] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor
critic algorithms,” Automatica, vol. 45, pp. 2471–2482, 2009.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

2594 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

[11] V. Borkar and V. Konda, “The actor-critic algorithm as multi-time-scale
stochastic approximation,” Sadhana, vol. 22, no. 4, pp. 525–543, 1997.

[12] J. Cervino, J. A. Bazerque, M. Calvo-Fullana, and A. Ribeiro, “Multi-
task reinforcement learning in reproducing kernel hilbert spaces via cross-
learning,” IEEE Trans. Signal Process., vol. 69, pp. 5947–5962, 2021.

[13] S. Chai and V. K. N. Lau, “Joint rate and power optimization for multimedia
streaming in wireless fading channels via parametric policy gradient,”
IEEE Trans. Signal Process., vol. 67, no. 17, pp. 4570–4581, Sep. 2019.

[14] S. Chai and V. K. N. Lau, “Online trajectory and radio resource optimiza-
tion of cache-enabled UAV wireless networks with content and energy
recharging,” IEEE Trans. Signal Process., vol. 68, pp. 1286–1299, 2020.

[15] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar, “Communication-
efficient distributed reinforcement learning,” 2021, arXiv:1812.03239.

[16] F. Christianos, L. Schäfer, and S. Albrecht, “Shared experience actor-critic
for multi-agent reinforcement learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 10707–10717.

[17] Dgriff, “Pytorch implementation of a3c,” 2018. [Online]. Available: https:
//github.com/dgriff777/rl_a3c_pytorch

[18] K. Doya, “Reinforcement learning in continuous time and space,” Neural
Comput., vol. 12, no. 1, pp. 219–245, 2000.

[19] Y. El-Laham and M. F. Bugallo, “Policy gradient importance sampling for
Bayesian inference,” IEEE Trans. Signal Process., vol. 69, pp. 4245–4256,
2021.

[20] L. Espeholtet al., “Impala: Scalable distributed deep-RL with importance
weighted actor-learner architectures,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1407–1416.

[21] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “An asynchronous
mini-batch algorithm for regularized stochastic optimization,” IEEE Trans.
Autom. Control, vol. 61, no. 12, pp. 740–3754, Dec. 2016.

[22] Z. Fu, Z. Yang, and Z. Wang, “Single-timescale actor-critic provably finds
globally optimal policy,” 2020, arXiv:2008.00483.

[23] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-
critic,” 2022, arXiv:2007.05170.

[24] S. Kar, J. Moura, and V. Poor, “QD-learning: A collaborative distributed
strategy for multi-agent reinforcement learning through consensus inno-
vations,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1848–1862,
Apr. 2013.

[25] V. Konda, “Actor-critic algorithms,” Ph.D. dissertation, Dept. Elect. Eng.
Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2002.

[26] V. Konda and V. Borkar, “Actor-critic–type learning algorithms for
Markov decision processes,” SIAM J. Control Optim., vol. 38, no. 1, 2019
pp. 94–123, 1999.

[27] H. Kumar, A. Koppel, and A. Ribeiro, “On the sample complexity of actor-
critic method for reinforcement learning with function approximation,”
2023, arXiv:1910.08412.

[28] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst., 2017, pp. 5336–5346.

[29] X. Lian, H. Zhang, C. Hsieh, Y. Yijun Huang, and J. Liu, “A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization
from zeroth-order to first-order,” in Proc. 30th Int. Conf. Neural Inf.
Process. Syst., 2016, pp. 3062–3070.

[30] T. P. Lillicrapet al., “Continuous control with deep reinforcement learning,”
in Proc. Int. Conf. Learn. Representations, 2016.

[31] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, “On the global
convergence rates of softmax policy gradient methods,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 6820–6829.

[32] V. Mnihet al., “Asynchronous methods for deep reinforcement learning.,”
in Proc. Int. Conf. Mach. Learn., 2016.

[33] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–533, 2015.

[34] A. Mokhtari, A. Koppel, M. Takáč, and A. Ribeiro, “A class of parallel
doubly stochastic algorithms for large-scale learning,” J. Mach. Learn.
Res., vol. 21, no. 1, pp. 4718–4768, 2020.

[35] A. Nair et al., “Massively parallel methods for deep reinforcement learn-
ing,” 2015, arXiv:1507.04296.

[36] S. Qiu, Z. Yang, J. Ye, and Z. Wang, “On the finite-time convergence of
actor-critic algorithm,” in Proc. IEEE Optim. Found. Reinforcement Learn.
Workshop Adv. Neural Inf. Process. Syst., 2019.

[37] G. Qu, Y. Lin, A. Wierman, and N. Li, “Scalable multi-agent reinforcement
learning for networked systems with average reward,” in Proc. 34th Int.
Conf. Neural Inf. Process. Syst., 2020, pp. 2074–2086.

[38] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent,” in Proc. 24th Int. Conf. Neural
Inf. Process. Syst., 2011, pp. 693–701.

[39] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable
caching for 5G using reinforcement learning of space-time popularities,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 180–190, Feb. 2018.

[40] H. Shen, K. Zhang, M. Hong, and T. Chen, “Asynchronous advan-
tage actor critic: Non-asymptotic analysis and linear speedup,” 2022,
arXiv:2012.15511.

[41] A. Stooke and P. Abbeel, “Accelerated methods for deep reinforcement
learning,” 2019, arXiv:1803.02811.

[42] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate descent under
more realistic assumptions,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 6183–6191.

[43] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Mach. Learn., vol. 3, pp. 9–44, 1988.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[45] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation.,” in
Proc. 12th Int. Conf. Neural Inf. Process. Syst., 1999, pp. 1057–1063.

[46] L. Wang, Q. Cai, Z. Yang, and Z. Wang, “Neural policy gradient methods:
Global optimality and rates of convergence,” 2019, arXiv:1909.01150.

[47] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3/4,
pp. 229–256, 1992.

[48] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. Sayed, “Decentralized consen-
sus optimization with asynchrony and delays,” IEEE Trans. Signal Inf.
Process. Netw., vol. 4, no. 2, pp. 293–307, Jun. 2018.

[49] Y. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite time analysis of two time-scale
actor critic methods,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst.,
2020, pp. 17617–17628.

[50] Z. Wu, H. Shen, T. Chen, and Q. Ling, “Byzantine-resilient decentralized
policy evaluation with linear function approximation,” IEEE Trans. Signal
Process., vol. 69, pp. 3839–3853, 2021.

[51] T. Xu, Z. Wang, and Y. Liang, “Improving sample complexity bounds
for (natural) actor-critic algorithms,” in Proc. 34th Int. Conf. Neural Inf.
Process. Syst., 2020, pp. 4358–4369.

[52] T. Xu, Z. Wang, and Y. Liang, “Non-asymptotic convergence analysis of
two time-scale (natural) actor-critic algorithms,” 2020, arXiv:2005.03557.

[53] Z. Yang, K. Zhang, M. Hong, and T. Başar, “A finite sample analysis
of the actor-critic algorithm,” in Proc. IEEE Conf. Decis. Control, 2018,
pp. 2759–2764.

[54] J. Zhang, J. Kim, B. Donoghue, and S. Boyd, “Sample efficient reinforce-
ment learning with reinforce,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 10887–10895.

[55] K. Zhang, A. Koppel, H. Zhu, and T. Başar, “Global convergence of policy
gradient methods to (almost) locally optimal policies,” SIAM J. Control
Optim., 2019, pp. 3586–3612.

[56] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 9340–9371.

[57] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for SARSA with linear
function approximation,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8668–8678.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 05,2024 at 13:38:23 UTC from IEEE Xplore. Restrictions apply.

